feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Organism-Tiny-60M
Browse files- .gitattributes +1 -0
- README.md +193 -0
- added_tokens.json +4 -0
- gliner_config.json +134 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- spiece.model +3 -0
- test_results.json +7 -0
- tokenizer.json +3 -0
- tokenizer_config.json +855 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
widget:
|
3 |
+
- text: "Caenorhabditis elegans is a model organism for genetic studies."
|
4 |
+
- text: "The research focused on Drosophila melanogaster development."
|
5 |
+
- text: "Arabidopsis thaliana serves as a model for plant biology."
|
6 |
+
- text: "The zebrafish, Danio rerio, is widely used for studying vertebrate development."
|
7 |
+
- text: "Neurospora crassa is a type of red bread mold used in genetic research."
|
8 |
+
tags:
|
9 |
+
- token-classification
|
10 |
+
- entity recognition
|
11 |
+
- named-entity-recognition
|
12 |
+
- zero-shot
|
13 |
+
- zero-shot-ner
|
14 |
+
- zero shot
|
15 |
+
- biomedical-nlp
|
16 |
+
- gliner
|
17 |
+
- species-recognition
|
18 |
+
- taxonomy
|
19 |
+
- organism-identification
|
20 |
+
- biodiversity
|
21 |
+
- species
|
22 |
+
language:
|
23 |
+
- en
|
24 |
+
license: apache-2.0
|
25 |
+
---
|
26 |
+
|
27 |
+
# 𧬠[OpenMed-ZeroShot-NER-Organism-Tiny-60M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Tiny-60M)
|
28 |
+
|
29 |
+
**Specialized model for Species Entity Recognition - Species names from the Species-800 dataset**
|
30 |
+
|
31 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
32 |
+
[]()
|
33 |
+
[]()
|
34 |
+
[](https://huggingface.co/OpenMed)
|
35 |
+
|
36 |
+
## π Model Overview
|
37 |
+
|
38 |
+
Optimized for **species identification** in scientific text, covering a wide range of taxa and naming variants.Useful for **ecology studies**, **organism tagging**, and **biocuration**.
|
39 |
+
|
40 |
+
OpenMed ZeroShot NER is an advanced, domain-adapted Named Entity Recognition (NER) model designed specifically for medical, biomedical, and clinical text mining. Leveraging state-of-the-art zero-shot learning, this model empowers researchers, clinicians, and data scientists to extract expert-level biomedical entitiesβsuch as diseases, chemicals, genes, species, and clinical findingsβdirectly from unstructured text, without the need for task-specific retraining.
|
41 |
+
|
42 |
+
Built on the robust GLiNER architecture and fine-tuned on curated biomedical corpora, OpenMed ZeroShot NER delivers high-precision entity recognition for critical healthcare and life sciences applications. Its zero-shot capability means you can flexibly define and extract any entity type relevant to your workflow, from standard biomedical categories to custom clinical concepts, supporting rapid adaptation to new research domains and regulatory requirements.
|
43 |
+
|
44 |
+
Whether you are working on clinical NLP, biomedical research, electronic health record (EHR) de-identification, or large-scale literature mining, OpenMed ZeroShot NER provides a production-ready, open-source solution that combines expert-level accuracy with unmatched flexibility. Join the OpenMed community to accelerate your medical text analytics with cutting-edge, zero-shot NER technology.
|
45 |
+
|
46 |
+
### π― Key Features
|
47 |
+
- **Zero-Shot Capability**: Can recognize any entity type without specific training
|
48 |
+
- **High Precision**: Optimized for biomedical entity recognition
|
49 |
+
- **Domain-Specific**: Fine-tuned on curated SPECIES800 dataset
|
50 |
+
- **Production-Ready**: Validated on clinical benchmarks
|
51 |
+
- **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
|
52 |
+
- **Flexible Entity Recognition**: Add custom entity types without retraining
|
53 |
+
|
54 |
+
### π·οΈ Supported Entity Types
|
55 |
+
|
56 |
+
This zero-shot model can identify and classify biomedical entities, including but not limited to these entity types. **You can also add custom entity types without retraining the model**:
|
57 |
+
|
58 |
+
- `SPECIES`
|
59 |
+
|
60 |
+
**π‘ Zero-Shot Flexibility**: As a GliNER-based model, you can specify any entity types you want to detect, even if they weren't part of the original training. Simply provide the entity labels when using the model, and it will adapt to recognize them.
|
61 |
+
|
62 |
+
## π Dataset
|
63 |
+
|
64 |
+
Species800 is a corpus for species recognition and taxonomy classification in biomedical texts.
|
65 |
+
|
66 |
+
The Species800 corpus is a manually annotated dataset designed for species recognition and taxonomic classification in biomedical literature. This corpus contains 800 abstracts with comprehensive annotations for organism mentions, supporting biodiversity informatics and biological taxonomy research. The dataset includes both scientific names and common names of species, making it valuable for developing NER systems that can handle the complexity of biological nomenclature. It serves as a benchmark for evaluating species identification models used in ecological studies, conservation biology, and systematic biology research. The corpus is particularly useful for text mining applications in biodiversity databases and biological literature analysis.
|
67 |
+
|
68 |
+
|
69 |
+
## π Performance Metrics
|
70 |
+
|
71 |
+
### Current Model Performance
|
72 |
+
|
73 |
+
- **Finetuned F1 vs. Base Model (on test dataset excluded from training)**: `0.57`
|
74 |
+
- **F1 Improvement vs Base Model**: `19.6%`
|
75 |
+
|
76 |
+
### π Top F1 Improvements on SPECIES800 Dataset
|
77 |
+
|
78 |
+
| Rank | Model | Base F1 | Finetuned F1 | ΞF1 | ΞF1 % |
|
79 |
+
|------|-------|--------:|------------:|----:|------:|
|
80 |
+
| π₯ 1 | [OpenMed-ZeroShot-NER-Organism-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Large-459M) | 0.6329 | 0.8471 | 0.2142 | 33.8% |
|
81 |
+
| π₯ 2 | [OpenMed-ZeroShot-NER-Organism-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Medium-209M) | 0.6140 | 0.8257 | 0.2117 | 34.5% |
|
82 |
+
| π₯ 3 | [OpenMed-ZeroShot-NER-Organism-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-XLarge-770M) | 0.6111 | 0.8256 | 0.2145 | 35.1% |
|
83 |
+
| 4 | [OpenMed-ZeroShot-NER-Organism-Base-220M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Base-220M) | 0.5853 | 0.7717 | 0.1864 | 31.8% |
|
84 |
+
| 5 | [OpenMed-ZeroShot-NER-Organism-Small-166M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Small-166M) | 0.5931 | 0.7092 | 0.1161 | 19.6% |
|
85 |
+
|
86 |
+
|
87 |
+
*Rankings are sorted by finetuned F1 and show ΞF1% over base model. Test dataset is excluded from training.*
|
88 |
+
|
89 |
+

|
90 |
+
|
91 |
+
*Figure: OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models.*
|
92 |
+
|
93 |
+
## π Quick Start
|
94 |
+
|
95 |
+
### Installation
|
96 |
+
|
97 |
+
```bash
|
98 |
+
pip install gliner==0.2.21
|
99 |
+
```
|
100 |
+
|
101 |
+
### Usage
|
102 |
+
|
103 |
+
```python
|
104 |
+
from transformers import pipeline
|
105 |
+
|
106 |
+
# Load the model and tokenizer
|
107 |
+
# Model: https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Organism-Tiny-60M
|
108 |
+
model_name = "OpenMed/OpenMed-ZeroShot-NER-Organism-Tiny-60M"
|
109 |
+
|
110 |
+
from gliner import GLiNER
|
111 |
+
model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Organism-Tiny-60M")
|
112 |
+
|
113 |
+
# Example usage with default entity types
|
114 |
+
text = "Caenorhabditis elegans is a model organism for genetic studies."
|
115 |
+
|
116 |
+
labels = ['SPECIES']
|
117 |
+
entities = model.predict_entities(text, labels, flat_ner=True, threshold=0.5)
|
118 |
+
for entity in entities:
|
119 |
+
print(entity)
|
120 |
+
```
|
121 |
+
|
122 |
+
### Zero-Shot Usage with Custom Entity Types
|
123 |
+
π‘ **Tip:** If you want to extract entities that are not present in the original training set (i.e., use custom or rare entity types), you may get better results by lowering the `threshold` parameter in `model.predict_entities`. For example, try `threshold=0.3` or even lower, depending on your use case:
|
124 |
+
|
125 |
+
```python
|
126 |
+
# You can specify custom entity types for zero-shot recognition - for instance:
|
127 |
+
custom_entities = ["MISC", "SPECIES", "PERSON", "LOCATION", "MEDICATION", "PROCEDURE"]
|
128 |
+
|
129 |
+
entities = model.predict_entities(text, custom_entities, flat_ner=True, threshold=0.1)
|
130 |
+
for entity in entities:
|
131 |
+
print(entity)
|
132 |
+
```
|
133 |
+
|
134 |
+
> Lowering the threshold makes the model more permissive and can help it recognize new or less common entity types, but may also increase false positives. Adjust as needed for your application.
|
135 |
+
|
136 |
+
## π Dataset Information
|
137 |
+
|
138 |
+
- **Dataset**: SPECIES800
|
139 |
+
- **Description**: Species Entity Recognition - Species names from the Species-800 dataset
|
140 |
+
|
141 |
+
### Training Details
|
142 |
+
- **Base Model**: gliner-x-small
|
143 |
+
- **Training Framework**: Hugging Face Transformers
|
144 |
+
- **Optimization**: AdamW optimizer with learning rate scheduling
|
145 |
+
- **Validation**: Cross-validation on held-out test set
|
146 |
+
|
147 |
+
## π‘ Use Cases
|
148 |
+
|
149 |
+
This model is particularly useful for:
|
150 |
+
- **Clinical Text Mining**: Extracting entities from medical records
|
151 |
+
- **Biomedical Research**: Processing scientific literature
|
152 |
+
- **Drug Discovery**: Identifying chemical compounds and drugs
|
153 |
+
- **Healthcare Analytics**: Analyzing patient data and outcomes
|
154 |
+
- **Academic Research**: Supporting biomedical NLP research
|
155 |
+
- **Custom Entity Recognition**: Zero-shot detection of domain-specific entities
|
156 |
+
|
157 |
+
## π¬ Model Architecture
|
158 |
+
|
159 |
+
- **Task**: Zero-Shot Classification (Named Entity Recognition)
|
160 |
+
- **Labels**: Dataset-specific entity types
|
161 |
+
- **Input**: Biomedical text
|
162 |
+
- **Output**: Named entity predictions
|
163 |
+
|
164 |
+
For more information about GLiNER, visit the [GLiNER repository](https://github.com/urchade/gliner).
|
165 |
+
|
166 |
+
## π License
|
167 |
+
|
168 |
+
Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
|
169 |
+
|
170 |
+
## π€ Contributing
|
171 |
+
|
172 |
+
I welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join my mission to advance open-source Healthcare AI, I'd love to hear from you.
|
173 |
+
|
174 |
+
Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face π€ and click "Watch" to stay updated on my latest releases and developments.
|
175 |
+
|
176 |
+
## Citation
|
177 |
+
|
178 |
+
If you use this model in your research or applications, please cite the following paper:
|
179 |
+
|
180 |
+
```latex
|
181 |
+
@misc{panahi2025openmedneropensourcedomainadapted,
|
182 |
+
title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
|
183 |
+
author={Maziyar Panahi},
|
184 |
+
year={2025},
|
185 |
+
eprint={2508.01630},
|
186 |
+
archivePrefix={arXiv},
|
187 |
+
primaryClass={cs.CL},
|
188 |
+
url={https://arxiv.org/abs/2508.01630},
|
189 |
+
}
|
190 |
+
```
|
191 |
+
|
192 |
+
Proper citation helps support and acknowledge my work. Thank you!
|
193 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<<ENT>>": 250100,
|
3 |
+
"<<SEP>>": 250101
|
4 |
+
}
|
gliner_config.json
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"class_token_index": 250100,
|
3 |
+
"dropout": 0.3,
|
4 |
+
"embed_ent_token": true,
|
5 |
+
"encoder_config": {
|
6 |
+
"_attn_implementation_autoset": true,
|
7 |
+
"_name_or_path": "google/mt5-small",
|
8 |
+
"add_cross_attention": false,
|
9 |
+
"architectures": [
|
10 |
+
"MT5ForConditionalGeneration"
|
11 |
+
],
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": null,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": 0.0,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"d_ff": 1024,
|
19 |
+
"d_kv": 64,
|
20 |
+
"d_model": 512,
|
21 |
+
"decoder_start_token_id": 0,
|
22 |
+
"dense_act_fn": "gelu_new",
|
23 |
+
"diversity_penalty": 0.0,
|
24 |
+
"do_sample": false,
|
25 |
+
"dropout_rate": 0.1,
|
26 |
+
"early_stopping": false,
|
27 |
+
"encoder_no_repeat_ngram_size": 0,
|
28 |
+
"eos_token_id": 1,
|
29 |
+
"exponential_decay_length_penalty": null,
|
30 |
+
"feed_forward_proj": "gated-gelu",
|
31 |
+
"finetuning_task": null,
|
32 |
+
"forced_bos_token_id": null,
|
33 |
+
"forced_eos_token_id": null,
|
34 |
+
"id2label": {
|
35 |
+
"0": "LABEL_0",
|
36 |
+
"1": "LABEL_1"
|
37 |
+
},
|
38 |
+
"initializer_factor": 1.0,
|
39 |
+
"is_decoder": false,
|
40 |
+
"is_encoder_decoder": true,
|
41 |
+
"is_gated_act": true,
|
42 |
+
"label2id": {
|
43 |
+
"LABEL_0": 0,
|
44 |
+
"LABEL_1": 1
|
45 |
+
},
|
46 |
+
"layer_norm_epsilon": 1e-06,
|
47 |
+
"length_penalty": 1.0,
|
48 |
+
"max_length": 20,
|
49 |
+
"min_length": 0,
|
50 |
+
"model_type": "mt5",
|
51 |
+
"no_repeat_ngram_size": 0,
|
52 |
+
"num_beam_groups": 1,
|
53 |
+
"num_beams": 1,
|
54 |
+
"num_decoder_layers": 8,
|
55 |
+
"num_heads": 6,
|
56 |
+
"num_layers": 8,
|
57 |
+
"num_return_sequences": 1,
|
58 |
+
"output_attentions": false,
|
59 |
+
"output_hidden_states": false,
|
60 |
+
"output_scores": false,
|
61 |
+
"pad_token_id": 0,
|
62 |
+
"prefix": null,
|
63 |
+
"problem_type": null,
|
64 |
+
"pruned_heads": {},
|
65 |
+
"relative_attention_max_distance": 128,
|
66 |
+
"relative_attention_num_buckets": 32,
|
67 |
+
"remove_invalid_values": false,
|
68 |
+
"repetition_penalty": 1.0,
|
69 |
+
"return_dict": true,
|
70 |
+
"return_dict_in_generate": false,
|
71 |
+
"sep_token_id": null,
|
72 |
+
"suppress_tokens": null,
|
73 |
+
"task_specific_params": null,
|
74 |
+
"temperature": 1.0,
|
75 |
+
"tf_legacy_loss": false,
|
76 |
+
"tie_encoder_decoder": false,
|
77 |
+
"tie_word_embeddings": false,
|
78 |
+
"tokenizer_class": "T5Tokenizer",
|
79 |
+
"top_k": 50,
|
80 |
+
"top_p": 1.0,
|
81 |
+
"torch_dtype": null,
|
82 |
+
"torchscript": false,
|
83 |
+
"typical_p": 1.0,
|
84 |
+
"use_bfloat16": false,
|
85 |
+
"use_cache": true,
|
86 |
+
"vocab_size": 250102
|
87 |
+
},
|
88 |
+
"ent_token": "<<ENT>>",
|
89 |
+
"eval_every": 10000,
|
90 |
+
"fine_tune": true,
|
91 |
+
"freeze_token_rep": false,
|
92 |
+
"fuse_layers": false,
|
93 |
+
"has_rnn": true,
|
94 |
+
"hidden_size": 768,
|
95 |
+
"label_smoothing": 0,
|
96 |
+
"labels_encoder": null,
|
97 |
+
"labels_encoder_config": null,
|
98 |
+
"log_dir": "models/",
|
99 |
+
"loss_alpha": 0.75,
|
100 |
+
"loss_gamma": 0,
|
101 |
+
"loss_reduction": "sum",
|
102 |
+
"lr_encoder": "1e-5",
|
103 |
+
"lr_others": "3e-5",
|
104 |
+
"max_grad_norm": 10.0,
|
105 |
+
"max_len": 1024,
|
106 |
+
"max_neg_type_ratio": 1,
|
107 |
+
"max_types": 30,
|
108 |
+
"max_width": 12,
|
109 |
+
"model_name": "google/mt5-small",
|
110 |
+
"model_type": "gliner",
|
111 |
+
"name": "span level gliner",
|
112 |
+
"num_post_fusion_layers": 1,
|
113 |
+
"num_steps": 80000,
|
114 |
+
"post_fusion_schema": "",
|
115 |
+
"prev_path": null,
|
116 |
+
"random_drop": true,
|
117 |
+
"root_dir": "gliner_logs",
|
118 |
+
"save_total_limit": 3,
|
119 |
+
"scheduler_type": "cosine",
|
120 |
+
"sep_token": "<<SEP>>",
|
121 |
+
"shuffle_types": true,
|
122 |
+
"size_sup": -1,
|
123 |
+
"span_mode": "markerV0",
|
124 |
+
"subtoken_pooling": "first",
|
125 |
+
"train_batch_size": 8,
|
126 |
+
"train_data": "data/multilingual_data.json",
|
127 |
+
"transformers_version": "4.43.4",
|
128 |
+
"val_data_dir": "none",
|
129 |
+
"vocab_size": 250102,
|
130 |
+
"warmup_ratio": 0.05,
|
131 |
+
"weight_decay_encoder": 0.1,
|
132 |
+
"weight_decay_other": 0.01,
|
133 |
+
"words_splitter_type": "universal"
|
134 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a4adc506650b3f3156d8319e76b634ba692365680bbf42431dc74c915fd1e0c
|
3 |
+
size 688530184
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "</s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": {
|
10 |
+
"content": "<pad>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
|
3 |
+
size 4309802
|
test_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_loss": 112.08643341064453,
|
3 |
+
"seqeval_accuracy": 0.9234277157636809,
|
4 |
+
"seqeval_f1": 0.5661036691904484,
|
5 |
+
"seqeval_precision": 0.511578947368421,
|
6 |
+
"seqeval_recall": 0.6336375488917861
|
7 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c23b87e1609c72116a5aea222f983df99723cb2afa554d9d137f289840c3097b
|
3 |
+
size 16335205
|
tokenizer_config.json
ADDED
@@ -0,0 +1,855 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "</s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<unk>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"250000": {
|
28 |
+
"content": "β<extra_id_99>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "β<extra_id_98>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"250002": {
|
44 |
+
"content": "β<extra_id_97>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"250003": {
|
52 |
+
"content": "β<extra_id_96>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"250004": {
|
60 |
+
"content": "β<extra_id_95>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"250005": {
|
68 |
+
"content": "β<extra_id_94>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"250006": {
|
76 |
+
"content": "β<extra_id_93>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"250007": {
|
84 |
+
"content": "β<extra_id_92>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"250008": {
|
92 |
+
"content": "β<extra_id_91>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"250009": {
|
100 |
+
"content": "β<extra_id_90>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"250010": {
|
108 |
+
"content": "β<extra_id_89>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"250011": {
|
116 |
+
"content": "β<extra_id_88>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"250012": {
|
124 |
+
"content": "β<extra_id_87>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"250013": {
|
132 |
+
"content": "β<extra_id_86>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"250014": {
|
140 |
+
"content": "β<extra_id_85>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"250015": {
|
148 |
+
"content": "β<extra_id_84>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"250016": {
|
156 |
+
"content": "β<extra_id_83>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"250017": {
|
164 |
+
"content": "β<extra_id_82>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"250018": {
|
172 |
+
"content": "β<extra_id_81>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"250019": {
|
180 |
+
"content": "β<extra_id_80>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"250020": {
|
188 |
+
"content": "β<extra_id_79>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"250021": {
|
196 |
+
"content": "β<extra_id_78>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"250022": {
|
204 |
+
"content": "β<extra_id_77>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"250023": {
|
212 |
+
"content": "β<extra_id_76>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"250024": {
|
220 |
+
"content": "β<extra_id_75>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": false
|
226 |
+
},
|
227 |
+
"250025": {
|
228 |
+
"content": "β<extra_id_74>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": false
|
234 |
+
},
|
235 |
+
"250026": {
|
236 |
+
"content": "β<extra_id_73>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": false
|
242 |
+
},
|
243 |
+
"250027": {
|
244 |
+
"content": "β<extra_id_72>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": false
|
250 |
+
},
|
251 |
+
"250028": {
|
252 |
+
"content": "β<extra_id_71>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": false
|
258 |
+
},
|
259 |
+
"250029": {
|
260 |
+
"content": "β<extra_id_70>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": false
|
266 |
+
},
|
267 |
+
"250030": {
|
268 |
+
"content": "β<extra_id_69>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"250031": {
|
276 |
+
"content": "β<extra_id_68>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"250032": {
|
284 |
+
"content": "β<extra_id_67>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"250033": {
|
292 |
+
"content": "β<extra_id_66>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"250034": {
|
300 |
+
"content": "β<extra_id_65>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"250035": {
|
308 |
+
"content": "β<extra_id_64>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"250036": {
|
316 |
+
"content": "β<extra_id_63>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"250037": {
|
324 |
+
"content": "β<extra_id_62>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"250038": {
|
332 |
+
"content": "β<extra_id_61>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"250039": {
|
340 |
+
"content": "β<extra_id_60>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"250040": {
|
348 |
+
"content": "β<extra_id_59>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"250041": {
|
356 |
+
"content": "β<extra_id_58>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"250042": {
|
364 |
+
"content": "β<extra_id_57>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"250043": {
|
372 |
+
"content": "β<extra_id_56>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"250044": {
|
380 |
+
"content": "β<extra_id_55>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"250045": {
|
388 |
+
"content": "β<extra_id_54>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"250046": {
|
396 |
+
"content": "β<extra_id_53>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"250047": {
|
404 |
+
"content": "β<extra_id_52>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"250048": {
|
412 |
+
"content": "β<extra_id_51>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"250049": {
|
420 |
+
"content": "β<extra_id_50>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"250050": {
|
428 |
+
"content": "β<extra_id_49>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"250051": {
|
436 |
+
"content": "β<extra_id_48>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"250052": {
|
444 |
+
"content": "β<extra_id_47>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"250053": {
|
452 |
+
"content": "β<extra_id_46>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"250054": {
|
460 |
+
"content": "β<extra_id_45>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"250055": {
|
468 |
+
"content": "β<extra_id_44>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"250056": {
|
476 |
+
"content": "β<extra_id_43>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"250057": {
|
484 |
+
"content": "β<extra_id_42>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"250058": {
|
492 |
+
"content": "β<extra_id_41>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"250059": {
|
500 |
+
"content": "β<extra_id_40>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"250060": {
|
508 |
+
"content": "β<extra_id_39>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"250061": {
|
516 |
+
"content": "β<extra_id_38>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"250062": {
|
524 |
+
"content": "β<extra_id_37>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"250063": {
|
532 |
+
"content": "β<extra_id_36>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"250064": {
|
540 |
+
"content": "β<extra_id_35>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"250065": {
|
548 |
+
"content": "β<extra_id_34>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"250066": {
|
556 |
+
"content": "β<extra_id_33>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"250067": {
|
564 |
+
"content": "β<extra_id_32>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"250068": {
|
572 |
+
"content": "β<extra_id_31>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"250069": {
|
580 |
+
"content": "β<extra_id_30>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"250070": {
|
588 |
+
"content": "β<extra_id_29>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"250071": {
|
596 |
+
"content": "β<extra_id_28>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"250072": {
|
604 |
+
"content": "β<extra_id_27>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"250073": {
|
612 |
+
"content": "β<extra_id_26>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"250074": {
|
620 |
+
"content": "β<extra_id_25>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"250075": {
|
628 |
+
"content": "β<extra_id_24>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"250076": {
|
636 |
+
"content": "β<extra_id_23>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"250077": {
|
644 |
+
"content": "β<extra_id_22>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"250078": {
|
652 |
+
"content": "β<extra_id_21>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"250079": {
|
660 |
+
"content": "β<extra_id_20>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"250080": {
|
668 |
+
"content": "β<extra_id_19>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"250081": {
|
676 |
+
"content": "β<extra_id_18>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"250082": {
|
684 |
+
"content": "β<extra_id_17>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"250083": {
|
692 |
+
"content": "β<extra_id_16>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"250084": {
|
700 |
+
"content": "β<extra_id_15>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"250085": {
|
708 |
+
"content": "β<extra_id_14>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"250086": {
|
716 |
+
"content": "β<extra_id_13>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"250087": {
|
724 |
+
"content": "β<extra_id_12>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"250088": {
|
732 |
+
"content": "β<extra_id_11>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"250089": {
|
740 |
+
"content": "β<extra_id_10>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"250090": {
|
748 |
+
"content": "β<extra_id_9>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"250091": {
|
756 |
+
"content": "β<extra_id_8>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"250092": {
|
764 |
+
"content": "β<extra_id_7>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"250093": {
|
772 |
+
"content": "β<extra_id_6>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"250094": {
|
780 |
+
"content": "β<extra_id_5>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"250095": {
|
788 |
+
"content": "β<extra_id_4>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"250096": {
|
796 |
+
"content": "β<extra_id_3>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"250097": {
|
804 |
+
"content": "β<extra_id_2>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"250098": {
|
812 |
+
"content": "β<extra_id_1>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"250099": {
|
820 |
+
"content": "β<extra_id_0>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"250100": {
|
828 |
+
"content": "<<ENT>>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"250101": {
|
836 |
+
"content": "<<SEP>>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
}
|
843 |
+
},
|
844 |
+
"additional_special_tokens": [],
|
845 |
+
"clean_up_tokenization_spaces": false,
|
846 |
+
"eos_token": "</s>",
|
847 |
+
"extra_ids": 0,
|
848 |
+
"extra_special_tokens": {},
|
849 |
+
"legacy": true,
|
850 |
+
"model_max_length": 1000000000000000019884624838656,
|
851 |
+
"pad_token": "<pad>",
|
852 |
+
"sp_model_kwargs": {},
|
853 |
+
"tokenizer_class": "T5Tokenizer",
|
854 |
+
"unk_token": "<unk>"
|
855 |
+
}
|