openvino-ci commited on
Commit
ac68775
·
verified ·
1 Parent(s): 5151397

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://choosealicense.com/licenses/apache-2.0/
4
+ base_model:
5
+ - mistralai/Mistral-7B-Instruct-v0.2
6
+ base_model_relation: quantized
7
+ ---
8
+ # Mistral-7B-Instruct-v0.2-int4-ov-cw
9
+ * Model creator: [Mistral AI](https://huggingface.co/mistralai)
10
+ * Original model: [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
11
+
12
+ ## Description
13
+
14
+ This is [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format.
15
+
16
+
17
+ ## Quantization Parameters
18
+
19
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
20
+
21
+ * mode: **INT4_SYM_CW**
22
+ * ratio: **1.0**
23
+
24
+ For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
25
+
26
+
27
+ ## Compatibility
28
+
29
+ The provided OpenVINO™ IR model is compatible with:
30
+
31
+ * OpenVINO version 2025.1.0 and higher
32
+ * Optimum Intel 1.23.0 and higher
33
+
34
+ ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
35
+
36
+
37
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
38
+
39
+ ```
40
+ pip install optimum[openvino]
41
+ ```
42
+
43
+ 2. Run model inference:
44
+
45
+ ```
46
+ from transformers import AutoTokenizer
47
+ from optimum.intel.openvino import OVModelForCausalLM
48
+
49
+ model_id = "OpenVINO/Mistral-7B-Instruct-v0.2-int4-ov-cw"
50
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
51
+ model = OVModelForCausalLM.from_pretrained(model_id)
52
+
53
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
54
+
55
+ outputs = model.generate(**inputs, max_length=200)
56
+ text = tokenizer.batch_decode(outputs)[0]
57
+ print(text)
58
+ ```
59
+
60
+ For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
61
+
62
+ ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
63
+
64
+ 1. Install packages required for using OpenVINO GenAI.
65
+ ```
66
+ pip install openvino-genai huggingface_hub
67
+ ```
68
+
69
+ 2. Download model from HuggingFace Hub
70
+
71
+ ```
72
+ import huggingface_hub as hf_hub
73
+
74
+ model_id = "OpenVINO/Mistral-7B-Instruct-v0.2-int4-ov-cw"
75
+ model_path = "Mistral-7B-Instruct-v0.2-int4-ov-cw"
76
+
77
+ hf_hub.snapshot_download(model_id, local_dir=model_path)
78
+
79
+ ```
80
+
81
+ 3. Run model inference:
82
+
83
+ ```
84
+ import openvino_genai as ov_genai
85
+
86
+ device = "CPU"
87
+ pipe = ov_genai.LLMPipeline(model_path, device)
88
+ print(pipe.generate("What is OpenVINO?", max_length=200))
89
+ ```
90
+
91
+ More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
92
+
93
+ ## Limitations
94
+
95
+ Check the original model card for [limitations](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#limitations).
96
+
97
+ ## Legal information
98
+
99
+ The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
100
+
101
+ ## Disclaimer
102
+
103
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": true,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.51.3"
6
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6567a2f7080b81e17d46589e10b95af939b5f1eb5256827edb03298767229e4d
3
+ size 460689
openvino_detokenizer.xml ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_102301" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_102301">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_102496" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_102254" type="Const" version="opset1">
29
+ <data element_type="i32" shape="32000" offset="0" size="128000" />
30
+ <output>
31
+ <port id="0" precision="I32">
32
+ <dim>32000</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="Constant_102256" type="Const" version="opset1">
37
+ <data element_type="i32" shape="32000" offset="128000" size="128000" />
38
+ <output>
39
+ <port id="0" precision="I32">
40
+ <dim>32000</dim>
41
+ </port>
42
+ </output>
43
+ </layer>
44
+ <layer id="4" name="Constant_102258" type="Const" version="opset1">
45
+ <data element_type="u8" shape="204670" offset="256000" size="204670" />
46
+ <output>
47
+ <port id="0" precision="U8">
48
+ <dim>204670</dim>
49
+ </port>
50
+ </output>
51
+ </layer>
52
+ <layer id="5" name="Slice_102306" type="Const" version="opset1">
53
+ <data element_type="i32" shape="3" offset="460670" size="12" />
54
+ <output>
55
+ <port id="0" precision="I32">
56
+ <dim>3</dim>
57
+ </port>
58
+ </output>
59
+ </layer>
60
+ <layer id="6" name="VocabDecoder_102308" type="VocabDecoder" version="extension">
61
+ <data skip_tokens="" />
62
+ <input>
63
+ <port id="0" precision="I32">
64
+ <dim>-1</dim>
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="1" precision="I32">
68
+ <dim>32000</dim>
69
+ </port>
70
+ <port id="2" precision="I32">
71
+ <dim>32000</dim>
72
+ </port>
73
+ <port id="3" precision="U8">
74
+ <dim>204670</dim>
75
+ </port>
76
+ <port id="4" precision="I32">
77
+ <dim>3</dim>
78
+ </port>
79
+ </input>
80
+ <output>
81
+ <port id="5" precision="I32">
82
+ <dim>-1</dim>
83
+ </port>
84
+ <port id="6" precision="I32">
85
+ <dim>-1</dim>
86
+ </port>
87
+ <port id="7" precision="I32">
88
+ <dim>-1</dim>
89
+ </port>
90
+ <port id="8" precision="I32">
91
+ <dim>-1</dim>
92
+ </port>
93
+ <port id="9" precision="U8">
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="Constant_102310" type="Const" version="opset1">
99
+ <data element_type="u8" shape="3" offset="460682" size="3" />
100
+ <output>
101
+ <port id="0" precision="U8">
102
+ <dim>3</dim>
103
+ </port>
104
+ </output>
105
+ </layer>
106
+ <layer id="8" name="Constant_102312" type="Const" version="opset1">
107
+ <data element_type="u8" shape="1" offset="460685" size="1" />
108
+ <output>
109
+ <port id="0" precision="U8">
110
+ <dim>1</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="9" name="RegexNormalization_102313" type="RegexNormalization" version="extension">
115
+ <data global_replace="true" />
116
+ <input>
117
+ <port id="0" precision="I32">
118
+ <dim>-1</dim>
119
+ </port>
120
+ <port id="1" precision="I32">
121
+ <dim>-1</dim>
122
+ </port>
123
+ <port id="2" precision="U8">
124
+ <dim>-1</dim>
125
+ </port>
126
+ <port id="3" precision="U8">
127
+ <dim>3</dim>
128
+ </port>
129
+ <port id="4" precision="U8">
130
+ <dim>1</dim>
131
+ </port>
132
+ </input>
133
+ <output>
134
+ <port id="5" precision="I32">
135
+ <dim>-1</dim>
136
+ </port>
137
+ <port id="6" precision="I32">
138
+ <dim>-1</dim>
139
+ </port>
140
+ <port id="7" precision="U8">
141
+ <dim>-1</dim>
142
+ </port>
143
+ </output>
144
+ </layer>
145
+ <layer id="10" name="ByteFallback_102314" type="ByteFallback" version="extension">
146
+ <input>
147
+ <port id="0" precision="I32">
148
+ <dim>-1</dim>
149
+ </port>
150
+ <port id="1" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ <port id="2" precision="U8">
154
+ <dim>-1</dim>
155
+ </port>
156
+ </input>
157
+ <output>
158
+ <port id="3" precision="I32">
159
+ <dim>-1</dim>
160
+ </port>
161
+ <port id="4" precision="I32">
162
+ <dim>-1</dim>
163
+ </port>
164
+ <port id="5" precision="U8">
165
+ <dim>-1</dim>
166
+ </port>
167
+ </output>
168
+ </layer>
169
+ <layer id="11" name="FuzeRagged_102315" type="FuzeRagged" version="extension">
170
+ <input>
171
+ <port id="0" precision="I32">
172
+ <dim>-1</dim>
173
+ </port>
174
+ <port id="1" precision="I32">
175
+ <dim>-1</dim>
176
+ </port>
177
+ <port id="2" precision="I32">
178
+ <dim>-1</dim>
179
+ </port>
180
+ <port id="3" precision="I32">
181
+ <dim>-1</dim>
182
+ </port>
183
+ </input>
184
+ <output>
185
+ <port id="4" precision="I32">
186
+ <dim>-1</dim>
187
+ </port>
188
+ <port id="5" precision="I32">
189
+ <dim>-1</dim>
190
+ </port>
191
+ </output>
192
+ </layer>
193
+ <layer id="12" name="Constant_102317" type="Const" version="opset1">
194
+ <data element_type="u8" shape="2" offset="460686" size="2" />
195
+ <output>
196
+ <port id="0" precision="U8">
197
+ <dim>2</dim>
198
+ </port>
199
+ </output>
200
+ </layer>
201
+ <layer id="13" name="Constant_102319" type="Const" version="opset1">
202
+ <data element_type="u8" shape="0" offset="460688" size="1" />
203
+ <output>
204
+ <port id="0" precision="U8">
205
+ <dim>0</dim>
206
+ </port>
207
+ </output>
208
+ </layer>
209
+ <layer id="14" name="RegexNormalization_102320" type="RegexNormalization" version="extension">
210
+ <data global_replace="true" />
211
+ <input>
212
+ <port id="0" precision="I32">
213
+ <dim>-1</dim>
214
+ </port>
215
+ <port id="1" precision="I32">
216
+ <dim>-1</dim>
217
+ </port>
218
+ <port id="2" precision="U8">
219
+ <dim>-1</dim>
220
+ </port>
221
+ <port id="3" precision="U8">
222
+ <dim>2</dim>
223
+ </port>
224
+ <port id="4" precision="U8">
225
+ <dim>0</dim>
226
+ </port>
227
+ </input>
228
+ <output>
229
+ <port id="5" precision="I32">
230
+ <dim>-1</dim>
231
+ </port>
232
+ <port id="6" precision="I32">
233
+ <dim>-1</dim>
234
+ </port>
235
+ <port id="7" precision="U8">
236
+ <dim>-1</dim>
237
+ </port>
238
+ </output>
239
+ </layer>
240
+ <layer id="15" name="UTF8Validate_102321" type="UTF8Validate" version="extension">
241
+ <data replace_mode="true" />
242
+ <input>
243
+ <port id="0" precision="I32">
244
+ <dim>-1</dim>
245
+ </port>
246
+ <port id="1" precision="I32">
247
+ <dim>-1</dim>
248
+ </port>
249
+ <port id="2" precision="U8">
250
+ <dim>-1</dim>
251
+ </port>
252
+ </input>
253
+ <output>
254
+ <port id="3" precision="I32">
255
+ <dim>-1</dim>
256
+ </port>
257
+ <port id="4" precision="I32">
258
+ <dim>-1</dim>
259
+ </port>
260
+ <port id="5" precision="U8">
261
+ <dim>-1</dim>
262
+ </port>
263
+ </output>
264
+ </layer>
265
+ <layer id="16" name="StringTensorPack_102322" type="StringTensorPack" version="opset15">
266
+ <input>
267
+ <port id="0" precision="I32">
268
+ <dim>-1</dim>
269
+ </port>
270
+ <port id="1" precision="I32">
271
+ <dim>-1</dim>
272
+ </port>
273
+ <port id="2" precision="U8">
274
+ <dim>-1</dim>
275
+ </port>
276
+ </input>
277
+ <output>
278
+ <port id="3" precision="STRING" names="Result_102323,string_output">
279
+ <dim>-1</dim>
280
+ </port>
281
+ </output>
282
+ </layer>
283
+ <layer id="17" name="Result_102323" type="Result" version="opset1" output_names="Result_102323,string_output">
284
+ <input>
285
+ <port id="0" precision="STRING">
286
+ <dim>-1</dim>
287
+ </port>
288
+ </input>
289
+ </layer>
290
+ </layers>
291
+ <edges>
292
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
293
+ <edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
294
+ <edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
295
+ <edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
296
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
297
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
298
+ <edge from-layer="6" from-port="6" to-layer="11" to-port="1" />
299
+ <edge from-layer="6" from-port="5" to-layer="11" to-port="0" />
300
+ <edge from-layer="6" from-port="8" to-layer="9" to-port="1" />
301
+ <edge from-layer="6" from-port="7" to-layer="9" to-port="0" />
302
+ <edge from-layer="6" from-port="9" to-layer="9" to-port="2" />
303
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="3" />
304
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="4" />
305
+ <edge from-layer="9" from-port="5" to-layer="10" to-port="0" />
306
+ <edge from-layer="9" from-port="6" to-layer="10" to-port="1" />
307
+ <edge from-layer="9" from-port="7" to-layer="10" to-port="2" />
308
+ <edge from-layer="10" from-port="3" to-layer="11" to-port="2" />
309
+ <edge from-layer="10" from-port="4" to-layer="11" to-port="3" />
310
+ <edge from-layer="10" from-port="5" to-layer="14" to-port="2" />
311
+ <edge from-layer="11" from-port="5" to-layer="14" to-port="1" />
312
+ <edge from-layer="11" from-port="4" to-layer="14" to-port="0" />
313
+ <edge from-layer="12" from-port="0" to-layer="14" to-port="3" />
314
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="4" />
315
+ <edge from-layer="14" from-port="5" to-layer="15" to-port="0" />
316
+ <edge from-layer="14" from-port="6" to-layer="15" to-port="1" />
317
+ <edge from-layer="14" from-port="7" to-layer="15" to-port="2" />
318
+ <edge from-layer="15" from-port="3" to-layer="16" to-port="0" />
319
+ <edge from-layer="15" from-port="4" to-layer="16" to-port="1" />
320
+ <edge from-layer="15" from-port="5" to-layer="16" to-port="2" />
321
+ <edge from-layer="16" from-port="3" to-layer="17" to-port="0" />
322
+ </edges>
323
+ <rt_info>
324
+ <add_attention_mask value="True" />
325
+ <add_prefix_space />
326
+ <add_special_tokens value="True" />
327
+ <bos_token_id value="1" />
328
+ <chat_template value="{%- if messages[0]['role'] == 'system' %}&#10; {%- set system_message = messages[0]['content'] %}&#10; {%- set loop_messages = messages[1:] %}&#10;{%- else %}&#10; {%- set loop_messages = messages %}&#10;{%- endif %}&#10;&#10;{{- bos_token }}&#10;{%- for message in loop_messages %}&#10; {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}&#10; {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}&#10; {%- endif %}&#10; {%- if message['role'] == 'user' %}&#10; {%- if loop.first and system_message is defined %}&#10; {{- ' [INST] ' + system_message + '\n\n' + message['content'] + ' [/INST]' }}&#10; {%- else %}&#10; {{- ' [INST] ' + message['content'] + ' [/INST]' }}&#10; {%- endif %}&#10; {%- elif message['role'] == 'assistant' %}&#10; {{- ' ' + message['content'] + eos_token}}&#10; {%- else %}&#10; {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}&#10; {%- endif %}&#10;{%- endfor %}&#10;" />
329
+ <clean_up_tokenization_spaces />
330
+ <detokenizer_input_type value="i64" />
331
+ <eos_token_id value="2" />
332
+ <handle_special_tokens_with_re />
333
+ <max_length />
334
+ <number_of_inputs value="1" />
335
+ <openvino_tokenizers_version value="2025.2.0.0-565-130827ab189" />
336
+ <openvino_version value="2025.2.0-19120-87425bc78ca-releases/2025/2" />
337
+ <original_post_processor_template value="{&quot;type&quot;: &quot;TemplateProcessing&quot;, &quot;single&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}], &quot;pair&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}, {&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 1}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;B&quot;, &quot;type_id&quot;: 1}}], &quot;special_tokens&quot;: {&quot;&lt;s>&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;ids&quot;: [1], &quot;tokens&quot;: [&quot;&lt;s>&quot;]}}}" />
338
+ <original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
339
+ <processed_post_processor_template value="{&quot;single&quot;: {&quot;ids&quot;: [1, -1], &quot;type_ids&quot;: [0, 0]}, &quot;pair&quot;: {&quot;ids&quot;: [1, -1, 1, -2], &quot;type_ids&quot;: [0, 0, 1, 1]}}" />
340
+ <sentencepiece_version value="0.2.0" />
341
+ <skip_special_tokens value="True" />
342
+ <streaming_detokenizer value="False" />
343
+ <tiktoken_version value="0.9.0" />
344
+ <tokenizer_output_type value="i64" />
345
+ <tokenizers_version value="0.21.1" />
346
+ <transformers_version value="4.51.3" />
347
+ <use_max_padding value="False" />
348
+ <use_sentencepiece_backend value="False" />
349
+ <utf8_replace_mode value="replace" />
350
+ <with_detokenizer value="True" />
351
+ </rt_info>
352
+ </net>
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4bd6e4182ce24e6888b774cdb7fc717be85f522370a2f411ae64b11f5ba67b9
3
+ size 3755814924
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26c4e72eb1a30bc314d83dc7cf9f7cd1d7a6ab89a7a63088e22f9749beada339
3
+ size 1809928
openvino_tokenizer.xml ADDED
@@ -0,0 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_102166" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_102166">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_102285" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_102286" type="Const" version="opset1">
19
+ <data element_type="i32" shape="" offset="4" size="4" />
20
+ <output>
21
+ <port id="0" precision="I32" />
22
+ </output>
23
+ </layer>
24
+ <layer id="3" name="Constant_102287" type="Const" version="opset1">
25
+ <data element_type="i32" shape="1" offset="4" size="4" />
26
+ <output>
27
+ <port id="0" precision="I32">
28
+ <dim>1</dim>
29
+ </port>
30
+ </output>
31
+ </layer>
32
+ <layer id="4" name="Constant_102172" type="Const" version="opset1">
33
+ <data element_type="i64" shape="" offset="8" size="8" />
34
+ <output>
35
+ <port id="0" precision="I64" />
36
+ </output>
37
+ </layer>
38
+ <layer id="5" name="StringTensorUnpack_102167" type="StringTensorUnpack" version="opset15">
39
+ <input>
40
+ <port id="0" precision="STRING">
41
+ <dim>-1</dim>
42
+ </port>
43
+ </input>
44
+ <output>
45
+ <port id="1" precision="I32">
46
+ <dim>-1</dim>
47
+ </port>
48
+ <port id="2" precision="I32">
49
+ <dim>-1</dim>
50
+ </port>
51
+ <port id="3" precision="U8">
52
+ <dim>-1</dim>
53
+ </port>
54
+ </output>
55
+ </layer>
56
+ <layer id="6" name="ShapeOf_102168" type="ShapeOf" version="opset3">
57
+ <data output_type="i64" />
58
+ <input>
59
+ <port id="0" precision="I32">
60
+ <dim>-1</dim>
61
+ </port>
62
+ </input>
63
+ <output>
64
+ <port id="1" precision="I64">
65
+ <dim>1</dim>
66
+ </port>
67
+ </output>
68
+ </layer>
69
+ <layer id="7" name="Constant_102169" type="Const" version="opset1">
70
+ <data element_type="i64" shape="" offset="8" size="8" />
71
+ <output>
72
+ <port id="0" precision="I64" />
73
+ </output>
74
+ </layer>
75
+ <layer id="8" name="Constant_102170" type="Const" version="opset1">
76
+ <data element_type="i64" shape="" offset="8" size="8" />
77
+ <output>
78
+ <port id="0" precision="I64" />
79
+ </output>
80
+ </layer>
81
+ <layer id="9" name="Gather_102171" type="Gather" version="opset8">
82
+ <data batch_dims="0" />
83
+ <input>
84
+ <port id="0" precision="I64">
85
+ <dim>1</dim>
86
+ </port>
87
+ <port id="1" precision="I64" />
88
+ <port id="2" precision="I64" />
89
+ </input>
90
+ <output>
91
+ <port id="3" precision="I64" />
92
+ </output>
93
+ </layer>
94
+ <layer id="10" name="Constant_102173" type="Const" version="opset1">
95
+ <data element_type="i64" shape="" offset="16" size="8" />
96
+ <output>
97
+ <port id="0" precision="I64" />
98
+ </output>
99
+ </layer>
100
+ <layer id="11" name="Range_102174" type="Range" version="opset4">
101
+ <data output_type="i32" />
102
+ <input>
103
+ <port id="0" precision="I64" />
104
+ <port id="1" precision="I64" />
105
+ <port id="2" precision="I64" />
106
+ </input>
107
+ <output>
108
+ <port id="3" precision="I32">
109
+ <dim>-1</dim>
110
+ </port>
111
+ </output>
112
+ </layer>
113
+ <layer id="12" name="Constant_102175" type="Const" version="opset1">
114
+ <data element_type="i64" shape="" offset="16" size="8" />
115
+ <output>
116
+ <port id="0" precision="I64" />
117
+ </output>
118
+ </layer>
119
+ <layer id="13" name="Constant_102176" type="Const" version="opset1">
120
+ <data element_type="i64" shape="" offset="16" size="8" />
121
+ <output>
122
+ <port id="0" precision="I64" />
123
+ </output>
124
+ </layer>
125
+ <layer id="14" name="Add_102177" type="Add" version="opset1">
126
+ <data auto_broadcast="numpy" />
127
+ <input>
128
+ <port id="0" precision="I64" />
129
+ <port id="1" precision="I64" />
130
+ </input>
131
+ <output>
132
+ <port id="2" precision="I64" />
133
+ </output>
134
+ </layer>
135
+ <layer id="15" name="Constant_102178" type="Const" version="opset1">
136
+ <data element_type="i64" shape="" offset="16" size="8" />
137
+ <output>
138
+ <port id="0" precision="I64" />
139
+ </output>
140
+ </layer>
141
+ <layer id="16" name="Range_102179" type="Range" version="opset4">
142
+ <data output_type="i32" />
143
+ <input>
144
+ <port id="0" precision="I64" />
145
+ <port id="1" precision="I64" />
146
+ <port id="2" precision="I64" />
147
+ </input>
148
+ <output>
149
+ <port id="3" precision="I32">
150
+ <dim>-1</dim>
151
+ </port>
152
+ </output>
153
+ </layer>
154
+ <layer id="17" name="Constant_102241" type="Const" version="opset1">
155
+ <data element_type="u8" shape="27" offset="24" size="27" />
156
+ <output>
157
+ <port id="0" precision="U8">
158
+ <dim>27</dim>
159
+ </port>
160
+ </output>
161
+ </layer>
162
+ <layer id="18" name="SpecialTokensSplit_102242" type="SpecialTokensSplit" version="extension">
163
+ <input>
164
+ <port id="0" precision="I32">
165
+ <dim>-1</dim>
166
+ </port>
167
+ <port id="1" precision="I32">
168
+ <dim>-1</dim>
169
+ </port>
170
+ <port id="2" precision="I32">
171
+ <dim>-1</dim>
172
+ </port>
173
+ <port id="3" precision="I32">
174
+ <dim>-1</dim>
175
+ </port>
176
+ <port id="4" precision="U8">
177
+ <dim>-1</dim>
178
+ </port>
179
+ <port id="5" precision="U8">
180
+ <dim>27</dim>
181
+ </port>
182
+ </input>
183
+ <output>
184
+ <port id="6" precision="I32">
185
+ <dim>-1</dim>
186
+ </port>
187
+ <port id="7" precision="I32">
188
+ <dim>-1</dim>
189
+ </port>
190
+ <port id="8" precision="I32">
191
+ <dim>-1</dim>
192
+ </port>
193
+ <port id="9" precision="I32">
194
+ <dim>-1</dim>
195
+ </port>
196
+ <port id="10" precision="U8">
197
+ <dim>-1</dim>
198
+ </port>
199
+ <port id="11" precision="BOOL">
200
+ <dim>-1</dim>
201
+ </port>
202
+ </output>
203
+ </layer>
204
+ <layer id="19" name="Constant_102244" type="Const" version="opset1">
205
+ <data element_type="u8" shape="1" offset="51" size="1" />
206
+ <output>
207
+ <port id="0" precision="U8">
208
+ <dim>1</dim>
209
+ </port>
210
+ </output>
211
+ </layer>
212
+ <layer id="20" name="Constant_102246" type="Const" version="opset1">
213
+ <data element_type="u8" shape="3" offset="52" size="3" />
214
+ <output>
215
+ <port id="0" precision="U8">
216
+ <dim>3</dim>
217
+ </port>
218
+ </output>
219
+ </layer>
220
+ <layer id="21" name="RegexNormalization_102247" type="RegexNormalization" version="extension">
221
+ <data global_replace="true" />
222
+ <input>
223
+ <port id="0" precision="I32">
224
+ <dim>-1</dim>
225
+ </port>
226
+ <port id="1" precision="I32">
227
+ <dim>-1</dim>
228
+ </port>
229
+ <port id="2" precision="U8">
230
+ <dim>-1</dim>
231
+ </port>
232
+ <port id="3" precision="BOOL">
233
+ <dim>-1</dim>
234
+ </port>
235
+ <port id="4" precision="U8">
236
+ <dim>1</dim>
237
+ </port>
238
+ <port id="5" precision="U8">
239
+ <dim>3</dim>
240
+ </port>
241
+ </input>
242
+ <output>
243
+ <port id="6" precision="I32">
244
+ <dim>-1</dim>
245
+ </port>
246
+ <port id="7" precision="I32">
247
+ <dim>-1</dim>
248
+ </port>
249
+ <port id="8" precision="U8">
250
+ <dim>-1</dim>
251
+ </port>
252
+ <port id="9" precision="BOOL">
253
+ <dim>-1</dim>
254
+ </port>
255
+ </output>
256
+ </layer>
257
+ <layer id="22" name="Constant_102249" type="Const" version="opset1">
258
+ <data element_type="u8" shape="11" offset="55" size="11" />
259
+ <output>
260
+ <port id="0" precision="U8">
261
+ <dim>11</dim>
262
+ </port>
263
+ </output>
264
+ </layer>
265
+ <layer id="23" name="Constant_102251" type="Const" version="opset1">
266
+ <data element_type="u8" shape="5" offset="66" size="5" />
267
+ <output>
268
+ <port id="0" precision="U8">
269
+ <dim>5</dim>
270
+ </port>
271
+ </output>
272
+ </layer>
273
+ <layer id="24" name="RegexNormalization_102252" type="RegexNormalization" version="extension">
274
+ <data global_replace="true" />
275
+ <input>
276
+ <port id="0" precision="I32">
277
+ <dim>-1</dim>
278
+ </port>
279
+ <port id="1" precision="I32">
280
+ <dim>-1</dim>
281
+ </port>
282
+ <port id="2" precision="U8">
283
+ <dim>-1</dim>
284
+ </port>
285
+ <port id="3" precision="BOOL">
286
+ <dim>-1</dim>
287
+ </port>
288
+ <port id="4" precision="U8">
289
+ <dim>11</dim>
290
+ </port>
291
+ <port id="5" precision="U8">
292
+ <dim>5</dim>
293
+ </port>
294
+ </input>
295
+ <output>
296
+ <port id="6" precision="I32">
297
+ <dim>-1</dim>
298
+ </port>
299
+ <port id="7" precision="I32">
300
+ <dim>-1</dim>
301
+ </port>
302
+ <port id="8" precision="U8">
303
+ <dim>-1</dim>
304
+ </port>
305
+ <port id="9" precision="BOOL">
306
+ <dim>-1</dim>
307
+ </port>
308
+ </output>
309
+ </layer>
310
+ <layer id="25" name="Constant_102254" type="Const" version="opset1">
311
+ <data element_type="i32" shape="32000" offset="71" size="128000" />
312
+ <output>
313
+ <port id="0" precision="I32">
314
+ <dim>32000</dim>
315
+ </port>
316
+ </output>
317
+ </layer>
318
+ <layer id="26" name="Constant_102256" type="Const" version="opset1">
319
+ <data element_type="i32" shape="32000" offset="128071" size="128000" />
320
+ <output>
321
+ <port id="0" precision="I32">
322
+ <dim>32000</dim>
323
+ </port>
324
+ </output>
325
+ </layer>
326
+ <layer id="27" name="Constant_102258" type="Const" version="opset1">
327
+ <data element_type="u8" shape="204670" offset="256071" size="204670" />
328
+ <output>
329
+ <port id="0" precision="U8">
330
+ <dim>204670</dim>
331
+ </port>
332
+ </output>
333
+ </layer>
334
+ <layer id="28" name="Constant_102266" type="Const" version="opset1">
335
+ <data element_type="i32" shape="58980" offset="460741" size="235920" />
336
+ <output>
337
+ <port id="0" precision="I32">
338
+ <dim>58980</dim>
339
+ </port>
340
+ </output>
341
+ </layer>
342
+ <layer id="29" name="Constant_102268" type="Const" version="opset1">
343
+ <data element_type="i32" shape="58980" offset="696661" size="235920" />
344
+ <output>
345
+ <port id="0" precision="I32">
346
+ <dim>58980</dim>
347
+ </port>
348
+ </output>
349
+ </layer>
350
+ <layer id="30" name="Constant_102270" type="Const" version="opset1">
351
+ <data element_type="u8" shape="243852" offset="932581" size="243852" />
352
+ <output>
353
+ <port id="0" precision="U8">
354
+ <dim>243852</dim>
355
+ </port>
356
+ </output>
357
+ </layer>
358
+ <layer id="31" name="Constant_102272" type="Const" version="opset1">
359
+ <data element_type="i32" shape="58980" offset="1176433" size="235920" />
360
+ <output>
361
+ <port id="0" precision="I32">
362
+ <dim>58980</dim>
363
+ </port>
364
+ </output>
365
+ </layer>
366
+ <layer id="32" name="Constant_102274" type="Const" version="opset1">
367
+ <data element_type="i32" shape="58980" offset="1412353" size="235920" />
368
+ <output>
369
+ <port id="0" precision="I32">
370
+ <dim>58980</dim>
371
+ </port>
372
+ </output>
373
+ </layer>
374
+ <layer id="33" name="Constant_102276" type="Const" version="opset1">
375
+ <data element_type="u8" shape="161603" offset="1648273" size="161603" />
376
+ <output>
377
+ <port id="0" precision="U8">
378
+ <dim>161603</dim>
379
+ </port>
380
+ </output>
381
+ </layer>
382
+ <layer id="34" name="Constant_102260" type="Const" version="opset1">
383
+ <data element_type="i32" shape="2" offset="1809876" size="8" />
384
+ <output>
385
+ <port id="0" precision="I32">
386
+ <dim>2</dim>
387
+ </port>
388
+ </output>
389
+ </layer>
390
+ <layer id="35" name="Constant_102262" type="Const" version="opset1">
391
+ <data element_type="i32" shape="2" offset="1809884" size="8" />
392
+ <output>
393
+ <port id="0" precision="I32">
394
+ <dim>2</dim>
395
+ </port>
396
+ </output>
397
+ </layer>
398
+ <layer id="36" name="Constant_102264" type="Const" version="opset1">
399
+ <data element_type="u8" shape="7" offset="1809892" size="7" />
400
+ <output>
401
+ <port id="0" precision="U8">
402
+ <dim>7</dim>
403
+ </port>
404
+ </output>
405
+ </layer>
406
+ <layer id="37" name="Constant_102277" type="Const" version="opset1">
407
+ <data element_type="i32" shape="2" offset="1809899" size="8" />
408
+ <output>
409
+ <port id="0" precision="I32">
410
+ <dim>2</dim>
411
+ </port>
412
+ </output>
413
+ </layer>
414
+ <layer id="38" name="BPETokenizer_102278" type="BPETokenizer" version="extension">
415
+ <data unk_token="&lt;unk>" fuse_unk="true" suffix_indicator="" end_suffix="" byte_fallback="true" cache_capacity="20000" />
416
+ <input>
417
+ <port id="0" precision="I32">
418
+ <dim>-1</dim>
419
+ </port>
420
+ <port id="1" precision="I32">
421
+ <dim>-1</dim>
422
+ </port>
423
+ <port id="2" precision="I32">
424
+ <dim>-1</dim>
425
+ </port>
426
+ <port id="3" precision="I32">
427
+ <dim>-1</dim>
428
+ </port>
429
+ <port id="4" precision="U8">
430
+ <dim>-1</dim>
431
+ </port>
432
+ <port id="5" precision="I32">
433
+ <dim>32000</dim>
434
+ </port>
435
+ <port id="6" precision="I32">
436
+ <dim>32000</dim>
437
+ </port>
438
+ <port id="7" precision="U8">
439
+ <dim>204670</dim>
440
+ </port>
441
+ <port id="8" precision="I32">
442
+ <dim>58980</dim>
443
+ </port>
444
+ <port id="9" precision="I32">
445
+ <dim>58980</dim>
446
+ </port>
447
+ <port id="10" precision="U8">
448
+ <dim>243852</dim>
449
+ </port>
450
+ <port id="11" precision="I32">
451
+ <dim>58980</dim>
452
+ </port>
453
+ <port id="12" precision="I32">
454
+ <dim>58980</dim>
455
+ </port>
456
+ <port id="13" precision="U8">
457
+ <dim>161603</dim>
458
+ </port>
459
+ <port id="14" precision="I32">
460
+ <dim>2</dim>
461
+ </port>
462
+ <port id="15" precision="I32">
463
+ <dim>2</dim>
464
+ </port>
465
+ <port id="16" precision="U8">
466
+ <dim>7</dim>
467
+ </port>
468
+ <port id="17" precision="I32">
469
+ <dim>2</dim>
470
+ </port>
471
+ </input>
472
+ <output>
473
+ <port id="18" precision="I32">
474
+ <dim>-1</dim>
475
+ </port>
476
+ <port id="19" precision="I32">
477
+ <dim>-1</dim>
478
+ </port>
479
+ <port id="20" precision="I32">
480
+ <dim>-1</dim>
481
+ </port>
482
+ </output>
483
+ </layer>
484
+ <layer id="39" name="Constant_102279" type="Const" version="opset1">
485
+ <data element_type="i32" shape="" offset="1809907" size="4" />
486
+ <output>
487
+ <port id="0" precision="I32" />
488
+ </output>
489
+ </layer>
490
+ <layer id="40" name="Constant_102281" type="Const" version="opset1">
491
+ <data element_type="u8" shape="4" offset="1809911" size="4" />
492
+ <output>
493
+ <port id="0" precision="U8">
494
+ <dim>4</dim>
495
+ </port>
496
+ </output>
497
+ </layer>
498
+ <layer id="41" name="Constant_102283" type="Const" version="opset1">
499
+ <data element_type="u8" shape="13" offset="1809915" size="13" />
500
+ <output>
501
+ <port id="0" precision="U8">
502
+ <dim>13</dim>
503
+ </port>
504
+ </output>
505
+ </layer>
506
+ <layer id="42" name="Truncate_102284" type="Truncate" version="extension">
507
+ <data m_num_inputs="1" />
508
+ <input>
509
+ <port id="0" precision="I32">
510
+ <dim>-1</dim>
511
+ </port>
512
+ <port id="1" precision="I32">
513
+ <dim>-1</dim>
514
+ </port>
515
+ <port id="2" precision="I32">
516
+ <dim>-1</dim>
517
+ </port>
518
+ <port id="3" precision="I32" />
519
+ <port id="4" precision="U8">
520
+ <dim>4</dim>
521
+ </port>
522
+ <port id="5" precision="U8">
523
+ <dim>13</dim>
524
+ </port>
525
+ </input>
526
+ <output>
527
+ <port id="6" precision="I32">
528
+ <dim>-1</dim>
529
+ </port>
530
+ <port id="7" precision="I32">
531
+ <dim>-1</dim>
532
+ </port>
533
+ <port id="8" precision="I32">
534
+ <dim>-1</dim>
535
+ </port>
536
+ </output>
537
+ </layer>
538
+ <layer id="43" name="Constant_102288" type="Const" version="opset1">
539
+ <data element_type="i32" shape="2" offset="8" size="8" />
540
+ <output>
541
+ <port id="0" precision="I32">
542
+ <dim>2</dim>
543
+ </port>
544
+ </output>
545
+ </layer>
546
+ <layer id="44" name="CombineSegments_102289" type="CombineSegments" version="extension">
547
+ <input>
548
+ <port id="0" precision="I32" />
549
+ <port id="1" precision="I32" />
550
+ <port id="2" precision="I32">
551
+ <dim>1</dim>
552
+ </port>
553
+ <port id="3" precision="I32">
554
+ <dim>-1</dim>
555
+ </port>
556
+ <port id="4" precision="I32">
557
+ <dim>-1</dim>
558
+ </port>
559
+ <port id="5" precision="I32">
560
+ <dim>-1</dim>
561
+ </port>
562
+ <port id="6" precision="I32">
563
+ <dim>2</dim>
564
+ </port>
565
+ </input>
566
+ <output>
567
+ <port id="7" precision="I32">
568
+ <dim>-1</dim>
569
+ </port>
570
+ <port id="8" precision="I32">
571
+ <dim>-1</dim>
572
+ </port>
573
+ <port id="9" precision="I32">
574
+ <dim>-1</dim>
575
+ </port>
576
+ <port id="10" precision="I32">
577
+ <dim>-1</dim>
578
+ </port>
579
+ <port id="11" precision="I32">
580
+ <dim>-1</dim>
581
+ </port>
582
+ <port id="12" precision="I32">
583
+ <dim>-1</dim>
584
+ </port>
585
+ </output>
586
+ </layer>
587
+ <layer id="45" name="Subtract_102290" type="Subtract" version="opset1">
588
+ <data auto_broadcast="numpy" />
589
+ <input>
590
+ <port id="0" precision="I32">
591
+ <dim>-1</dim>
592
+ </port>
593
+ <port id="1" precision="I32">
594
+ <dim>-1</dim>
595
+ </port>
596
+ </input>
597
+ <output>
598
+ <port id="2" precision="I32">
599
+ <dim>-1</dim>
600
+ </port>
601
+ </output>
602
+ </layer>
603
+ <layer id="46" name="Constant_102291" type="Const" version="opset1">
604
+ <data element_type="i32" shape="" offset="0" size="4" />
605
+ <output>
606
+ <port id="0" precision="I32" />
607
+ </output>
608
+ </layer>
609
+ <layer id="47" name="ReduceMax_102292" type="ReduceMax" version="opset1">
610
+ <data keep_dims="false" />
611
+ <input>
612
+ <port id="0" precision="I32">
613
+ <dim>-1</dim>
614
+ </port>
615
+ <port id="1" precision="I32" />
616
+ </input>
617
+ <output>
618
+ <port id="2" precision="I32" />
619
+ </output>
620
+ </layer>
621
+ <layer id="48" name="Constant_102293" type="Const" version="opset1">
622
+ <data element_type="i32" shape="" offset="0" size="4" />
623
+ <output>
624
+ <port id="0" precision="I32" />
625
+ </output>
626
+ </layer>
627
+ <layer id="49" name="RaggedToDense_102294" type="RaggedToDense" version="extension">
628
+ <data pad_right="false" m_pad_max_length="false" />
629
+ <input>
630
+ <port id="0" precision="I32">
631
+ <dim>-1</dim>
632
+ </port>
633
+ <port id="1" precision="I32">
634
+ <dim>-1</dim>
635
+ </port>
636
+ <port id="2" precision="I32">
637
+ <dim>-1</dim>
638
+ </port>
639
+ <port id="3" precision="I32" />
640
+ <port id="4" precision="I32" />
641
+ </input>
642
+ <output>
643
+ <port id="5" precision="I32">
644
+ <dim>-1</dim>
645
+ <dim>-1</dim>
646
+ </port>
647
+ <port id="6" precision="BOOL">
648
+ <dim>-1</dim>
649
+ <dim>-1</dim>
650
+ </port>
651
+ </output>
652
+ </layer>
653
+ <layer id="50" name="Convert_102295" type="Convert" version="opset1">
654
+ <data destination_type="i32" />
655
+ <input>
656
+ <port id="0" precision="BOOL">
657
+ <dim>-1</dim>
658
+ <dim>-1</dim>
659
+ </port>
660
+ </input>
661
+ <output>
662
+ <port id="1" precision="I32">
663
+ <dim>-1</dim>
664
+ <dim>-1</dim>
665
+ </port>
666
+ </output>
667
+ </layer>
668
+ <layer id="51" name="Convert_102295.0" type="Convert" version="opset1">
669
+ <data destination_type="i64" />
670
+ <input>
671
+ <port id="0" precision="I32">
672
+ <dim>-1</dim>
673
+ <dim>-1</dim>
674
+ </port>
675
+ </input>
676
+ <output>
677
+ <port id="1" precision="I64" names="attention_mask">
678
+ <dim>-1</dim>
679
+ <dim>-1</dim>
680
+ </port>
681
+ </output>
682
+ </layer>
683
+ <layer id="53" name="RaggedToDense_102294.0" type="Convert" version="opset1">
684
+ <data destination_type="i64" />
685
+ <input>
686
+ <port id="0" precision="I32">
687
+ <dim>-1</dim>
688
+ <dim>-1</dim>
689
+ </port>
690
+ </input>
691
+ <output>
692
+ <port id="1" precision="I64" names="input_ids">
693
+ <dim>-1</dim>
694
+ <dim>-1</dim>
695
+ </port>
696
+ </output>
697
+ </layer>
698
+ <layer id="54" name="Result_102298" type="Result" version="opset1" output_names="input_ids">
699
+ <input>
700
+ <port id="0" precision="I64">
701
+ <dim>-1</dim>
702
+ <dim>-1</dim>
703
+ </port>
704
+ </input>
705
+ </layer>
706
+ <layer id="52" name="Result_102300" type="Result" version="opset1" output_names="attention_mask">
707
+ <input>
708
+ <port id="0" precision="I64">
709
+ <dim>-1</dim>
710
+ <dim>-1</dim>
711
+ </port>
712
+ </input>
713
+ </layer>
714
+ </layers>
715
+ <edges>
716
+ <edge from-layer="0" from-port="0" to-layer="5" to-port="0" />
717
+ <edge from-layer="1" from-port="0" to-layer="44" to-port="0" />
718
+ <edge from-layer="2" from-port="0" to-layer="44" to-port="1" />
719
+ <edge from-layer="3" from-port="0" to-layer="44" to-port="2" />
720
+ <edge from-layer="4" from-port="0" to-layer="11" to-port="0" />
721
+ <edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
722
+ <edge from-layer="5" from-port="3" to-layer="18" to-port="4" />
723
+ <edge from-layer="5" from-port="2" to-layer="18" to-port="3" />
724
+ <edge from-layer="5" from-port="1" to-layer="18" to-port="2" />
725
+ <edge from-layer="6" from-port="1" to-layer="9" to-port="0" />
726
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="1" />
727
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="2" />
728
+ <edge from-layer="9" from-port="3" to-layer="14" to-port="0" />
729
+ <edge from-layer="9" from-port="3" to-layer="11" to-port="1" />
730
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="2" />
731
+ <edge from-layer="11" from-port="3" to-layer="18" to-port="0" />
732
+ <edge from-layer="12" from-port="0" to-layer="16" to-port="0" />
733
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="1" />
734
+ <edge from-layer="14" from-port="2" to-layer="16" to-port="1" />
735
+ <edge from-layer="15" from-port="0" to-layer="16" to-port="2" />
736
+ <edge from-layer="16" from-port="3" to-layer="18" to-port="1" />
737
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
738
+ <edge from-layer="18" from-port="6" to-layer="38" to-port="0" />
739
+ <edge from-layer="18" from-port="7" to-layer="38" to-port="1" />
740
+ <edge from-layer="18" from-port="11" to-layer="21" to-port="3" />
741
+ <edge from-layer="18" from-port="10" to-layer="21" to-port="2" />
742
+ <edge from-layer="18" from-port="9" to-layer="21" to-port="1" />
743
+ <edge from-layer="18" from-port="8" to-layer="21" to-port="0" />
744
+ <edge from-layer="19" from-port="0" to-layer="21" to-port="4" />
745
+ <edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
746
+ <edge from-layer="21" from-port="6" to-layer="24" to-port="0" />
747
+ <edge from-layer="21" from-port="9" to-layer="24" to-port="3" />
748
+ <edge from-layer="21" from-port="8" to-layer="24" to-port="2" />
749
+ <edge from-layer="21" from-port="7" to-layer="24" to-port="1" />
750
+ <edge from-layer="22" from-port="0" to-layer="24" to-port="4" />
751
+ <edge from-layer="23" from-port="0" to-layer="24" to-port="5" />
752
+ <edge from-layer="24" from-port="6" to-layer="38" to-port="2" />
753
+ <edge from-layer="24" from-port="7" to-layer="38" to-port="3" />
754
+ <edge from-layer="24" from-port="8" to-layer="38" to-port="4" />
755
+ <edge from-layer="25" from-port="0" to-layer="38" to-port="5" />
756
+ <edge from-layer="26" from-port="0" to-layer="38" to-port="6" />
757
+ <edge from-layer="27" from-port="0" to-layer="38" to-port="7" />
758
+ <edge from-layer="28" from-port="0" to-layer="38" to-port="8" />
759
+ <edge from-layer="29" from-port="0" to-layer="38" to-port="9" />
760
+ <edge from-layer="30" from-port="0" to-layer="38" to-port="10" />
761
+ <edge from-layer="31" from-port="0" to-layer="38" to-port="11" />
762
+ <edge from-layer="32" from-port="0" to-layer="38" to-port="12" />
763
+ <edge from-layer="33" from-port="0" to-layer="38" to-port="13" />
764
+ <edge from-layer="34" from-port="0" to-layer="38" to-port="14" />
765
+ <edge from-layer="35" from-port="0" to-layer="38" to-port="15" />
766
+ <edge from-layer="36" from-port="0" to-layer="38" to-port="16" />
767
+ <edge from-layer="37" from-port="0" to-layer="38" to-port="17" />
768
+ <edge from-layer="38" from-port="18" to-layer="42" to-port="0" />
769
+ <edge from-layer="38" from-port="19" to-layer="42" to-port="1" />
770
+ <edge from-layer="38" from-port="20" to-layer="42" to-port="2" />
771
+ <edge from-layer="39" from-port="0" to-layer="42" to-port="3" />
772
+ <edge from-layer="40" from-port="0" to-layer="42" to-port="4" />
773
+ <edge from-layer="41" from-port="0" to-layer="42" to-port="5" />
774
+ <edge from-layer="42" from-port="8" to-layer="44" to-port="5" />
775
+ <edge from-layer="42" from-port="7" to-layer="44" to-port="4" />
776
+ <edge from-layer="42" from-port="6" to-layer="44" to-port="3" />
777
+ <edge from-layer="43" from-port="0" to-layer="44" to-port="6" />
778
+ <edge from-layer="44" from-port="8" to-layer="45" to-port="0" />
779
+ <edge from-layer="44" from-port="7" to-layer="45" to-port="1" />
780
+ <edge from-layer="44" from-port="7" to-layer="49" to-port="0" />
781
+ <edge from-layer="44" from-port="8" to-layer="49" to-port="1" />
782
+ <edge from-layer="44" from-port="9" to-layer="49" to-port="2" />
783
+ <edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
784
+ <edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
785
+ <edge from-layer="47" from-port="2" to-layer="49" to-port="3" />
786
+ <edge from-layer="48" from-port="0" to-layer="49" to-port="4" />
787
+ <edge from-layer="49" from-port="6" to-layer="50" to-port="0" />
788
+ <edge from-layer="49" from-port="5" to-layer="53" to-port="0" />
789
+ <edge from-layer="50" from-port="1" to-layer="51" to-port="0" />
790
+ <edge from-layer="51" from-port="1" to-layer="52" to-port="0" />
791
+ <edge from-layer="53" from-port="1" to-layer="54" to-port="0" />
792
+ </edges>
793
+ <rt_info>
794
+ <add_attention_mask value="True" />
795
+ <add_prefix_space />
796
+ <add_special_tokens value="True" />
797
+ <bos_token_id value="1" />
798
+ <chat_template value="{%- if messages[0]['role'] == 'system' %}&#10; {%- set system_message = messages[0]['content'] %}&#10; {%- set loop_messages = messages[1:] %}&#10;{%- else %}&#10; {%- set loop_messages = messages %}&#10;{%- endif %}&#10;&#10;{{- bos_token }}&#10;{%- for message in loop_messages %}&#10; {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}&#10; {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}&#10; {%- endif %}&#10; {%- if message['role'] == 'user' %}&#10; {%- if loop.first and system_message is defined %}&#10; {{- ' [INST] ' + system_message + '\n\n' + message['content'] + ' [/INST]' }}&#10; {%- else %}&#10; {{- ' [INST] ' + message['content'] + ' [/INST]' }}&#10; {%- endif %}&#10; {%- elif message['role'] == 'assistant' %}&#10; {{- ' ' + message['content'] + eos_token}}&#10; {%- else %}&#10; {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}&#10; {%- endif %}&#10;{%- endfor %}&#10;" />
799
+ <clean_up_tokenization_spaces />
800
+ <detokenizer_input_type value="i64" />
801
+ <eos_token_id value="2" />
802
+ <handle_special_tokens_with_re />
803
+ <max_length />
804
+ <number_of_inputs value="1" />
805
+ <openvino_tokenizers_version value="2025.2.0.0-565-130827ab189" />
806
+ <openvino_version value="2025.2.0-19120-87425bc78ca-releases/2025/2" />
807
+ <original_post_processor_template value="{&quot;type&quot;: &quot;TemplateProcessing&quot;, &quot;single&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}], &quot;pair&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}, {&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 1}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;B&quot;, &quot;type_id&quot;: 1}}], &quot;special_tokens&quot;: {&quot;&lt;s>&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;ids&quot;: [1], &quot;tokens&quot;: [&quot;&lt;s>&quot;]}}}" />
808
+ <original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
809
+ <processed_post_processor_template value="{&quot;single&quot;: {&quot;ids&quot;: [1, -1], &quot;type_ids&quot;: [0, 0]}, &quot;pair&quot;: {&quot;ids&quot;: [1, -1, 1, -2], &quot;type_ids&quot;: [0, 0, 1, 1]}}" />
810
+ <sentencepiece_version value="0.2.0" />
811
+ <skip_special_tokens value="True" />
812
+ <streaming_detokenizer value="False" />
813
+ <tiktoken_version value="0.9.0" />
814
+ <tokenizer_output_type value="i64" />
815
+ <tokenizers_version value="0.21.1" />
816
+ <transformers_version value="4.51.3" />
817
+ <use_max_padding value="False" />
818
+ <use_sentencepiece_backend value="False" />
819
+ <utf8_replace_mode value="replace" />
820
+ <with_detokenizer value="True" />
821
+ </rt_info>
822
+ </net>
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}\n {%- endif %}\n {%- if message['role'] == 'user' %}\n {%- if loop.first and system_message is defined %}\n {{- ' [INST] ' + system_message + '\\n\\n' + message['content'] + ' [/INST]' }}\n {%- else %}\n {{- ' [INST] ' + message['content'] + ' [/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {{- ' ' + message['content'] + eos_token}}\n {%- else %}\n {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}\n {%- endif %}\n{%- endfor %}\n",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "extra_special_tokens": {},
37
+ "legacy": false,
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": null,
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }