MaziyarPanahi commited on
Commit
c6b6107
Β·
verified Β·
1 Parent(s): 32b6357

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Genomic-XLarge-770M

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "The BRCA2 gene is associated with hereditary breast cancer."
4
+ - text: "Mutations in the CFTR gene cause cystic fibrosis."
5
+ - text: "The APOE gene variant affects Alzheimer's disease risk."
6
+ - text: "The HTT gene provides instructions for making a protein called huntingtin."
7
+ - text: "Sickle cell disease is caused by a mutation in the HBB gene."
8
+ tags:
9
+ - token-classification
10
+ - entity recognition
11
+ - named-entity-recognition
12
+ - zero-shot
13
+ - zero-shot-ner
14
+ - zero shot
15
+ - biomedical-nlp
16
+ - gliner
17
+ - gene-recognition
18
+ - genetics
19
+ - genomics
20
+ - molecular-biology
21
+ - gene
22
+ - genetic_variant
23
+ language:
24
+ - en
25
+ license: apache-2.0
26
+ ---
27
+
28
+ # 🧬 [OpenMed-ZeroShot-NER-Genomic-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-XLarge-770M)
29
+
30
+ **Specialized model for Gene Entity Recognition - Gene-related entities**
31
+
32
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
33
+ [![Python](https://img.shields.io/badge/Python-3.11%2B-blue)]()
34
+ [![GliNER](https://img.shields.io/badge/πŸ€—-GliNER-yellow)]()
35
+ [![OpenMed](https://img.shields.io/badge/πŸ₯-OpenMed-green)](https://huggingface.co/OpenMed)
36
+
37
+ ## πŸ“‹ Model Overview
38
+
39
+ Targets **gene and genetics entities**, handling symbol/name variants commonly found in genomics literature.Useful for **genetic association studies**, **variant curation**, and **genomics informatics**.
40
+
41
+ OpenMed ZeroShot NER is an advanced, domain-adapted Named Entity Recognition (NER) model designed specifically for medical, biomedical, and clinical text mining. Leveraging state-of-the-art zero-shot learning, this model empowers researchers, clinicians, and data scientists to extract expert-level biomedical entitiesβ€”such as diseases, chemicals, genes, species, and clinical findingsβ€”directly from unstructured text, without the need for task-specific retraining.
42
+
43
+ Built on the robust GLiNER architecture and fine-tuned on curated biomedical corpora, OpenMed ZeroShot NER delivers high-precision entity recognition for critical healthcare and life sciences applications. Its zero-shot capability means you can flexibly define and extract any entity type relevant to your workflow, from standard biomedical categories to custom clinical concepts, supporting rapid adaptation to new research domains and regulatory requirements.
44
+
45
+ Whether you are working on clinical NLP, biomedical research, electronic health record (EHR) de-identification, or large-scale literature mining, OpenMed ZeroShot NER provides a production-ready, open-source solution that combines expert-level accuracy with unmatched flexibility. Join the OpenMed community to accelerate your medical text analytics with cutting-edge, zero-shot NER technology.
46
+
47
+ ### 🎯 Key Features
48
+ - **Zero-Shot Capability**: Can recognize any entity type without specific training
49
+ - **High Precision**: Optimized for biomedical entity recognition
50
+ - **Domain-Specific**: Fine-tuned on curated GELLUS dataset
51
+ - **Production-Ready**: Validated on clinical benchmarks
52
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
53
+ - **Flexible Entity Recognition**: Add custom entity types without retraining
54
+
55
+ ### 🏷️ Supported Entity Types
56
+
57
+ This zero-shot model can identify and classify biomedical entities, including but not limited to these entity types. **You can also add custom entity types without retraining the model**:
58
+
59
+ - `Cell-line-name`
60
+
61
+ **πŸ’‘ Zero-Shot Flexibility**: As a GliNER-based model, you can specify any entity types you want to detect, even if they weren't part of the original training. Simply provide the entity labels when using the model, and it will adapt to recognize them.
62
+
63
+ ## πŸ“Š Dataset
64
+
65
+ Gellus corpus targets gene recognition and genetics entities for genomics and molecular biology applications.
66
+
67
+ The Gellus corpus is a biomedical NER dataset specifically designed for gene recognition and genetics entity extraction in molecular biology literature. This corpus contains comprehensive annotations for gene names, genetic variants, and genomics-related entities that are essential for genetic research and genomics applications. The dataset supports the development of automated systems for gene mention identification, genetic association studies, and genomics text mining. It is particularly valuable for identifying genes involved in hereditary diseases, genetic disorders, and molecular genetics research. The corpus serves as a benchmark for evaluating NER models used in genetics research, personalized medicine, and genomics informatics, contributing to advances in precision medicine and genetic counseling applications.
68
+
69
+
70
+ ## πŸ“Š Performance Metrics
71
+
72
+ ### Current Model Performance
73
+
74
+ - **Finetuned F1 vs. Base Model (on test dataset excluded from training)**: `0.90`
75
+ - **F1 Improvement vs Base Model**: `82.3%`
76
+
77
+ ### πŸ† Top F1 Improvements on GELLUS Dataset
78
+
79
+ | Rank | Model | Base F1 | Finetuned F1 | Ξ”F1 | Ξ”F1 % |
80
+ |------|-------|--------:|------------:|----:|------:|
81
+ | πŸ₯‡ 1 | [OpenMed-ZeroShot-NER-Genomic-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-Large-459M) | 0.5361 | 0.9775 | 0.4414 | 82.3% |
82
+ | πŸ₯ˆ 2 | [OpenMed-ZeroShot-NER-Genomic-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-Medium-209M) | 0.5376 | 0.9674 | 0.4298 | 79.9% |
83
+ | πŸ₯‰ 3 | [OpenMed-ZeroShot-NER-Genomic-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-XLarge-770M) | 0.6875 | 0.9003 | 0.2128 | 30.9% |
84
+ | 4 | [OpenMed-ZeroShot-NER-Genomic-Small-166M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-Small-166M) | 0.4694 | 0.8082 | 0.3388 | 72.2% |
85
+ | 5 | [OpenMed-ZeroShot-NER-Genomic-Multi-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-Multi-209M) | 0.4000 | 0.7333 | 0.3333 | 83.3% |
86
+
87
+
88
+ *Rankings are sorted by finetuned F1 and show Ξ”F1% over base model. Test dataset is excluded from training.*
89
+
90
+ ![OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed-zero-shot-clinical-ner-finetuned.png)
91
+
92
+ *Figure: OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models.*
93
+
94
+ ## πŸš€ Quick Start
95
+
96
+ ### Installation
97
+
98
+ ```bash
99
+ pip install gliner==0.2.21
100
+ ```
101
+
102
+ ### Usage
103
+
104
+ ```python
105
+ from transformers import pipeline
106
+
107
+ # Load the model and tokenizer
108
+ # Model: https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Genomic-XLarge-770M
109
+ model_name = "OpenMed/OpenMed-ZeroShot-NER-Genomic-XLarge-770M"
110
+
111
+ from gliner import GLiNER
112
+ model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Genomic-XLarge-770M")
113
+
114
+ # Example usage with default entity types
115
+ text = "The BRCA2 gene is associated with hereditary breast cancer."
116
+
117
+ labels = ['Cell-line-name']
118
+ entities = model.predict_entities(text, labels, flat_ner=True, threshold=0.5)
119
+ for entity in entities:
120
+ print(entity)
121
+ ```
122
+
123
+ ### Zero-Shot Usage with Custom Entity Types
124
+ πŸ’‘ **Tip:** If you want to extract entities that are not present in the original training set (i.e., use custom or rare entity types), you may get better results by lowering the `threshold` parameter in `model.predict_entities`. For example, try `threshold=0.3` or even lower, depending on your use case:
125
+
126
+ ```python
127
+ # You can specify custom entity types for zero-shot recognition - for instance:
128
+ custom_entities = ["MISC", "Cell-line-name", "PERSON", "LOCATION", "MEDICATION", "PROCEDURE"]
129
+
130
+ entities = model.predict_entities(text, custom_entities, flat_ner=True, threshold=0.1)
131
+ for entity in entities:
132
+ print(entity)
133
+ ```
134
+
135
+ > Lowering the threshold makes the model more permissive and can help it recognize new or less common entity types, but may also increase false positives. Adjust as needed for your application.
136
+
137
+ ## πŸ“š Dataset Information
138
+
139
+ - **Dataset**: GELLUS
140
+ - **Description**: Gene Entity Recognition - Gene-related entities
141
+
142
+ ### Training Details
143
+ - **Base Model**: gliner-x-large
144
+ - **Training Framework**: Hugging Face Transformers
145
+ - **Optimization**: AdamW optimizer with learning rate scheduling
146
+ - **Validation**: Cross-validation on held-out test set
147
+
148
+ ## πŸ’‘ Use Cases
149
+
150
+ This model is particularly useful for:
151
+ - **Clinical Text Mining**: Extracting entities from medical records
152
+ - **Biomedical Research**: Processing scientific literature
153
+ - **Drug Discovery**: Identifying chemical compounds and drugs
154
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
155
+ - **Academic Research**: Supporting biomedical NLP research
156
+ - **Custom Entity Recognition**: Zero-shot detection of domain-specific entities
157
+
158
+ ## πŸ”¬ Model Architecture
159
+
160
+ - **Task**: Zero-Shot Classification (Named Entity Recognition)
161
+ - **Labels**: Dataset-specific entity types
162
+ - **Input**: Biomedical text
163
+ - **Output**: Named entity predictions
164
+
165
+ For more information about GLiNER, visit the [GLiNER repository](https://github.com/urchade/gliner).
166
+
167
+ ## πŸ“œ License
168
+
169
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
170
+
171
+ ## 🀝 Contributing
172
+
173
+ I welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join my mission to advance open-source Healthcare AI, I'd love to hear from you.
174
+
175
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face πŸ€— and click "Watch" to stay updated on my latest releases and developments.
176
+
177
+ ## Citation
178
+
179
+ If you use this model in your research or applications, please cite the following paper:
180
+
181
+ ```latex
182
+ @misc{panahi2025openmedneropensourcedomainadapted,
183
+ title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
184
+ author={Maziyar Panahi},
185
+ year={2025},
186
+ eprint={2508.01630},
187
+ archivePrefix={arXiv},
188
+ primaryClass={cs.CL},
189
+ url={https://arxiv.org/abs/2508.01630},
190
+ }
191
+ ```
192
+
193
+ Proper citation helps support and acknowledge my work. Thank you!
194
+
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<<ENT>>": 250100,
3
+ "<<SEP>>": 250101
4
+ }
gliner_config.json ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "class_token_index": 250100,
3
+ "dropout": 0.3,
4
+ "embed_ent_token": true,
5
+ "encoder_config": {
6
+ "_name_or_path": "google/mt5-large",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "MT5ForConditionalGeneration"
10
+ ],
11
+ "bad_words_ids": null,
12
+ "begin_suppress_tokens": null,
13
+ "bos_token_id": null,
14
+ "chunk_size_feed_forward": 0,
15
+ "classifier_dropout": 0.0,
16
+ "cross_attention_hidden_size": null,
17
+ "d_ff": 2816,
18
+ "d_kv": 64,
19
+ "d_model": 1024,
20
+ "decoder_start_token_id": 0,
21
+ "dense_act_fn": "gelu_new",
22
+ "diversity_penalty": 0.0,
23
+ "do_sample": false,
24
+ "dropout_rate": 0.1,
25
+ "early_stopping": false,
26
+ "encoder_no_repeat_ngram_size": 0,
27
+ "eos_token_id": 1,
28
+ "exponential_decay_length_penalty": null,
29
+ "feed_forward_proj": "gated-gelu",
30
+ "finetuning_task": null,
31
+ "forced_bos_token_id": null,
32
+ "forced_eos_token_id": null,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_factor": 1.0,
38
+ "is_decoder": false,
39
+ "is_encoder_decoder": true,
40
+ "is_gated_act": true,
41
+ "label2id": {
42
+ "LABEL_0": 0,
43
+ "LABEL_1": 1
44
+ },
45
+ "layer_norm_epsilon": 1e-06,
46
+ "length_penalty": 1.0,
47
+ "max_length": 20,
48
+ "min_length": 0,
49
+ "model_type": "mt5",
50
+ "no_repeat_ngram_size": 0,
51
+ "num_beam_groups": 1,
52
+ "num_beams": 1,
53
+ "num_decoder_layers": 24,
54
+ "num_heads": 16,
55
+ "num_layers": 24,
56
+ "num_return_sequences": 1,
57
+ "output_attentions": false,
58
+ "output_hidden_states": false,
59
+ "output_past": true,
60
+ "output_scores": false,
61
+ "pad_token_id": 0,
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "pruned_heads": {},
65
+ "relative_attention_max_distance": 128,
66
+ "relative_attention_num_buckets": 32,
67
+ "remove_invalid_values": false,
68
+ "repetition_penalty": 1.0,
69
+ "return_dict": true,
70
+ "return_dict_in_generate": false,
71
+ "sep_token_id": null,
72
+ "suppress_tokens": null,
73
+ "task_specific_params": null,
74
+ "temperature": 1.0,
75
+ "tf_legacy_loss": false,
76
+ "tie_encoder_decoder": false,
77
+ "tie_word_embeddings": false,
78
+ "tokenizer_class": "T5Tokenizer",
79
+ "top_k": 50,
80
+ "top_p": 1.0,
81
+ "torch_dtype": null,
82
+ "torchscript": false,
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false,
85
+ "use_cache": true,
86
+ "vocab_size": 250102
87
+ },
88
+ "ent_token": "<<ENT>>",
89
+ "eval_every": 10000,
90
+ "fine_tune": true,
91
+ "freeze_token_rep": false,
92
+ "fuse_layers": false,
93
+ "has_rnn": true,
94
+ "hidden_size": 1024,
95
+ "label_smoothing": 0,
96
+ "labels_encoder": null,
97
+ "labels_encoder_config": null,
98
+ "log_dir": "models/",
99
+ "loss_alpha": 0.75,
100
+ "loss_gamma": 0,
101
+ "loss_reduction": "sum",
102
+ "lr_encoder": "1e-5",
103
+ "lr_others": "3e-5",
104
+ "max_grad_norm": 10.0,
105
+ "max_len": 1024,
106
+ "max_neg_type_ratio": 1,
107
+ "max_types": 30,
108
+ "max_width": 12,
109
+ "model_name": "google/mt5-large",
110
+ "model_type": "gliner",
111
+ "name": "span level gliner",
112
+ "num_post_fusion_layers": 1,
113
+ "num_steps": 80000,
114
+ "post_fusion_schema": "",
115
+ "prev_path": null,
116
+ "random_drop": true,
117
+ "root_dir": "gliner_logs",
118
+ "save_total_limit": 3,
119
+ "scheduler_type": "cosine",
120
+ "sep_token": "<<SEP>>",
121
+ "shuffle_types": true,
122
+ "size_sup": -1,
123
+ "span_mode": "markerV0",
124
+ "subtoken_pooling": "first",
125
+ "train_batch_size": 4,
126
+ "train_data": "data/multilingual_data.json",
127
+ "transformers_version": "4.53.3",
128
+ "val_data_dir": "none",
129
+ "vocab_size": 250102,
130
+ "warmup_ratio": 0.05,
131
+ "weight_decay_encoder": 0.1,
132
+ "weight_decay_other": 0.01,
133
+ "words_splitter_type": "universal"
134
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e0a98cf49f57f6bb3a9f0a51575ea03e7922b7385e211f21291707b85004dc5
3
+ size 2434111699
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<pad>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
3
+ size 4309802
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 62.091552734375,
3
+ "seqeval_accuracy": 0.9862535904800985,
4
+ "seqeval_f1": 0.9002695417789757,
5
+ "seqeval_precision": 0.8697916666666666,
6
+ "seqeval_recall": 0.9329608938547486
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d38487ece0ffe3a7bc6650010a9c44d2f79abc3fdbe6415a13f83c151d39cc19
3
+ size 16350453
tokenizer_config.json ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "250000": {
29
+ "content": "▁<extra_id_99>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "250001": {
37
+ "content": "▁<extra_id_98>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "250002": {
45
+ "content": "▁<extra_id_97>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "250003": {
53
+ "content": "▁<extra_id_96>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "250004": {
61
+ "content": "▁<extra_id_95>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "250005": {
69
+ "content": "▁<extra_id_94>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "250006": {
77
+ "content": "▁<extra_id_93>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "250007": {
85
+ "content": "▁<extra_id_92>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "250008": {
93
+ "content": "▁<extra_id_91>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "250009": {
101
+ "content": "▁<extra_id_90>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "250010": {
109
+ "content": "▁<extra_id_89>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "250011": {
117
+ "content": "▁<extra_id_88>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "250012": {
125
+ "content": "▁<extra_id_87>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "250013": {
133
+ "content": "▁<extra_id_86>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "250014": {
141
+ "content": "▁<extra_id_85>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "250015": {
149
+ "content": "▁<extra_id_84>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "250016": {
157
+ "content": "▁<extra_id_83>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "250017": {
165
+ "content": "▁<extra_id_82>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "250018": {
173
+ "content": "▁<extra_id_81>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "250019": {
181
+ "content": "▁<extra_id_80>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "250020": {
189
+ "content": "▁<extra_id_79>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "250021": {
197
+ "content": "▁<extra_id_78>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "250022": {
205
+ "content": "▁<extra_id_77>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "250023": {
213
+ "content": "▁<extra_id_76>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "250024": {
221
+ "content": "▁<extra_id_75>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "250025": {
229
+ "content": "▁<extra_id_74>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "250026": {
237
+ "content": "▁<extra_id_73>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "250027": {
245
+ "content": "▁<extra_id_72>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "250028": {
253
+ "content": "▁<extra_id_71>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "250029": {
261
+ "content": "▁<extra_id_70>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "250030": {
269
+ "content": "▁<extra_id_69>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "250031": {
277
+ "content": "▁<extra_id_68>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "250032": {
285
+ "content": "▁<extra_id_67>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "250033": {
293
+ "content": "▁<extra_id_66>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "250034": {
301
+ "content": "▁<extra_id_65>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "250035": {
309
+ "content": "▁<extra_id_64>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ },
316
+ "250036": {
317
+ "content": "▁<extra_id_63>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": false
323
+ },
324
+ "250037": {
325
+ "content": "▁<extra_id_62>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": false
331
+ },
332
+ "250038": {
333
+ "content": "▁<extra_id_61>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": false
339
+ },
340
+ "250039": {
341
+ "content": "▁<extra_id_60>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": false
347
+ },
348
+ "250040": {
349
+ "content": "▁<extra_id_59>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": false
355
+ },
356
+ "250041": {
357
+ "content": "▁<extra_id_58>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": false
363
+ },
364
+ "250042": {
365
+ "content": "▁<extra_id_57>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": false
371
+ },
372
+ "250043": {
373
+ "content": "▁<extra_id_56>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": false
379
+ },
380
+ "250044": {
381
+ "content": "▁<extra_id_55>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": false
387
+ },
388
+ "250045": {
389
+ "content": "▁<extra_id_54>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": false
395
+ },
396
+ "250046": {
397
+ "content": "▁<extra_id_53>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": false
403
+ },
404
+ "250047": {
405
+ "content": "▁<extra_id_52>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": false
411
+ },
412
+ "250048": {
413
+ "content": "▁<extra_id_51>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": false
419
+ },
420
+ "250049": {
421
+ "content": "▁<extra_id_50>",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": false
427
+ },
428
+ "250050": {
429
+ "content": "οΏ½οΏ½οΏ½<extra_id_49>",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": false
435
+ },
436
+ "250051": {
437
+ "content": "▁<extra_id_48>",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": false
443
+ },
444
+ "250052": {
445
+ "content": "▁<extra_id_47>",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": false
451
+ },
452
+ "250053": {
453
+ "content": "▁<extra_id_46>",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": false
459
+ },
460
+ "250054": {
461
+ "content": "▁<extra_id_45>",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": false
467
+ },
468
+ "250055": {
469
+ "content": "▁<extra_id_44>",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": false
475
+ },
476
+ "250056": {
477
+ "content": "▁<extra_id_43>",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": false
483
+ },
484
+ "250057": {
485
+ "content": "▁<extra_id_42>",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": false
491
+ },
492
+ "250058": {
493
+ "content": "▁<extra_id_41>",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": false
499
+ },
500
+ "250059": {
501
+ "content": "▁<extra_id_40>",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": false
507
+ },
508
+ "250060": {
509
+ "content": "▁<extra_id_39>",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": false
515
+ },
516
+ "250061": {
517
+ "content": "▁<extra_id_38>",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": false
523
+ },
524
+ "250062": {
525
+ "content": "▁<extra_id_37>",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": false
531
+ },
532
+ "250063": {
533
+ "content": "▁<extra_id_36>",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": false
539
+ },
540
+ "250064": {
541
+ "content": "▁<extra_id_35>",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": false
547
+ },
548
+ "250065": {
549
+ "content": "▁<extra_id_34>",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": false
555
+ },
556
+ "250066": {
557
+ "content": "▁<extra_id_33>",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": false
563
+ },
564
+ "250067": {
565
+ "content": "▁<extra_id_32>",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": false
571
+ },
572
+ "250068": {
573
+ "content": "▁<extra_id_31>",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": false
579
+ },
580
+ "250069": {
581
+ "content": "▁<extra_id_30>",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": false
587
+ },
588
+ "250070": {
589
+ "content": "▁<extra_id_29>",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": false
595
+ },
596
+ "250071": {
597
+ "content": "▁<extra_id_28>",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": false
603
+ },
604
+ "250072": {
605
+ "content": "▁<extra_id_27>",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": false
611
+ },
612
+ "250073": {
613
+ "content": "▁<extra_id_26>",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": false
619
+ },
620
+ "250074": {
621
+ "content": "▁<extra_id_25>",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": false
627
+ },
628
+ "250075": {
629
+ "content": "▁<extra_id_24>",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": false
635
+ },
636
+ "250076": {
637
+ "content": "▁<extra_id_23>",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": false
643
+ },
644
+ "250077": {
645
+ "content": "▁<extra_id_22>",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": false
651
+ },
652
+ "250078": {
653
+ "content": "▁<extra_id_21>",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": false
659
+ },
660
+ "250079": {
661
+ "content": "▁<extra_id_20>",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": false
667
+ },
668
+ "250080": {
669
+ "content": "▁<extra_id_19>",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": false
675
+ },
676
+ "250081": {
677
+ "content": "▁<extra_id_18>",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": false
683
+ },
684
+ "250082": {
685
+ "content": "▁<extra_id_17>",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": false
691
+ },
692
+ "250083": {
693
+ "content": "▁<extra_id_16>",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": false
699
+ },
700
+ "250084": {
701
+ "content": "▁<extra_id_15>",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": false
707
+ },
708
+ "250085": {
709
+ "content": "▁<extra_id_14>",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": false
715
+ },
716
+ "250086": {
717
+ "content": "▁<extra_id_13>",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": false
723
+ },
724
+ "250087": {
725
+ "content": "▁<extra_id_12>",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": false
731
+ },
732
+ "250088": {
733
+ "content": "▁<extra_id_11>",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": false
739
+ },
740
+ "250089": {
741
+ "content": "▁<extra_id_10>",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": false
747
+ },
748
+ "250090": {
749
+ "content": "▁<extra_id_9>",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": false
755
+ },
756
+ "250091": {
757
+ "content": "▁<extra_id_8>",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": false
763
+ },
764
+ "250092": {
765
+ "content": "▁<extra_id_7>",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": false
771
+ },
772
+ "250093": {
773
+ "content": "▁<extra_id_6>",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": false
779
+ },
780
+ "250094": {
781
+ "content": "▁<extra_id_5>",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": false
787
+ },
788
+ "250095": {
789
+ "content": "▁<extra_id_4>",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": false
795
+ },
796
+ "250096": {
797
+ "content": "▁<extra_id_3>",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": false
803
+ },
804
+ "250097": {
805
+ "content": "▁<extra_id_2>",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": false
811
+ },
812
+ "250098": {
813
+ "content": "▁<extra_id_1>",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": false
819
+ },
820
+ "250099": {
821
+ "content": "▁<extra_id_0>",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": false
827
+ },
828
+ "250100": {
829
+ "content": "<<ENT>>",
830
+ "lstrip": false,
831
+ "normalized": false,
832
+ "rstrip": false,
833
+ "single_word": false,
834
+ "special": true
835
+ },
836
+ "250101": {
837
+ "content": "<<SEP>>",
838
+ "lstrip": false,
839
+ "normalized": false,
840
+ "rstrip": false,
841
+ "single_word": false,
842
+ "special": true
843
+ }
844
+ },
845
+ "additional_special_tokens": [],
846
+ "clean_up_tokenization_spaces": false,
847
+ "eos_token": "</s>",
848
+ "extra_ids": 0,
849
+ "extra_special_tokens": {},
850
+ "legacy": true,
851
+ "model_max_length": 1000000000000000019884624838656,
852
+ "pad_token": "<pad>",
853
+ "sp_model_kwargs": {},
854
+ "tokenizer_class": "T5Tokenizer",
855
+ "unk_token": "<unk>"
856
+ }