Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,111 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fa
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- keyword-extraction
|
6 |
+
- persian
|
7 |
+
- farsi
|
8 |
+
- token-classification
|
9 |
+
- distilbert
|
10 |
+
- nlp
|
11 |
+
datasets:
|
12 |
+
- custom
|
13 |
+
metrics:
|
14 |
+
- precision
|
15 |
+
- recall
|
16 |
+
- f1
|
17 |
+
widget:
|
18 |
+
- text: "ایران کشوری با تاریخ و فرهنگ غنی است که دارای جاذبههای گردشگری فراوان میباشد."
|
19 |
+
---
|
20 |
+
|
21 |
+
# Model Datacard: Persian Keyword Extraction Model
|
22 |
+
|
23 |
+
## Model Details
|
24 |
+
- **Model Name**: keyword_distilbert_base_per
|
25 |
+
- **Base Model**: distilbert
|
26 |
+
- **Task**: Keyword Extraction
|
27 |
+
- **Language**: Persian (Farsi)
|
28 |
+
- **Developer**: PakdamanAli
|
29 |
+
- **Model Version**: 1.0.0
|
30 |
+
|
31 |
+
## Intended Use
|
32 |
+
This model is designed to extract keywords from Persian text. It can be used for:
|
33 |
+
- Automatic tagging of content
|
34 |
+
- Search engine optimization
|
35 |
+
- Content categorization
|
36 |
+
- Topic modeling
|
37 |
+
- Information retrieval enhancement
|
38 |
+
|
39 |
+
### Primary Intended Uses
|
40 |
+
- Content analysis for Persian websites
|
41 |
+
- Academic research on Persian text
|
42 |
+
- Information extraction systems
|
43 |
+
|
44 |
+
### Out-of-Scope Use Cases
|
45 |
+
- Translation services
|
46 |
+
- Text summarization
|
47 |
+
- Persian named entity recognition (unless specifically trained for this)
|
48 |
+
- Other NLP tasks beyond keyword extraction
|
49 |
+
|
50 |
+
## Training Data
|
51 |
+
- **Dataset Size**: 40,000 Persian text samples
|
52 |
+
- **Data Preparation**: Fine-tuned on xlm-roberta-large
|
53 |
+
|
54 |
+
## Performance Evaluation
|
55 |
+
Metrics and evaluation results will be published in a future update.
|
56 |
+
|
57 |
+
## Limitations
|
58 |
+
- The model may not perform well on domain-specific content that was not represented in the training data
|
59 |
+
- Performance may vary for very short or extremely long texts
|
60 |
+
- The model may occasionally extract words that are not truly "key" to the content
|
61 |
+
- Dialect variations in Persian might affect extraction quality
|
62 |
+
|
63 |
+
## Ethical Considerations
|
64 |
+
- The model is trained on Persian text and may reflect biases present in that content
|
65 |
+
- Users should verify extracted keywords for sensitive content before implementing in automated systems
|
66 |
+
- The model should not be used to extract or analyze personally identifiable information without proper consent
|
67 |
+
|
68 |
+
## Technical Specifications
|
69 |
+
- **Input**: Persian text (UTF-8 encoded)
|
70 |
+
- **Output**: List of extracted keywords
|
71 |
+
- **Framework**: Transformers (Hugging Face)
|
72 |
+
- **Requirements**: PyTorch, Transformers
|
73 |
+
|
74 |
+
## Pipeline Usage
|
75 |
+
To use this model with the Hugging Face pipeline:
|
76 |
+
|
77 |
+
```python
|
78 |
+
from transformers import pipeline
|
79 |
+
|
80 |
+
# Initialize the pipeline
|
81 |
+
keyword_extractor = pipeline(
|
82 |
+
task="token-classification",
|
83 |
+
model="PakdamanAli/keyword_distilbert_base_per",
|
84 |
+
tokenizer="PakdamanAli/keyword_distilbert_base_per"
|
85 |
+
)
|
86 |
+
|
87 |
+
# Example usage
|
88 |
+
text = "ایران کشوری با تاریخ و فرهنگ غنی است که دارای جاذبههای گردشگری فراوان میباشد."
|
89 |
+
keywords = keyword_extractor(text)
|
90 |
+
|
91 |
+
# Process the results based on the model output format
|
92 |
+
# Example: extracted_keywords = [item["word"] for item in keywords]
|
93 |
+
```
|
94 |
+
|
95 |
+
## Example
|
96 |
+
```python
|
97 |
+
from transformers import pipeline
|
98 |
+
|
99 |
+
extractor = pipeline(
|
100 |
+
task="token-classification",
|
101 |
+
model="PakdamanAli/keyword_distilbert_base_per",
|
102 |
+
tokenizer="PakdamanAli/keyword_distilbert_base_per"
|
103 |
+
)
|
104 |
+
|
105 |
+
text = "ایران کشوری با تاریخ و فرهنگ غنی است که دارای جاذبههای گردشگری فراوان میباشد."
|
106 |
+
results = extractor(text)
|
107 |
+
|
108 |
+
# Extract just the words from the results
|
109 |
+
keywords = [item["word"] for item in results]
|
110 |
+
print(keywords)
|
111 |
+
```
|