File size: 48,189 Bytes
d0551b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch RWKV079Qwen3 model.
base code from SmerkyG @ recursal.ai, featherless.ai
hxa079 implementation RWKV079 + NoPE Hybrid Attention

"""

import math
import inspect
from typing import List, Optional, Tuple, Union, Dict, Any

import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, CacheLayerMixin
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
    GenericForQuestionAnswering,
    GenericForSequenceClassification,
    GenericForTokenClassification,
    GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.generic import check_model_inputs

from .configuration_rwkv079qwen3 import RWKV079Qwen3Config

from transformers.models.qwen3.modeling_qwen3 import Qwen3DecoderLayer, Qwen3MLP, Qwen3RMSNorm, Qwen3Attention

class RWKV079State():
    def __init__(self) -> None:
        #super().__init__()
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
        self.layer_kv_states: List[torch.Tensor] = []
        self.layer_shift_states:  List[torch.Tensor] = []
        self.cumulative_scores: List[torch.Tensor] = []
        self.sin: List[torch.Tensor] = []
        self.cos: List[torch.Tensor] = []

    def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
        sequence length.
        """
        if layer_idx < len(self):
            return (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        """
        Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
        keys and values
        """
        for layer_idx in range(len(self)):
            yield (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.layer_kv_states)

    def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
        """Given the sequence length of the new inputs, returns the usable length of the cache."""
        # Linear Attention variants do not have a maximum length
        return new_seq_length

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        raise NotImplementedError('Cannot reorder Linear Attention state')

    def get_seq_length(self, layer_idx: int = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        return self._seen_tokens

    def get_max_cache_shape(self) -> Optional[int]:
        """Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
        return None

    def get_max_length(self) -> Optional[int]:
        """
        Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.
        """
        return None

    def crop(self, max_length: int):
        # can't implement this for linear attention variants
        return

    def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
        """Return the length and offset of the cache, used to generate the mask"""
        kv_offset = 0
        query_length = cache_position.shape[0]
        past_seen_tokens = self.get_seq_length()
        kv_length = query_length + past_seen_tokens
        return kv_length, kv_offset
    
    @property
    def is_compileable(self) -> bool:
        """Return whether the cache is compileable"""
        return True #all(layer.is_compileable for layer in self.layers)
        
    @torch.no_grad
    def update(
        self,
        kv_state: torch.Tensor,
        shift_state: torch.Tensor,
        layer_idx: int,
        token_count: int = 0,
        is_attention_layer: bool = True,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:        
        # Update the number of seen tokens
        if layer_idx == 0:
            if is_attention_layer:
                token_count = kv_state.size(-2)
            self._seen_tokens += token_count

        #print(f'self._seen_tokens = {self._seen_tokens} layer_idx = {layer_idx} is_attention_layer = {is_attention_layer} kv_state.size(-2) = {kv_state.size(-2)}')

        # Update the cache
        if kv_state is not None:
            # There may be skipped layers, fill them with empty lists
            if layer_idx >= len(self.layer_kv_states):
                for _ in range(len(self.layer_kv_states), layer_idx):
                    if is_attention_layer:
                        self.layer_kv_states.append(torch.tensor([], dtype=kv_state.dtype, device=kv_state.device)) # acts as key_cache
                        self.layer_shift_states.append(torch.tensor([], dtype=shift_state.dtype, device=shift_state.device)) # acts as value_cache
                    else:
                        self.layer_kv_states.append(torch.zeros_like(kv_state).requires_grad_(False))
                        self.layer_shift_states.append(torch.zeros_like(shift_state).requires_grad_(False))
                self.layer_kv_states.append(kv_state) # acts as key_cache
                self.layer_shift_states.append(shift_state) # acts as value_cache
            else:
                if is_attention_layer:
                    self.layer_kv_states[layer_idx] = torch.cat([self.layer_kv_states[layer_idx], kv_state], dim=-2) # acts as key_cache
                    self.layer_shift_states[layer_idx] = torch.cat([self.layer_shift_states[layer_idx], shift_state], dim=-2) # acts as value_cache
                else:
                    self.layer_kv_states[layer_idx].copy_(kv_state)
                    self.layer_shift_states[layer_idx].copy_(shift_state)

        return self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]

try:
    from fla.ops.rwkv7.chunk import chunk_rwkv7
    from fla.ops.rwkv7.fused_recurrent import fused_recurrent_rwkv7
except ImportError:
    print("Required module is not installed. Please install it using the following commands:")
    print("pip install --no-use-pep517 flash-linear-attention")
    print("Additionally, ensure you have at least version 2.2.0 of Triton installed:")
    print("pip install triton>=2.2.0")

# def is_layer_attention(config, layer_id):
#     return layer_id >= config.first_attention_layer and layer_id < config.first_post_attention_layer and  (layer_id > min(config.num_hidden_layers, config.last_striping_layer) or (min(config.num_hidden_layers-1, config.last_striping_layer) - layer_id) % config.attention_striping == 0)

def is_layer_attention(config, layer_id):
    return layer_id in config.transformer_layers

def repeat_kv_rwkv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    Repeat KV heads along the head dimension (GQA).
    Input:  (B, T, H_kv, D)
    Output: (B, T, H_kv * n_rep, D)
    """
    B, T, H_kv, D = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    # Expand head dim
    hidden_states = hidden_states[:, :, :, None, :]  # (B, T, H_kv, 1, D)
    hidden_states = hidden_states.expand(B, T, H_kv, n_rep, D)  # (B, T, H_kv, n_rep, D)
    return hidden_states.reshape(B, T, H_kv * n_rep, D).contiguous()

def T5RMSNorm(hidden_states,weight,variance_epsilon:float=1e-6):
    input_dtype = hidden_states.dtype
    hidden_states = hidden_states.to(torch.float32)
    variance = hidden_states.pow(2).mean(-1, keepdim=True)
    hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
    return (weight * hidden_states).to(input_dtype)

def compute_qwen3_rope_cache(seq_len, rotary_dim, device, dtype, rope_theta):
            half_dim = rotary_dim // 2
            freq_seq = torch.arange(half_dim, dtype=dtype, device=device)
            inv_freq = 1.0 / (rope_theta ** (freq_seq / half_dim))
            positions = torch.arange(seq_len, dtype=dtype, device=device)
            freqs = torch.einsum("i,j->ij", positions, inv_freq)
            emb = torch.cat([freqs, freqs], dim=-1)
            cos = emb.cos()
            sin = emb.sin()
            return cos.unsqueeze(0), sin.unsqueeze(0), inv_freq

# def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
#     """Applies Rotary Position Embedding to the query and key tensors.

#     Args:
#         q (`torch.Tensor`): The query tensor.
#         k (`torch.Tensor`): The key tensor.
#         cos (`torch.Tensor`): The cosine part of the rotary embedding.
#         sin (`torch.Tensor`): The sine part of the rotary embedding.
#         position_ids (`torch.Tensor`, *optional*):
#             Deprecated and unused.
#         unsqueeze_dim (`int`, *optional*, defaults to 1):
#             The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
#             sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
#             that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
#             k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
#             cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
#             the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
#     Returns:
#         `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
#     """
#     cos = cos.unsqueeze(unsqueeze_dim)
#     sin = sin.unsqueeze(unsqueeze_dim)
#     q_embed = (q * cos) + (rotate_half(q) * sin)
#     k_embed = (k * cos) + (rotate_half(k) * sin)
#     return q_embed, k_embed

class Qwen3RotaryEmbedding(nn.Module):
    def __init__(self, config: RWKV079Qwen3Config, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _dynamic_frequency_update(self, position_ids, device):
        """
        dynamic RoPE layers should recompute `inv_freq` in the following situations:
        1 - growing beyond the cached sequence length (allow scaling)
        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
        """
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
            self.max_seq_len_cached = seq_len

        if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
            # This .to() is needed if the model has been moved to a device after being initialized (because
            # the buffer is automatically moved, but not the original copy)
            self.original_inv_freq = self.original_inv_freq.to(device)
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._dynamic_frequency_update(position_ids, device=x.device)

        # Core RoPE block
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()

        # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
        cos = cos * self.attention_scaling
        sin = sin * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)

def rms_norm(hidden_states, eps = 1e-6):
    #print('ugyuugyu')
    input_dtype = hidden_states.dtype
    hidden_states = hidden_states.to(torch.float32)
    variance = hidden_states.pow(2).mean(-1, keepdim=True)
    hidden_states = hidden_states * torch.rsqrt(variance + eps)
    return hidden_states.to(input_dtype)

def generate_rotary_embedding(max_seqlen:int, dim:int, theta:float = 10000.0, scale:float = 1):
    #inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float).to(device) / dim))

    angular_velocity = theta ** -(torch.arange(0, dim, 2, dtype=torch.float) / dim) / scale # frequencies from 1.0 ... 1/theta
    angles = torch.outer(torch.arange(max_seqlen), angular_velocity)
    # Different from paper, but it uses a different permutation in order to obtain the same calculation
    emb = torch.cat((angles, angles), dim=-1)
    return torch.stack([emb.cos(), emb.sin()], dim=0)
    #return torch.polar(torch.ones_like(angles), angles)

# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def apply_rotary_pos_emb_single(x, cos, sin, unsqueeze_dim=1):
    return (x * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(x) * sin.unsqueeze(unsqueeze_dim))

from typing import Callable, Optional, Tuple, Union
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = attn_weights.masked_fill(attn_weights.isnan(), 0) # IMPORTANT FOR BATCHED INFERENCE IN LM EVAL!
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights

from torch.nn.attention.flex_attention import create_block_mask, flex_attention, create_mask
from functools import lru_cache

block_mask = None



def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
        is_causal=False, scale=None, enable_gqa=False) -> torch.Tensor:
    L, S = query.size(-2), key.size(-2)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
    if is_causal:
        assert attn_mask is None
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
        else:
            attn_bias = attn_mask + attn_bias

    if enable_gqa:
        key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
        value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)

    attn_weight = query.float() @ key.float().transpose(-2, -1) * scale_factor
    attn_weight += attn_bias.float()
    #attn_weight = stable_softmax(attn_weight, dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1)
    attn_weight = attn_weight.masked_fill(attn_weight.isnan(), 0) # IMPORTANT FOR BATCHED INFERENCE IN LM EVAL!
    #attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
    return attn_weight @ value.float()
 

    
class Qwen3AttentionNoPE_Causal(Qwen3Attention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        frozen_residual: torch.Tensor,
        v_first: Optional[torch.Tensor] = None, 
        k_first: Optional[torch.Tensor] = None, 
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
        x = hidden_states

        B, L, D = x.size()

        input_shape = x.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        q = self.q_proj(x).view(hidden_shape).transpose(1, 2)
        k = self.k_proj(x).view(hidden_shape).transpose(1, 2)
        v = self.v_proj(x).view(hidden_shape).transpose(1, 2)

        if past_key_values is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"cache_position": cache_position}
            k, v = past_key_values.update(k, v, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        k = repeat_kv(k, self.num_key_value_groups)
        v = repeat_kv(v, self.num_key_value_groups)

        S = k.size(-2)

        y = nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, attn_mask=attention_mask, is_causal=attention_mask is None and L==S)
        y = y.transpose(1,2)
        y = y.reshape(*input_shape, -1)#.contiguous()
        y = self.o_proj(y)

        attn_weights = None

        return y, v_first, k_first
      
    
class RWKV079Attention(nn.Module):
    def __init__(self, config, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        C = self.hidden_size = config.hidden_size
        H = self.num_heads = config.num_attention_heads
        H_kv = config.num_key_value_heads
        N = self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.attention_dropout = config.attention_dropout

        if self.hidden_size % self.num_heads != 0:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.receptance = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.key = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.value = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.output = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )
        #self.r_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps)  # unlike olmo, only on the head dim!
        #self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps)  # thus post q_norm does not need reshape
        

        lora_rank_decay = config.lora_rank_decay
        lora_rank_iclr = config.lora_rank_iclr
        lora_rank_value_residual_mix = config.lora_rank_value_residual_mix
        lora_rank_key_residual_mix = config.lora_rank_key_residual_mix
        lora_rank_gate = config.lora_rank_gate

        print(f"lora_rank_value_residual_mix = {lora_rank_value_residual_mix} lora_rank_key_residual_mix={lora_rank_key_residual_mix}")


        self.w0 = nn.Parameter(torch.empty(1,1,H*N))
        self.w1 = nn.Parameter(torch.empty(C, lora_rank_decay))
        self.w2 = nn.Parameter(torch.empty(lora_rank_decay, H*N))

        self.a0 = nn.Parameter(torch.empty(1,1,H*N))
        self.a1 = nn.Parameter(torch.empty(C, lora_rank_iclr))
        self.a2 = nn.Parameter(torch.empty(lora_rank_iclr, H*N))

        #if layer_idx > 0:
        self.v0 = nn.Parameter(torch.empty(1,1,H_kv*N))
        self.v1 = nn.Parameter(torch.empty(C, lora_rank_value_residual_mix))
        self.v2 = nn.Parameter(torch.empty(lora_rank_value_residual_mix, H_kv*N))

        self.k0 = nn.Parameter(torch.empty(1,1,H_kv*N))
        self.k1 = nn.Parameter(torch.empty(C, lora_rank_key_residual_mix))
        self.k2 = nn.Parameter(torch.empty(lora_rank_key_residual_mix, H_kv*N))

      
        self.g1 = nn.Parameter(torch.empty(C, lora_rank_gate))
        self.g2 = nn.Parameter(torch.empty(lora_rank_gate, H*N))

        self.r_k = nn.Parameter(torch.empty(H,N))


    def forward(
        self,
        hidden_states: torch.Tensor,
        frozen_residual: torch.Tensor,
        v_first: Optional[torch.Tensor] = None, 
        k_first: Optional[torch.Tensor] = None, 
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[RWKV079State] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ):
        if attention_mask is not None:
            assert len(attention_mask.shape) in (2, 4)
        
        output_shift_state = hidden_states[:, -1:].detach().clone()

        x = hidden_states

        B, T, C = hidden_states.shape
        H = self.num_heads
        N = self.head_dim
        
        q_len = T

        if use_cache and past_key_values is not None and len(past_key_values) > self.layer_idx:
            #print(f'use past state layer {self.layer_idx}')
            input_vk_state, input_shift_state = past_key_values[self.layer_idx]
        else:
            input_vk_state, input_shift_state = torch.zeros(B,H,N,N, dtype=torch.bfloat16,device=x.device), torch.zeros_like(x[:, -1:])

        xr = xw = xk = xv = xa = xg = x

        r = self.receptance(xr).view(B,T,-1,N)
        w = -F.softplus(-(self.w0 + torch.tanh(xw @ self.w1) @ self.w2)) -0.5
        k = self.key(xk).view(B,T,-1,N)
        v = self.value(xv).view(B,T,-1,N)
        a = torch.sigmoid(self.a0 + (xa @ self.a1) @ self.a2)
        g = torch.sigmoid(xg @ self.g1) @ self.g2
        
        if position_embeddings is not None:
            cos, sin = position_embeddings
            r, k = apply_rotary_pos_emb(r, k, cos, sin, unsqueeze_dim=2)



        if self.layer_idx == 0:
                v_first = v # store the v of the first layer
                k_first = k # store the k of the first layer
        else:
            v = v + (v_first - v) * torch.sigmoid(self.v0 + (x @ self.v1) @ self.v2).view(B,T,self.num_key_value_heads,-1) # add value residual
            k = k + (k_first - k) * torch.sigmoid(self.k0 + (x @ self.k1) @ self.k2).view(B,T,self.num_key_value_heads,-1) # add key residual

        # dealing with left-padding
        # if attention_mask is not None:
        #     if len(attention_mask.shape) == 2:
        #         v = v * attention_mask[:, -v.shape[-2]:, None]
        #     elif len(attention_mask.shape) == 4:
        #         v = v * attention_mask[:, -1, -1, -v.shape[-2]:].view(B, T, 1)
        #         #v = v * attention_mask[:, :, -1, -v.shape[-2]:, None]
        if attention_mask is not None:
            if attention_mask is not None:
                if attention_mask.ndim == 2:
                    # [B, S]
                    mask = attention_mask[:, -T:]             # [B, T]
                    v = v * mask[:, :, None, None]            # → [B, T, 1, 1] に拡張して掛け算
                elif attention_mask.ndim == 4:
                    # [B, 1, L, S]
                    mask = attention_mask[:, 0, -1, -T:]      # [B, T]
                    v = v * mask[:, :, None, None]            # 同上


        # repeat k/v heads if n_kv_heads < n_heads
        # k = k.view(B, T, -1, 1, self.head_dim).expand(-1, -1, -1, self.num_key_value_groups, -1).reshape(B, T, -1)
        # v = v.view(B, T, -1, 1, self.head_dim).expand(-1, -1, -1, self.num_key_value_groups, -1).reshape(B, T, -1)
        k = repeat_kv_rwkv(k, self.num_key_value_groups).view(B, T, -1)
        v = repeat_kv_rwkv(v, self.num_key_value_groups).view(B, T, -1)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        kk = F.normalize(k.view(B,T,H,-1), dim=-1, p=2.0).view(B,T,-1)
        k = k * (1.0 - w + a)

        aa = -kk
        bb = kk * a
        w = -w.exp()

        

        r_,w_,k_,v_,aa_,bb_ = [i.view(B,T,H,N) for i in [r,w,k,v,aa,bb]]

        #print(f'r shape = {r_.shape}')

        # if self.layer_idx == 0:
        #     print(f'input_vk_state sum = {torch.sum(input_vk_state)}')

        #x, output_vk_state = fused_recurrent_rwkv7(r_, w_, k_, v_, aa_, bb_, initial_state=input_vk_state, output_final_state=use_cache)
        x, output_vk_state = fused_recurrent_rwkv7(r_, w_, k_, v_, aa_, bb_, scale=1.0, initial_state=input_vk_state, output_final_state=True, head_first=False)

        # if self.layer_idx == 0:
        #     print(f'output_vk_state sum = {torch.sum(output_vk_state)}')

        x = x.view(B,T,-1) * (float(N) ** -0.5)

        x = x + ((r.view(B,T,H,-1)*k.view(B,T,H,-1)*self.r_k).sum(dim=-1, keepdim=True) * v.view(B,T,H,-1)).view(B,T,-1)




        x = x * g
        x = self.output(x)

        if past_key_values is not None:
            past_key_values.update(output_vk_state, output_shift_state, self.layer_idx, q_len, is_layer_attention(self.config, self.layer_idx))

        return x, v_first, k_first
    
class RWKV079Qwen3DecoderLayer(nn.Module):
    def __init__(self, config: RWKV079Qwen3Config, layer_idx: int):
        nn.Module.__init__(self)
        self.hidden_size = config.hidden_size
        self.layer_idx = layer_idx

        if is_layer_attention(config, layer_idx):
            print(f'layer {layer_idx} : attention')
            att_fn = Qwen3AttentionNoPE_Causal #Qwen3KeyQuant #Qwen3SWAPrefill #Qwen3DropoutSWASink #Qwen3AttentionNoPE #Qwen3MOBA #Qwen3AttentionVerticalSparse # Qwen3DoubleAttention # Qwen3SymPow #Qwen3Chunk #Qwen3Power #Qwen3MOBA #Qwen3Attention # Qwen3NewAttention # Qwen3AttentionAdapted
        else:
            print(f'layer {layer_idx} : rwkv')
            att_fn = RWKV079Attention
        
        self.self_attn = att_fn(config, layer_idx)

        self.mlp = Qwen3MLP(config)
        self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.attention_type = config.layer_types[layer_idx]

    def forward(
        self,
        hidden_states: torch.Tensor,
        frozen_residual: torch.Tensor,
        v_first: Optional[torch.Tensor],
        k_first: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        residual = hidden_states
        
        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, v_first, k_first = self.self_attn(
            hidden_states=hidden_states,
            frozen_residual=frozen_residual,
            v_first=v_first,
            k_first=k_first,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            #is_causal=True,
        )

        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states, v_first,k_first,)

        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs
  

@auto_docstring
class RWKV079Qwen3PreTrainedModel(PreTrainedModel):
    config: RWKV079Qwen3Config
    config_class = RWKV079Qwen3Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RWKV079Qwen3DecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = True

    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    # def _init_weights(self, module):
    #     std = self.config.initializer_range
    #     if isinstance(module, nn.Linear):
    #         module.weight.data.normal_(mean=0.0, std=std)
    #         if module.bias is not None:
    #             module.bias.data.zero_()
    #     elif isinstance(module, nn.Embedding):
    #         module.weight.data.normal_(mean=0.0, std=std)
    #         if module.padding_idx is not None:
    #             module.weight.data[module.padding_idx].zero_()

@auto_docstring
class RWKV079Qwen3Model(RWKV079Qwen3PreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3DecoderLayer`]

    Args:
        config: RWKV079Qwen3Config
    """

    def __init__(self, config: RWKV079Qwen3Config):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [RWKV079Qwen3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Qwen3RotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.has_sliding_layers = "sliding_attention" in self.config.layer_types
        
        # Initialize weights and apply final processing
        self.post_init()

    #@check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and not isinstance(past_key_values, RWKV079State):
            past_key_values = RWKV079State()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # It may already have been prepared by e.g. `generate`
        if not isinstance(causal_mask_mapping := attention_mask, dict):
            # Prepare mask arguments
            mask_kwargs = {
                "config": self.config,
                "input_embeds": inputs_embeds,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "position_ids": position_ids,
            }
            # Create the masks
            causal_mask_mapping = {
                "full_attention": create_causal_mask(**mask_kwargs),
            }
            # The sliding window alternating layers are not always activated depending on the config
            if self.has_sliding_layers:
                causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        if self.config.use_rope:
            position_embeddings = self.rotary_emb(hidden_states, position_ids)
        else:
            position_embeddings = None

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None
        v_first = None
        k_first = None
        frozen_residual = None
        
        for decoder_layer in self.layers:
            if not is_layer_attention(self.config, decoder_layer.layer_idx):
                frozen_residual = hidden_states#rms_norm(hidden_states)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            attention_mask = causal_mask_mapping[decoder_layer.attention_type]
            if attention_mask is not None and attention_mask.ndim == 1:
                attention_mask = None
            #attention_mask = None

            layer_outputs = decoder_layer(
                hidden_states,
                frozen_residual=frozen_residual,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                v_first=v_first,
                k_first=k_first
            )

            hidden_states = layer_outputs[0]
            v_first = layer_outputs[1]
            k_first = layer_outputs[2]

            if output_attentions:
                all_self_attns += (layer_outputs[2],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        #if return_legacy_cache:
        #    next_cache = next_cache.to_legacy_cache()

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class RWKV079Qwen3ForCausalLM(RWKV079Qwen3PreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = RWKV079Qwen3Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **loss_kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            num_logits_to_keep (`int`, *optional*):
                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, RWKV079Qwen3ForCausalLM

        >>> model = RWKV079Qwen3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        # # run the prefill only up to the last token, then run one more for the actual result
        # # we do this so that called code doesn't have to handle the dichotomy specially and can just check for L==1
        # for i in range(2):
        #     all_but_one = max(1, input_ids.size(-1)-1)
        #     iid = input_ids[..., i*all_but_one:(i+1)*all_but_one]
        #     if iid.size(-1) == 0: 
        #         continue
        #     pids = position_ids
        #     if pids is not None:
        #         pids = position_ids[..., i*all_but_one:(i+1)*all_but_one]
        #     cp = cache_position
        #     if cp is not None:
        #         cp = cache_position[..., i*all_but_one:(i+1)*all_but_one]
        #     rv = self.forward_inner(iid, attention_mask=attention_mask, position_ids=pids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cp, num_logits_to_keep=num_logits_to_keep, **loss_kwargs)
        #     past_key_values = rv.past_key_values
    #     return rv

    # def forward_inner(
    #     self,
    #     input_ids: torch.LongTensor = None,
    #     attention_mask: Optional[torch.Tensor] = None,
    #     position_ids: Optional[torch.LongTensor] = None,
    #     past_key_values: Optional[List[torch.FloatTensor]] = None,
    #     inputs_embeds: Optional[torch.FloatTensor] = None,
    #     labels: Optional[torch.LongTensor] = None,
    #     use_cache: Optional[bool] = None,
    #     output_attentions: Optional[bool] = None,
    #     output_hidden_states: Optional[bool] = None,
    #     cache_position: Optional[torch.LongTensor] = None,
    #     num_logits_to_keep: int = 0,
    #     **loss_kwargs,
    # ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **loss_kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

@auto_docstring
class RWKV079Qwen3ForSequenceClassification(RWKV079Qwen3PreTrainedModel):
    pass

@auto_docstring
class RWKV079Qwen3ForTokenClassification(RWKV079Qwen3PreTrainedModel):
    pass

@auto_docstring
class RWKV079Qwen3ForQuestionAnswering(RWKV079Qwen3PreTrainedModel):
    base_model_prefix = "transformer"  # For BC, where `transformer` was used instead of `model`