File size: 8,124 Bytes
1c665b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
license: apache-2.0
base_model:
- THUDM/CogVideoX-5b
language:
- en
tags:
- video-generation
- paddlemix
---
简体中文 | [English](README.md)
# VCtrl
<p style="text-align: center;">
<p align="center">
<a href="https://huggingface.co/PaddleMIX">🤗 Huggingface Space</a> |
<a href="https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl">🌐 Github </a> |
<a href="">📜 arxiv </a> |
<a href="https://pp-vctrl.github.io/">📷 Project </a>
</p>
## 模型介绍
**VCtrl** 是一个通用的视频生成控制模型,通过引入辅助条件编码器,能够灵活对接各类控制模块,并且在不改变原始生成器的前提下避免了大规模重训练。该模型利用稀疏残差连接实现对控制信号的高效传递,同时通过统一的条件编码流程,将多种控制输入转换为标准化表示,再结合任务特定掩码以提升适应性。得益于这种统一而灵活的设计,VCtrl 可广泛应用于**人物动画**、**场景转换**、**视频编辑**等视频生成场景。下表展示我们在本代提供的视频生成模型列表相关信息:
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="text-align: center;">模型名</th>
<th style="text-align: center;">VCtrl-Canny</th>
<th style="text-align: center;">VCtrl-Mask</th>
<th style="text-align: center;">VCtrl-Pose</th>
</tr>
<tr>
<td style="text-align: center;">视频分辨率</td>
<td colspan="1" style="text-align: center;">720 * 480</td>
<td colspan="1" style="text-align: center;"> 720*480 </td>
<td colspan="1" style="text-align: center;"> 720*480 & 480*720 </td>
</tr>
<tr>
<td style="text-align: center;">推理精度</td>
<td colspan="3" style="text-align: center;"><b>FP16(推荐)</b></td>
</tr>
<tr>
<td style="text-align: center;">单GPU显存消耗</td>
<td colspan="3" style="text-align: center;"><b>V100: 32GB minimum*</b></td>
</tr>
<tr>
<td style="text-align: center;">推理速度<br>(Step = 25, FP16)</td>
<td colspan="3" style="text-align: center;">单卡A100: ~300秒(49帧)<br>单卡V100: ~400秒(49帧)</td>
</tr>
<tr>
<td style="text-align: center;">提示词语言</td>
<td colspan="5" style="text-align: center;">English*</td>
</tr>
<tr>
<td style="text-align: center;">提示词长度上限</td>
<td colspan="3" style="text-align: center;">224 Tokens</td>
</tr>
<tr>
<td style="text-align: center;">视频长度</td>
<td colspan="3" style="text-align: center;">T2V模型只支持49帧,I2V模型可以扩展为任意帧</td>
</tr>
<tr>
<td style="text-align: center;">帧率</td>
<td colspan="3" style="text-align: center;">30 帧 / 秒 </td>
</tr>
</table>
## 快速开始 🤗
本模型已经支持使用 paddlemix 的 ppdiffusers 库进行部署,你可以按照以下步骤进行部署。
**我们推荐您进入我们的 [github](https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl)以获得更好的体验。**
1. 安装对应的依赖
```shell
# 克隆 PaddleMIX 仓库
git clone https://github.com/PaddlePaddle/PaddleMIX.git
#安装paddlemix
cd PaddleMIX
pip install -e .
# 安装ppdiffusers
pip install -e ppdiffusers
# 安装paddlenlp
pip install paddlenlp==v3.0.0-beta2
# 进入 vctrl目录
cd ppdiffusers/examples/ppvctrl
# 安装其他所需的依赖
pip install -r requirements.txt
#安装paddlex
pip install paddlex==3.0.0b2
```
2. 运行代码
```python
import os
import paddle
import numpy as np
from decord import VideoReader
from moviepy.editor import ImageSequenceClip
from PIL import Image
from ppdiffusers import (
CogVideoXDDIMScheduler,
CogVideoXTransformer3DVCtrlModel,
CogVideoXVCtrlPipeline,
VCtrlModel,
)
def write_mp4(video_path, samples, fps=8):
clip = ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, audio_codec="aac")
def save_vid_side_by_side(batch_output, validation_control_images, output_folder, fps):
flattened_batch_output = [img for sublist in batch_output for img in sublist]
ori_video_path = output_folder + "/origin_predict.mp4"
video_path = output_folder + "/test_1.mp4"
ori_final_images = []
final_images = []
outputs = []
def get_concat_h(im1, im2):
dst = Image.new("RGB", (im1.width + im2.width, max(im1.height, im2.height)))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
for image_list in zip(validation_control_images, flattened_batch_output):
predict_img = image_list[1].resize(image_list[0].size)
result = get_concat_h(image_list[0], predict_img)
ori_final_images.append(np.array(image_list[1]))
final_images.append(np.array(result))
outputs.append(np.array(predict_img))
write_mp4(ori_video_path, ori_final_images, fps=fps)
write_mp4(video_path, final_images, fps=fps)
output_path = output_folder + "/output.mp4"
write_mp4(output_path, outputs, fps=fps)
def load_images_from_folder_to_pil(folder):
images = []
valid_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"}
def frame_number(filename):
new_pattern_match = re.search("frame_(\\d+)_7fps", filename)
if new_pattern_match:
return int(new_pattern_match.group(1))
matches = re.findall("\\d+", filename)
if matches:
if matches[-1] == "0000" and len(matches) > 1:
return int(matches[-2])
return int(matches[-1])
return float("inf")
sorted_files = sorted(os.listdir(folder), key=frame_number)
for filename in sorted_files:
ext = os.path.splitext(filename)[1].lower()
if ext in valid_extensions:
img = Image.open(os.path.join(folder, filename)).convert("RGB")
images.append(img)
return images
def load_images_from_video_to_pil(video_path):
images = []
vr = VideoReader(video_path)
length = len(vr)
for idx in range(length):
frame = vr[idx].asnumpy()
images.append(Image.fromarray(frame))
return images
validation_control_images = load_images_from_video_to_pil('your_path')
prompt = 'Group of fishes swimming in aquarium.'
vctrl = VCtrlModel.from_pretrained(
paddlemix/vctrl-5b-t2v-canny,
low_cpu_mem_usage=True,
paddle_dtype=paddle.float16
)
pipeline = CogVideoXVCtrlPipeline.from_pretrained(
paddlemix/cogvideox-5b-vctrl,
vctrl=vctrl,
paddle_dtype=paddle.float16,
low_cpu_mem_usage=True,
map_location="cpu",
)
pipeline.scheduler = CogVideoXDDIMScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
pipeline.vae.enable_tiling()
pipeline.vae.enable_slicing()
task='canny'
final_result=[]
video = pipeline(
prompt=prompt,
num_inference_steps=25,
num_frames=49,
guidance_scale=35,
generator=paddle.Generator().manual_seed(42),
conditioning_frames=validation_control_images[:num_frames],
conditioning_frame_indices=list(range(num_frames)),
conditioning_scale=1.0,
width=720,
height=480,
task='canny',
conditioning_masks=validation_mask_images[:num_frames] if task == "mask" else None,
vctrl_layout_type='spacing',
).frames[0]
final_result.append(video)
save_vid_side_by_side(final_result, validation_control_images[:num_frames], 'save.mp4', fps=30)
```
## 深入研究
欢迎进入我们的 [github]("https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl"),你将获得:
1. 更加详细的技术细节介绍和代码解释。
2. 控制条件的提取算法细节。
3. 模型推理的详细代码。
4. 项目更新日志动态,更多互动机会。
5. PaddleMix工具链,帮助您更好的使用模型。
<!-- ## 引用
```
@article{yang2024cogvideox,
title={VCtrl: Enabling Versatile Controls for Video Diffusion Models},
year={2025}
}
``` --> |