MaziyarPanahi commited on
Commit
945f3a6
·
verified ·
1 Parent(s): c287550

feat: Upload fine-tuned medical NER model OpenMed-NER-OncologyDetect-SuperMedical-125M

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ openmed_vs_sota_grouped_bars.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "Mutations in KRAS gene drive oncogenic transformation."
4
+ - text: "The tumor suppressor p53 pathway was disrupted."
5
+ - text: "EGFR amplification promotes cancer cell proliferation."
6
+ - text: "Loss of function of the PTEN gene is common in many cancers."
7
+ - text: "The PI3K/AKT/mTOR pathway is a critical regulator of cell growth."
8
+ tags:
9
+ - token-classification
10
+ - named-entity-recognition
11
+ - biomedical-nlp
12
+ - transformers
13
+ - cancer-genetics
14
+ - oncology
15
+ - gene-regulation
16
+ - cancer-research
17
+ - amino_acid
18
+ - anatomical_system
19
+ - cancer
20
+ - cell
21
+ - cellular_component
22
+ - developing_anatomical_structure
23
+ - gene_or_gene_product
24
+ - immaterial_anatomical_entity
25
+ - multi-tissue_structure
26
+ - organ
27
+ - organism
28
+ - organism_subdivision
29
+ - organism_substance
30
+ - pathological_formation
31
+ - simple_chemical
32
+ - tissue
33
+ language:
34
+ - en
35
+ license: apache-2.0
36
+ ---
37
+
38
+ # 🧬 [OpenMed-NER-OncologyDetect-SuperMedical-125M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-SuperMedical-125M)
39
+
40
+ **Specialized model for Cancer Genetics - Cancer-related genetic entities**
41
+
42
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
43
+ [![Python](https://img.shields.io/badge/Python-3.8%2B-blue)]()
44
+ [![Transformers](https://img.shields.io/badge/🤗-Transformers-yellow)]()
45
+ [![OpenMed](https://img.shields.io/badge/🏥-OpenMed-green)](https://huggingface.co/OpenMed)
46
+
47
+ ## 📋 Model Overview
48
+
49
+ This model is a **state-of-the-art** fine-tuned transformer engineered to deliver **enterprise-grade accuracy** for cancer genetics - cancer-related genetic entities. This specialized model excels at identifying and extracting biomedical entities from clinical texts, research papers, and healthcare documents, enabling applications such as **drug interaction detection**, **medication extraction from patient records**, **adverse event monitoring**, **literature mining for drug discovery**, and **biomedical knowledge graph construction** with **production-ready reliability** for clinical and research applications.
50
+
51
+ ### 🎯 Key Features
52
+ - **High Precision**: Optimized for biomedical entity recognition
53
+ - **Domain-Specific**: Trained on curated BIONLP2013_CG dataset
54
+ - **Production-Ready**: Validated on clinical benchmarks
55
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
56
+
57
+ ### 🏷️ Supported Entity Types
58
+
59
+ This model can identify and classify the following biomedical entities:
60
+
61
+ - `B-Amino_acid`
62
+ - `B-Anatomical_system`
63
+ - `B-Cancer`
64
+ - `B-Cell`
65
+ - `B-Cellular_component`
66
+
67
+ <details>
68
+ <summary>See 27 more entity types...</summary>
69
+
70
+ - `B-Developing_anatomical_structure`
71
+ - `B-Gene_or_gene_product`
72
+ - `B-Immaterial_anatomical_entity`
73
+ - `B-Multi-tissue_structure`
74
+ - `B-Organ`
75
+ - `B-Organism`
76
+ - `B-Organism_subdivision`
77
+ - `B-Organism_substance`
78
+ - `B-Pathological_formation`
79
+ - `B-Simple_chemical`
80
+ - `B-Tissue`
81
+ - `I-Amino_acid`
82
+ - `I-Anatomical_system`
83
+ - `I-Cancer`
84
+ - `I-Cell`
85
+ - `I-Cellular_component`
86
+ - `I-Developing_anatomical_structure`
87
+ - `I-Gene_or_gene_product`
88
+ - `I-Immaterial_anatomical_entity`
89
+ - `I-Multi-tissue_structure`
90
+ - `I-Organ`
91
+ - `I-Organism`
92
+ - `I-Organism_subdivision`
93
+ - `I-Organism_substance`
94
+ - `I-Pathological_formation`
95
+ - `I-Simple_chemical`
96
+ - `I-Tissue`
97
+ </details>
98
+
99
+ ## 📊 Dataset
100
+
101
+ BioNLP 2013 CG corpus targets cancer genetics entities for oncology research and cancer genomics.
102
+
103
+ The BioNLP 2013 CG (Cancer Genetics) corpus is a specialized dataset focusing on cancer genetics entities and gene regulation in oncology research. This corpus contains annotations for genes, proteins, and molecular processes specifically related to cancer biology and tumor genetics. Developed for the BioNLP Shared Task 2013, it supports the development of text mining systems for cancer research, oncological studies, and precision medicine applications. The dataset is particularly valuable for identifying cancer-related biomarkers, tumor suppressor genes, oncogenes, and therapeutic targets mentioned in cancer research literature. It serves as a benchmark for evaluating NER systems used in cancer genomics, personalized medicine, and oncology informatics.
104
+
105
+
106
+ ## 📊 Performance Metrics
107
+
108
+ ### Current Model Performance
109
+ - **F1 Score**: `0.85`
110
+ - **Precision**: `0.84`
111
+ - **Recall**: `0.85`
112
+ - **Accuracy**: `0.91`
113
+
114
+ ### 🏆 Comparative Performance on BIONLP2013_CG Dataset
115
+
116
+ | Rank | Model | F1 Score | Precision | Recall | Accuracy |
117
+ |------|-------|----------|-----------|--------|-----------|
118
+ | 🥇 1 | [OpenMed-NER-OncologyDetect-SuperMedical-355M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-SuperMedical-355M) | **0.8990** | 0.8926 | 0.9056 | 0.9416 |
119
+ | 🥈 2 | [OpenMed-NER-OncologyDetect-ElectraMed-560M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-ElectraMed-560M) | **0.8841** | 0.8788 | 0.8895 | 0.9390 |
120
+ | 🥉 3 | [OpenMed-NER-OncologyDetect-SnowMed-568M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-SnowMed-568M) | **0.8801** | 0.8774 | 0.8828 | 0.9366 |
121
+ | 4 | [OpenMed-NER-OncologyDetect-PubMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-PubMed-335M) | **0.8782** | 0.8834 | 0.8730 | 0.9539 |
122
+ | 5 | [OpenMed-NER-OncologyDetect-MultiMed-568M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-MultiMed-568M) | **0.8766** | 0.8749 | 0.8784 | 0.9351 |
123
+ | 6 | [OpenMed-NER-OncologyDetect-SuperClinical-434M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-SuperClinical-434M) | **0.8684** | 0.8602 | 0.8768 | 0.9495 |
124
+ | 7 | [OpenMed-NER-OncologyDetect-BioMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-BioMed-335M) | **0.8660** | 0.8540 | 0.8783 | 0.9516 |
125
+ | 8 | [OpenMed-NER-OncologyDetect-PubMed-109M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-PubMed-109M) | **0.8606** | 0.8604 | 0.8608 | 0.9503 |
126
+ | 9 | [OpenMed-NER-OncologyDetect-BigMed-560M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-BigMed-560M) | **0.8556** | 0.8582 | 0.8530 | 0.9250 |
127
+ | 10 | [OpenMed-NER-OncologyDetect-ModernClinical-395M](https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-ModernClinical-395M) | **0.8471** | 0.8465 | 0.8476 | 0.9411 |
128
+
129
+
130
+ *Rankings based on F1-score performance across all models trained on this dataset.*
131
+
132
+ ![OpenMed (open-source) vs. latest closed-source SOTA](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed_vs_sota_performance.png)
133
+
134
+ *Figure: OpenMed (Open-Source) vs. Latest SOTA (Closed-Source) performance comparison across biomedical NER datasets.*
135
+
136
+ ## 🚀 Quick Start
137
+
138
+ ### Installation
139
+
140
+ ```bash
141
+ pip install transformers torch
142
+ ```
143
+
144
+ ### Usage
145
+
146
+ ```python
147
+ from transformers import pipeline
148
+
149
+ # Load the model and tokenizer
150
+ # Model: https://huggingface.co/OpenMed/OpenMed-NER-OncologyDetect-SuperMedical-125M
151
+ model_name = "OpenMed/OpenMed-NER-OncologyDetect-SuperMedical-125M"
152
+
153
+ # Create a pipeline
154
+ medical_ner_pipeline = pipeline(
155
+ model=model_name,
156
+ aggregation_strategy="simple"
157
+ )
158
+
159
+ # Example usage
160
+ text = "Mutations in KRAS gene drive oncogenic transformation."
161
+ entities = medical_ner_pipeline(text)
162
+
163
+ print(entities)
164
+
165
+ token = entities[0]
166
+ print(text[token["start"] : token["end"]])
167
+ ```
168
+
169
+ NOTE: The `aggregation_strategy` parameter defines how token predictions are grouped into entities. For a detailed explanation, please refer to the [Hugging Face documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TokenClassificationPipeline.aggregation_strategy).
170
+
171
+ Here is a summary of the available strategies:
172
+ - **`none`**: Returns raw token predictions without any aggregation.
173
+ - **`simple`**: Groups adjacent tokens with the same entity type (e.g., `B-LOC` followed by `I-LOC`).
174
+ - **`first`**: For word-based models, if tokens within a word have different entity tags, the tag of the first token is assigned to the entire word.
175
+ - **`average`**: For word-based models, this strategy averages the scores of tokens within a word and applies the label with the highest resulting score.
176
+ - **`max`**: For word-based models, the entity label from the token with the highest score within a word is assigned to the entire word.
177
+
178
+ ### Batch Processing
179
+
180
+ For efficient processing of large datasets, use proper batching with the `batch_size` parameter:
181
+
182
+ ```python
183
+ texts = [
184
+ "Mutations in KRAS gene drive oncogenic transformation.",
185
+ "The tumor suppressor p53 pathway was disrupted.",
186
+ "EGFR amplification promotes cancer cell proliferation.",
187
+ "Loss of function of the PTEN gene is common in many cancers.",
188
+ "The PI3K/AKT/mTOR pathway is a critical regulator of cell growth.",
189
+ ]
190
+
191
+ # Efficient batch processing with optimized batch size
192
+ # Adjust batch_size based on your GPU memory (typically 8, 16, 32, or 64)
193
+ results = medical_ner_pipeline(texts, batch_size=8)
194
+
195
+ for i, entities in enumerate(results):
196
+ print(f"Text {i+1} entities:")
197
+ for entity in entities:
198
+ print(f" - {entity['word']} ({entity['entity_group']}): {entity['score']:.4f}")
199
+ ```
200
+
201
+ ### Large Dataset Processing
202
+
203
+ For processing large datasets efficiently:
204
+
205
+ ```python
206
+ from transformers.pipelines.pt_utils import KeyDataset
207
+ from datasets import Dataset
208
+ import pandas as pd
209
+
210
+ # Load your data
211
+ # Load a medical dataset from Hugging Face
212
+ from datasets import load_dataset
213
+
214
+ # Load a public medical dataset (using a subset for testing)
215
+ medical_dataset = load_dataset("BI55/MedText", split="train[:100]") # Load first 100 examples
216
+ data = pd.DataFrame({"text": medical_dataset["Completion"]})
217
+ dataset = Dataset.from_pandas(data)
218
+
219
+ # Process with optimal batching for your hardware
220
+ batch_size = 16 # Tune this based on your GPU memory
221
+ results = []
222
+
223
+ for out in medical_ner_pipeline(KeyDataset(dataset, "text"), batch_size=batch_size):
224
+ results.extend(out)
225
+
226
+ print(f"Processed {len(results)} texts with batching")
227
+
228
+ ```
229
+
230
+ ### Performance Optimization
231
+
232
+ **Batch Size Guidelines:**
233
+ - **CPU**: Start with batch_size=1-4
234
+ - **Single GPU**: Try batch_size=8-32 depending on GPU memory
235
+ - **High-end GPU**: Can handle batch_size=64 or higher
236
+ - **Monitor GPU utilization** to find the optimal batch size for your hardware
237
+
238
+ **Memory Considerations:**
239
+ ```python
240
+ # For limited GPU memory, use smaller batches
241
+ medical_ner_pipeline = pipeline(
242
+ model=model_name,
243
+ aggregation_strategy="simple",
244
+ device=0 # Specify GPU device
245
+ )
246
+
247
+ # Process with memory-efficient batching
248
+ for batch_start in range(0, len(texts), batch_size):
249
+ batch = texts[batch_start:batch_start + batch_size]
250
+ batch_results = medical_ner_pipeline(batch, batch_size=len(batch))
251
+ results.extend(batch_results)
252
+ ```
253
+
254
+ ## 📚 Dataset Information
255
+
256
+ - **Dataset**: BIONLP2013_CG
257
+ - **Description**: Cancer Genetics - Cancer-related genetic entities
258
+
259
+ ### Training Details
260
+ - **Base Model**: roberta-base
261
+ - **Training Framework**: Hugging Face Transformers
262
+ - **Optimization**: AdamW optimizer with learning rate scheduling
263
+ - **Validation**: Cross-validation on held-out test set
264
+
265
+ ## 🔬 Model Architecture
266
+
267
+ - **Base Architecture**: roberta-base
268
+ - **Task**: Token Classification (Named Entity Recognition)
269
+ - **Labels**: Dataset-specific entity types
270
+ - **Input**: Tokenized biomedical text
271
+ - **Output**: BIO-tagged entity predictions
272
+
273
+ ## 💡 Use Cases
274
+
275
+ This model is particularly useful for:
276
+ - **Clinical Text Mining**: Extracting entities from medical records
277
+ - **Biomedical Research**: Processing scientific literature
278
+ - **Drug Discovery**: Identifying chemical compounds and drugs
279
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
280
+ - **Academic Research**: Supporting biomedical NLP research
281
+
282
+ ## 📜 License
283
+
284
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
285
+
286
+ ## 🤝 Contributing
287
+
288
+ We welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join our mission to advance open-source Healthcare AI, we'd love to hear from you.
289
+
290
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face 🤗 and click "Watch" to stay updated on our latest releases and developments.
291
+
292
+
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.2,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": 0.2,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.2,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "B-Amino_acid",
14
+ "1": "B-Anatomical_system",
15
+ "2": "B-Cancer",
16
+ "3": "B-Cell",
17
+ "4": "B-Cellular_component",
18
+ "5": "B-Developing_anatomical_structure",
19
+ "6": "B-Gene_or_gene_product",
20
+ "7": "B-Immaterial_anatomical_entity",
21
+ "8": "B-Multi-tissue_structure",
22
+ "9": "B-Organ",
23
+ "10": "B-Organism",
24
+ "11": "B-Organism_subdivision",
25
+ "12": "B-Organism_substance",
26
+ "13": "B-Pathological_formation",
27
+ "14": "B-Simple_chemical",
28
+ "15": "B-Tissue",
29
+ "16": "I-Amino_acid",
30
+ "17": "I-Anatomical_system",
31
+ "18": "I-Cancer",
32
+ "19": "I-Cell",
33
+ "20": "I-Cellular_component",
34
+ "21": "I-Developing_anatomical_structure",
35
+ "22": "I-Gene_or_gene_product",
36
+ "23": "I-Immaterial_anatomical_entity",
37
+ "24": "I-Multi-tissue_structure",
38
+ "25": "I-Organ",
39
+ "26": "I-Organism",
40
+ "27": "I-Organism_subdivision",
41
+ "28": "I-Organism_substance",
42
+ "29": "I-Pathological_formation",
43
+ "30": "I-Simple_chemical",
44
+ "31": "I-Tissue",
45
+ "32": "O"
46
+ },
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 3072,
49
+ "label2id": {
50
+ "B-Amino_acid": 0,
51
+ "B-Anatomical_system": 1,
52
+ "B-Cancer": 2,
53
+ "B-Cell": 3,
54
+ "B-Cellular_component": 4,
55
+ "B-Developing_anatomical_structure": 5,
56
+ "B-Gene_or_gene_product": 6,
57
+ "B-Immaterial_anatomical_entity": 7,
58
+ "B-Multi-tissue_structure": 8,
59
+ "B-Organ": 9,
60
+ "B-Organism": 10,
61
+ "B-Organism_subdivision": 11,
62
+ "B-Organism_substance": 12,
63
+ "B-Pathological_formation": 13,
64
+ "B-Simple_chemical": 14,
65
+ "B-Tissue": 15,
66
+ "I-Amino_acid": 16,
67
+ "I-Anatomical_system": 17,
68
+ "I-Cancer": 18,
69
+ "I-Cell": 19,
70
+ "I-Cellular_component": 20,
71
+ "I-Developing_anatomical_structure": 21,
72
+ "I-Gene_or_gene_product": 22,
73
+ "I-Immaterial_anatomical_entity": 23,
74
+ "I-Multi-tissue_structure": 24,
75
+ "I-Organ": 25,
76
+ "I-Organism": 26,
77
+ "I-Organism_subdivision": 27,
78
+ "I-Organism_substance": 28,
79
+ "I-Pathological_formation": 29,
80
+ "I-Simple_chemical": 30,
81
+ "I-Tissue": 31,
82
+ "O": 32
83
+ },
84
+ "layer_norm_eps": 1e-07,
85
+ "max_position_embeddings": 514,
86
+ "model_type": "roberta",
87
+ "num_attention_heads": 12,
88
+ "num_hidden_layers": 12,
89
+ "pad_token_id": 1,
90
+ "position_embedding_type": "absolute",
91
+ "torch_dtype": "bfloat16",
92
+ "transformers_version": "4.51.2",
93
+ "type_vocab_size": 1,
94
+ "use_cache": true,
95
+ "vocab_size": 50265
96
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc06cf35a03a155b450732a3471b9f1d6d58114efe604443c4a73894d1a5e6f6
3
+ size 248184906
openmed_vs_sota_grouped_bars.png ADDED

Git LFS Details

  • SHA256: 626b37d9b20c44e26c92a8b5bf774107393ae0ad0b482d8e7cb3dc31d960f611
  • Pointer size: 131 Bytes
  • Size of remote file: 497 kB
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_accuracy": 0.9104338361063599,
3
+ "eval_f1": 0.8469629903899556,
4
+ "eval_loss": 0.9443504214286804,
5
+ "eval_precision": 0.8448727419246524,
6
+ "eval_recall": 0.8490636072211911
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff