mihaimasala commited on
Commit
002968b
·
verified ·
1 Parent(s): df02179

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +717 -3
README.md CHANGED
@@ -1,3 +1,717 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama2-7b-Base
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ model-index:
18
+ - name: OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: RoMT-Bench
24
+ type: RoMT-Bench
25
+ metrics:
26
+ - name: Score
27
+ type: Score
28
+ value: 4.97
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ name: RoCulturaBench
33
+ type: RoCulturaBench
34
+ metrics:
35
+ - name: Score
36
+ type: Score
37
+ value: 4.56
38
+ - task:
39
+ type: text-generation
40
+ dataset:
41
+ name: Romanian_Academic_Benchmarks
42
+ type: Romanian_Academic_Benchmarks
43
+ metrics:
44
+ - name: Average accuracy
45
+ type: accuracy
46
+ value: 45.51
47
+ - task:
48
+ type: text-generation
49
+ dataset:
50
+ name: OpenLLM-Ro/ro_arc_challenge
51
+ type: OpenLLM-Ro/ro_arc_challenge
52
+ metrics:
53
+ - name: Average accuracy
54
+ type: accuracy
55
+ value: 45.70
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ name: OpenLLM-Ro/ro_mmlu
60
+ type: OpenLLM-Ro/ro_mmlu
61
+ metrics:
62
+ - name: Average accuracy
63
+ type: accuracy
64
+ value: 40.36
65
+ - task:
66
+ type: text-generation
67
+ dataset:
68
+ name: OpenLLM-Ro/ro_winogrande
69
+ type: OpenLLM-Ro/ro_winogrande
70
+ metrics:
71
+ - name: Average accuracy
72
+ type: accuracy
73
+ value: 63.26
74
+ - task:
75
+ type: text-generation
76
+ dataset:
77
+ name: OpenLLM-Ro/ro_hellaswag
78
+ type: OpenLLM-Ro/ro_hellaswag
79
+ metrics:
80
+ - name: Average accuracy
81
+ type: accuracy
82
+ value: 60.25
83
+ - task:
84
+ type: text-generation
85
+ dataset:
86
+ name: OpenLLM-Ro/ro_gsm8k
87
+ type: OpenLLM-Ro/ro_gsm8k
88
+ metrics:
89
+ - name: Average accuracy
90
+ type: accuracy
91
+ value: 18.02
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ name: OpenLLM-Ro/ro_truthfulqa
96
+ type: OpenLLM-Ro/ro_truthfulqa
97
+ metrics:
98
+ - name: Average accuracy
99
+ type: accuracy
100
+ value: 45.48
101
+ - task:
102
+ type: text-generation
103
+ dataset:
104
+ name: LaRoSeDa_binary
105
+ type: LaRoSeDa_binary
106
+ metrics:
107
+ - name: Average macro-f1
108
+ type: macro-f1
109
+ value: 97.60
110
+ - task:
111
+ type: text-generation
112
+ dataset:
113
+ name: LaRoSeDa_multiclass
114
+ type: LaRoSeDa_multiclass
115
+ metrics:
116
+ - name: Average macro-f1
117
+ type: macro-f1
118
+ value: 60.22
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ name: WMT_EN-RO
123
+ type: WMT_EN-RO
124
+ metrics:
125
+ - name: Average bleu
126
+ type: bleu
127
+ value: 27.21
128
+ - task:
129
+ type: text-generation
130
+ dataset:
131
+ name: WMT_RO-EN
132
+ type: WMT_RO-EN
133
+ metrics:
134
+ - name: Average bleu
135
+ type: bleu
136
+ value: 22.15
137
+ - task:
138
+ type: text-generation
139
+ dataset:
140
+ name: XQuAD
141
+ type: XQuAD
142
+ metrics:
143
+ - name: Average exact_match
144
+ type: exact_match
145
+ value: 47.39
146
+ - task:
147
+ type: text-generation
148
+ dataset:
149
+ name: XQuAD
150
+ type: XQuAD
151
+ metrics:
152
+ - name: Average f1
153
+ type: f1
154
+ value: 65.77
155
+ - task:
156
+ type: text-generation
157
+ dataset:
158
+ name: STS
159
+ type: STS
160
+ metrics:
161
+ - name: Average spearman
162
+ type: spearman
163
+ value: 59.05
164
+ - task:
165
+ type: text-generation
166
+ dataset:
167
+ name: STS
168
+ type: STS
169
+ metrics:
170
+ - name: Average pearson
171
+ type: pearson
172
+ value: 56.45
173
+ - task:
174
+ type: text-generation
175
+ dataset:
176
+ name: RoMT-Bench
177
+ type: RoMT-Bench
178
+ metrics:
179
+ - name: First turn
180
+ type: Score
181
+ value: 5.56
182
+ - name: Second turn
183
+ type: Score
184
+ value: 4.39
185
+ - task:
186
+ type: text-generation
187
+ dataset:
188
+ name: OpenLLM-Ro/ro_arc_challenge
189
+ type: OpenLLM-Ro/ro_arc_challenge
190
+ metrics:
191
+ - name: 0-shot
192
+ type: accuracy
193
+ value: 43.02
194
+ - name: 1-shot
195
+ type: accuracy
196
+ value: 45.84
197
+ - name: 3-shot
198
+ type: accuracy
199
+ value: 45.24
200
+ - name: 5-shot
201
+ type: accuracy
202
+ value: 46.19
203
+ - name: 10-shot
204
+ type: accuracy
205
+ value: 46.70
206
+ - name: 25-shot
207
+ type: accuracy
208
+ value: 47.22
209
+ - task:
210
+ type: text-generation
211
+ dataset:
212
+ name: OpenLLM-Ro/ro_mmlu
213
+ type: OpenLLM-Ro/ro_mmlu
214
+ metrics:
215
+ - name: 0-shot
216
+ type: accuracy
217
+ value: 38.64
218
+ - name: 1-shot
219
+ type: accuracy
220
+ value: 40.77
221
+ - name: 3-shot
222
+ type: accuracy
223
+ value: 41.19
224
+ - name: 5-shot
225
+ type: accuracy
226
+ value: 40.86
227
+ - task:
228
+ type: text-generation
229
+ dataset:
230
+ name: OpenLLM-Ro/ro_winogrande
231
+ type: OpenLLM-Ro/ro_winogrande
232
+ metrics:
233
+ - name: 0-shot
234
+ type: accuracy
235
+ value: 63.61
236
+ - name: 1-shot
237
+ type: accuracy
238
+ value: 62.75
239
+ - name: 3-shot
240
+ type: accuracy
241
+ value: 63.46
242
+ - name: 5-shot
243
+ type: accuracy
244
+ value: 63.22
245
+ - task:
246
+ type: text-generation
247
+ dataset:
248
+ name: OpenLLM-Ro/ro_hellaswag
249
+ type: OpenLLM-Ro/ro_hellaswag
250
+ metrics:
251
+ - name: 0-shot
252
+ type: accuracy
253
+ value: 59.79
254
+ - name: 1-shot
255
+ type: accuracy
256
+ value: 59.62
257
+ - name: 3-shot
258
+ type: accuracy
259
+ value: 60.12
260
+ - name: 5-shot
261
+ type: accuracy
262
+ value: 60.71
263
+ - name: 10-shot
264
+ type: accuracy
265
+ value: 61.01
266
+ - task:
267
+ type: text-generation
268
+ dataset:
269
+ name: OpenLLM-Ro/ro_gsm8k
270
+ type: OpenLLM-Ro/ro_gsm8k
271
+ metrics:
272
+ - name: 1-shot
273
+ type: accuracy
274
+ value: 6.14
275
+ - name: 3-shot
276
+ type: accuracy
277
+ value: 22.52
278
+ - name: 5-shot
279
+ type: accuracy
280
+ value: 25.40
281
+ - task:
282
+ type: text-generation
283
+ dataset:
284
+ name: LaRoSeDa_binary
285
+ type: LaRoSeDa_binary
286
+ metrics:
287
+ - name: 0-shot
288
+ type: macro-f1
289
+ value: 98.17
290
+ - name: 1-shot
291
+ type: macro-f1
292
+ value: 96.30
293
+ - name: 3-shot
294
+ type: macro-f1
295
+ value: 97.80
296
+ - name: 5-shot
297
+ type: macro-f1
298
+ value: 98.13
299
+ - task:
300
+ type: text-generation
301
+ dataset:
302
+ name: LaRoSeDa_multiclass
303
+ type: LaRoSeDa_multiclass
304
+ metrics:
305
+ - name: 0-shot
306
+ type: macro-f1
307
+ value: 49.80
308
+ - name: 1-shot
309
+ type: macro-f1
310
+ value: 56.03
311
+ - name: 3-shot
312
+ type: macro-f1
313
+ value: 65.33
314
+ - name: 5-shot
315
+ type: macro-f1
316
+ value: 69.70
317
+ - task:
318
+ type: text-generation
319
+ dataset:
320
+ name: WMT_EN-RO
321
+ type: WMT_EN-RO
322
+ metrics:
323
+ - name: 0-shot
324
+ type: bleu
325
+ value: 19.34
326
+ - name: 1-shot
327
+ type: bleu
328
+ value: 29.89
329
+ - name: 3-shot
330
+ type: bleu
331
+ value: 29.99
332
+ - name: 5-shot
333
+ type: bleu
334
+ value: 29.62
335
+ - task:
336
+ type: text-generation
337
+ dataset:
338
+ name: WMT_RO-EN
339
+ type: WMT_RO-EN
340
+ metrics:
341
+ - name: 0-shot
342
+ type: bleu
343
+ value: 2.29
344
+ - name: 1-shot
345
+ type: bleu
346
+ value: 14.74
347
+ - name: 3-shot
348
+ type: bleu
349
+ value: 34.82
350
+ - name: 5-shot
351
+ type: bleu
352
+ value: 36.75
353
+ - task:
354
+ type: text-generation
355
+ dataset:
356
+ name: XQuAD_EM
357
+ type: XQuAD_EM
358
+ metrics:
359
+ - name: 0-shot
360
+ type: exact_match
361
+ value: 42.86
362
+ - name: 1-shot
363
+ type: exact_match
364
+ value: 47.82
365
+ - name: 3-shot
366
+ type: exact_match
367
+ value: 48.32
368
+ - name: 5-shot
369
+ type: exact_match
370
+ value: 50.59
371
+ - task:
372
+ type: text-generation
373
+ dataset:
374
+ name: XQuAD_F1
375
+ type: XQuAD_F1
376
+ metrics:
377
+ - name: 0-shot
378
+ type: f1
379
+ value: 63.66
380
+ - name: 1-shot
381
+ type: f1
382
+ value: 65.27
383
+ - name: 3-shot
384
+ type: f1
385
+ value: 66.04
386
+ - name: 5-shot
387
+ type: f1
388
+ value: 68.12
389
+ - task:
390
+ type: text-generation
391
+ dataset:
392
+ name: STS_Spearman
393
+ type: STS_Spearman
394
+ metrics:
395
+ - name: 1-shot
396
+ type: spearman
397
+ value: 54.51
398
+ - name: 3-shot
399
+ type: spearman
400
+ value: 60.98
401
+ - name: 5-shot
402
+ type: spearman
403
+ value: 61.65
404
+ - task:
405
+ type: text-generation
406
+ dataset:
407
+ name: STS_Pearson
408
+ type: STS_Pearson
409
+ metrics:
410
+ - name: 1-shot
411
+ type: pearson
412
+ value: 54.35
413
+ - name: 3-shot
414
+ type: pearson
415
+ value: 57.88
416
+ - name: 5-shot
417
+ type: pearson
418
+ value: 57.13
419
+
420
+ ---
421
+
422
+ # Model Card for Model ID
423
+
424
+ <!-- Provide a quick summary of what the model is/does. -->
425
+
426
+ RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
427
+
428
+ ## Model Details
429
+
430
+ ### Model Description
431
+
432
+ <!-- Provide a longer summary of what this model is. -->
433
+ OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
434
+
435
+
436
+ - **Developed by:** OpenLLM-Ro
437
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
438
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
439
+ <!-- - **Model type:** [More Information Needed] -->
440
+ - **Language(s):** Romanian
441
+ - **License:** cc-by-nc-4.0
442
+ - **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
443
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
444
+
445
+
446
+ ### Model Sources
447
+
448
+ <!-- Provide the basic links for the model. -->
449
+
450
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
451
+ - **Paper:** https://arxiv.org/abs/2406.18266
452
+
453
+ ## Intended Use
454
+
455
+ ### Intended Use Cases
456
+
457
+ RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
458
+
459
+ ### Out-of-Scope Use
460
+
461
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
462
+
463
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
464
+
465
+
466
+
467
+ ## How to Get Started with the Model
468
+
469
+ Use the code below to get started with the model.
470
+
471
+ ```python
472
+ from transformers import AutoTokenizer, AutoModelForCausalLM
473
+
474
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23")
475
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23")
476
+
477
+ instruction = "Care este cel mai înalt vârf muntos din România?"
478
+ chat = [
479
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
480
+ {"role": "user", "content": instruction},
481
+ ]
482
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False)
483
+
484
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
485
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
486
+ print(tokenizer.decode(outputs[0]))
487
+ ```
488
+
489
+ ## Academic Benchmarks
490
+
491
+ <table>
492
+ <tbody>
493
+ <tr>
494
+ <td><strong>Model</strong></td>
495
+ <td><strong><center>Average</center></strong></td>
496
+ <td><strong><center>ARC</center></strong></td>
497
+ <td><strong><center>MMLU</center></strong></td>
498
+ <td><strong><center>Winogrande</center></strong></td>
499
+ <td><strong><center>Hellaswag</center></strong></td>
500
+ <td><strong><center>GSM8k</center></strong></td>
501
+ <td><strong><center>TruthfulQA</center></strong></td>
502
+ </tr>
503
+ <tr>
504
+ <td>Llama-2-7b-chat</td><td><center>36.84</center></td><td><center>37.03</center></td><td><center>33.80</center></td><td><center>55.87</center></td><td><center>45.36</center></td><td><center>4.90</center></td><td><center>44.09</center></td>
505
+ </tr>
506
+ <tr>
507
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>45.71</center></td><td><center>43.66</center></td><td><center>39.70</center></td><td><center><strong>70.34</strong></center></td><td><center>57.36</center></td><td><center><strong>18.78</strong></center></td><td><center>44.44</center></td>
508
+ </tr>
509
+ <tr>
510
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>44.50</center></td><td><center>44.73</center></td><td><center>40.39</center></td><td><center>63.67</center></td><td><center>59.12</center></td><td><center>13.29</center></td><td><center>45.78</center></td>
511
+ </tr>
512
+ <tr>
513
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>45.51</em></center></td><td><center><em>45.70</em></center></td><td><center><em>40.36</em></center></td><td><center><em>63.26</em></center></td><td><center><em>60.25</em></center></td><td><center><em>18.02</em></center></td><td><center><em>45.48</em></center></td>
514
+ </tr>
515
+ <tr>
516
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>43.20</center></td><td><center>44.24</center></td><td><center>38.39</center></td><td><center>62.57</center></td><td><center>59.20</center></td><td><center>15.72</center></td><td><center>39.07</center></td>
517
+ </tr>
518
+ <tr>
519
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>46.77</strong></center></td><td><center><strong>48.16</strong></center></td><td><center><strong>41.38</strong></center></td><td><center>64.15</center></td><td><center><strong>61.37</strong></center></td><td><center>18.35</center></td><td><center><strong>47.20</strong></center></td>
520
+ </tr>
521
+ </tbody>
522
+ </table>
523
+
524
+ ## Downstream tasks
525
+
526
+
527
+ <table>
528
+ <tbody>
529
+ <tr>
530
+ <td></td>
531
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
532
+ <td colspan="4"><center><strong>WMT</strong></center></td>
533
+ </tr>
534
+ <tr>
535
+ <td></td>
536
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
537
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
538
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
539
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
540
+ </tr>
541
+ <tr>
542
+ <td><strong>Model</strong></td>
543
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
545
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
546
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
547
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
548
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
549
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
550
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
551
+ </tr>
552
+ <tr>
553
+ <td>Llama-2-7b-chat</td><td><center>87.78</center></td><td><center>52.81</center></td><td><center>97.27</center></td><td><center>82.02</center></td><td><center>15.55</center></td><td><center><strong>28.53</strong></center></td><td><center>19.99</center></td><td><center>31.48</center></td>
554
+ </tr>
555
+ <tr>
556
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>97.48</center></td><td><center><strong>65.26</strong></center></td><td><center><strong>98.83</strong></center></td><td><center><strong>87.28</strong></center></td><td><center><strong>27.38</strong></center></td><td><center>10.32</center></td><td><center>27.59</center></td><td><center><strong>40.13</strong></center></td>
557
+ </tr>
558
+ <tr>
559
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>97.66</center></td><td><center>62.41</center></td><td><center>97.97</center></td><td><center>60.89</center></td><td><center>27.13</center></td><td><center>19.39</center></td><td><center><strong>27.63</strong></center></td><td><center>39.75</center></td>
560
+ </tr>
561
+ <tr>
562
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>97.60</em></center></td><td><center><em>60.22</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>27.21</em></center></td><td><center><em>22.15</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
563
+ </tr>
564
+ <tr>
565
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>97.31</center></td><td><center>60.56</center></td><td><center>-</center></td><td><center>-</center></td><td><center>26.56</center></td><td><center>21.68</center></td><td><center>-</center></td><td><center>-</center></td>
566
+ </tr>
567
+ <tr>
568
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>97.77</strong></center></td><td><center>65.21</center></td><td><center>-</center></td><td><center>-</center></td><td><center>25.48</center></td><td><center>22.75</center></td><td><center>-</center></td><td><center>-</center></td>
569
+ </tr>
570
+ </tbody>
571
+ </table>
572
+
573
+
574
+ <table>
575
+ <tbody>
576
+ <tr>
577
+ <td></td>
578
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
579
+ <td colspan="4"><center><strong>STS</strong></center></td>
580
+ </tr>
581
+ <tr>
582
+ <td></td>
583
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
584
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
585
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
586
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
587
+ </tr>
588
+ <tr>
589
+ <td><strong>Model</strong></td>
590
+ <td><center><strong>(EM)</strong></center></td>
591
+ <td><center><strong>(F1)</strong></center></td>
592
+ <td><center><strong>(EM)</strong></center></td>
593
+ <td><center><strong>(F1)</strong></center></td>
594
+ <td><center><strong>(Spearman)</strong></center></td>
595
+ <td><center><strong>(Pearson)</strong></center></td>
596
+ <td><center><strong>(Spearman)</strong></center></td>
597
+ <td><center><strong>(Pearson)</strong></center></td>
598
+ </tr>
599
+ <tr>
600
+ <td>Llama-2-7b-chat</td><td><center>32.35</center></td><td><center>54.00</center></td><td><center><strong>60.34</strong></center></td><td><center><strong>75.98</strong></center></td><td><center>32.56</center></td><td><center>31.99</center></td><td><center>74.08</center></td><td><center>72.64</center></td>
601
+ </tr>
602
+ <tr>
603
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>44.52</center></td><td><center>64.75</center></td><td><center>54.96</center></td><td><center>70.20</center></td><td><center>65.50</center></td><td><center><strong>67.79</strong></center></td><td><center>84.44</center></td><td><center>84.76</center></td>
604
+ </tr>
605
+ <tr>
606
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>45.71</center></td><td><center>65.08</center></td><td><center>59.24</center></td><td><center>74.25</center></td><td><center>59.69</center></td><td><center>57.16</center></td><td><center><strong>84.66</strong></center></td><td><center><strong>85.07</strong></center></td>
607
+ </tr>
608
+ <tr>
609
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em><strong>47.39</strong></em></center></td><td><center><em><strong>65.77</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>59.05</em></center></td><td><center><em>56.45</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
610
+ </tr>
611
+ <tr>
612
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>35.78</center></td><td><center>59.31</center></td><td><center>-</center></td><td><center>-</center></td><td><center>61.22</center></td><td><center>58.41</center></td><td><center>-</center></td><td><center>-</center></td>
613
+ </tr>
614
+ <tr>
615
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center>38.28</center></td><td><center>60.88</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>66.76</strong></center></td><td><center>64.72</center></td><td><center>-</center></td><td><center>-</center></td>
616
+ </tr>
617
+ </tbody>
618
+ </table>
619
+
620
+
621
+ ## Romanian MT-Bench
622
+
623
+ <table>
624
+ <tbody>
625
+ <tr>
626
+ <td><strong>Model</strong></td>
627
+ <td><strong><center>Average</center></strong></td>
628
+ <td><strong><center>1st turn</center></strong></td>
629
+ <td><strong><center>2nd turn</center></strong></td>
630
+ <td><strong><center>Answers in Ro</center></strong></td>
631
+ </tr>
632
+ <tr>
633
+ <td>Llama-2-7b-chat</td><td><center>1.08</center></td><td><center>1.44</center></td><td><center>0.73</center></td><td><center>45/160</center></td>
634
+ </tr>
635
+ <tr>
636
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>3.86</center></td><td><center>4.67</center></td><td><center>3.04</center></td><td><center><strong>160/160</strong></center></td>
637
+ </tr>
638
+ <tr>
639
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>4.43</center></td><td><center>4.92</center></td><td><center>3.94</center></td><td><center><strong>160/160</strong></center></td>
640
+ </tr>
641
+ <tr>
642
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>4.97</em></center></td><td><center><em>5.56</em></center></td><td><center><em>4.39</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
643
+ </tr>
644
+ <tr>
645
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>4.61</center></td><td><center>5.15</center></td><td><center>4.06</center></td><td><center><strong>160/160</strong></center></td>
646
+ </tr>
647
+ <tr>
648
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>5.55</strong></center></td><td><center><strong>5.84</strong></center></td><td><center><strong>5.26</strong></center></td><td><center><strong>160/160</strong></center></td>
649
+ </tr>
650
+ </tbody>
651
+ </table>
652
+
653
+
654
+ ## RoCulturaBench
655
+
656
+
657
+ <table>
658
+ <tbody>
659
+ <tr>
660
+ <td><strong>Model</strong></td>
661
+ <td><strong><center>Average</center></strong></td>
662
+ <td><strong><center>Answers in Ro</center></strong></td>
663
+ </tr>
664
+ <tr>
665
+ <td>Llama-2-7b-chat</td><td><center>1.21</center></td><td><center>33/100</center></td>
666
+ </tr>
667
+ <tr>
668
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>3.77</center></td><td><center><strong>100/100</strong></center></td>
669
+ </tr>
670
+ <tr>
671
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>4.08</center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ <tr>
674
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>4.56</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
675
+ </tr>
676
+ <tr>
677
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>4.80</center></td><td><center><strong>100/100</strong></center></td>
678
+ </tr>
679
+ <tr>
680
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>5.24</strong></center></td><td><center><strong>100/100</strong></center></td>
681
+ </tr>
682
+ </tbody>
683
+ </table>
684
+
685
+
686
+
687
+
688
+
689
+ ## RoLlama2 Model Family
690
+
691
+ | Model | Link |
692
+ |--------------------|:--------:|
693
+ |RoLlama2-7b-Base-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14) |
694
+ |RoLlama2-7b-Instruct-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-05-14) |
695
+ |RoLlama2-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09) |
696
+ |*RoLlama2-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23) |
697
+ |RoLlama2-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2024-10-09) |
698
+ |RoLlama2-7b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2025-04-23) |
699
+
700
+
701
+
702
+ ## Citation
703
+
704
+ ```
705
+ @misc{masala2024vorbecstiromanecsterecipetrain,
706
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
707
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
708
+ year={2024},
709
+ eprint={2406.18266},
710
+ archivePrefix={arXiv},
711
+ primaryClass={cs.CL},
712
+ url={https://arxiv.org/abs/2406.18266},
713
+ }
714
+ ```
715
+ <!-- **APA:**
716
+
717
+ [More Information Needed] -->