openvino-ci commited on
Commit
b5dc274
·
verified ·
1 Parent(s): 0b1dcf4

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ license_link: https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE
6
+ base_model:
7
+ - BAAI/bge-base-en-v1.5
8
+ ---
9
+ # bge-base-en-v1.5-int8-ov
10
+ * Model creator: [BAAI](https://huggingface.co/BAAI)
11
+ * Original model: [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
12
+
13
+ ## Description
14
+ This is [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with quantization to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
15
+
16
+ **Disclaimer**: Model is provided as a preview and may be update in the future.
17
+
18
+
19
+ ## Quantization Parameters
20
+
21
+ The quantization was performed using the next code:
22
+
23
+ ```
24
+ from functools import partial
25
+
26
+ from transformers import AutoTokenizer
27
+
28
+ from optimum.intel import OVConfig, OVModelForFeatureExtraction, OVQuantizationConfig, OVQuantizer
29
+
30
+
31
+ MODEL_ID = "OpenVINO/bge-base-en-v1.5-fp16-ov"
32
+ base_model_path = "bge-base-en-v1.5"
33
+ int8_ptq_model_path = "bge-base-en-v1.5-int8"
34
+
35
+ model = OVModelForFeatureExtraction.from_pretrained(MODEL_ID)
36
+ model.save_pretrained(base_model_path)
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
39
+ tokenizer.save_pretrained(base_model_path)
40
+
41
+
42
+ quantizer = OVQuantizer.from_pretrained(model)
43
+
44
+ def preprocess_function(examples, tokenizer):
45
+ return tokenizer(examples["sentence"], padding="max_length", max_length=384, truncation=True)
46
+
47
+
48
+ calibration_dataset = quantizer.get_calibration_dataset(
49
+ "glue",
50
+ dataset_config_name="sst2",
51
+ preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
52
+ num_samples=300,
53
+ dataset_split="train",
54
+ )
55
+
56
+ ov_config = OVConfig(quantization_config=OVQuantizationConfig())
57
+
58
+ quantizer.quantize(ov_config=ov_config, calibration_dataset=calibration_dataset, save_directory=int8_ptq_model_path)
59
+ tokenizer.save_pretrained(int8_ptq_model_path)
60
+ ```
61
+
62
+ For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
63
+
64
+
65
+ ## Compatibility
66
+
67
+ The provided OpenVINO™ IR model is compatible with:
68
+
69
+ * OpenVINO version 2025.1.0 and higher
70
+ * Optimum Intel 1.24.0 and higher
71
+
72
+
73
+ ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
74
+
75
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
76
+
77
+ ```
78
+ pip install "langchain-community>=0.2.15" optimum[openvino] huggingface_hub
79
+ ```
80
+
81
+ 2. Run model inference:
82
+
83
+ ```
84
+ from langchain_community.embeddings import OpenVINOBgeEmbeddings
85
+
86
+
87
+ embedding_model_name = 'OpenVINO/bge-base-en-v1.5-int8-ov'
88
+ embedding_model_kwargs = {"device": "CPU", "compile": False}
89
+ encode_kwargs = {
90
+ "mean_pooling": False,
91
+ "normalize_embeddings": True,
92
+ "batch_size": 4,
93
+ }
94
+
95
+ embedding = OpenVINOBgeEmbeddings(
96
+ model_name_or_path=embedding_model_name,
97
+ model_kwargs=embedding_model_kwargs,
98
+ encode_kwargs=encode_kwargs,
99
+ )
100
+
101
+ embedding.ov_model.compile()
102
+
103
+ text = "This is a test document."
104
+ embedding_result = embedding.embed_query(text)
105
+ embedding_result[:3]
106
+ ```
107
+
108
+ For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
109
+
110
+ You can find more detailed usage examples in OpenVINO Notebooks:
111
+
112
+ - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system)
113
+
114
+ ## Limitations
115
+
116
+ Check the original [model card](https://huggingface.co/BAAI/bge-base-en-v1.5) for limitations.
117
+
118
+ ## Legal information
119
+
120
+ The original model is distributed under [MIT](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE) license. More details can be found in [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5).
121
+
122
+ ## Disclaimer
123
+
124
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "OpenVINO/bge-base-en-v1.5-fp16-ov",
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 512,
23
+ "model_type": "bert",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 0,
27
+ "position_embedding_type": "absolute",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.48.3",
30
+ "type_vocab_size": 2,
31
+ "use_cache": true,
32
+ "vocab_size": 30522
33
+ }
openvino_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "compression": null,
3
+ "dtype": "int8",
4
+ "input_info": null,
5
+ "optimum_version": "1.24.0",
6
+ "quantization_config": {
7
+ "activation_format": "int8",
8
+ "bits": 8,
9
+ "dataset": null,
10
+ "fast_bias_correction": true,
11
+ "ignored_scope": null,
12
+ "model_type": "transformer",
13
+ "num_samples": 300,
14
+ "overflow_fix": "disable",
15
+ "processor": null,
16
+ "smooth_quant_alpha": null,
17
+ "sym": false,
18
+ "tokenizer": null,
19
+ "trust_remote_code": false,
20
+ "weight_format": "int8"
21
+ },
22
+ "save_onnx_model": false,
23
+ "transformers_version": "4.48.3"
24
+ }
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e93dee628b35680e54242ee38e96d5c6cd9d1e5ad8f065f0c4cc36c8744cf2fa
3
+ size 109974480
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff