|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from torch import nn |
|
|
|
import torch.utils.checkpoint as checkpoint |
|
from functools import partial |
|
from einops import rearrange |
|
|
|
from .pos_embed import get_3d_sincos_pos_embed, get_2d_sincos_pos_embed, get_1d_sincos_pos_embed, interpolate_pos_embed_internvideo2 |
|
from .flash_attention_class import FlashAttention |
|
|
|
from transformers.utils import logging as error_logging |
|
|
|
|
|
error_logging.set_verbosity_error() |
|
|
|
try: |
|
from flash_attn.modules.mlp import Mlp as FusedMLP |
|
except: |
|
pass |
|
|
|
try: |
|
from flash_attn.ops.rms_norm import DropoutAddRMSNorm |
|
except: |
|
pass |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., attn_head_dim=None, out_dim=None): |
|
super().__init__() |
|
if out_dim is None: |
|
out_dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
assert all_head_dim == dim |
|
|
|
self.q = nn.Linear(dim, all_head_dim, bias=False) |
|
self.k = nn.Linear(dim, all_head_dim, bias=False) |
|
self.v = nn.Linear(dim, all_head_dim, bias=False) |
|
|
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.k_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, out_dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, k=None, v=None): |
|
B, N, C = x.shape |
|
N_k = k.shape[1] |
|
N_v = v.shape[1] |
|
|
|
q_bias, k_bias, v_bias = None, None, None |
|
if self.q_bias is not None: |
|
q_bias = self.q_bias |
|
k_bias = self.k_bias |
|
v_bias = self.v_bias |
|
|
|
q = F.linear(input=x, weight=self.q.weight, bias=q_bias) |
|
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
k = F.linear(input=k, weight=self.k.weight, bias=k_bias) |
|
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
v = F.linear(input=v, weight=self.v.weight, bias=v_bias) |
|
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class AttentiveBlock(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): |
|
super().__init__() |
|
|
|
self.norm1_q = norm_layer(dim) |
|
self.norm1_k = norm_layer(dim) |
|
self.norm1_v = norm_layer(dim) |
|
self.cross_attn = CrossAttention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, |
|
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): |
|
x_q = self.norm1_q(x_q + pos_q) |
|
x_k = self.norm1_k(x_kv + pos_k) |
|
x_v = self.norm1_v(x_kv) |
|
x = self.cross_attn(x_q, k=x_k, v=x_v) |
|
|
|
return x |
|
|
|
|
|
class AttentionPoolingBlock(AttentiveBlock): |
|
|
|
def forward(self, x): |
|
|
|
x_q = x |
|
x_kv, pos_q, pos_k = x, 0, 0 |
|
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) |
|
x = x.squeeze(1) |
|
return x |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
self.force_fp32 = force_fp32 |
|
|
|
@torch.cuda.amp.autocast(enabled=False) |
|
def forward(self, x): |
|
if self.force_fp32: |
|
output_type = x.dtype |
|
out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float() |
|
return out.to(dtype=output_type) |
|
else: |
|
out = x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
return out |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, |
|
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.use_flash_attn = use_flash_attn |
|
if use_flash_attn: |
|
self.causal = causal |
|
self.inner_attn = FlashAttention(attention_dropout=attn_drop) |
|
|
|
self.qk_normalization = qk_normalization |
|
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() |
|
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() |
|
self.use_fused_rmsnorm = use_fused_rmsnorm |
|
|
|
def _naive_attn(self, x): |
|
B, N, C = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.qk_normalization: |
|
B_, H_, N_, D_ = q.shape |
|
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): |
|
|
|
qkv = self.qkv(x) |
|
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) |
|
|
|
if self.qk_normalization: |
|
q, k, v = qkv.unbind(2) |
|
if self.use_fused_rmsnorm: |
|
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) |
|
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) |
|
else: |
|
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) |
|
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) |
|
qkv = torch.stack([q, k, v], dim=2) |
|
|
|
context, _ = self.inner_attn( |
|
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal |
|
) |
|
outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) |
|
outs = self.proj_drop(outs) |
|
return outs |
|
|
|
def forward(self, x): |
|
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) |
|
return x |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, |
|
bias=True, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
bias = to_2tuple(bias) |
|
drop_probs = to_2tuple(drop) |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) |
|
self.act = act_layer() |
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) |
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop1(x) |
|
x = self.fc2(x) |
|
x = self.drop2(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, |
|
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, |
|
use_fused_rmsnorm=False): |
|
super().__init__() |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, |
|
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, |
|
qk_normalization=qk_normalization, |
|
use_fused_rmsnorm=use_fused_rmsnorm) |
|
self.ls1 = LayerScale(dim, init_values=init_values, |
|
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() |
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
if use_fused_mlp: |
|
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
else: |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
self.ls2 = LayerScale(dim, init_values=init_values, |
|
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.with_cp = with_cp |
|
self.use_fused_rmsnorm = use_fused_rmsnorm |
|
|
|
def forward(self, x, residual=None): |
|
|
|
def _inner_forward(x, residual=None): |
|
if self.use_fused_rmsnorm: |
|
x, residual = self.norm1(x, residual) |
|
x = self.drop_path1(self.ls1(self.attn(x))) |
|
x, residual = self.norm2(x, residual) |
|
x = self.drop_path2(self.ls2(self.mlp(x))) |
|
return x, residual |
|
else: |
|
assert residual is None |
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
if self.with_cp: |
|
|
|
return checkpoint.checkpoint(_inner_forward, x, residual) |
|
else: |
|
return _inner_forward(x, residual=residual) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" 3D Image to Patch Embedding |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, |
|
num_frames=8, tubelet_size=1, norm_layer=None |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = ( |
|
num_frames // tubelet_size, |
|
img_size[0] // patch_size[0], |
|
img_size[1] // patch_size[1] |
|
) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] |
|
self.num_img_patches = self.grid_size[1] * self.grid_size[2] |
|
|
|
self.proj = nn.Conv3d( |
|
in_channels=in_chans, out_channels=embed_dim, |
|
kernel_size=(tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(tubelet_size, patch_size[0], patch_size[1]) |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = x.flatten(3).permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class Linear_Decoder(nn.Module): |
|
def __init__(self, in_channels=1408, out_channels=3200, |
|
norm_layer=nn.LayerNorm, clip_norm_type='l2'): |
|
super().__init__() |
|
self.clip_norm_type = clip_norm_type |
|
|
|
|
|
self.head = nn.Linear(in_channels, out_channels) |
|
self.norm = norm_layer(out_channels) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x): |
|
x = self.norm(self.head(x)) |
|
|
|
if self.clip_norm_type == 'l2': |
|
x = x / x.norm(dim=-1, keepdim=True) |
|
elif self.clip_norm_type == 'none': |
|
pass |
|
else: |
|
raise NotImplementedError |
|
|
|
return x |
|
|
|
|
|
class PretrainInternVideo2(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
patch_size: int = 14, |
|
img_size: int = 224, |
|
qkv_bias: bool = False, |
|
drop_path_rate: float = 0.25, |
|
embed_dim: int = 1408, |
|
num_heads: int = 16, |
|
mlp_ratio: float = 48/11, |
|
init_values: float = 1e-5, |
|
qk_normalization: bool = True, |
|
depth: int = 40, |
|
use_flash_attn: bool = False, |
|
use_fused_rmsnorm: bool = False, |
|
use_fused_mlp: bool = False, |
|
fused_mlp_heuristic: int = 1, |
|
attn_pool_num_heads: int = 16, |
|
clip_embed_dim: int = 768, |
|
layerscale_no_force_fp32: bool = False, |
|
num_frames: int = 8, |
|
tubelet_size: int = 1, |
|
sep_pos_embed: bool = False, |
|
sep_image_video_pos_embed: bool = False, |
|
use_checkpoint: bool = False, |
|
checkpoint_num: int = 0, |
|
|
|
clip_teacher_embed_dim: int = 3200, |
|
clip_teacher_final_dim: int = 768, |
|
clip_norm_type: str = 'l2', |
|
clip_return_layer: int = 1, |
|
clip_student_return_interval: int = 1, |
|
): |
|
super().__init__() |
|
|
|
self.num_frames = num_frames |
|
|
|
self.tubelet_size = tubelet_size |
|
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent' |
|
|
|
self.use_flash_attn = use_flash_attn |
|
self.embed_dim = embed_dim |
|
|
|
self.depth = depth |
|
self.clip_norm_type = clip_norm_type |
|
self.return_index = [] |
|
for i in range(clip_return_layer): |
|
self.return_index.append(depth - int(i * clip_student_return_interval) - 1) |
|
|
|
|
|
|
|
if use_fused_rmsnorm: |
|
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) |
|
else: |
|
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) |
|
self.norm_layer_for_blocks = norm_layer_for_blocks |
|
self.patch_embed = PatchEmbed( |
|
img_size, patch_size, in_chans, embed_dim, |
|
num_frames=num_frames, tubelet_size=tubelet_size, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
num_img_patches = self.patch_embed.num_img_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
|
|
self.sep_pos_embed = sep_pos_embed |
|
self.sep_image_video_pos_embed = sep_image_video_pos_embed |
|
if sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
if sep_image_video_pos_embed: |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) |
|
|
|
self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.clip_img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim)) |
|
else: |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
with_cp_list = [False] * depth |
|
if use_checkpoint: |
|
for idx in range(depth): |
|
if idx < checkpoint_num: |
|
with_cp_list[idx] = True |
|
|
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, |
|
norm_layer=norm_layer_for_blocks, |
|
drop_path=dpr[i], init_values=init_values, attn_drop=0., |
|
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, |
|
fused_mlp_heuristic=fused_mlp_heuristic, |
|
with_cp=with_cp_list[i], |
|
qk_normalization=qk_normalization, |
|
layerscale_no_force_fp32=layerscale_no_force_fp32, |
|
use_fused_rmsnorm=use_fused_rmsnorm) |
|
for i in range(depth)]) |
|
self.clip_projector = AttentionPoolingBlock( |
|
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, |
|
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim) |
|
|
|
|
|
self.clip_decoder = nn.ModuleList([ |
|
Linear_Decoder( |
|
in_channels=embed_dim, |
|
out_channels=clip_teacher_embed_dim, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-5), |
|
clip_norm_type=clip_norm_type |
|
) for _ in range(clip_return_layer) |
|
]) |
|
self.final_clip_decoder = nn.Identity() |
|
if clip_teacher_final_dim > 0: |
|
self.final_clip_decoder = Linear_Decoder( |
|
in_channels=clip_embed_dim, |
|
out_channels=clip_teacher_final_dim, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-5), |
|
clip_norm_type=clip_norm_type |
|
) |
|
|
|
self.init_pos_embed() |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
self.fix_init_weight() |
|
|
|
def init_pos_embed(self): |
|
|
|
if self.sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
|
|
|
|
pos_embed = get_3d_sincos_pos_embed( |
|
self.pos_embed.shape[-1], |
|
self.patch_embed.grid_size[1], |
|
self.patch_embed.grid_size[0], |
|
cls_token=True |
|
) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
self.clip_pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
if self.sep_image_video_pos_embed: |
|
img_pos_embed = get_3d_sincos_pos_embed( |
|
self.pos_embed.shape[-1], |
|
self.patch_embed.grid_size[1], |
|
1, |
|
cls_token=True |
|
) |
|
self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) |
|
self.clip_img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0)) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
@property |
|
def dtype(self): |
|
return self.patch_embed.proj.weight.dtype |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return { |
|
'pos_embed', |
|
'pos_embed_spatial', |
|
'pos_embed_temporal', |
|
'pos_embed_cls', |
|
'img_pos_embed', |
|
'cls_token', |
|
'clip_pos_embed', |
|
'clip_pos_embed_spatial', |
|
'clip_pos_embed_temporal', |
|
'clip_pos_embed_cls', |
|
'clip_img_pos_embed' |
|
} |
|
|
|
|
|
def forward(self, x, mask=None, use_image=False, x_vis_return_idx=-1, x_vis_only=False): |
|
|
|
x = self.patch_embed(x.type(self.dtype)) |
|
|
|
B, T, L, C = x.shape |
|
x = x.view([B, T * L, C]) |
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
|
|
if self.sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
if use_image: |
|
|
|
if self.sep_image_video_pos_embed: |
|
pos_embed = self.img_pos_embed |
|
else: |
|
|
|
|
|
cls_pos_embed = self.pos_embed[:, 0:1, :] |
|
|
|
|
|
img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) |
|
|
|
|
|
pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1) |
|
|
|
else: |
|
pos_embed = self.pos_embed |
|
pos_embed = pos_embed[:, :x.shape[1], :] |
|
x = x + pos_embed |
|
|
|
|
|
if mask is not None: |
|
x = x[~mask].reshape(B, -1, C) |
|
else: |
|
x = x.reshape(B, -1, C) |
|
residual = None |
|
x_clip = [] |
|
for idx, blk in enumerate(self.blocks): |
|
if isinstance(x, tuple) and len(x) == 2: |
|
x, residual = x |
|
|
|
x = blk(x, residual=residual) |
|
|
|
if idx in self.return_index: |
|
if isinstance(x, tuple) and len(x) == 2: |
|
tmp_x, tmp_residual = x |
|
if residual is not None: |
|
x_clip.append(tmp_x + tmp_residual) |
|
else: |
|
x_clip.append(x) |
|
if idx == (self.depth + x_vis_return_idx): |
|
|
|
break |
|
|
|
if isinstance(x, tuple) and len(x) == 2: |
|
x, residual = x |
|
if residual is not None: |
|
x = x + residual |
|
|
|
x_vis = x |
|
|
|
if x_vis_only: |
|
return x_vis |
|
|
|
x_pool_vis = self.clip_projector(x_vis) |
|
x_align = self.final_clip_decoder(x_pool_vis) |
|
|
|
|
|
|
|
|
|
x_clip = torch.stack(x_clip) |
|
K, B, _, C_CLIP = x_clip.shape |
|
|
|
|
|
if self.sep_pos_embed: |
|
raise NotImplementedError |
|
else: |
|
if use_image: |
|
if self.sep_image_video_pos_embed: |
|
clip_pos_embed = self.clip_img_pos_embed |
|
else: |
|
|
|
|
|
clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :] |
|
|
|
|
|
clip_img_pos_embed = self.clip_pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1) |
|
|
|
|
|
clip_pos_embed = torch.cat([clip_cls_pos_embed, clip_img_pos_embed], dim=1) |
|
|
|
|
|
else: |
|
clip_pos_embed = self.clip_pos_embed |
|
|
|
clip_pos_embed = clip_pos_embed.repeat(B, 1, 1) |
|
if mask is not None: |
|
x_clip = x_clip + clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) |
|
else: |
|
clip_pos_embed = clip_pos_embed.unsqueeze(0).repeat(K, 1, 1, 1) |
|
clip_pos_embed = clip_pos_embed[:, :, :x_clip.shape[2], :] |
|
x_clip = x_clip + clip_pos_embed |
|
|
|
|
|
x_clip_align = [] |
|
for idx, clip_decoder in enumerate(self.clip_decoder): |
|
x_clip_align.append(clip_decoder(x_clip[idx])) |
|
x_clip_align = torch.stack(x_clip_align) |
|
|
|
|
|
return x_vis, x_pool_vis, x_clip_align, x_align |
|
|
|
|
|
def pretrain_internvideo2_1b_patch14_224(config): |
|
|
|
model = PretrainInternVideo2( |
|
in_chans=3, img_size=224, patch_size=14, |
|
embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, |
|
clip_embed_dim=config.vision_encoder.clip_embed_dim, |
|
attn_pool_num_heads=16, qkv_bias=False, |
|
drop_path_rate=0.25, |
|
init_values=0.00001, |
|
qk_normalization=True, |
|
use_flash_attn=config.vision_encoder.get('use_flash_attn', True), |
|
use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', True), |
|
use_fused_mlp=config.vision_encoder.get('use_fused_mlp', True), |
|
fused_mlp_heuristic=1, |
|
layerscale_no_force_fp32=False, |
|
num_frames=config.vision_encoder.num_frames, |
|
tubelet_size=config.vision_encoder.tubelet_size, |
|
sep_pos_embed=False, |
|
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed, |
|
use_checkpoint=config.vision_encoder.use_checkpoint, |
|
checkpoint_num=config.vision_encoder.checkpoint_num, |
|
clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim, |
|
clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim, |
|
clip_norm_type=config.vision_encoder.clip_norm_type, |
|
clip_return_layer=config.vision_encoder.clip_return_layer, |
|
clip_student_return_interval=config.vision_encoder.clip_student_return_interval, |
|
) |
|
|
|
if config.vision_encoder.pretrained is not None: |
|
|
|
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu') |
|
interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=8) |
|
message = model.load_state_dict(state_dict, strict=False) |
|
|
|
else: |
|
pass |
|
|
|
return model |
|
|
|
|
|
|
|
def pretrain_internvideo2_6b_patch14_224(config): |
|
model = PretrainInternVideo2( |
|
in_chans=3, img_size=224, patch_size=14, |
|
embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4, |
|
clip_embed_dim=config.vision_encoder.clip_embed_dim, |
|
attn_pool_num_heads=16, qkv_bias=False, |
|
drop_path_rate=0.3, |
|
init_values=0.00001, |
|
qk_normalization=True, |
|
use_flash_attn=config.vision_encoder.get('use_flash_attn', True), |
|
use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', True), |
|
use_fused_mlp=config.vision_encoder.get('use_fused_mlp', True), |
|
fused_mlp_heuristic=1, |
|
layerscale_no_force_fp32=False, |
|
num_frames=config.vision_encoder.num_frames, |
|
tubelet_size=config.vision_encoder.tubelet_size, |
|
sep_pos_embed=False, |
|
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed, |
|
use_checkpoint=config.vision_encoder.use_checkpoint, |
|
checkpoint_num=config.vision_encoder.checkpoint_num, |
|
clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim, |
|
clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim, |
|
clip_norm_type=config.vision_encoder.clip_norm_type, |
|
clip_return_layer=config.vision_encoder.clip_return_layer, |
|
clip_student_return_interval=config.vision_encoder.clip_student_return_interval, |
|
) |
|
|
|
if config.vision_encoder.pretrained is not None: |
|
|
|
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu') |
|
interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=8) |
|
msg = model.load_state_dict(state_dict, strict=False) |
|
|
|
else: |
|
pass |
|
|
|
return model |
|
|