MaziyarPanahi commited on
Commit
eb7ce31
·
verified ·
1 Parent(s): e16d3d1

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Organism-Medium-209M

Browse files
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "Caenorhabditis elegans is a model organism for genetic studies."
4
+ - text: "The research focused on Drosophila melanogaster development."
5
+ - text: "Arabidopsis thaliana serves as a model for plant biology."
6
+ - text: "The zebrafish, Danio rerio, is widely used for studying vertebrate development."
7
+ - text: "Neurospora crassa is a type of red bread mold used in genetic research."
8
+ tags:
9
+ - token-classification
10
+ - entity recognition
11
+ - named-entity-recognition
12
+ - zero-shot
13
+ - zero-shot-ner
14
+ - zero shot
15
+ - biomedical-nlp
16
+ - gliner
17
+ - species-recognition
18
+ - taxonomy
19
+ - organism-identification
20
+ - biodiversity
21
+ - species
22
+ language:
23
+ - en
24
+ license: apache-2.0
25
+ ---
26
+
27
+ # 🧬 [OpenMed-ZeroShot-NER-Organism-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Medium-209M)
28
+
29
+ **Specialized model for Species Entity Recognition - Species names from the Species-800 dataset**
30
+
31
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
32
+ [![Python](https://img.shields.io/badge/Python-3.11%2B-blue)]()
33
+ [![GliNER](https://img.shields.io/badge/🤗-GliNER-yellow)]()
34
+ [![OpenMed](https://img.shields.io/badge/🏥-OpenMed-green)](https://huggingface.co/OpenMed)
35
+
36
+ ## 📋 Model Overview
37
+
38
+ Optimized for **species identification** in scientific text, covering a wide range of taxa and naming variants.Useful for **ecology studies**, **organism tagging**, and **biocuration**.
39
+
40
+ OpenMed ZeroShot NER is an advanced, domain-adapted Named Entity Recognition (NER) model designed specifically for medical, biomedical, and clinical text mining. Leveraging state-of-the-art zero-shot learning, this model empowers researchers, clinicians, and data scientists to extract expert-level biomedical entities—such as diseases, chemicals, genes, species, and clinical findings—directly from unstructured text, without the need for task-specific retraining.
41
+
42
+ Built on the robust GLiNER architecture and fine-tuned on curated biomedical corpora, OpenMed ZeroShot NER delivers high-precision entity recognition for critical healthcare and life sciences applications. Its zero-shot capability means you can flexibly define and extract any entity type relevant to your workflow, from standard biomedical categories to custom clinical concepts, supporting rapid adaptation to new research domains and regulatory requirements.
43
+
44
+ Whether you are working on clinical NLP, biomedical research, electronic health record (EHR) de-identification, or large-scale literature mining, OpenMed ZeroShot NER provides a production-ready, open-source solution that combines expert-level accuracy with unmatched flexibility. Join the OpenMed community to accelerate your medical text analytics with cutting-edge, zero-shot NER technology.
45
+
46
+ ### 🎯 Key Features
47
+ - **Zero-Shot Capability**: Can recognize any entity type without specific training
48
+ - **High Precision**: Optimized for biomedical entity recognition
49
+ - **Domain-Specific**: Fine-tuned on curated SPECIES800 dataset
50
+ - **Production-Ready**: Validated on clinical benchmarks
51
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
52
+ - **Flexible Entity Recognition**: Add custom entity types without retraining
53
+
54
+ ### 🏷️ Supported Entity Types
55
+
56
+ This zero-shot model can identify and classify biomedical entities, including but not limited to these entity types. **You can also add custom entity types without retraining the model**:
57
+
58
+ - `SPECIES`
59
+
60
+ **💡 Zero-Shot Flexibility**: As a GliNER-based model, you can specify any entity types you want to detect, even if they weren't part of the original training. Simply provide the entity labels when using the model, and it will adapt to recognize them.
61
+
62
+ ## 📊 Dataset
63
+
64
+ Species800 is a corpus for species recognition and taxonomy classification in biomedical texts.
65
+
66
+ The Species800 corpus is a manually annotated dataset designed for species recognition and taxonomic classification in biomedical literature. This corpus contains 800 abstracts with comprehensive annotations for organism mentions, supporting biodiversity informatics and biological taxonomy research. The dataset includes both scientific names and common names of species, making it valuable for developing NER systems that can handle the complexity of biological nomenclature. It serves as a benchmark for evaluating species identification models used in ecological studies, conservation biology, and systematic biology research. The corpus is particularly useful for text mining applications in biodiversity databases and biological literature analysis.
67
+
68
+
69
+ ## 📊 Performance Metrics
70
+
71
+ ### Current Model Performance
72
+
73
+ - **Finetuned F1 vs. Base Model (on test dataset excluded from training)**: `0.83`
74
+ - **F1 Improvement vs Base Model**: `34.5%`
75
+
76
+ ### 🏆 Top F1 Improvements on SPECIES800 Dataset
77
+
78
+ | Rank | Model | Base F1 | Finetuned F1 | ΔF1 | ΔF1 % |
79
+ |------|-------|--------:|------------:|----:|------:|
80
+ | 🥇 1 | [OpenMed-ZeroShot-NER-Organism-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Large-459M) | 0.6329 | 0.8471 | 0.2142 | 33.8% |
81
+ | 🥈 2 | [OpenMed-ZeroShot-NER-Organism-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Medium-209M) | 0.6140 | 0.8257 | 0.2117 | 34.5% |
82
+ | 🥉 3 | [OpenMed-ZeroShot-NER-Organism-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-XLarge-770M) | 0.6111 | 0.8256 | 0.2145 | 35.1% |
83
+ | 4 | [OpenMed-ZeroShot-NER-Organism-Base-220M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Base-220M) | 0.5853 | 0.7717 | 0.1864 | 31.8% |
84
+ | 5 | [OpenMed-ZeroShot-NER-Organism-Small-166M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Small-166M) | 0.5931 | 0.7092 | 0.1161 | 19.6% |
85
+
86
+
87
+ *Rankings are sorted by finetuned F1 and show ΔF1% over base model. Test dataset is excluded from training.*
88
+
89
+ ![OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed-zero-shot-clinical-ner-finetuned.png)
90
+
91
+ *Figure: OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models.*
92
+
93
+ ## 🚀 Quick Start
94
+
95
+ ### Installation
96
+
97
+ ```bash
98
+ pip install gliner==0.2.21
99
+ ```
100
+
101
+ ### Usage
102
+
103
+ ```python
104
+ from transformers import pipeline
105
+
106
+ # Load the model and tokenizer
107
+ # Model: https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Medium-209M
108
+ model_name = "OpenMed/OpenMed-ZeroShot-NER-Organism-Medium-209M"
109
+
110
+ from gliner import GLiNER
111
+ model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Organism-Medium-209M")
112
+
113
+ # Example usage with default entity types
114
+ text = "Caenorhabditis elegans is a model organism for genetic studies."
115
+
116
+ labels = ['SPECIES']
117
+ entities = model.predict_entities(text, labels, flat_ner=True, threshold=0.5)
118
+ for entity in entities:
119
+ print(entity)
120
+ ```
121
+
122
+ ### Zero-Shot Usage with Custom Entity Types
123
+ 💡 **Tip:** If you want to extract entities that are not present in the original training set (i.e., use custom or rare entity types), you may get better results by lowering the `threshold` parameter in `model.predict_entities`. For example, try `threshold=0.3` or even lower, depending on your use case:
124
+
125
+ ```python
126
+ # You can specify custom entity types for zero-shot recognition - for instance:
127
+ custom_entities = ["MISC", "SPECIES", "PERSON", "LOCATION", "MEDICATION", "PROCEDURE"]
128
+
129
+ entities = model.predict_entities(text, custom_entities, flat_ner=True, threshold=0.1)
130
+ for entity in entities:
131
+ print(entity)
132
+ ```
133
+
134
+ > Lowering the threshold makes the model more permissive and can help it recognize new or less common entity types, but may also increase false positives. Adjust as needed for your application.
135
+
136
+ ## 📚 Dataset Information
137
+
138
+ - **Dataset**: SPECIES800
139
+ - **Description**: Species Entity Recognition - Species names from the Species-800 dataset
140
+
141
+ ### Training Details
142
+ - **Base Model**: gliner_medium-v2.1
143
+ - **Training Framework**: Hugging Face Transformers
144
+ - **Optimization**: AdamW optimizer with learning rate scheduling
145
+ - **Validation**: Cross-validation on held-out test set
146
+
147
+ ## 💡 Use Cases
148
+
149
+ This model is particularly useful for:
150
+ - **Clinical Text Mining**: Extracting entities from medical records
151
+ - **Biomedical Research**: Processing scientific literature
152
+ - **Drug Discovery**: Identifying chemical compounds and drugs
153
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
154
+ - **Academic Research**: Supporting biomedical NLP research
155
+ - **Custom Entity Recognition**: Zero-shot detection of domain-specific entities
156
+
157
+ ## 🔬 Model Architecture
158
+
159
+ - **Task**: Zero-Shot Classification (Named Entity Recognition)
160
+ - **Labels**: Dataset-specific entity types
161
+ - **Input**: Biomedical text
162
+ - **Output**: Named entity predictions
163
+
164
+ ## 📜 License
165
+
166
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
167
+
168
+ ## 🤝 Contributing
169
+
170
+ I welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join my mission to advance open-source Healthcare AI, I'd love to hear from you.
171
+
172
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face 🤗 and click "Watch" to stay updated on my latest releases and developments.
173
+
174
+ ## Citation
175
+
176
+ If you use this model in your research or applications, please cite the following paper:
177
+
178
+ ```latex
179
+ @misc{panahi2025openmedneropensourcedomainadapted,
180
+ title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
181
+ author={Maziyar Panahi},
182
+ year={2025},
183
+ eprint={2508.01630},
184
+ archivePrefix={arXiv},
185
+ primaryClass={cs.CL},
186
+ url={https://arxiv.org/abs/2508.01630},
187
+ }
188
+ ```
189
+
190
+ Proper citation helps support and acknowledge my work. Thank you!
191
+
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<<ENT>>": 128002,
3
+ "<<SEP>>": 128003,
4
+ "[FLERT]": 128001,
5
+ "[MASK]": 128000
6
+ }
gliner_config.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "class_token_index": 128002,
3
+ "dropout": 0.4,
4
+ "embed_ent_token": true,
5
+ "encoder_config": {
6
+ "_name_or_path": "microsoft/deberta-v3-base",
7
+ "add_cross_attention": false,
8
+ "architectures": null,
9
+ "attention_probs_dropout_prob": 0.1,
10
+ "bad_words_ids": null,
11
+ "begin_suppress_tokens": null,
12
+ "bos_token_id": null,
13
+ "chunk_size_feed_forward": 0,
14
+ "cross_attention_hidden_size": null,
15
+ "decoder_start_token_id": null,
16
+ "diversity_penalty": 0.0,
17
+ "do_sample": false,
18
+ "early_stopping": false,
19
+ "encoder_no_repeat_ngram_size": 0,
20
+ "eos_token_id": null,
21
+ "exponential_decay_length_penalty": null,
22
+ "finetuning_task": null,
23
+ "forced_bos_token_id": null,
24
+ "forced_eos_token_id": null,
25
+ "hidden_act": "gelu",
26
+ "hidden_dropout_prob": 0.1,
27
+ "hidden_size": 768,
28
+ "id2label": {
29
+ "0": "LABEL_0",
30
+ "1": "LABEL_1"
31
+ },
32
+ "initializer_range": 0.02,
33
+ "intermediate_size": 3072,
34
+ "is_decoder": false,
35
+ "is_encoder_decoder": false,
36
+ "label2id": {
37
+ "LABEL_0": 0,
38
+ "LABEL_1": 1
39
+ },
40
+ "layer_norm_eps": 1e-07,
41
+ "length_penalty": 1.0,
42
+ "max_length": 20,
43
+ "max_position_embeddings": 512,
44
+ "max_relative_positions": -1,
45
+ "min_length": 0,
46
+ "model_type": "deberta-v2",
47
+ "no_repeat_ngram_size": 0,
48
+ "norm_rel_ebd": "layer_norm",
49
+ "num_attention_heads": 12,
50
+ "num_beam_groups": 1,
51
+ "num_beams": 1,
52
+ "num_hidden_layers": 12,
53
+ "num_return_sequences": 1,
54
+ "output_attentions": false,
55
+ "output_hidden_states": false,
56
+ "output_scores": false,
57
+ "pad_token_id": 0,
58
+ "pooler_dropout": 0,
59
+ "pooler_hidden_act": "gelu",
60
+ "pooler_hidden_size": 768,
61
+ "pos_att_type": [
62
+ "p2c",
63
+ "c2p"
64
+ ],
65
+ "position_biased_input": false,
66
+ "position_buckets": 256,
67
+ "prefix": null,
68
+ "problem_type": null,
69
+ "pruned_heads": {},
70
+ "relative_attention": true,
71
+ "remove_invalid_values": false,
72
+ "repetition_penalty": 1.0,
73
+ "return_dict": true,
74
+ "return_dict_in_generate": false,
75
+ "sep_token_id": null,
76
+ "share_att_key": true,
77
+ "suppress_tokens": null,
78
+ "task_specific_params": null,
79
+ "temperature": 1.0,
80
+ "tf_legacy_loss": false,
81
+ "tie_encoder_decoder": false,
82
+ "tie_word_embeddings": true,
83
+ "tokenizer_class": null,
84
+ "top_k": 50,
85
+ "top_p": 1.0,
86
+ "torch_dtype": null,
87
+ "torchscript": false,
88
+ "type_vocab_size": 0,
89
+ "typical_p": 1.0,
90
+ "use_bfloat16": false,
91
+ "vocab_size": 128004
92
+ },
93
+ "ent_token": "<<ENT>>",
94
+ "eval_every": 5000,
95
+ "fine_tune": true,
96
+ "fuse_layers": false,
97
+ "has_rnn": true,
98
+ "hidden_size": 512,
99
+ "labels_encoder": null,
100
+ "labels_encoder_config": null,
101
+ "lr_encoder": "1e-5",
102
+ "lr_others": "5e-5",
103
+ "max_len": 384,
104
+ "max_neg_type_ratio": 1,
105
+ "max_types": 25,
106
+ "max_width": 12,
107
+ "model_name": "microsoft/deberta-v3-base",
108
+ "model_type": "gliner",
109
+ "name": "correct",
110
+ "num_post_fusion_layers": 1,
111
+ "num_steps": 30000,
112
+ "post_fusion_schema": "",
113
+ "random_drop": true,
114
+ "sep_token": "<<SEP>>",
115
+ "shuffle_types": true,
116
+ "size_sup": -1,
117
+ "span_mode": "markerV0",
118
+ "subtoken_pooling": "first",
119
+ "train_batch_size": 8,
120
+ "transformers_version": "4.43.4",
121
+ "vocab_size": 128004,
122
+ "warmup_ratio": 3000,
123
+ "words_splitter_type": "whitespace"
124
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a879f9adfd9114dc7c77fda4b1c888d48057f50afd0fa76d283f11186d22b998
3
+ size 780784814
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 26.515277862548828,
3
+ "seqeval_accuracy": 0.9682820582630003,
4
+ "seqeval_f1": 0.8257107540173053,
5
+ "seqeval_precision": 0.7849588719153937,
6
+ "seqeval_recall": 0.8709256844850065
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128001": {
44
+ "content": "[FLERT]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "128002": {
52
+ "content": "<<ENT>>",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "128003": {
60
+ "content": "<<SEP>>",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ }
67
+ },
68
+ "bos_token": "[CLS]",
69
+ "clean_up_tokenization_spaces": true,
70
+ "cls_token": "[CLS]",
71
+ "do_lower_case": false,
72
+ "eos_token": "[SEP]",
73
+ "mask_token": "[MASK]",
74
+ "model_max_length": 1000000000000000019884624838656,
75
+ "pad_token": "[PAD]",
76
+ "sep_token": "[SEP]",
77
+ "sp_model_kwargs": {},
78
+ "split_by_punct": false,
79
+ "tokenizer_class": "DebertaV2Tokenizer",
80
+ "unk_token": "[UNK]",
81
+ "vocab_type": "spm"
82
+ }