openvino-ci
commited on
Commit
•
7b27131
1
Parent(s):
2210167
Upload folder using huggingface_hub
Browse files- README.md +6 -38
- config.json +3 -2
- generation_config.json +1 -1
- openvino_detokenizer.bin +3 -0
- openvino_detokenizer.xml +213 -0
- openvino_model.bin +2 -2
- openvino_model.xml +0 -0
- openvino_tokenizer.bin +3 -0
- openvino_tokenizer.xml +714 -0
- tokenization_codegen25.py +1 -1
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -14,7 +14,7 @@ This is [codegen25-7b-multi](https://huggingface.co/Salesforce/codegen25-7b-mult
|
|
14 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
15 |
|
16 |
* mode: **int4_asym**
|
17 |
-
* ratio: **
|
18 |
* group_size: **128**
|
19 |
|
20 |
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
@@ -24,11 +24,10 @@ For more information on quantization, check the [OpenVINO model optimization gui
|
|
24 |
|
25 |
The provided OpenVINO™ IR model is compatible with:
|
26 |
|
27 |
-
* OpenVINO version 2024.
|
28 |
-
* Optimum Intel 1.
|
29 |
-
|
30 |
-
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
31 |
|
|
|
32 |
|
33 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
34 |
|
@@ -46,7 +45,7 @@ model_id = "OpenVINO/codegen25-7b-multi-int4-ov"
|
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
47 |
model = OVModelForCausalLM.from_pretrained(model_id)
|
48 |
|
49 |
-
inputs = tokenizer("
|
50 |
|
51 |
outputs = model.generate(**inputs, max_length=200)
|
52 |
text = tokenizer.batch_decode(outputs)[0]
|
@@ -55,40 +54,9 @@ print(text)
|
|
55 |
|
56 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
57 |
|
58 |
-
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
59 |
-
|
60 |
-
1. Install packages required for using OpenVINO GenAI.
|
61 |
-
```
|
62 |
-
pip install openvino-genai huggingface_hub
|
63 |
-
```
|
64 |
-
|
65 |
-
2. Download model from HuggingFace Hub
|
66 |
-
|
67 |
-
```
|
68 |
-
import huggingface_hub as hf_hub
|
69 |
-
|
70 |
-
model_id = "OpenVINO/codegen25-7b-multi-int4-ov"
|
71 |
-
model_path = "codegen25-7b-multi-int4-ov"
|
72 |
-
|
73 |
-
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
74 |
-
|
75 |
-
```
|
76 |
-
|
77 |
-
3. Run model inference:
|
78 |
-
|
79 |
-
```
|
80 |
-
import openvino_genai as ov_genai
|
81 |
-
|
82 |
-
device = "CPU"
|
83 |
-
pipe = ov_genai.LLMPipeline(model_path, device)
|
84 |
-
print(pipe.generate("def print_hello_world():", max_length=200))
|
85 |
-
```
|
86 |
-
|
87 |
-
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
|
88 |
-
|
89 |
## Limitations
|
90 |
|
91 |
-
Check the original model card for [
|
92 |
|
93 |
## Legal information
|
94 |
|
|
|
14 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
15 |
|
16 |
* mode: **int4_asym**
|
17 |
+
* ratio: **1**
|
18 |
* group_size: **128**
|
19 |
|
20 |
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
|
|
24 |
|
25 |
The provided OpenVINO™ IR model is compatible with:
|
26 |
|
27 |
+
* OpenVINO version 2024.4.0 and higher
|
28 |
+
* Optimum Intel 1.20.0 and higher
|
|
|
|
|
29 |
|
30 |
+
## Running Model Inference
|
31 |
|
32 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
33 |
|
|
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
46 |
model = OVModelForCausalLM.from_pretrained(model_id)
|
47 |
|
48 |
+
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
|
49 |
|
50 |
outputs = model.generate(**inputs, max_length=200)
|
51 |
text = tokenizer.batch_decode(outputs)[0]
|
|
|
54 |
|
55 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
## Limitations
|
58 |
|
59 |
+
Check the original model card for [original model card](https://huggingface.co/Salesforce/codegen25-7b-multi) for limitations.
|
60 |
|
61 |
## Legal information
|
62 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
@@ -7,6 +7,7 @@
|
|
7 |
"attention_dropout": 0.0,
|
8 |
"bos_token_id": 50256,
|
9 |
"eos_token_id": 50256,
|
|
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 4096,
|
12 |
"initializer_range": 0.02,
|
@@ -23,7 +24,7 @@
|
|
23 |
"rope_scaling": null,
|
24 |
"rope_theta": 10000.0,
|
25 |
"tie_word_embeddings": false,
|
26 |
-
"transformers_version": "4.
|
27 |
"use_cache": true,
|
28 |
"vocab_size": 51200
|
29 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Salesforce/codegen25-7b-multi",
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
|
|
7 |
"attention_dropout": 0.0,
|
8 |
"bos_token_id": 50256,
|
9 |
"eos_token_id": 50256,
|
10 |
+
"head_dim": 128,
|
11 |
"hidden_act": "silu",
|
12 |
"hidden_size": 4096,
|
13 |
"initializer_range": 0.02,
|
|
|
24 |
"rope_scaling": null,
|
25 |
"rope_theta": 10000.0,
|
26 |
"tie_word_embeddings": false,
|
27 |
+
"transformers_version": "4.45.2",
|
28 |
"use_cache": true,
|
29 |
"vocab_size": 51200
|
30 |
}
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 50256,
|
4 |
"eos_token_id": 50256,
|
5 |
-
"transformers_version": "4.
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 50256,
|
4 |
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.45.2"
|
6 |
}
|
openvino_detokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17900eba810d745a2800e475e41bff8587f51217883ee7680fa3f3000bafdfaf
|
3 |
+
size 535202
|
openvino_detokenizer.xml
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="detokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_62216" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_62216">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="Convert_62235" type="Convert" version="opset1">
|
14 |
+
<data destination_type="i32" />
|
15 |
+
<input>
|
16 |
+
<port id="0" precision="I64">
|
17 |
+
<dim>-1</dim>
|
18 |
+
<dim>-1</dim>
|
19 |
+
</port>
|
20 |
+
</input>
|
21 |
+
<output>
|
22 |
+
<port id="1" precision="I32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
</port>
|
26 |
+
</output>
|
27 |
+
</layer>
|
28 |
+
<layer id="2" name="Constant_62218" type="Const" version="opset1">
|
29 |
+
<data element_type="u8" shape="535153" offset="0" size="535153" />
|
30 |
+
<output>
|
31 |
+
<port id="0" precision="U8">
|
32 |
+
<dim>535153</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="StringTensorUnpack_62219" type="StringTensorUnpack" version="extension">
|
37 |
+
<data mode="begins_ends" />
|
38 |
+
<input>
|
39 |
+
<port id="0" precision="U8">
|
40 |
+
<dim>535153</dim>
|
41 |
+
</port>
|
42 |
+
</input>
|
43 |
+
<output>
|
44 |
+
<port id="1" precision="I32">
|
45 |
+
<dim>-1</dim>
|
46 |
+
</port>
|
47 |
+
<port id="2" precision="I32">
|
48 |
+
<dim>-1</dim>
|
49 |
+
</port>
|
50 |
+
<port id="3" precision="U8">
|
51 |
+
<dim>-1</dim>
|
52 |
+
</port>
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="4" name="VocabDecoder_62220" type="VocabDecoder" version="extension">
|
56 |
+
<data skip_tokens="50256" />
|
57 |
+
<input>
|
58 |
+
<port id="0" precision="I32">
|
59 |
+
<dim>-1</dim>
|
60 |
+
<dim>-1</dim>
|
61 |
+
</port>
|
62 |
+
<port id="1" precision="I32">
|
63 |
+
<dim>-1</dim>
|
64 |
+
</port>
|
65 |
+
<port id="2" precision="I32">
|
66 |
+
<dim>-1</dim>
|
67 |
+
</port>
|
68 |
+
<port id="3" precision="U8">
|
69 |
+
<dim>-1</dim>
|
70 |
+
</port>
|
71 |
+
</input>
|
72 |
+
<output>
|
73 |
+
<port id="4" precision="I32">
|
74 |
+
<dim>-1</dim>
|
75 |
+
</port>
|
76 |
+
<port id="5" precision="I32">
|
77 |
+
<dim>-1</dim>
|
78 |
+
</port>
|
79 |
+
<port id="6" precision="I32">
|
80 |
+
<dim>-1</dim>
|
81 |
+
</port>
|
82 |
+
<port id="7" precision="I32">
|
83 |
+
<dim>-1</dim>
|
84 |
+
</port>
|
85 |
+
<port id="8" precision="U8">
|
86 |
+
<dim>-1</dim>
|
87 |
+
</port>
|
88 |
+
</output>
|
89 |
+
</layer>
|
90 |
+
<layer id="5" name="FuzeRagged_62221" type="FuzeRagged" version="extension">
|
91 |
+
<input>
|
92 |
+
<port id="0" precision="I32">
|
93 |
+
<dim>-1</dim>
|
94 |
+
</port>
|
95 |
+
<port id="1" precision="I32">
|
96 |
+
<dim>-1</dim>
|
97 |
+
</port>
|
98 |
+
<port id="2" precision="I32">
|
99 |
+
<dim>-1</dim>
|
100 |
+
</port>
|
101 |
+
<port id="3" precision="I32">
|
102 |
+
<dim>-1</dim>
|
103 |
+
</port>
|
104 |
+
</input>
|
105 |
+
<output>
|
106 |
+
<port id="4" precision="I32">
|
107 |
+
<dim>-1</dim>
|
108 |
+
</port>
|
109 |
+
<port id="5" precision="I32">
|
110 |
+
<dim>-1</dim>
|
111 |
+
</port>
|
112 |
+
</output>
|
113 |
+
</layer>
|
114 |
+
<layer id="6" name="Constant_62223" type="Const" version="opset1">
|
115 |
+
<data element_type="u8" shape="47" offset="535153" size="47" />
|
116 |
+
<output>
|
117 |
+
<port id="0" precision="U8">
|
118 |
+
<dim>47</dim>
|
119 |
+
</port>
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="7" name="Constant_62225" type="Const" version="opset1">
|
123 |
+
<data element_type="u8" shape="2" offset="535200" size="2" />
|
124 |
+
<output>
|
125 |
+
<port id="0" precision="U8">
|
126 |
+
<dim>2</dim>
|
127 |
+
</port>
|
128 |
+
</output>
|
129 |
+
</layer>
|
130 |
+
<layer id="8" name="RegexNormalization_62226" type="RegexNormalization" version="extension">
|
131 |
+
<data global_replace="true" />
|
132 |
+
<input>
|
133 |
+
<port id="0" precision="I32">
|
134 |
+
<dim>-1</dim>
|
135 |
+
</port>
|
136 |
+
<port id="1" precision="I32">
|
137 |
+
<dim>-1</dim>
|
138 |
+
</port>
|
139 |
+
<port id="2" precision="U8">
|
140 |
+
<dim>-1</dim>
|
141 |
+
</port>
|
142 |
+
<port id="3" precision="U8">
|
143 |
+
<dim>47</dim>
|
144 |
+
</port>
|
145 |
+
<port id="4" precision="U8">
|
146 |
+
<dim>2</dim>
|
147 |
+
</port>
|
148 |
+
</input>
|
149 |
+
<output>
|
150 |
+
<port id="5" precision="I32">
|
151 |
+
<dim>-1</dim>
|
152 |
+
</port>
|
153 |
+
<port id="6" precision="I32">
|
154 |
+
<dim>-1</dim>
|
155 |
+
</port>
|
156 |
+
<port id="7" precision="U8">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
</output>
|
160 |
+
</layer>
|
161 |
+
<layer id="9" name="StringTensorPack_62227" type="StringTensorPack" version="extension">
|
162 |
+
<data mode="begins_ends" />
|
163 |
+
<input>
|
164 |
+
<port id="0" precision="I32">
|
165 |
+
<dim>-1</dim>
|
166 |
+
</port>
|
167 |
+
<port id="1" precision="I32">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
<port id="2" precision="U8">
|
171 |
+
<dim>-1</dim>
|
172 |
+
</port>
|
173 |
+
</input>
|
174 |
+
<output>
|
175 |
+
<port id="3" precision="STRING" names="string_output">
|
176 |
+
<dim>-1</dim>
|
177 |
+
</port>
|
178 |
+
</output>
|
179 |
+
</layer>
|
180 |
+
<layer id="10" name="Result_62228" type="Result" version="opset1">
|
181 |
+
<input>
|
182 |
+
<port id="0" precision="STRING">
|
183 |
+
<dim>-1</dim>
|
184 |
+
</port>
|
185 |
+
</input>
|
186 |
+
</layer>
|
187 |
+
</layers>
|
188 |
+
<edges>
|
189 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
190 |
+
<edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
|
191 |
+
<edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
|
192 |
+
<edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
|
193 |
+
<edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
|
194 |
+
<edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
|
195 |
+
<edge from-layer="4" from-port="7" to-layer="5" to-port="3" />
|
196 |
+
<edge from-layer="4" from-port="8" to-layer="8" to-port="2" />
|
197 |
+
<edge from-layer="4" from-port="6" to-layer="5" to-port="2" />
|
198 |
+
<edge from-layer="4" from-port="5" to-layer="5" to-port="1" />
|
199 |
+
<edge from-layer="4" from-port="4" to-layer="5" to-port="0" />
|
200 |
+
<edge from-layer="5" from-port="4" to-layer="8" to-port="0" />
|
201 |
+
<edge from-layer="5" from-port="5" to-layer="8" to-port="1" />
|
202 |
+
<edge from-layer="6" from-port="0" to-layer="8" to-port="3" />
|
203 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="4" />
|
204 |
+
<edge from-layer="8" from-port="5" to-layer="9" to-port="0" />
|
205 |
+
<edge from-layer="8" from-port="6" to-layer="9" to-port="1" />
|
206 |
+
<edge from-layer="8" from-port="7" to-layer="9" to-port="2" />
|
207 |
+
<edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
|
208 |
+
</edges>
|
209 |
+
<rt_info>
|
210 |
+
<eos_token_id value="50256" />
|
211 |
+
<original_tokenizer_class value="<class 'transformers_modules.pytorch.tokenization_codegen25.CodeGen25Tokenizer'>" />
|
212 |
+
</rt_info>
|
213 |
+
</net>
|
openvino_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a563bfaa847ac981b85d0e015e2271b3334995110d143bcc9d8064bd3776ae26
|
3 |
+
size 3785290240
|
openvino_model.xml
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
openvino_tokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:348f1a1512e75e2213d7b2d2c2749c15e9458d56bae02b1336f7b502f881d509
|
3 |
+
size 1272940
|
openvino_tokenizer.xml
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="tokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_62109" type="Parameter" version="opset1">
|
5 |
+
<data shape="?" element_type="string" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_62109">
|
8 |
+
<dim>-1</dim>
|
9 |
+
</port>
|
10 |
+
</output>
|
11 |
+
</layer>
|
12 |
+
<layer id="1" name="Constant_62115" type="Const" version="opset1">
|
13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
14 |
+
<output>
|
15 |
+
<port id="0" precision="I64" />
|
16 |
+
</output>
|
17 |
+
</layer>
|
18 |
+
<layer id="2" name="StringTensorUnpack_62110" type="StringTensorUnpack" version="extension">
|
19 |
+
<data mode="begins_ends" />
|
20 |
+
<input>
|
21 |
+
<port id="0" precision="STRING">
|
22 |
+
<dim>-1</dim>
|
23 |
+
</port>
|
24 |
+
</input>
|
25 |
+
<output>
|
26 |
+
<port id="1" precision="I32">
|
27 |
+
<dim>-1</dim>
|
28 |
+
</port>
|
29 |
+
<port id="2" precision="I32">
|
30 |
+
<dim>-1</dim>
|
31 |
+
</port>
|
32 |
+
<port id="3" precision="U8">
|
33 |
+
<dim>-1</dim>
|
34 |
+
</port>
|
35 |
+
</output>
|
36 |
+
</layer>
|
37 |
+
<layer id="3" name="ShapeOf_62111" type="ShapeOf" version="opset3">
|
38 |
+
<data output_type="i64" />
|
39 |
+
<input>
|
40 |
+
<port id="0" precision="I32">
|
41 |
+
<dim>-1</dim>
|
42 |
+
</port>
|
43 |
+
</input>
|
44 |
+
<output>
|
45 |
+
<port id="1" precision="I64">
|
46 |
+
<dim>1</dim>
|
47 |
+
</port>
|
48 |
+
</output>
|
49 |
+
</layer>
|
50 |
+
<layer id="4" name="Constant_62112" type="Const" version="opset1">
|
51 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
52 |
+
<output>
|
53 |
+
<port id="0" precision="I64" />
|
54 |
+
</output>
|
55 |
+
</layer>
|
56 |
+
<layer id="5" name="Constant_62113" type="Const" version="opset1">
|
57 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
58 |
+
<output>
|
59 |
+
<port id="0" precision="I64" />
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="6" name="Gather_62114" type="Gather" version="opset8">
|
63 |
+
<data batch_dims="0" />
|
64 |
+
<input>
|
65 |
+
<port id="0" precision="I64">
|
66 |
+
<dim>1</dim>
|
67 |
+
</port>
|
68 |
+
<port id="1" precision="I64" />
|
69 |
+
<port id="2" precision="I64" />
|
70 |
+
</input>
|
71 |
+
<output>
|
72 |
+
<port id="3" precision="I64" />
|
73 |
+
</output>
|
74 |
+
</layer>
|
75 |
+
<layer id="7" name="Constant_62116" type="Const" version="opset1">
|
76 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
77 |
+
<output>
|
78 |
+
<port id="0" precision="I64" />
|
79 |
+
</output>
|
80 |
+
</layer>
|
81 |
+
<layer id="8" name="Range_62117" type="Range" version="opset4">
|
82 |
+
<data output_type="i32" />
|
83 |
+
<input>
|
84 |
+
<port id="0" precision="I64" />
|
85 |
+
<port id="1" precision="I64" />
|
86 |
+
<port id="2" precision="I64" />
|
87 |
+
</input>
|
88 |
+
<output>
|
89 |
+
<port id="3" precision="I32">
|
90 |
+
<dim>-1</dim>
|
91 |
+
</port>
|
92 |
+
</output>
|
93 |
+
</layer>
|
94 |
+
<layer id="9" name="Constant_62118" type="Const" version="opset1">
|
95 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
96 |
+
<output>
|
97 |
+
<port id="0" precision="I64" />
|
98 |
+
</output>
|
99 |
+
</layer>
|
100 |
+
<layer id="10" name="Constant_62119" type="Const" version="opset1">
|
101 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
102 |
+
<output>
|
103 |
+
<port id="0" precision="I64" />
|
104 |
+
</output>
|
105 |
+
</layer>
|
106 |
+
<layer id="11" name="Add_62120" type="Add" version="opset1">
|
107 |
+
<data auto_broadcast="numpy" />
|
108 |
+
<input>
|
109 |
+
<port id="0" precision="I64" />
|
110 |
+
<port id="1" precision="I64" />
|
111 |
+
</input>
|
112 |
+
<output>
|
113 |
+
<port id="2" precision="I64" />
|
114 |
+
</output>
|
115 |
+
</layer>
|
116 |
+
<layer id="12" name="Constant_62121" type="Const" version="opset1">
|
117 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
118 |
+
<output>
|
119 |
+
<port id="0" precision="I64" />
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="13" name="Range_62122" type="Range" version="opset4">
|
123 |
+
<data output_type="i32" />
|
124 |
+
<input>
|
125 |
+
<port id="0" precision="I64" />
|
126 |
+
<port id="1" precision="I64" />
|
127 |
+
<port id="2" precision="I64" />
|
128 |
+
</input>
|
129 |
+
<output>
|
130 |
+
<port id="3" precision="I32">
|
131 |
+
<dim>-1</dim>
|
132 |
+
</port>
|
133 |
+
</output>
|
134 |
+
</layer>
|
135 |
+
<layer id="14" name="Constant_62184" type="Const" version="opset1">
|
136 |
+
<data element_type="u8" shape="19" offset="16" size="19" />
|
137 |
+
<output>
|
138 |
+
<port id="0" precision="U8">
|
139 |
+
<dim>19</dim>
|
140 |
+
</port>
|
141 |
+
</output>
|
142 |
+
</layer>
|
143 |
+
<layer id="15" name="SpecialTokensSplit_62185" type="SpecialTokensSplit" version="extension">
|
144 |
+
<input>
|
145 |
+
<port id="0" precision="I32">
|
146 |
+
<dim>-1</dim>
|
147 |
+
</port>
|
148 |
+
<port id="1" precision="I32">
|
149 |
+
<dim>-1</dim>
|
150 |
+
</port>
|
151 |
+
<port id="2" precision="I32">
|
152 |
+
<dim>-1</dim>
|
153 |
+
</port>
|
154 |
+
<port id="3" precision="I32">
|
155 |
+
<dim>-1</dim>
|
156 |
+
</port>
|
157 |
+
<port id="4" precision="U8">
|
158 |
+
<dim>-1</dim>
|
159 |
+
</port>
|
160 |
+
<port id="5" precision="U8">
|
161 |
+
<dim>19</dim>
|
162 |
+
</port>
|
163 |
+
</input>
|
164 |
+
<output>
|
165 |
+
<port id="6" precision="I32">
|
166 |
+
<dim>-1</dim>
|
167 |
+
</port>
|
168 |
+
<port id="7" precision="I32">
|
169 |
+
<dim>-1</dim>
|
170 |
+
</port>
|
171 |
+
<port id="8" precision="I32">
|
172 |
+
<dim>-1</dim>
|
173 |
+
</port>
|
174 |
+
<port id="9" precision="I32">
|
175 |
+
<dim>-1</dim>
|
176 |
+
</port>
|
177 |
+
<port id="10" precision="U8">
|
178 |
+
<dim>-1</dim>
|
179 |
+
</port>
|
180 |
+
<port id="11" precision="BOOL">
|
181 |
+
<dim>-1</dim>
|
182 |
+
</port>
|
183 |
+
</output>
|
184 |
+
</layer>
|
185 |
+
<layer id="16" name="NormalizeUnicode_62186" type="NormalizeUnicode" version="extension">
|
186 |
+
<data normalization_form="NFC" />
|
187 |
+
<input>
|
188 |
+
<port id="0" precision="I32">
|
189 |
+
<dim>-1</dim>
|
190 |
+
</port>
|
191 |
+
<port id="1" precision="I32">
|
192 |
+
<dim>-1</dim>
|
193 |
+
</port>
|
194 |
+
<port id="2" precision="U8">
|
195 |
+
<dim>-1</dim>
|
196 |
+
</port>
|
197 |
+
<port id="3" precision="BOOL">
|
198 |
+
<dim>-1</dim>
|
199 |
+
</port>
|
200 |
+
</input>
|
201 |
+
<output>
|
202 |
+
<port id="4" precision="I32">
|
203 |
+
<dim>-1</dim>
|
204 |
+
</port>
|
205 |
+
<port id="5" precision="I32">
|
206 |
+
<dim>-1</dim>
|
207 |
+
</port>
|
208 |
+
<port id="6" precision="U8">
|
209 |
+
<dim>-1</dim>
|
210 |
+
</port>
|
211 |
+
<port id="7" precision="BOOL">
|
212 |
+
<dim>-1</dim>
|
213 |
+
</port>
|
214 |
+
</output>
|
215 |
+
</layer>
|
216 |
+
<layer id="17" name="Constant_62188" type="Const" version="opset1">
|
217 |
+
<data element_type="u8" shape="79" offset="35" size="79" />
|
218 |
+
<output>
|
219 |
+
<port id="0" precision="U8">
|
220 |
+
<dim>79</dim>
|
221 |
+
</port>
|
222 |
+
</output>
|
223 |
+
</layer>
|
224 |
+
<layer id="18" name="RegexSplit_62189" type="RegexSplit" version="extension">
|
225 |
+
<data behaviour="contiguous" invert="false" max_splits="-1" />
|
226 |
+
<input>
|
227 |
+
<port id="0" precision="I32">
|
228 |
+
<dim>-1</dim>
|
229 |
+
</port>
|
230 |
+
<port id="1" precision="I32">
|
231 |
+
<dim>-1</dim>
|
232 |
+
</port>
|
233 |
+
<port id="2" precision="I32">
|
234 |
+
<dim>-1</dim>
|
235 |
+
</port>
|
236 |
+
<port id="3" precision="I32">
|
237 |
+
<dim>-1</dim>
|
238 |
+
</port>
|
239 |
+
<port id="4" precision="U8">
|
240 |
+
<dim>-1</dim>
|
241 |
+
</port>
|
242 |
+
<port id="5" precision="BOOL">
|
243 |
+
<dim>-1</dim>
|
244 |
+
</port>
|
245 |
+
<port id="6" precision="U8">
|
246 |
+
<dim>79</dim>
|
247 |
+
</port>
|
248 |
+
</input>
|
249 |
+
<output>
|
250 |
+
<port id="7" precision="I32">
|
251 |
+
<dim>-1</dim>
|
252 |
+
</port>
|
253 |
+
<port id="8" precision="I32">
|
254 |
+
<dim>-1</dim>
|
255 |
+
</port>
|
256 |
+
<port id="9" precision="I32">
|
257 |
+
<dim>-1</dim>
|
258 |
+
</port>
|
259 |
+
<port id="10" precision="I32">
|
260 |
+
<dim>-1</dim>
|
261 |
+
</port>
|
262 |
+
<port id="11" precision="U8">
|
263 |
+
<dim>-1</dim>
|
264 |
+
</port>
|
265 |
+
<port id="12" precision="BOOL">
|
266 |
+
<dim>-1</dim>
|
267 |
+
</port>
|
268 |
+
</output>
|
269 |
+
</layer>
|
270 |
+
<layer id="19" name="Constant_62191" type="Const" version="opset1">
|
271 |
+
<data element_type="u8" shape="535153" offset="114" size="535153" />
|
272 |
+
<output>
|
273 |
+
<port id="0" precision="U8">
|
274 |
+
<dim>535153</dim>
|
275 |
+
</port>
|
276 |
+
</output>
|
277 |
+
</layer>
|
278 |
+
<layer id="20" name="StringTensorUnpack_62192" type="StringTensorUnpack" version="extension">
|
279 |
+
<data mode="begins_ends" />
|
280 |
+
<input>
|
281 |
+
<port id="0" precision="U8">
|
282 |
+
<dim>535153</dim>
|
283 |
+
</port>
|
284 |
+
</input>
|
285 |
+
<output>
|
286 |
+
<port id="1" precision="I32">
|
287 |
+
<dim>-1</dim>
|
288 |
+
</port>
|
289 |
+
<port id="2" precision="I32">
|
290 |
+
<dim>-1</dim>
|
291 |
+
</port>
|
292 |
+
<port id="3" precision="U8">
|
293 |
+
<dim>-1</dim>
|
294 |
+
</port>
|
295 |
+
</output>
|
296 |
+
</layer>
|
297 |
+
<layer id="21" name="Constant_62197" type="Const" version="opset1">
|
298 |
+
<data element_type="u8" shape="367533" offset="535267" size="367533" />
|
299 |
+
<output>
|
300 |
+
<port id="0" precision="U8">
|
301 |
+
<dim>367533</dim>
|
302 |
+
</port>
|
303 |
+
</output>
|
304 |
+
</layer>
|
305 |
+
<layer id="22" name="StringTensorUnpack_62198" type="StringTensorUnpack" version="extension">
|
306 |
+
<data mode="begins_ends" />
|
307 |
+
<input>
|
308 |
+
<port id="0" precision="U8">
|
309 |
+
<dim>367533</dim>
|
310 |
+
</port>
|
311 |
+
</input>
|
312 |
+
<output>
|
313 |
+
<port id="1" precision="I32">
|
314 |
+
<dim>-1</dim>
|
315 |
+
</port>
|
316 |
+
<port id="2" precision="I32">
|
317 |
+
<dim>-1</dim>
|
318 |
+
</port>
|
319 |
+
<port id="3" precision="U8">
|
320 |
+
<dim>-1</dim>
|
321 |
+
</port>
|
322 |
+
</output>
|
323 |
+
</layer>
|
324 |
+
<layer id="23" name="Constant_62200" type="Const" version="opset1">
|
325 |
+
<data element_type="u8" shape="353061" offset="902800" size="353061" />
|
326 |
+
<output>
|
327 |
+
<port id="0" precision="U8">
|
328 |
+
<dim>353061</dim>
|
329 |
+
</port>
|
330 |
+
</output>
|
331 |
+
</layer>
|
332 |
+
<layer id="24" name="StringTensorUnpack_62201" type="StringTensorUnpack" version="extension">
|
333 |
+
<data mode="begins_ends" />
|
334 |
+
<input>
|
335 |
+
<port id="0" precision="U8">
|
336 |
+
<dim>353061</dim>
|
337 |
+
</port>
|
338 |
+
</input>
|
339 |
+
<output>
|
340 |
+
<port id="1" precision="I32">
|
341 |
+
<dim>-1</dim>
|
342 |
+
</port>
|
343 |
+
<port id="2" precision="I32">
|
344 |
+
<dim>-1</dim>
|
345 |
+
</port>
|
346 |
+
<port id="3" precision="U8">
|
347 |
+
<dim>-1</dim>
|
348 |
+
</port>
|
349 |
+
</output>
|
350 |
+
</layer>
|
351 |
+
<layer id="25" name="Constant_62194" type="Const" version="opset1">
|
352 |
+
<data element_type="u8" shape="13303" offset="1255861" size="13303" />
|
353 |
+
<output>
|
354 |
+
<port id="0" precision="U8">
|
355 |
+
<dim>13303</dim>
|
356 |
+
</port>
|
357 |
+
</output>
|
358 |
+
</layer>
|
359 |
+
<layer id="26" name="StringTensorUnpack_62195" type="StringTensorUnpack" version="extension">
|
360 |
+
<data mode="begins_ends" />
|
361 |
+
<input>
|
362 |
+
<port id="0" precision="U8">
|
363 |
+
<dim>13303</dim>
|
364 |
+
</port>
|
365 |
+
</input>
|
366 |
+
<output>
|
367 |
+
<port id="1" precision="I32">
|
368 |
+
<dim>-1</dim>
|
369 |
+
</port>
|
370 |
+
<port id="2" precision="I32">
|
371 |
+
<dim>-1</dim>
|
372 |
+
</port>
|
373 |
+
<port id="3" precision="U8">
|
374 |
+
<dim>-1</dim>
|
375 |
+
</port>
|
376 |
+
</output>
|
377 |
+
</layer>
|
378 |
+
<layer id="27" name="Constant_62202" type="Const" version="opset1">
|
379 |
+
<data element_type="i32" shape="942" offset="1269164" size="3768" />
|
380 |
+
<output>
|
381 |
+
<port id="0" precision="I32">
|
382 |
+
<dim>942</dim>
|
383 |
+
</port>
|
384 |
+
</output>
|
385 |
+
</layer>
|
386 |
+
<layer id="28" name="BPETokenizer_62203" type="BPETokenizer" version="extension">
|
387 |
+
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="20000" />
|
388 |
+
<input>
|
389 |
+
<port id="0" precision="I32">
|
390 |
+
<dim>-1</dim>
|
391 |
+
</port>
|
392 |
+
<port id="1" precision="I32">
|
393 |
+
<dim>-1</dim>
|
394 |
+
</port>
|
395 |
+
<port id="2" precision="I32">
|
396 |
+
<dim>-1</dim>
|
397 |
+
</port>
|
398 |
+
<port id="3" precision="I32">
|
399 |
+
<dim>-1</dim>
|
400 |
+
</port>
|
401 |
+
<port id="4" precision="U8">
|
402 |
+
<dim>-1</dim>
|
403 |
+
</port>
|
404 |
+
<port id="5" precision="I32">
|
405 |
+
<dim>-1</dim>
|
406 |
+
</port>
|
407 |
+
<port id="6" precision="I32">
|
408 |
+
<dim>-1</dim>
|
409 |
+
</port>
|
410 |
+
<port id="7" precision="U8">
|
411 |
+
<dim>-1</dim>
|
412 |
+
</port>
|
413 |
+
<port id="8" precision="I32">
|
414 |
+
<dim>-1</dim>
|
415 |
+
</port>
|
416 |
+
<port id="9" precision="I32">
|
417 |
+
<dim>-1</dim>
|
418 |
+
</port>
|
419 |
+
<port id="10" precision="U8">
|
420 |
+
<dim>-1</dim>
|
421 |
+
</port>
|
422 |
+
<port id="11" precision="I32">
|
423 |
+
<dim>-1</dim>
|
424 |
+
</port>
|
425 |
+
<port id="12" precision="I32">
|
426 |
+
<dim>-1</dim>
|
427 |
+
</port>
|
428 |
+
<port id="13" precision="U8">
|
429 |
+
<dim>-1</dim>
|
430 |
+
</port>
|
431 |
+
<port id="14" precision="I32">
|
432 |
+
<dim>-1</dim>
|
433 |
+
</port>
|
434 |
+
<port id="15" precision="I32">
|
435 |
+
<dim>-1</dim>
|
436 |
+
</port>
|
437 |
+
<port id="16" precision="U8">
|
438 |
+
<dim>-1</dim>
|
439 |
+
</port>
|
440 |
+
<port id="17" precision="I32">
|
441 |
+
<dim>942</dim>
|
442 |
+
</port>
|
443 |
+
</input>
|
444 |
+
<output>
|
445 |
+
<port id="18" precision="I32">
|
446 |
+
<dim>-1</dim>
|
447 |
+
</port>
|
448 |
+
<port id="19" precision="I32">
|
449 |
+
<dim>-1</dim>
|
450 |
+
</port>
|
451 |
+
<port id="20" precision="I32">
|
452 |
+
<dim>-1</dim>
|
453 |
+
</port>
|
454 |
+
</output>
|
455 |
+
</layer>
|
456 |
+
<layer id="29" name="Subtract_62204" type="Subtract" version="opset1">
|
457 |
+
<data auto_broadcast="numpy" />
|
458 |
+
<input>
|
459 |
+
<port id="0" precision="I32">
|
460 |
+
<dim>-1</dim>
|
461 |
+
</port>
|
462 |
+
<port id="1" precision="I32">
|
463 |
+
<dim>-1</dim>
|
464 |
+
</port>
|
465 |
+
</input>
|
466 |
+
<output>
|
467 |
+
<port id="2" precision="I32">
|
468 |
+
<dim>-1</dim>
|
469 |
+
</port>
|
470 |
+
</output>
|
471 |
+
</layer>
|
472 |
+
<layer id="30" name="Constant_62205" type="Const" version="opset1">
|
473 |
+
<data element_type="i32" shape="" offset="1272932" size="4" />
|
474 |
+
<output>
|
475 |
+
<port id="0" precision="I32" />
|
476 |
+
</output>
|
477 |
+
</layer>
|
478 |
+
<layer id="31" name="Minimum_62206" type="Minimum" version="opset1">
|
479 |
+
<data auto_broadcast="numpy" />
|
480 |
+
<input>
|
481 |
+
<port id="0" precision="I32">
|
482 |
+
<dim>-1</dim>
|
483 |
+
</port>
|
484 |
+
<port id="1" precision="I32" />
|
485 |
+
</input>
|
486 |
+
<output>
|
487 |
+
<port id="2" precision="I32">
|
488 |
+
<dim>-1</dim>
|
489 |
+
</port>
|
490 |
+
</output>
|
491 |
+
</layer>
|
492 |
+
<layer id="32" name="Subtract_62207" type="Subtract" version="opset1">
|
493 |
+
<data auto_broadcast="numpy" />
|
494 |
+
<input>
|
495 |
+
<port id="0" precision="I32">
|
496 |
+
<dim>-1</dim>
|
497 |
+
</port>
|
498 |
+
<port id="1" precision="I32">
|
499 |
+
<dim>-1</dim>
|
500 |
+
</port>
|
501 |
+
</input>
|
502 |
+
<output>
|
503 |
+
<port id="2" precision="I32">
|
504 |
+
<dim>-1</dim>
|
505 |
+
</port>
|
506 |
+
</output>
|
507 |
+
</layer>
|
508 |
+
<layer id="33" name="Subtract_62208" type="Subtract" version="opset1">
|
509 |
+
<data auto_broadcast="numpy" />
|
510 |
+
<input>
|
511 |
+
<port id="0" precision="I32">
|
512 |
+
<dim>-1</dim>
|
513 |
+
</port>
|
514 |
+
<port id="1" precision="I32">
|
515 |
+
<dim>-1</dim>
|
516 |
+
</port>
|
517 |
+
</input>
|
518 |
+
<output>
|
519 |
+
<port id="2" precision="I32">
|
520 |
+
<dim>-1</dim>
|
521 |
+
</port>
|
522 |
+
</output>
|
523 |
+
</layer>
|
524 |
+
<layer id="34" name="Constant_62209" type="Const" version="opset1">
|
525 |
+
<data element_type="i32" shape="" offset="1272936" size="4" />
|
526 |
+
<output>
|
527 |
+
<port id="0" precision="I32" />
|
528 |
+
</output>
|
529 |
+
</layer>
|
530 |
+
<layer id="35" name="ReduceMax_62210" type="ReduceMax" version="opset1">
|
531 |
+
<data keep_dims="false" />
|
532 |
+
<input>
|
533 |
+
<port id="0" precision="I32">
|
534 |
+
<dim>-1</dim>
|
535 |
+
</port>
|
536 |
+
<port id="1" precision="I32" />
|
537 |
+
</input>
|
538 |
+
<output>
|
539 |
+
<port id="2" precision="I32" />
|
540 |
+
</output>
|
541 |
+
</layer>
|
542 |
+
<layer id="36" name="Constant_62211" type="Const" version="opset1">
|
543 |
+
<data element_type="i32" shape="" offset="1272936" size="4" />
|
544 |
+
<output>
|
545 |
+
<port id="0" precision="I32" />
|
546 |
+
</output>
|
547 |
+
</layer>
|
548 |
+
<layer id="37" name="RaggedToDense_62212" type="RaggedToDense" version="extension">
|
549 |
+
<data pad_right="false" />
|
550 |
+
<input>
|
551 |
+
<port id="0" precision="I32">
|
552 |
+
<dim>-1</dim>
|
553 |
+
</port>
|
554 |
+
<port id="1" precision="I32">
|
555 |
+
<dim>-1</dim>
|
556 |
+
</port>
|
557 |
+
<port id="2" precision="I32">
|
558 |
+
<dim>-1</dim>
|
559 |
+
</port>
|
560 |
+
<port id="3" precision="I32" />
|
561 |
+
<port id="4" precision="I32" />
|
562 |
+
</input>
|
563 |
+
<output>
|
564 |
+
<port id="5" precision="I32">
|
565 |
+
<dim>-1</dim>
|
566 |
+
<dim>-1</dim>
|
567 |
+
</port>
|
568 |
+
<port id="6" precision="BOOL">
|
569 |
+
<dim>-1</dim>
|
570 |
+
<dim>-1</dim>
|
571 |
+
</port>
|
572 |
+
</output>
|
573 |
+
</layer>
|
574 |
+
<layer id="38" name="Convert_62213" type="Convert" version="opset1">
|
575 |
+
<data destination_type="i32" />
|
576 |
+
<input>
|
577 |
+
<port id="0" precision="BOOL">
|
578 |
+
<dim>-1</dim>
|
579 |
+
<dim>-1</dim>
|
580 |
+
</port>
|
581 |
+
</input>
|
582 |
+
<output>
|
583 |
+
<port id="1" precision="I32">
|
584 |
+
<dim>-1</dim>
|
585 |
+
<dim>-1</dim>
|
586 |
+
</port>
|
587 |
+
</output>
|
588 |
+
</layer>
|
589 |
+
<layer id="39" name="Convert_62213" type="Convert" version="opset1">
|
590 |
+
<data destination_type="i64" />
|
591 |
+
<input>
|
592 |
+
<port id="0" precision="I32">
|
593 |
+
<dim>-1</dim>
|
594 |
+
<dim>-1</dim>
|
595 |
+
</port>
|
596 |
+
</input>
|
597 |
+
<output>
|
598 |
+
<port id="1" precision="I64" names="attention_mask">
|
599 |
+
<dim>-1</dim>
|
600 |
+
<dim>-1</dim>
|
601 |
+
</port>
|
602 |
+
</output>
|
603 |
+
</layer>
|
604 |
+
<layer id="41" name="RaggedToDense_62212.0" type="Convert" version="opset1">
|
605 |
+
<data destination_type="i64" />
|
606 |
+
<input>
|
607 |
+
<port id="0" precision="I32">
|
608 |
+
<dim>-1</dim>
|
609 |
+
<dim>-1</dim>
|
610 |
+
</port>
|
611 |
+
</input>
|
612 |
+
<output>
|
613 |
+
<port id="1" precision="I64" names="input_ids">
|
614 |
+
<dim>-1</dim>
|
615 |
+
<dim>-1</dim>
|
616 |
+
</port>
|
617 |
+
</output>
|
618 |
+
</layer>
|
619 |
+
<layer id="42" name="Result_62214" type="Result" version="opset1">
|
620 |
+
<input>
|
621 |
+
<port id="0" precision="I64">
|
622 |
+
<dim>-1</dim>
|
623 |
+
<dim>-1</dim>
|
624 |
+
</port>
|
625 |
+
</input>
|
626 |
+
</layer>
|
627 |
+
<layer id="40" name="Result_62215" type="Result" version="opset1">
|
628 |
+
<input>
|
629 |
+
<port id="0" precision="I64">
|
630 |
+
<dim>-1</dim>
|
631 |
+
<dim>-1</dim>
|
632 |
+
</port>
|
633 |
+
</input>
|
634 |
+
</layer>
|
635 |
+
</layers>
|
636 |
+
<edges>
|
637 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
638 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
639 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
640 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
641 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
642 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
643 |
+
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
644 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
645 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
646 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
647 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
648 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
649 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
650 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
651 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
652 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
653 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
654 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
655 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
656 |
+
<edge from-layer="15" from-port="9" to-layer="16" to-port="1" />
|
657 |
+
<edge from-layer="15" from-port="7" to-layer="18" to-port="1" />
|
658 |
+
<edge from-layer="15" from-port="6" to-layer="18" to-port="0" />
|
659 |
+
<edge from-layer="15" from-port="11" to-layer="16" to-port="3" />
|
660 |
+
<edge from-layer="15" from-port="10" to-layer="16" to-port="2" />
|
661 |
+
<edge from-layer="15" from-port="8" to-layer="16" to-port="0" />
|
662 |
+
<edge from-layer="16" from-port="4" to-layer="18" to-port="2" />
|
663 |
+
<edge from-layer="16" from-port="5" to-layer="18" to-port="3" />
|
664 |
+
<edge from-layer="16" from-port="6" to-layer="18" to-port="4" />
|
665 |
+
<edge from-layer="16" from-port="7" to-layer="18" to-port="5" />
|
666 |
+
<edge from-layer="17" from-port="0" to-layer="18" to-port="6" />
|
667 |
+
<edge from-layer="18" from-port="11" to-layer="28" to-port="4" />
|
668 |
+
<edge from-layer="18" from-port="10" to-layer="28" to-port="3" />
|
669 |
+
<edge from-layer="18" from-port="9" to-layer="28" to-port="2" />
|
670 |
+
<edge from-layer="18" from-port="8" to-layer="28" to-port="1" />
|
671 |
+
<edge from-layer="18" from-port="7" to-layer="28" to-port="0" />
|
672 |
+
<edge from-layer="19" from-port="0" to-layer="20" to-port="0" />
|
673 |
+
<edge from-layer="20" from-port="1" to-layer="28" to-port="5" />
|
674 |
+
<edge from-layer="20" from-port="2" to-layer="28" to-port="6" />
|
675 |
+
<edge from-layer="20" from-port="3" to-layer="28" to-port="7" />
|
676 |
+
<edge from-layer="21" from-port="0" to-layer="22" to-port="0" />
|
677 |
+
<edge from-layer="22" from-port="1" to-layer="28" to-port="8" />
|
678 |
+
<edge from-layer="22" from-port="2" to-layer="28" to-port="9" />
|
679 |
+
<edge from-layer="22" from-port="3" to-layer="28" to-port="10" />
|
680 |
+
<edge from-layer="23" from-port="0" to-layer="24" to-port="0" />
|
681 |
+
<edge from-layer="24" from-port="1" to-layer="28" to-port="11" />
|
682 |
+
<edge from-layer="24" from-port="2" to-layer="28" to-port="12" />
|
683 |
+
<edge from-layer="24" from-port="3" to-layer="28" to-port="13" />
|
684 |
+
<edge from-layer="25" from-port="0" to-layer="26" to-port="0" />
|
685 |
+
<edge from-layer="26" from-port="1" to-layer="28" to-port="14" />
|
686 |
+
<edge from-layer="26" from-port="2" to-layer="28" to-port="15" />
|
687 |
+
<edge from-layer="26" from-port="3" to-layer="28" to-port="16" />
|
688 |
+
<edge from-layer="27" from-port="0" to-layer="28" to-port="17" />
|
689 |
+
<edge from-layer="28" from-port="20" to-layer="37" to-port="2" />
|
690 |
+
<edge from-layer="28" from-port="18" to-layer="29" to-port="1" />
|
691 |
+
<edge from-layer="28" from-port="19" to-layer="37" to-port="1" />
|
692 |
+
<edge from-layer="28" from-port="19" to-layer="33" to-port="0" />
|
693 |
+
<edge from-layer="28" from-port="19" to-layer="32" to-port="0" />
|
694 |
+
<edge from-layer="28" from-port="19" to-layer="29" to-port="0" />
|
695 |
+
<edge from-layer="29" from-port="2" to-layer="31" to-port="0" />
|
696 |
+
<edge from-layer="30" from-port="0" to-layer="31" to-port="1" />
|
697 |
+
<edge from-layer="31" from-port="2" to-layer="32" to-port="1" />
|
698 |
+
<edge from-layer="32" from-port="2" to-layer="33" to-port="1" />
|
699 |
+
<edge from-layer="32" from-port="2" to-layer="37" to-port="0" />
|
700 |
+
<edge from-layer="33" from-port="2" to-layer="35" to-port="0" />
|
701 |
+
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
|
702 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="3" />
|
703 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="4" />
|
704 |
+
<edge from-layer="37" from-port="6" to-layer="38" to-port="0" />
|
705 |
+
<edge from-layer="37" from-port="5" to-layer="41" to-port="0" />
|
706 |
+
<edge from-layer="38" from-port="1" to-layer="39" to-port="0" />
|
707 |
+
<edge from-layer="39" from-port="1" to-layer="40" to-port="0" />
|
708 |
+
<edge from-layer="41" from-port="1" to-layer="42" to-port="0" />
|
709 |
+
</edges>
|
710 |
+
<rt_info>
|
711 |
+
<eos_token_id value="50256" />
|
712 |
+
<original_tokenizer_class value="<class 'transformers_modules.pytorch.tokenization_codegen25.CodeGen25Tokenizer'>" />
|
713 |
+
</rt_info>
|
714 |
+
</net>
|
tokenization_codegen25.py
CHANGED
@@ -245,4 +245,4 @@ class CodeGen25Tokenizer(PreTrainedTokenizer):
|
|
245 |
|
246 |
# has no vocab file
|
247 |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
248 |
-
return ()
|
|
|
245 |
|
246 |
# has no vocab file
|
247 |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
248 |
+
return ()
|
tokenizer_config.json
CHANGED
@@ -18,7 +18,7 @@
|
|
18 |
},
|
19 |
"clean_up_tokenization_spaces": true,
|
20 |
"eos_token": "<|endoftext|>",
|
21 |
-
"model_max_length":
|
22 |
"pad_token": null,
|
23 |
"tokenizer_class": "CodeGen25Tokenizer"
|
24 |
}
|
|
|
18 |
},
|
19 |
"clean_up_tokenization_spaces": true,
|
20 |
"eos_token": "<|endoftext|>",
|
21 |
+
"model_max_length": 1000000000000000019884624838656,
|
22 |
"pad_token": null,
|
23 |
"tokenizer_class": "CodeGen25Tokenizer"
|
24 |
}
|