Commit
·
23b0e33
1
Parent(s):
228724f
Initial commit
Browse files- .gitignore +4 -0
- config.json +12 -0
- model.safetensors +3 -0
- modeling_arctic_l_bge_small.py +93 -0
- pyproject.toml +21 -0
- save_safetensors.py +17 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
poetry.lock
|
3 |
+
**/__pycache__/
|
4 |
+
model/
|
config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ConcatModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "modeling_arctic_s_bge_small.ConcatModelConfig",
|
7 |
+
"AutoModel": "modeling_arctic_s_bge_small.ConcatModel"
|
8 |
+
},
|
9 |
+
"model_type": "arctic-l-bge-small",
|
10 |
+
"torch_dtype": "float32",
|
11 |
+
"transformers_version": "4.42.3"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:920fbc079a8ad847586b821b8288c77361f2217a22b55375e3dc5679fb28ccae
|
3 |
+
size 1474083464
|
modeling_arctic_l_bge_small.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import BertModel, PreTrainedModel, BertConfig, PretrainedConfig, AutoModel
|
5 |
+
from typing import *
|
6 |
+
|
7 |
+
|
8 |
+
class ConcatModelConfig(PretrainedConfig):
|
9 |
+
model_type = "arctic-l-bge-small"
|
10 |
+
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
super().__init__(**kwargs)
|
13 |
+
|
14 |
+
|
15 |
+
# See https://huggingface.co/Marqo/marqo-chimera-arctic-bge-m
|
16 |
+
class ConcatModel(PreTrainedModel):
|
17 |
+
config_class = ConcatModelConfig
|
18 |
+
|
19 |
+
def __init__(self, config: ConcatModelConfig):
|
20 |
+
super().__init__(config)
|
21 |
+
bert_config_1 = BertConfig(
|
22 |
+
vocab_size=30522,
|
23 |
+
hidden_size=1024,
|
24 |
+
num_hidden_layers=24,
|
25 |
+
num_attention_heads=16,
|
26 |
+
intermediate_size=4096,
|
27 |
+
hidden_act="gelu",
|
28 |
+
hidden_dropout_prob=0.1,
|
29 |
+
attention_probs_dropout_prob=0.1,
|
30 |
+
max_position_embeddings=512,
|
31 |
+
type_vocab_size=2,
|
32 |
+
initializer_range=0.02,
|
33 |
+
layer_norm_eps=1e-12,
|
34 |
+
)
|
35 |
+
|
36 |
+
bert_config_2 = BertConfig(
|
37 |
+
vocab_size=30522,
|
38 |
+
hidden_size=384,
|
39 |
+
num_hidden_layers=12,
|
40 |
+
num_attention_heads=12,
|
41 |
+
intermediate_size=1536,
|
42 |
+
hidden_act="gelu",
|
43 |
+
hidden_dropout_prob=0.1,
|
44 |
+
attention_probs_dropout_prob=0.1,
|
45 |
+
max_position_embeddings=512,
|
46 |
+
type_vocab_size=2,
|
47 |
+
initializer_range=0.02,
|
48 |
+
layer_norm_eps=1e-12,
|
49 |
+
)
|
50 |
+
|
51 |
+
self.model = nn.ModuleDict(
|
52 |
+
{
|
53 |
+
"model_0": BertModel(bert_config_1),
|
54 |
+
"model_1": BertModel(bert_config_2),
|
55 |
+
}
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(
|
59 |
+
self,
|
60 |
+
input_ids: torch.Tensor,
|
61 |
+
attention_mask: torch.Tensor,
|
62 |
+
token_type_ids: torch.Tensor = None,
|
63 |
+
**kwargs
|
64 |
+
) -> torch.Tensor:
|
65 |
+
embeddings = []
|
66 |
+
for _, model in self.model.items():
|
67 |
+
model_output = model(
|
68 |
+
input_ids=input_ids,
|
69 |
+
attention_mask=attention_mask,
|
70 |
+
token_type_ids=token_type_ids,
|
71 |
+
)
|
72 |
+
pooled_output = model_output[0][:, 0]
|
73 |
+
pooled_output = F.normalize(pooled_output, p=2, dim=-1)
|
74 |
+
embeddings.append(pooled_output)
|
75 |
+
|
76 |
+
return torch.cat(embeddings, dim=-1)
|
77 |
+
|
78 |
+
def load_weights_from_automodels(
|
79 |
+
self, in_models: List[str], has_pooling_layer: List[bool]
|
80 |
+
):
|
81 |
+
model_list = []
|
82 |
+
for i, model_name in enumerate(in_models):
|
83 |
+
model = AutoModel.from_pretrained(
|
84 |
+
model_name,
|
85 |
+
add_pooling_layer=has_pooling_layer[i],
|
86 |
+
trust_remote_code=True,
|
87 |
+
)
|
88 |
+
model.eval()
|
89 |
+
model_list.append(model)
|
90 |
+
|
91 |
+
self.model = nn.ModuleDict(
|
92 |
+
{f"model_{i}": model for i, model in enumerate(model_list)}
|
93 |
+
)
|
pyproject.toml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["poetry-core"]
|
3 |
+
build-backend = "poetry.core.masonry.api"
|
4 |
+
|
5 |
+
[tool.poetry]
|
6 |
+
name = "arctic-l-bge-small"
|
7 |
+
version = "1.0.0"
|
8 |
+
description = "Upload ConcatModels."
|
9 |
+
authors = [
|
10 |
+
"Michael Dinzinger"
|
11 |
+
]
|
12 |
+
homepage = "https://www.fim.uni-passau.de"
|
13 |
+
repository = "https://www.fim.uni-passau.de"
|
14 |
+
readme = "README.md"
|
15 |
+
license = "MIT"
|
16 |
+
package-mode = false
|
17 |
+
|
18 |
+
[tool.poetry.dependencies]
|
19 |
+
python = ">=3.10,<3.12"
|
20 |
+
transformers = "4.42.3"
|
21 |
+
torch = "2.5.0"
|
save_safetensors.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizer
|
2 |
+
from modeling_arctic_l_bge_small import ConcatModel, ConcatModelConfig
|
3 |
+
|
4 |
+
config = ConcatModelConfig()
|
5 |
+
model = ConcatModel(config)
|
6 |
+
model.load_weights_from_automodels(
|
7 |
+
in_models=['Snowflake/snowflake-arctic-embed-l', 'BAAI/bge-small-en-v1.5'],
|
8 |
+
has_pooling_layer=[True, True]
|
9 |
+
)
|
10 |
+
|
11 |
+
tokenizer = BertTokenizer(vocab_file='vocab.txt')
|
12 |
+
|
13 |
+
output_path = 'model'
|
14 |
+
model.save_pretrained(output_path)
|
15 |
+
tokenizer.save_pretrained(output_path)
|
16 |
+
|
17 |
+
print(f'Model saved as {output_path}')
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|