--- license: apache-2.0 tags: - vision - image-text-to-text language: - en pipeline_tag: image-text-to-text inference: true base_model: - llava-hf/llava-v1.6-mistral-7b-hf base_model_relation: quantized --- # llava-v1.6-mistral-7b-hf-int4-ov * Model creator: [llava-hf](https://huggingface.co/llava-hf) * Original model: [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) ## Description This is [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT4_ASYM** * ratio: **1.0** * group_size: **128** ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.2.0 and higher ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino openvino-tokenizers openvino-genai pip install huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/llava-v1.6-mistral-7b-hf-int4-ov" model_path = "llava-v1.6-mistral-7b-hf-int4-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 1. Run model inference: ``` import openvino_genai as ov_genai import requests from PIL import Image from io import BytesIO import numpy as np import openvino as ov device = "CPU" pipe = ov_genai.VLMPipeline(model_path, device) def load_image(image_file): if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte) return ov.Tensor(image_data) prompt = "What is unusual on this picture?" url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" image_tensor = load_image(url) def streamer(subword: str) -> bool: print(subword, end="", flush=True) return False pipe.start_chat() output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100, streamer=streamer) pipe.finish_chat() ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) ## Limitations Check the original [model card](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) for limitations. ## Legal information The original model is distributed under [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) license. More details can be found in [original model card](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.