File size: 5,138 Bytes
caf8c48 d3df9de caf8c48 d3df9de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- model-merging
- mergekit
- lazymergekit
- qwen3
- 4b
- text-generation
- causal-lm
datasets:
- Idavidrein/gpqa
metrics:
- accuracy
base_model:
- Qwen/Qwen3-4B-Instruct-2507
- Qwen/Qwen3-4B-Instruct-2507-FP8
- unsloth/Qwen3-4B-Instruct-2507
- huihui-ai/Huihui-Qwen3-4B-Instruct-2507-abliterated
- g-assismoraes/Qwen3-4B-Instruct-2507-imdb
- g-assismoraes/Qwen3-4B-Instruct-2507-assin2
- g-assismoraes/Qwen3-4B-Instruct-2507-faquad
- g-assismoraes/Qwen3-4B-Instruct-2507-hatebr
- g-assismoraes/Qwen3-4B-Instruct-2507-agnews
- BRlkl/BingoGuard-qwen3-4B-pt
base_model_relation: merge
model-index:
- name: qwen3-4b-merged---configuration-1
results:
- task:
type: text-generation
name: Text Generation
dataset:
type: cais/mmlu
name: MMLU (Massive Multitask Language Understanding)
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: accuracy
value: 72.51
name: MMLU (5-shot)
verified: false
- task:
type: text-generation
name: Text Generation
dataset:
type: Idavidrein/gpqa
name: GPQA (Graduate-level Physics Q&A)
config: gpqa_diamond
split: test
args:
num_few_shot: 0
metrics:
- type: accuracy
value: 45.45
name: GPQA Diamond (0-shot)
verified: false
---
# Qwen3-4B Merged - Configuration 0
This is a Qwen3-4B based model created through layer-wise merging of multiple fine-tuned variants to optimize performance on GPQA Diamond.
## Performance Metrics
| Benchmark | Score | Description |
|-----------|-------|-------------|
| **MMLU (5-shot)** | 0.7251 (72.51%) | Massive Multitask Language Understanding |
| **GPQA Diamond (0-shot)** | 0.4545 (45.45%) | Graduate-level Physics Q&A |
### Benchmark Details
- **MMLU**: Evaluated on the test set with 5-shot prompting across 57 subjects
- **GPQA**: Evaluated on the diamond subset with 0-shot prompting on graduate-level physics questions
## Performance Visualizations
### GPQA Diamond Performance Comparison

### MMLU and GPQA Diamond Combined Performance

## Model Information
- **Run ID**: 20250808_233922
- **Optimization Task**: GPQA (Graduate-level Physics Q&A)
- **Number of Layers**: 36
- **Base Architecture**: Qwen3-4B
## Source Models
The following models were used in the layer-wise merge:
- Qwen/Qwen3-4B-Instruct-2507
- Qwen/Qwen3-4B-Instruct-2507-FP8
- unsloth/Qwen3-4B-Instruct-2507
- huihui-ai/Huihui-Qwen3-4B-Instruct-2507-abliterated
- g-assismoraes/Qwen3-4B-Instruct-2507-imdb
- g-assismoraes/Qwen3-4B-Instruct-2507-assin2
- g-assismoraes/Qwen3-4B-Instruct-2507-faquad
- g-assismoraes/Qwen3-4B-Instruct-2507-hatebr
- g-assismoraes/Qwen3-4B-Instruct-2507-agnews
- BRlkl/BingoGuard-qwen3-4B-pt
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model
model = AutoModelForCausalLM.from_pretrained(
"ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0",
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0")
# Example: MMLU-style question
prompt = '''Question: The study of the distribution and determinants of health and disease in populations is:
A) Epidemiology
B) Ecology
C) Etiology
D) Endocrinology
Answer:'''
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_length=150,
temperature=0.7,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Inference with vLLM
```python
from vllm import LLM, SamplingParams
llm = LLM(model="ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-1")
sampling_params = SamplingParams(temperature=0.7, top_p=0.95, max_tokens=256)
prompts = ["Question: Explain quantum entanglement in simple terms."]
outputs = llm.generate(prompts, sampling_params)
```
## Technical Details
This model uses a layer-wise merging approach where each transformer layer is selected from different source models based on optimization criteria. This technique allows combining strengths from multiple fine-tuned models.
### Merging Process
1. **Layer Selection**: Each layer (0-35 for this architecture) is independently selected from one of the source models
2. **Non-layer Weights**: Embeddings and final layers are taken from the base model
3. **Optimization**: The configuration was found through systematic optimization on the target benchmark
## Limitations
- This is an experimental merge and performance may vary on tasks outside the optimization targets
- The model inherits limitations from its source models
- Performance on general tasks may differ from benchmark scores
## Citation
If you use this model, please cite the original source models and parrotrouter.com
## Note
This model is provided for research purposes. Always validate performance on your specific use case before deployment. |