PheonixM commited on
Commit
5daf8b0
·
verified ·
1 Parent(s): e0ab7f9

Pushing first agent

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.50 +/- 15.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b185817be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b185817bec0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b185817bf60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b1858184040>", "_build": "<function ActorCriticPolicy._build at 0x7b18581840e0>", "forward": "<function ActorCriticPolicy.forward at 0x7b1858184180>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1858184220>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b18581842c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b1858184360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1858184400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b18581844a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1858184540>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b18585888c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1751280448234877153, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAznWE9ZkiQP6I0iD5Q50i/era4PSu/3D0AAAAAAAAAAGZIPrzbarU/2n8UvxlPBD6W2DM8jW+rPQAAAAAAAAAAE+YZPpymKLwaUBo70+/ZufXpi71QFZG6AACAPwAAgD96LBO+BYX3uxL3OrwAeI66kGVLPcZVbzsAAIA/AACAP0ZAIj7qtX8+ApKzvU44nL4Pen89S77svAAAAAAAAAAApi7gvVZDBT+j+9y8AToDvz1ps7129KY9AAAAAAAAAAAzXps812swPltxRr3mN8S+C5UVPOOizDwAAAAAAAAAAJp+J70pXFq6+5hzM6moJS87cpm7YAG7swAAgD8AAIA/846OPtLQzD7VwGa+MEvOvhz9aT14wZi9AAAAAAAAAABGSTC+VDWevDjN7jqqO+c5Jy8OPqC/groAAIA/AACAP3OZmT32FBa6kEF/vWaNCTvfsQK62z3wOwAAgD8AAAAAzXlUPXsOrbro7WE4rek5MzkWhjnPeIG3AACAPwAAgD/athU+D6sGvJ61LDu2c4W5gT5evaCwYboAAIA/AACAPxPaTT4Uka+89IJJO8HGoLnSxxi+WUyBugAAgD8AAIA/wE3/vRmHDT5jghE+jV1ovnjrUDzte508AAAAAAAAAAAzrZk9pNoMu/7CZLyJREM8izfWuxZpLD0AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDrYPGyX6MAWyUS8GMAXSUR0Cgj9okJKJ3dX2UKGgGR0Bx1DkaMrEtaAdL3mgIR0CgkC3j+717dX2UKGgGR0BxsbBUJfICaAdLyGgIR0CgkNRvFWGRdX2UKGgGR0BwkLSx7iQ1aAdLs2gIR0CgkObobGWEdX2UKGgGR0BwPBtk4FRpaAdL12gIR0CgkQ7el9BsdX2UKGgGR0BxmrwH7gsLaAdLxGgIR0CgkSgJswcpdX2UKGgGR0BwY/+yZ8a5aAdL2mgIR0CgkYz1CgK4dX2UKGgGR0Bj89TaTOgQaAdN6ANoCEdAoJHpO1v2oXV9lChoBkdAcLTCdBjWkWgHS8VoCEdAoJINN8E3bXV9lChoBkdAcPQesPrfL2gHS75oCEdAoJJOAG0NSnV9lChoBkdAcWH+JP69CmgHS8doCEdAoJJ8yLyc1HV9lChoBkdAc0XuuzQeFWgHS8toCEdAoJKRh4MWoHV9lChoBkdAZX1XXiBGx2gHTegDaAhHQKCSo1lXiit1fZQoaAZHQG9KvszEaVFoB0voaAhHQKCS7kjopx51fZQoaAZHQGbuhrvb48FoB03oA2gIR0CgkydCNS62dX2UKGgGR0BywlsVLzwuaAdL7GgIR0Cgk1A3T/hmdX2UKGgGR0BxgsImgJ1JaAdLxmgIR0Cgk4FtbcGkdX2UKGgGR0BxPggow22oaAdL0GgIR0Cgk5GkFfRedX2UKGgGR0Bjp/GXHBDYaAdN6ANoCEdAoJOVszl90HV9lChoBkdAcXoOWBz3iGgHS8ZoCEdAoJOjAk9lmXV9lChoBkdAbjc8bJfYz2gHS8VoCEdAoJOw2MsH0XV9lChoBkdAcriBxgiNbWgHS9FoCEdAoJQis8xKx3V9lChoBkdAb2dM2WIGhWgHS8VoCEdAoJRJ7Z39rHV9lChoBkdAcP8rE9+w1WgHS8VoCEdAoJRoYR/ViHV9lChoBkdAcG/+6Ae7tmgHS8xoCEdAoJTxusLfDXV9lChoBkdAcC9ODJ2dNGgHS9doCEdAoJUBm7J4jnV9lChoBkdAcFOTnaFmF2gHS+xoCEdAoJUb4BV+7XV9lChoBkdAcJS8mrsByWgHS8BoCEdAoJUmt2cJ+nV9lChoBkdAceUOLBKtgmgHS7poCEdAoJW6qXF98nV9lChoBkdAcXz5Jbt7bGgHS+BoCEdAoJXCVSn+AHV9lChoBkdAcO2grH2h7GgHS9doCEdAoJYUer+5v3V9lChoBkdAcHdGgzxgA2gHS+5oCEdAoJYbCpFTenV9lChoBkdAcXHHbAUL2GgHS85oCEdAoJYdYU34sXV9lChoBkdAcwLDL8rI52gHS/RoCEdAoJZfBeokzHV9lChoBkdAct1cDKYAsGgHS+1oCEdAoJZrFhoduHV9lChoBkdAcVXA6uGKymgHS7NoCEdAoJZ1tygf2nV9lChoBkdAcUDxBE8aGmgHS+RoCEdAoJbbRYzSC3V9lChoBkdAcYmX7+DODGgHS+JoCEdAoJcjSE12q3V9lChoBkdAYjpKKYRdyGgHTegDaAhHQKCXMFpwjt51fZQoaAZHQG7rrs0HhS9oB0vDaAhHQKCXUQbMott1fZQoaAZHQG/z6tknTiNoB0vAaAhHQKCXVj1f3N91fZQoaAZHQG+pI1tO2y9oB0vRaAhHQKCXmJ+lTFV1fZQoaAZHQHJe8g+yJKtoB0vvaAhHQKCX818b70p1fZQoaAZHQHH5/A44p+doB0vGaAhHQKCYAuGsV+J1fZQoaAZHQHCVPDxb0OFoB0vSaAhHQKCYK8qWkad1fZQoaAZHQHEyFpXZGrloB0vYaAhHQKCYi9bHIZJ1fZQoaAZHQHAoJgPVd5ZoB0vMaAhHQKCYuiqQzUJ1fZQoaAZHQHF/WHxjJ+5oB0vmaAhHQKCYvAUtZmt1fZQoaAZHQHDQ3JkoWpJoB0vMaAhHQKCYxZaFEiN1fZQoaAZHQHOzyhSLqD9oB0vxaAhHQKCY1cVxjrl1fZQoaAZHQHE4so2GZeBoB0u6aAhHQKCY9Jrcj7h1fZQoaAZHQHGhNo8IRiBoB0vraAhHQKCZBTER8MN1fZQoaAZHQHA9Z4B3iaRoB0uwaAhHQKCZPllK9PF1fZQoaAZHQG7awswtapxoB0vCaAhHQKCZQ5ggHNZ1fZQoaAZHQHDU2TxG2CxoB0u8aAhHQKCZXwIdELJ1fZQoaAZHQHNwilrM1TBoB0vgaAhHQKCZpb48EFJ1fZQoaAZHQHE0XTy8SPFoB0uqaAhHQKCaDlJYkmh1fZQoaAZHQHPEBXwLE1loB0u/aAhHQKCaIZkTYd11fZQoaAZHQHFjK3NLUTdoB0v/aAhHQKCacCEHt4R1fZQoaAZHQHGBptelbeNoB0viaAhHQKCahVuJk5J1fZQoaAZHQHCiSnpB5X5oB0vGaAhHQKCbLyxRl6J1fZQoaAZHQHDGp0W/JvJoB0vaaAhHQKCbSOdXko51fZQoaAZHQHEqQmeDnNhoB0vYaAhHQKCbg59Vmz11fZQoaAZHQHDUSylenhtoB0u+aAhHQKCb59ZRsM11fZQoaAZHQHBP8bFS88NoB0vcaAhHQKCb7WkJrtV1fZQoaAZHQHJNCylenhtoB0v4aAhHQKCcLyqdYnx1fZQoaAZHQHD2sQEpy6toB0vSaAhHQKCcQc4HX3B1fZQoaAZHQHD2aa1Cw8poB0vLaAhHQKCcRjoZAIJ1fZQoaAZHQHHcuUY8+zNoB0vFaAhHQKCcjt+kP+Z1fZQoaAZHQHCWkqDsdDJoB0uraAhHQKCc0n6VMVV1fZQoaAZHQHMTPlIVdopoB00bAWgIR0CgnPbKRuCPdX2UKGgGR0BwlViONo8IaAdLv2gIR0CgnQWoNutPdX2UKGgGR0Bv+s3l0YCRaAdLvmgIR0CgnZU5uIhydX2UKGgGR0ByKr2K2rn1aAdL72gIR0Cgnmg/s3Q2dX2UKGgGR0ByHaZUkv9MaAdLy2gIR0Cgnq2J79hrdX2UKGgGR0BzOdCfHxSYaAdL1mgIR0CgnsNEXtSidX2UKGgGR0BwZN0xM36zaAdLv2gIR0Cgnzl18stkdX2UKGgGR0Bg5ur2g398aAdN6ANoCEdAoJ+jzZpSJnV9lChoBkdAcQ717pmmL2gHS9hoCEdAoJ+k9fTkQ3V9lChoBkdAc0arcCYCyWgHS/hoCEdAoJ/LtRekYXV9lChoBkdAcx5YpDu0C2gHS75oCEdAoJ/RxrBTGnV9lChoBkdAcwgFc6eXiWgHS/doCEdAoKAOSGJvYXV9lChoBkdAc1nNEw35vmgHS+5oCEdAoKAxJ9RaYHV9lChoBkdAcUZ8IzFdcGgHS9doCEdAoKA+TLW7OHV9lChoBkdAci0PDYRNAWgHS9poCEdAoKBSeTV2BHV9lChoBkdAbyi3H7xd6mgHS8poCEdAoKEfdGiHqXV9lChoBkdAcNSmP5pJw2gHS/xoCEdAoKE0g8r7O3V9lChoBkdAcIftV7x/eGgHS9ZoCEdAoKF5i/fwZ3V9lChoBkdAc3gpKjBVMmgHS8RoCEdAoKJp8fFJhHV9lChoBkdAchmxDst03mgHS/ZoCEdAoKKNfzBhyHV9lChoBkdAcuaPqcEvCmgHS9toCEdAoKKZUaQ3gnV9lChoBkdAbuCgh8pkPWgHS8VoCEdAoKLAL7XQMXV9lChoBkdAcfoHv+fh/GgHS+1oCEdAoKLfKnvUjXV9lChoBkdAcRkI42jwhGgHS/RoCEdAoKMpKHwgDHV9lChoBkdAcrV3ai9Iw2gHS9BoCEdAoKM8O5J9RnV9lChoBkdAcqUZ3cHnlmgHS+9oCEdAoKODPD50sHV9lChoBkdAcfbPCVKPGWgHS/RoCEdAoKOkehf0E3V9lChoBkdAcSJb/wRXfmgHS75oCEdAoKP227Wd3HV9lChoBkdAcjAyOJcgQ2gHTQQBaAhHQKCk5WattAN1fZQoaAZHQHCKUK7ZnL9oB0u0aAhHQKClMAIY3vR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c4b9307f9e4578001f42acea58c22e15893adc5fdd0093ac71afc3c3f0ee597
3
+ size 148011
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b185817be20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b185817bec0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b185817bf60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b1858184040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b18581840e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b1858184180>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1858184220>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b18581842c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b1858184360>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1858184400>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b18581844a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1858184540>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b18585888c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1751280448234877153,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAznWE9ZkiQP6I0iD5Q50i/era4PSu/3D0AAAAAAAAAAGZIPrzbarU/2n8UvxlPBD6W2DM8jW+rPQAAAAAAAAAAE+YZPpymKLwaUBo70+/ZufXpi71QFZG6AACAPwAAgD96LBO+BYX3uxL3OrwAeI66kGVLPcZVbzsAAIA/AACAP0ZAIj7qtX8+ApKzvU44nL4Pen89S77svAAAAAAAAAAApi7gvVZDBT+j+9y8AToDvz1ps7129KY9AAAAAAAAAAAzXps812swPltxRr3mN8S+C5UVPOOizDwAAAAAAAAAAJp+J70pXFq6+5hzM6moJS87cpm7YAG7swAAgD8AAIA/846OPtLQzD7VwGa+MEvOvhz9aT14wZi9AAAAAAAAAABGSTC+VDWevDjN7jqqO+c5Jy8OPqC/groAAIA/AACAP3OZmT32FBa6kEF/vWaNCTvfsQK62z3wOwAAgD8AAAAAzXlUPXsOrbro7WE4rek5MzkWhjnPeIG3AACAPwAAgD/athU+D6sGvJ61LDu2c4W5gT5evaCwYboAAIA/AACAPxPaTT4Uka+89IJJO8HGoLnSxxi+WUyBugAAgD8AAIA/wE3/vRmHDT5jghE+jV1ovnjrUDzte508AAAAAAAAAAAzrZk9pNoMu/7CZLyJREM8izfWuxZpLD0AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDrYPGyX6MAWyUS8GMAXSUR0Cgj9okJKJ3dX2UKGgGR0Bx1DkaMrEtaAdL3mgIR0CgkC3j+717dX2UKGgGR0BxsbBUJfICaAdLyGgIR0CgkNRvFWGRdX2UKGgGR0BwkLSx7iQ1aAdLs2gIR0CgkObobGWEdX2UKGgGR0BwPBtk4FRpaAdL12gIR0CgkQ7el9BsdX2UKGgGR0BxmrwH7gsLaAdLxGgIR0CgkSgJswcpdX2UKGgGR0BwY/+yZ8a5aAdL2mgIR0CgkYz1CgK4dX2UKGgGR0Bj89TaTOgQaAdN6ANoCEdAoJHpO1v2oXV9lChoBkdAcLTCdBjWkWgHS8VoCEdAoJINN8E3bXV9lChoBkdAcPQesPrfL2gHS75oCEdAoJJOAG0NSnV9lChoBkdAcWH+JP69CmgHS8doCEdAoJJ8yLyc1HV9lChoBkdAc0XuuzQeFWgHS8toCEdAoJKRh4MWoHV9lChoBkdAZX1XXiBGx2gHTegDaAhHQKCSo1lXiit1fZQoaAZHQG9KvszEaVFoB0voaAhHQKCS7kjopx51fZQoaAZHQGbuhrvb48FoB03oA2gIR0CgkydCNS62dX2UKGgGR0BywlsVLzwuaAdL7GgIR0Cgk1A3T/hmdX2UKGgGR0BxgsImgJ1JaAdLxmgIR0Cgk4FtbcGkdX2UKGgGR0BxPggow22oaAdL0GgIR0Cgk5GkFfRedX2UKGgGR0Bjp/GXHBDYaAdN6ANoCEdAoJOVszl90HV9lChoBkdAcXoOWBz3iGgHS8ZoCEdAoJOjAk9lmXV9lChoBkdAbjc8bJfYz2gHS8VoCEdAoJOw2MsH0XV9lChoBkdAcriBxgiNbWgHS9FoCEdAoJQis8xKx3V9lChoBkdAb2dM2WIGhWgHS8VoCEdAoJRJ7Z39rHV9lChoBkdAcP8rE9+w1WgHS8VoCEdAoJRoYR/ViHV9lChoBkdAcG/+6Ae7tmgHS8xoCEdAoJTxusLfDXV9lChoBkdAcC9ODJ2dNGgHS9doCEdAoJUBm7J4jnV9lChoBkdAcFOTnaFmF2gHS+xoCEdAoJUb4BV+7XV9lChoBkdAcJS8mrsByWgHS8BoCEdAoJUmt2cJ+nV9lChoBkdAceUOLBKtgmgHS7poCEdAoJW6qXF98nV9lChoBkdAcXz5Jbt7bGgHS+BoCEdAoJXCVSn+AHV9lChoBkdAcO2grH2h7GgHS9doCEdAoJYUer+5v3V9lChoBkdAcHdGgzxgA2gHS+5oCEdAoJYbCpFTenV9lChoBkdAcXHHbAUL2GgHS85oCEdAoJYdYU34sXV9lChoBkdAcwLDL8rI52gHS/RoCEdAoJZfBeokzHV9lChoBkdAct1cDKYAsGgHS+1oCEdAoJZrFhoduHV9lChoBkdAcVXA6uGKymgHS7NoCEdAoJZ1tygf2nV9lChoBkdAcUDxBE8aGmgHS+RoCEdAoJbbRYzSC3V9lChoBkdAcYmX7+DODGgHS+JoCEdAoJcjSE12q3V9lChoBkdAYjpKKYRdyGgHTegDaAhHQKCXMFpwjt51fZQoaAZHQG7rrs0HhS9oB0vDaAhHQKCXUQbMott1fZQoaAZHQG/z6tknTiNoB0vAaAhHQKCXVj1f3N91fZQoaAZHQG+pI1tO2y9oB0vRaAhHQKCXmJ+lTFV1fZQoaAZHQHJe8g+yJKtoB0vvaAhHQKCX818b70p1fZQoaAZHQHH5/A44p+doB0vGaAhHQKCYAuGsV+J1fZQoaAZHQHCVPDxb0OFoB0vSaAhHQKCYK8qWkad1fZQoaAZHQHEyFpXZGrloB0vYaAhHQKCYi9bHIZJ1fZQoaAZHQHAoJgPVd5ZoB0vMaAhHQKCYuiqQzUJ1fZQoaAZHQHF/WHxjJ+5oB0vmaAhHQKCYvAUtZmt1fZQoaAZHQHDQ3JkoWpJoB0vMaAhHQKCYxZaFEiN1fZQoaAZHQHOzyhSLqD9oB0vxaAhHQKCY1cVxjrl1fZQoaAZHQHE4so2GZeBoB0u6aAhHQKCY9Jrcj7h1fZQoaAZHQHGhNo8IRiBoB0vraAhHQKCZBTER8MN1fZQoaAZHQHA9Z4B3iaRoB0uwaAhHQKCZPllK9PF1fZQoaAZHQG7awswtapxoB0vCaAhHQKCZQ5ggHNZ1fZQoaAZHQHDU2TxG2CxoB0u8aAhHQKCZXwIdELJ1fZQoaAZHQHNwilrM1TBoB0vgaAhHQKCZpb48EFJ1fZQoaAZHQHE0XTy8SPFoB0uqaAhHQKCaDlJYkmh1fZQoaAZHQHPEBXwLE1loB0u/aAhHQKCaIZkTYd11fZQoaAZHQHFjK3NLUTdoB0v/aAhHQKCacCEHt4R1fZQoaAZHQHGBptelbeNoB0viaAhHQKCahVuJk5J1fZQoaAZHQHCiSnpB5X5oB0vGaAhHQKCbLyxRl6J1fZQoaAZHQHDGp0W/JvJoB0vaaAhHQKCbSOdXko51fZQoaAZHQHEqQmeDnNhoB0vYaAhHQKCbg59Vmz11fZQoaAZHQHDUSylenhtoB0u+aAhHQKCb59ZRsM11fZQoaAZHQHBP8bFS88NoB0vcaAhHQKCb7WkJrtV1fZQoaAZHQHJNCylenhtoB0v4aAhHQKCcLyqdYnx1fZQoaAZHQHD2sQEpy6toB0vSaAhHQKCcQc4HX3B1fZQoaAZHQHD2aa1Cw8poB0vLaAhHQKCcRjoZAIJ1fZQoaAZHQHHcuUY8+zNoB0vFaAhHQKCcjt+kP+Z1fZQoaAZHQHCWkqDsdDJoB0uraAhHQKCc0n6VMVV1fZQoaAZHQHMTPlIVdopoB00bAWgIR0CgnPbKRuCPdX2UKGgGR0BwlViONo8IaAdLv2gIR0CgnQWoNutPdX2UKGgGR0Bv+s3l0YCRaAdLvmgIR0CgnZU5uIhydX2UKGgGR0ByKr2K2rn1aAdL72gIR0Cgnmg/s3Q2dX2UKGgGR0ByHaZUkv9MaAdLy2gIR0Cgnq2J79hrdX2UKGgGR0BzOdCfHxSYaAdL1mgIR0CgnsNEXtSidX2UKGgGR0BwZN0xM36zaAdLv2gIR0Cgnzl18stkdX2UKGgGR0Bg5ur2g398aAdN6ANoCEdAoJ+jzZpSJnV9lChoBkdAcQ717pmmL2gHS9hoCEdAoJ+k9fTkQ3V9lChoBkdAc0arcCYCyWgHS/hoCEdAoJ/LtRekYXV9lChoBkdAcx5YpDu0C2gHS75oCEdAoJ/RxrBTGnV9lChoBkdAcwgFc6eXiWgHS/doCEdAoKAOSGJvYXV9lChoBkdAc1nNEw35vmgHS+5oCEdAoKAxJ9RaYHV9lChoBkdAcUZ8IzFdcGgHS9doCEdAoKA+TLW7OHV9lChoBkdAci0PDYRNAWgHS9poCEdAoKBSeTV2BHV9lChoBkdAbyi3H7xd6mgHS8poCEdAoKEfdGiHqXV9lChoBkdAcNSmP5pJw2gHS/xoCEdAoKE0g8r7O3V9lChoBkdAcIftV7x/eGgHS9ZoCEdAoKF5i/fwZ3V9lChoBkdAc3gpKjBVMmgHS8RoCEdAoKJp8fFJhHV9lChoBkdAchmxDst03mgHS/ZoCEdAoKKNfzBhyHV9lChoBkdAcuaPqcEvCmgHS9toCEdAoKKZUaQ3gnV9lChoBkdAbuCgh8pkPWgHS8VoCEdAoKLAL7XQMXV9lChoBkdAcfoHv+fh/GgHS+1oCEdAoKLfKnvUjXV9lChoBkdAcRkI42jwhGgHS/RoCEdAoKMpKHwgDHV9lChoBkdAcrV3ai9Iw2gHS9BoCEdAoKM8O5J9RnV9lChoBkdAcqUZ3cHnlmgHS+9oCEdAoKODPD50sHV9lChoBkdAcfbPCVKPGWgHS/RoCEdAoKOkehf0E3V9lChoBkdAcSJb/wRXfmgHS75oCEdAoKP227Wd3HV9lChoBkdAcjAyOJcgQ2gHTQQBaAhHQKCk5WattAN1fZQoaAZHQHCKUK7ZnL9oB0u0aAhHQKClMAIY3vR1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 380,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c00169cb289cde2bcaf393b3d5a68fc6fe94b7e931992be57226c1b557a490f
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f866687ea6385eddc1f60a6f024ab5115da44788db7c68dce37aa8f2799a2f39
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
2
+ - Python: 3.11.13
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a31c8abe9fc569d9eb05130c759f9fe1919a08bd02f7e1f6116c40500d1c59c
3
+ size 157927
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.4970941, "std_reward": 15.184418048184156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-06-30T11:23:34.899963"}