File size: 2,629 Bytes
f082d0b
 
 
 
 
 
cbfdad6
f082d0b
 
 
cbfdad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f082d0b
 
 
 
 
cbfdad6
f082d0b
cbfdad6
f082d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: cc-by-nc-4.0
base_model: facebook/mms-300m
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: mms-1b-skr_pk
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_11_0
      type: common_voice_11_0
      config: skr
      split: test
      args: skr
    metrics:
    - name: Wer
      type: wer
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mms-1b-skr_pk

This model is a fine-tuned version of [facebook/mms-300m](https://huggingface.co/facebook/mms-300m) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4467
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 3.5576        | 0.58  | 100  | 3.5468          | 1.0 |
| 3.2271        | 1.16  | 200  | 3.6465          | 1.0 |
| 3.3492        | 1.73  | 300  | 3.8570          | 1.0 |
| 3.4442        | 2.31  | 400  | 3.7065          | 1.0 |
| 3.29          | 2.89  | 500  | 3.5289          | 1.0 |
| 3.2951        | 3.47  | 600  | 3.7043          | 1.0 |
| 3.2919        | 4.05  | 700  | 3.6748          | 1.0 |
| 3.301         | 4.62  | 800  | 3.4422          | 1.0 |
| 3.2103        | 5.2   | 900  | 3.4955          | 1.0 |
| 3.2728        | 5.78  | 1000 | 3.6059          | 1.0 |
| 3.2458        | 6.36  | 1100 | 3.4087          | 1.0 |
| 3.244         | 6.94  | 1200 | 3.4352          | 1.0 |
| 3.2562        | 7.51  | 1300 | 3.4648          | 1.0 |
| 3.2116        | 8.09  | 1400 | 3.4618          | 1.0 |
| 3.2268        | 8.67  | 1500 | 3.4313          | 1.0 |
| 3.2387        | 9.25  | 1600 | 3.4246          | 1.0 |
| 3.1921        | 9.83  | 1700 | 3.4467          | 1.0 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0