Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
vae = tensorflow.keras.models.load_model("dae.h5")
|
7 |
+
dae = tensorflow.keras.models.load_model("dae.h5")
|
8 |
+
|
9 |
+
def preprocess_image(image):
|
10 |
+
"""Redimensiona y normaliza la imagen."""
|
11 |
+
# Convert to PIL Image if it's not already
|
12 |
+
if not isinstance(image, Image.Image):
|
13 |
+
image = Image.fromarray(image)
|
14 |
+
|
15 |
+
# Resize image to 128x128
|
16 |
+
image = image.resize((128, 128))
|
17 |
+
|
18 |
+
# Convert to numpy array, normalize and add batch dimension
|
19 |
+
image_array = np.array(image).astype("float32") / 255.0
|
20 |
+
image_array = np.expand_dims(image_array, axis=0)
|
21 |
+
|
22 |
+
return image_array
|
23 |
+
|
24 |
+
def reconstruct_image(image):
|
25 |
+
"""Reconstruye la imagen con el modelo seleccionado."""
|
26 |
+
image = preprocess_image(image)
|
27 |
+
|
28 |
+
reconstructed = dae.predict(image)[0]
|
29 |
+
|
30 |
+
|
31 |
+
return (reconstructed * 255).astype("uint8") # Convertir a imagen
|
32 |
+
|
33 |
+
def generate_image(z_dim_values):
|
34 |
+
"""Genera una imagen a partir de vectores latentes espec铆ficos."""
|
35 |
+
|
36 |
+
z = np.array([z_dim_values]).astype('float32')
|
37 |
+
decoder = vae.layers[-1]
|
38 |
+
|
39 |
+
# Generar la imagen
|
40 |
+
generated = decoder.predict(z)[0]
|
41 |
+
|
42 |
+
return (generated * 255).astype("uint8")
|
43 |
+
|
44 |
+
# Interfaz con Gradio usando tabs
|
45 |
+
with gr.Blocks(title="Demo de VAE y DAE") as demo:
|
46 |
+
gr.Markdown("# Proyecto de VAE y DAE")
|
47 |
+
|
48 |
+
with gr.Tab("Reconstrucci贸n de Im谩genes"):
|
49 |
+
gr.Markdown("## Reconstruye una imagen usando DAE")
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
input_image = gr.Image(label="Imagen Original")
|
53 |
+
reconstruct_btn = gr.Button("Reconstruir")
|
54 |
+
with gr.Column():
|
55 |
+
output_image = gr.Image(label="Imagen Reconstruida")
|
56 |
+
|
57 |
+
reconstruct_btn.click(
|
58 |
+
fn=reconstruct_image,
|
59 |
+
inputs=[input_image],
|
60 |
+
outputs=output_image
|
61 |
+
)
|
62 |
+
|
63 |
+
with gr.Tab("Generaci贸n de Im谩genes (VAE)"):
|
64 |
+
gr.Markdown("## Genera nuevas im谩genes manipulando el espacio latente")
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column():
|
67 |
+
# Crear 2 controles deslizantes para las dimensiones latentes
|
68 |
+
# Ajusta el n煤mero seg煤n la dimensi贸n de tu espacio latente
|
69 |
+
sliders = []
|
70 |
+
for i in range(2): # Asumiendo un espacio latente de dimensi贸n 2
|
71 |
+
slider = gr.Slider(-5.0, 5.0, value=0.0, step=0.1,
|
72 |
+
label=f"Dimensi贸n Latente {i+1}")
|
73 |
+
sliders.append(slider)
|
74 |
+
generate_btn = gr.Button("Generar")
|
75 |
+
with gr.Column():
|
76 |
+
generated_image = gr.Image(label="Imagen Generada")
|
77 |
+
|
78 |
+
generate_btn.click(
|
79 |
+
fn=generate_image,
|
80 |
+
inputs=sliders,
|
81 |
+
outputs=generated_image
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo.launch(share=True)
|