--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer datasets: - Aratako/Magpie-Tanuki-8B-annotated-96k - Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k - DataPilot/Zero_SFT_Ja_v2_b3t4 language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: Qwen2.5-7B-axolotl-sft-v0.2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: Qwen/Qwen2.5-7B hub_model_id: OsakanaTeishoku/Qwen2.5-7B-axolotl-sft-v0.2 load_in_8bit: false load_in_4bit: true strict: false chat_template: qwen_25 datasets: # This will be the path used for the data when it is saved to the Volume in the cloud. - path: Aratako/Magpie-Tanuki-8B-annotated-96k split: train type: chat_template field_messages: messages - path: Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k split: train type: chat_template field_messages: messages - path: DataPilot/Zero_SFT_Ja_v2_b3t4 split: train type: chat_template field_messages: conversation message_property_mappings: role: from content: value shuffle_merged_datasets: true dataset_prepared_path: last_run_prepared #val_set_size: 0.05 output_dir: ./lora-out sequence_len: 2048 sample_packing: false eval_sample_packing: false pad_to_sequence_len: false adapter: qlora lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral - embed_tokens - lm_head wandb_project: modal-axolotl wandb_name: 20250419-qwen7b-modal gradient_accumulation_steps: 4 micro_batch_size: 16 #auto_find_batch_size: true #num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 bf16: true fp16: false tf32: false train_on_inputs: false group_by_length: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: true flash_attention: warmup_ratio: 0.05 save_steps: 50 max_steps: 200 debug: #deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true eval_strategy: "no" save_strategy: "steps" ```

# Qwen2.5-7B-axolotl-sft-v0.2 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the Aratako/Magpie-Tanuki-8B-annotated-96k, the Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k and the DataPilot/Zero_SFT_Ja_v2_b3t4 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1