MaziyarPanahi commited on
Commit
37a36c2
·
verified ·
1 Parent(s): 6067566

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Protein-Small-166M

Browse files
README.md ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "The Maillard reaction is responsible for the browning of many foods."
4
+ - text: "Casein micelles are the primary protein component of milk."
5
+ - text: "Starch gelatinization is a key process in cooking pasta and rice."
6
+ - text: "Polyphenols in green tea have antioxidant properties."
7
+ - text: "Omega-3 fatty acids are essential fats found in fish oil."
8
+ tags:
9
+ - token-classification
10
+ - entity recognition
11
+ - named-entity-recognition
12
+ - zero-shot
13
+ - zero-shot-ner
14
+ - zero shot
15
+ - biomedical-nlp
16
+ - gliner
17
+ - protein-interactions
18
+ - molecular-biology
19
+ - biochemistry
20
+ - systems-biology
21
+ - protein
22
+ - protein_complex
23
+ - protein_family
24
+ language:
25
+ - en
26
+ license: apache-2.0
27
+ ---
28
+
29
+ # 🧬 [OpenMed-ZeroShot-NER-Protein-Small-166M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-Small-166M)
30
+
31
+ **Specialized model for Biomedical Entity Recognition - Various biomedical entities**
32
+
33
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
34
+ [![Python](https://img.shields.io/badge/Python-3.11%2B-blue)]()
35
+ [![GliNER](https://img.shields.io/badge/🤗-GliNER-yellow)]()
36
+ [![OpenMed](https://img.shields.io/badge/🏥-OpenMed-green)](https://huggingface.co/OpenMed)
37
+
38
+ ## 📋 Model Overview
39
+
40
+ Focuses on **protein entities** (families, complexes, variants) and related molecular biology terms.Applicable to **protein–protein interaction mining**, **pathway modeling**, and **systems biology**.
41
+
42
+ OpenMed ZeroShot NER is an advanced, domain-adapted Named Entity Recognition (NER) model designed specifically for medical, biomedical, and clinical text mining. Leveraging state-of-the-art zero-shot learning, this model empowers researchers, clinicians, and data scientists to extract expert-level biomedical entities—such as diseases, chemicals, genes, species, and clinical findings—directly from unstructured text, without the need for task-specific retraining.
43
+
44
+ Built on the robust GLiNER architecture and fine-tuned on curated biomedical corpora, OpenMed ZeroShot NER delivers high-precision entity recognition for critical healthcare and life sciences applications. Its zero-shot capability means you can flexibly define and extract any entity type relevant to your workflow, from standard biomedical categories to custom clinical concepts, supporting rapid adaptation to new research domains and regulatory requirements.
45
+
46
+ Whether you are working on clinical NLP, biomedical research, electronic health record (EHR) de-identification, or large-scale literature mining, OpenMed ZeroShot NER provides a production-ready, open-source solution that combines expert-level accuracy with unmatched flexibility. Join the OpenMed community to accelerate your medical text analytics with cutting-edge, zero-shot NER technology.
47
+
48
+ ### 🎯 Key Features
49
+ - **Zero-Shot Capability**: Can recognize any entity type without specific training
50
+ - **High Precision**: Optimized for biomedical entity recognition
51
+ - **Domain-Specific**: Fine-tuned on curated FSU dataset
52
+ - **Production-Ready**: Validated on clinical benchmarks
53
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
54
+ - **Flexible Entity Recognition**: Add custom entity types without retraining
55
+
56
+ ### 🏷️ Supported Entity Types
57
+
58
+ This zero-shot model can identify and classify biomedical entities, including but not limited to these entity types. **You can also add custom entity types without retraining the model**:
59
+
60
+ - `protein`
61
+ - `protein_complex`
62
+ - `protein_enum`
63
+ - `protein_family_or_group`
64
+ - `protein_variant`
65
+
66
+ **💡 Zero-Shot Flexibility**: As a GliNER-based model, you can specify any entity types you want to detect, even if they weren't part of the original training. Simply provide the entity labels when using the model, and it will adapt to recognize them.
67
+
68
+ ## 📊 Dataset
69
+
70
+ FSU corpus focuses on protein interactions and molecular biology entities for systems biology research.
71
+
72
+ The FSU (Florida State University) corpus is a biomedical NER dataset designed for protein interaction recognition and molecular biology entity extraction. This corpus contains annotations for proteins, protein complexes, protein families, protein variants, and molecular interaction entities relevant to systems biology and biochemistry research. The dataset supports the development of text mining systems for protein-protein interaction extraction, molecular pathway analysis, and systems biology applications. It is particularly valuable for identifying protein entities involved in cellular processes, signal transduction pathways, and molecular mechanisms. The corpus serves as a benchmark for evaluating NER systems used in proteomics research, drug discovery, and molecular biology informatics.
73
+
74
+
75
+ ## 📊 Performance Metrics
76
+
77
+ ### Current Model Performance
78
+
79
+ - **Finetuned F1 vs. Base Model (on test dataset excluded from training)**: `0.75`
80
+ - **F1 Improvement vs Base Model**: `35.4%`
81
+
82
+ ### 🏆 Top F1 Improvements on FSU Dataset
83
+
84
+ | Rank | Model | Base F1 | Finetuned F1 | ΔF1 | ΔF1 % |
85
+ |------|-------|--------:|------------:|----:|------:|
86
+ | 🥇 1 | [OpenMed-ZeroShot-NER-Protein-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-Large-459M) | 0.5612 | 0.9200 | 0.3589 | 63.9% |
87
+ | 🥈 2 | [OpenMed-ZeroShot-NER-Protein-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-Medium-209M) | 0.5631 | 0.8995 | 0.3364 | 59.7% |
88
+ | 🥉 3 | [OpenMed-ZeroShot-NER-Protein-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-XLarge-770M) | 0.5659 | 0.8786 | 0.3127 | 55.3% |
89
+ | 4 | [OpenMed-ZeroShot-NER-Protein-Base-220M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-Base-220M) | 0.5230 | 0.8454 | 0.3224 | 61.6% |
90
+ | 5 | [OpenMed-ZeroShot-NER-Protein-Multi-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-Multi-209M) | 0.5441 | 0.7810 | 0.2369 | 43.5% |
91
+
92
+
93
+ *Rankings are sorted by finetuned F1 and show ΔF1% over base model. Test dataset is excluded from training.*
94
+
95
+ ![OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed-zero-shot-clinical-ner-finetuned.png)
96
+
97
+ *Figure: OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models.*
98
+
99
+ ## 🚀 Quick Start
100
+
101
+ ### Installation
102
+
103
+ ```bash
104
+ pip install gliner==0.2.21
105
+ ```
106
+
107
+ ### Usage
108
+
109
+ ```python
110
+ from transformers import pipeline
111
+
112
+ # Load the model and tokenizer
113
+ # Model: https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Protein-Small-166M
114
+ model_name = "OpenMed/OpenMed-ZeroShot-NER-Protein-Small-166M"
115
+
116
+ from gliner import GLiNER
117
+ model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Protein-Small-166M")
118
+
119
+ # Example usage with default entity types
120
+ text = "The Maillard reaction is responsible for the browning of many foods."
121
+
122
+ labels = ['protein', 'protein_complex', 'protein_enum', 'protein_family_or_group', 'protein_variant']
123
+ entities = model.predict_entities(text, labels, flat_ner=True, threshold=0.5)
124
+ for entity in entities:
125
+ print(entity)
126
+ ```
127
+
128
+ ### Zero-Shot Usage with Custom Entity Types
129
+ 💡 **Tip:** If you want to extract entities that are not present in the original training set (i.e., use custom or rare entity types), you may get better results by lowering the `threshold` parameter in `model.predict_entities`. For example, try `threshold=0.3` or even lower, depending on your use case:
130
+
131
+ ```python
132
+ # You can specify custom entity types for zero-shot recognition - for instance:
133
+ custom_entities = ["MISC", "protein", "PERSON", "LOCATION", "MEDICATION", "PROCEDURE"]
134
+
135
+ entities = model.predict_entities(text, custom_entities, flat_ner=True, threshold=0.1)
136
+ for entity in entities:
137
+ print(entity)
138
+ ```
139
+
140
+ > Lowering the threshold makes the model more permissive and can help it recognize new or less common entity types, but may also increase false positives. Adjust as needed for your application.
141
+
142
+ ## 📚 Dataset Information
143
+
144
+ - **Dataset**: FSU
145
+ - **Description**: Biomedical Entity Recognition - Various biomedical entities
146
+
147
+ ### Training Details
148
+ - **Base Model**: gliner_small-v2.1
149
+ - **Training Framework**: Hugging Face Transformers
150
+ - **Optimization**: AdamW optimizer with learning rate scheduling
151
+ - **Validation**: Cross-validation on held-out test set
152
+
153
+ ## 💡 Use Cases
154
+
155
+ This model is particularly useful for:
156
+ - **Clinical Text Mining**: Extracting entities from medical records
157
+ - **Biomedical Research**: Processing scientific literature
158
+ - **Drug Discovery**: Identifying chemical compounds and drugs
159
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
160
+ - **Academic Research**: Supporting biomedical NLP research
161
+ - **Custom Entity Recognition**: Zero-shot detection of domain-specific entities
162
+
163
+ ## 🔬 Model Architecture
164
+
165
+ - **Task**: Zero-Shot Classification (Named Entity Recognition)
166
+ - **Labels**: Dataset-specific entity types
167
+ - **Input**: Biomedical text
168
+ - **Output**: Named entity predictions
169
+
170
+ ## 📜 License
171
+
172
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
173
+
174
+ ## 🤝 Contributing
175
+
176
+ I welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join my mission to advance open-source Healthcare AI, I'd love to hear from you.
177
+
178
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face 🤗 and click "Watch" to stay updated on my latest releases and developments.
179
+
180
+ ## Citation
181
+
182
+ If you use this model in your research or applications, please cite the following paper:
183
+
184
+ ```latex
185
+ @misc{panahi2025openmedneropensourcedomainadapted,
186
+ title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
187
+ author={Maziyar Panahi},
188
+ year={2025},
189
+ eprint={2508.01630},
190
+ archivePrefix={arXiv},
191
+ primaryClass={cs.CL},
192
+ url={https://arxiv.org/abs/2508.01630},
193
+ }
194
+ ```
195
+
196
+ Proper citation helps support and acknowledge my work. Thank you!
197
+
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<<ENT>>": 128002,
3
+ "<<SEP>>": 128003,
4
+ "[FLERT]": 128001,
5
+ "[MASK]": 128000
6
+ }
gliner_config.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "class_token_index": 128002,
3
+ "dropout": 0.4,
4
+ "embed_ent_token": true,
5
+ "encoder_config": {
6
+ "_name_or_path": "microsoft/deberta-v3-small",
7
+ "add_cross_attention": false,
8
+ "architectures": null,
9
+ "attention_probs_dropout_prob": 0.1,
10
+ "bad_words_ids": null,
11
+ "begin_suppress_tokens": null,
12
+ "bos_token_id": null,
13
+ "chunk_size_feed_forward": 0,
14
+ "cross_attention_hidden_size": null,
15
+ "decoder_start_token_id": null,
16
+ "diversity_penalty": 0.0,
17
+ "do_sample": false,
18
+ "early_stopping": false,
19
+ "encoder_no_repeat_ngram_size": 0,
20
+ "eos_token_id": null,
21
+ "exponential_decay_length_penalty": null,
22
+ "finetuning_task": null,
23
+ "forced_bos_token_id": null,
24
+ "forced_eos_token_id": null,
25
+ "hidden_act": "gelu",
26
+ "hidden_dropout_prob": 0.1,
27
+ "hidden_size": 768,
28
+ "id2label": {
29
+ "0": "LABEL_0",
30
+ "1": "LABEL_1"
31
+ },
32
+ "initializer_range": 0.02,
33
+ "intermediate_size": 3072,
34
+ "is_decoder": false,
35
+ "is_encoder_decoder": false,
36
+ "label2id": {
37
+ "LABEL_0": 0,
38
+ "LABEL_1": 1
39
+ },
40
+ "layer_norm_eps": 1e-07,
41
+ "legacy": true,
42
+ "length_penalty": 1.0,
43
+ "max_length": 20,
44
+ "max_position_embeddings": 512,
45
+ "max_relative_positions": -1,
46
+ "min_length": 0,
47
+ "model_type": "deberta-v2",
48
+ "no_repeat_ngram_size": 0,
49
+ "norm_rel_ebd": "layer_norm",
50
+ "num_attention_heads": 12,
51
+ "num_beam_groups": 1,
52
+ "num_beams": 1,
53
+ "num_hidden_layers": 6,
54
+ "num_return_sequences": 1,
55
+ "output_attentions": false,
56
+ "output_hidden_states": false,
57
+ "output_scores": false,
58
+ "pad_token_id": 0,
59
+ "pooler_dropout": 0,
60
+ "pooler_hidden_act": "gelu",
61
+ "pooler_hidden_size": 768,
62
+ "pos_att_type": [
63
+ "p2c",
64
+ "c2p"
65
+ ],
66
+ "position_biased_input": false,
67
+ "position_buckets": 256,
68
+ "prefix": null,
69
+ "problem_type": null,
70
+ "pruned_heads": {},
71
+ "relative_attention": true,
72
+ "remove_invalid_values": false,
73
+ "repetition_penalty": 1.0,
74
+ "return_dict": true,
75
+ "return_dict_in_generate": false,
76
+ "sep_token_id": null,
77
+ "share_att_key": true,
78
+ "suppress_tokens": null,
79
+ "task_specific_params": null,
80
+ "temperature": 1.0,
81
+ "tf_legacy_loss": false,
82
+ "tie_encoder_decoder": false,
83
+ "tie_word_embeddings": true,
84
+ "tokenizer_class": null,
85
+ "top_k": 50,
86
+ "top_p": 1.0,
87
+ "torch_dtype": null,
88
+ "torchscript": false,
89
+ "type_vocab_size": 0,
90
+ "typical_p": 1.0,
91
+ "use_bfloat16": false,
92
+ "vocab_size": 128004
93
+ },
94
+ "ent_token": "<<ENT>>",
95
+ "eval_every": 5000,
96
+ "fine_tune": true,
97
+ "fuse_layers": false,
98
+ "has_rnn": true,
99
+ "hidden_size": 512,
100
+ "labels_encoder": null,
101
+ "labels_encoder_config": null,
102
+ "lr_encoder": "1e-5",
103
+ "lr_others": "5e-5",
104
+ "max_len": 384,
105
+ "max_neg_type_ratio": 1,
106
+ "max_types": 25,
107
+ "max_width": 12,
108
+ "model_name": "microsoft/deberta-v3-small",
109
+ "model_type": "gliner",
110
+ "name": "correct",
111
+ "num_post_fusion_layers": 1,
112
+ "num_steps": 30000,
113
+ "post_fusion_schema": "",
114
+ "random_drop": true,
115
+ "sep_token": "<<SEP>>",
116
+ "shuffle_types": true,
117
+ "size_sup": -1,
118
+ "span_mode": "markerV0",
119
+ "subtoken_pooling": "first",
120
+ "train_batch_size": 8,
121
+ "transformers_version": "4.53.2",
122
+ "vocab_size": 128004,
123
+ "warmup_ratio": 3000,
124
+ "words_splitter_type": "whitespace"
125
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa7a99349e7f4b5cb34d14bb61ba89cae38405ef2e5e022a1b74c11a7662cc0
3
+ size 610640455
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 700.858154296875,
3
+ "seqeval_accuracy": 0.9472953025961622,
4
+ "seqeval_f1": 0.75,
5
+ "seqeval_precision": 0.7077999404584698,
6
+ "seqeval_recall": 0.7975511573297551
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128001": {
44
+ "content": "[FLERT]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "128002": {
52
+ "content": "<<ENT>>",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "128003": {
60
+ "content": "<<SEP>>",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ }
67
+ },
68
+ "bos_token": "[CLS]",
69
+ "clean_up_tokenization_spaces": false,
70
+ "cls_token": "[CLS]",
71
+ "do_lower_case": false,
72
+ "eos_token": "[SEP]",
73
+ "extra_special_tokens": {},
74
+ "mask_token": "[MASK]",
75
+ "model_max_length": 1000000000000000019884624838656,
76
+ "pad_token": "[PAD]",
77
+ "sep_token": "[SEP]",
78
+ "sp_model_kwargs": {},
79
+ "split_by_punct": false,
80
+ "tokenizer_class": "DebertaV2Tokenizer",
81
+ "unk_token": "[UNK]",
82
+ "vocab_type": "spm"
83
+ }