--- datasets: - bigcode/the-stack-v2 license: apache-2.0 base_model: - Qwen/Qwen2.5-3B library_name: transformers ---
# Parallel Scaling Law for Language Model _Yet Another Scaling Law beyond Parameters and Inference Time Scaling_ [![Paper](https://img.shields.io/badge/arXiv-2505.10475-red)](https://arxiv.org/abs/2505.10475) [![huggingface](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-FFD21E)](https://huggingface.co/ParScale) [![GitHub](https://img.shields.io/github/stars/QwenLM/ParScale)](https://github.com/QwenLM/ParScale/)
## Checkpoints > [!IMPORTANT] > All the released checkpoints were trained on public datasets and are for academic use only. ✨ are our recommendation for strong models. ### Base models for scaling training data to 1T tokens These models demonstrate strong competitiveness among existing small models, including SmolLM, gemma, and Llama-3.2 (see Table 4 for details). |Model|Description|Download| |:-:|:-:|:-:| |ParScale-1.8B-P1|✨ Baseline $P=1$|[🤗 ParScale/ParScale-1.8B-P1](https://huggingface.co/ParScale/ParScale-1.8B-P1)| |ParScale-1.8B-P2|✨ ParScale $P=2$|[🤗 ParScale/ParScale-1.8B-P2](https://huggingface.co/ParScale/ParScale-1.8B-P2)| |ParScale-1.8B-P4|✨ ParScale $P=4$|[🤗 ParScale/ParScale-1.8B-P4](https://huggingface.co/ParScale/ParScale-1.8B-P4)| |ParScale-1.8B-P8|✨ ParScale $P=8$|[🤗 ParScale/ParScale-1.8B-P8](https://huggingface.co/ParScale/ParScale-1.8B-P8)| ### Instruct models for scaling training data to 1T tokens We post-trained the aforementioned base model on SmolTalk-1M to enable conversational capabilities. |Model|Description|Download| |:-:|:-:|:-:| |ParScale-1.8B-P1-Inst|✨ Baseline $P=1$|[🤗 ParScale/ParScale-1.8B-P1-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P1-Inst)| |ParScale-1.8B-P2-Inst|✨ ParScale $P=2$|[🤗 ParScale/ParScale-1.8B-P2-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P2-Inst)| |ParScale-1.8B-P4-Inst|✨ ParScale $P=4$|[🤗 ParScale/ParScale-1.8B-P4-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P4-Inst)| |ParScale-1.8B-P8-Inst|✨ ParScale $P=8$|[🤗 ParScale/ParScale-1.8B-P8-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P8-Inst)| ### Continual Pretraining Qwen-2.5-3B We froze the parameters of Qwen-2.5-3B and only fine-tuned the newly introduced parameters on Stack-V2-Python. Since the following models share the same backbone parameters as Qwen-2.5-3B, they have the potential for dynamic parscale: switching P to adapt model capabilities during inference. |Model|Description|Download| |:-:|:-:|:-:| |ParScale-Qwen-3B-P2-Python|✨ ParScale $P=2$|[🤗 ParScale/ParScale-Qwen-3B-P2-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P2-Python)| |ParScale-Qwen-3B-P4-Python|✨ ParScale $P=4$|[🤗 ParScale/ParScale-Qwen-3B-P4-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P4-Python)| |ParScale-Qwen-3B-P8-Python|✨ ParScale $P=8$|[🤗 ParScale/ParScale-Qwen-3B-P8-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P8-Python)| - For full pretraining on Stack-V2-Python |Model|Description|Download| |:-:|:-:|:-:| |ParScale-QwenInit-3B-P1-Python|Baseline $P=1$|[🤗 ParScale/ParScale-QwenInit-3B-P1-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Python)| |ParScale-QwenInit-3B-P2-Python|ParScale $P=2$|[🤗 ParScale/ParScale-QwenInit-3B-P2-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Python)| |ParScale-QwenInit-3B-P4-Python|ParScale $P=4$|[🤗 ParScale/ParScale-QwenInit-3B-P4-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Python)| |ParScale-QwenInit-3B-P8-Python|ParScale $P=8$|[🤗 ParScale/ParScale-QwenInit-3B-P8-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Python)| - For full pretraining on Pile |Model|Description|Download| |:-:|:-:|:-:| |ParScale-QwenInit-3B-P1-Pile|Baseline $P=1$|[🤗 ParScale/ParScale-QwenInit-3B-P1-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Pile)| |ParScale-QwenInit-3B-P2-Pile|ParScale $P=2$|[🤗 ParScale/ParScale-QwenInit-3B-P2-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Pile)| |ParScale-QwenInit-3B-P4-Pile|ParScale $P=4$|[🤗 ParScale/ParScale-QwenInit-3B-P4-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Pile)| |ParScale-QwenInit-3B-P8-Pile|ParScale $P=8$|[🤗 ParScale/ParScale-QwenInit-3B-P8-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Pile)| ### Checkpoints Used to Fit the Scaling Law Download link: https://huggingface.co/ParScale/ParScale-{size}-{P}-{dataset} - {size}: model size, from {0.7B, 0.9B, 1.3B, 1.8B, 3B, 4.7B} - {P}: number of parallels, from {P1, P2, P4, P8} - {dataset}: training dataset, from {Python, Pile}