Pushing first agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 273.50 +/- 15.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b185817be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b185817bec0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b185817bf60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b1858184040>", "_build": "<function ActorCriticPolicy._build at 0x7b18581840e0>", "forward": "<function ActorCriticPolicy.forward at 0x7b1858184180>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1858184220>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b18581842c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b1858184360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1858184400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b18581844a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1858184540>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b18585888c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1751280448234877153, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAznWE9ZkiQP6I0iD5Q50i/era4PSu/3D0AAAAAAAAAAGZIPrzbarU/2n8UvxlPBD6W2DM8jW+rPQAAAAAAAAAAE+YZPpymKLwaUBo70+/ZufXpi71QFZG6AACAPwAAgD96LBO+BYX3uxL3OrwAeI66kGVLPcZVbzsAAIA/AACAP0ZAIj7qtX8+ApKzvU44nL4Pen89S77svAAAAAAAAAAApi7gvVZDBT+j+9y8AToDvz1ps7129KY9AAAAAAAAAAAzXps812swPltxRr3mN8S+C5UVPOOizDwAAAAAAAAAAJp+J70pXFq6+5hzM6moJS87cpm7YAG7swAAgD8AAIA/846OPtLQzD7VwGa+MEvOvhz9aT14wZi9AAAAAAAAAABGSTC+VDWevDjN7jqqO+c5Jy8OPqC/groAAIA/AACAP3OZmT32FBa6kEF/vWaNCTvfsQK62z3wOwAAgD8AAAAAzXlUPXsOrbro7WE4rek5MzkWhjnPeIG3AACAPwAAgD/athU+D6sGvJ61LDu2c4W5gT5evaCwYboAAIA/AACAPxPaTT4Uka+89IJJO8HGoLnSxxi+WUyBugAAgD8AAIA/wE3/vRmHDT5jghE+jV1ovnjrUDzte508AAAAAAAAAAAzrZk9pNoMu/7CZLyJREM8izfWuxZpLD0AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDrYPGyX6MAWyUS8GMAXSUR0Cgj9okJKJ3dX2UKGgGR0Bx1DkaMrEtaAdL3mgIR0CgkC3j+717dX2UKGgGR0BxsbBUJfICaAdLyGgIR0CgkNRvFWGRdX2UKGgGR0BwkLSx7iQ1aAdLs2gIR0CgkObobGWEdX2UKGgGR0BwPBtk4FRpaAdL12gIR0CgkQ7el9BsdX2UKGgGR0BxmrwH7gsLaAdLxGgIR0CgkSgJswcpdX2UKGgGR0BwY/+yZ8a5aAdL2mgIR0CgkYz1CgK4dX2UKGgGR0Bj89TaTOgQaAdN6ANoCEdAoJHpO1v2oXV9lChoBkdAcLTCdBjWkWgHS8VoCEdAoJINN8E3bXV9lChoBkdAcPQesPrfL2gHS75oCEdAoJJOAG0NSnV9lChoBkdAcWH+JP69CmgHS8doCEdAoJJ8yLyc1HV9lChoBkdAc0XuuzQeFWgHS8toCEdAoJKRh4MWoHV9lChoBkdAZX1XXiBGx2gHTegDaAhHQKCSo1lXiit1fZQoaAZHQG9KvszEaVFoB0voaAhHQKCS7kjopx51fZQoaAZHQGbuhrvb48FoB03oA2gIR0CgkydCNS62dX2UKGgGR0BywlsVLzwuaAdL7GgIR0Cgk1A3T/hmdX2UKGgGR0BxgsImgJ1JaAdLxmgIR0Cgk4FtbcGkdX2UKGgGR0BxPggow22oaAdL0GgIR0Cgk5GkFfRedX2UKGgGR0Bjp/GXHBDYaAdN6ANoCEdAoJOVszl90HV9lChoBkdAcXoOWBz3iGgHS8ZoCEdAoJOjAk9lmXV9lChoBkdAbjc8bJfYz2gHS8VoCEdAoJOw2MsH0XV9lChoBkdAcriBxgiNbWgHS9FoCEdAoJQis8xKx3V9lChoBkdAb2dM2WIGhWgHS8VoCEdAoJRJ7Z39rHV9lChoBkdAcP8rE9+w1WgHS8VoCEdAoJRoYR/ViHV9lChoBkdAcG/+6Ae7tmgHS8xoCEdAoJTxusLfDXV9lChoBkdAcC9ODJ2dNGgHS9doCEdAoJUBm7J4jnV9lChoBkdAcFOTnaFmF2gHS+xoCEdAoJUb4BV+7XV9lChoBkdAcJS8mrsByWgHS8BoCEdAoJUmt2cJ+nV9lChoBkdAceUOLBKtgmgHS7poCEdAoJW6qXF98nV9lChoBkdAcXz5Jbt7bGgHS+BoCEdAoJXCVSn+AHV9lChoBkdAcO2grH2h7GgHS9doCEdAoJYUer+5v3V9lChoBkdAcHdGgzxgA2gHS+5oCEdAoJYbCpFTenV9lChoBkdAcXHHbAUL2GgHS85oCEdAoJYdYU34sXV9lChoBkdAcwLDL8rI52gHS/RoCEdAoJZfBeokzHV9lChoBkdAct1cDKYAsGgHS+1oCEdAoJZrFhoduHV9lChoBkdAcVXA6uGKymgHS7NoCEdAoJZ1tygf2nV9lChoBkdAcUDxBE8aGmgHS+RoCEdAoJbbRYzSC3V9lChoBkdAcYmX7+DODGgHS+JoCEdAoJcjSE12q3V9lChoBkdAYjpKKYRdyGgHTegDaAhHQKCXMFpwjt51fZQoaAZHQG7rrs0HhS9oB0vDaAhHQKCXUQbMott1fZQoaAZHQG/z6tknTiNoB0vAaAhHQKCXVj1f3N91fZQoaAZHQG+pI1tO2y9oB0vRaAhHQKCXmJ+lTFV1fZQoaAZHQHJe8g+yJKtoB0vvaAhHQKCX818b70p1fZQoaAZHQHH5/A44p+doB0vGaAhHQKCYAuGsV+J1fZQoaAZHQHCVPDxb0OFoB0vSaAhHQKCYK8qWkad1fZQoaAZHQHEyFpXZGrloB0vYaAhHQKCYi9bHIZJ1fZQoaAZHQHAoJgPVd5ZoB0vMaAhHQKCYuiqQzUJ1fZQoaAZHQHF/WHxjJ+5oB0vmaAhHQKCYvAUtZmt1fZQoaAZHQHDQ3JkoWpJoB0vMaAhHQKCYxZaFEiN1fZQoaAZHQHOzyhSLqD9oB0vxaAhHQKCY1cVxjrl1fZQoaAZHQHE4so2GZeBoB0u6aAhHQKCY9Jrcj7h1fZQoaAZHQHGhNo8IRiBoB0vraAhHQKCZBTER8MN1fZQoaAZHQHA9Z4B3iaRoB0uwaAhHQKCZPllK9PF1fZQoaAZHQG7awswtapxoB0vCaAhHQKCZQ5ggHNZ1fZQoaAZHQHDU2TxG2CxoB0u8aAhHQKCZXwIdELJ1fZQoaAZHQHNwilrM1TBoB0vgaAhHQKCZpb48EFJ1fZQoaAZHQHE0XTy8SPFoB0uqaAhHQKCaDlJYkmh1fZQoaAZHQHPEBXwLE1loB0u/aAhHQKCaIZkTYd11fZQoaAZHQHFjK3NLUTdoB0v/aAhHQKCacCEHt4R1fZQoaAZHQHGBptelbeNoB0viaAhHQKCahVuJk5J1fZQoaAZHQHCiSnpB5X5oB0vGaAhHQKCbLyxRl6J1fZQoaAZHQHDGp0W/JvJoB0vaaAhHQKCbSOdXko51fZQoaAZHQHEqQmeDnNhoB0vYaAhHQKCbg59Vmz11fZQoaAZHQHDUSylenhtoB0u+aAhHQKCb59ZRsM11fZQoaAZHQHBP8bFS88NoB0vcaAhHQKCb7WkJrtV1fZQoaAZHQHJNCylenhtoB0v4aAhHQKCcLyqdYnx1fZQoaAZHQHD2sQEpy6toB0vSaAhHQKCcQc4HX3B1fZQoaAZHQHD2aa1Cw8poB0vLaAhHQKCcRjoZAIJ1fZQoaAZHQHHcuUY8+zNoB0vFaAhHQKCcjt+kP+Z1fZQoaAZHQHCWkqDsdDJoB0uraAhHQKCc0n6VMVV1fZQoaAZHQHMTPlIVdopoB00bAWgIR0CgnPbKRuCPdX2UKGgGR0BwlViONo8IaAdLv2gIR0CgnQWoNutPdX2UKGgGR0Bv+s3l0YCRaAdLvmgIR0CgnZU5uIhydX2UKGgGR0ByKr2K2rn1aAdL72gIR0Cgnmg/s3Q2dX2UKGgGR0ByHaZUkv9MaAdLy2gIR0Cgnq2J79hrdX2UKGgGR0BzOdCfHxSYaAdL1mgIR0CgnsNEXtSidX2UKGgGR0BwZN0xM36zaAdLv2gIR0Cgnzl18stkdX2UKGgGR0Bg5ur2g398aAdN6ANoCEdAoJ+jzZpSJnV9lChoBkdAcQ717pmmL2gHS9hoCEdAoJ+k9fTkQ3V9lChoBkdAc0arcCYCyWgHS/hoCEdAoJ/LtRekYXV9lChoBkdAcx5YpDu0C2gHS75oCEdAoJ/RxrBTGnV9lChoBkdAcwgFc6eXiWgHS/doCEdAoKAOSGJvYXV9lChoBkdAc1nNEw35vmgHS+5oCEdAoKAxJ9RaYHV9lChoBkdAcUZ8IzFdcGgHS9doCEdAoKA+TLW7OHV9lChoBkdAci0PDYRNAWgHS9poCEdAoKBSeTV2BHV9lChoBkdAbyi3H7xd6mgHS8poCEdAoKEfdGiHqXV9lChoBkdAcNSmP5pJw2gHS/xoCEdAoKE0g8r7O3V9lChoBkdAcIftV7x/eGgHS9ZoCEdAoKF5i/fwZ3V9lChoBkdAc3gpKjBVMmgHS8RoCEdAoKJp8fFJhHV9lChoBkdAchmxDst03mgHS/ZoCEdAoKKNfzBhyHV9lChoBkdAcuaPqcEvCmgHS9toCEdAoKKZUaQ3gnV9lChoBkdAbuCgh8pkPWgHS8VoCEdAoKLAL7XQMXV9lChoBkdAcfoHv+fh/GgHS+1oCEdAoKLfKnvUjXV9lChoBkdAcRkI42jwhGgHS/RoCEdAoKMpKHwgDHV9lChoBkdAcrV3ai9Iw2gHS9BoCEdAoKM8O5J9RnV9lChoBkdAcqUZ3cHnlmgHS+9oCEdAoKODPD50sHV9lChoBkdAcfbPCVKPGWgHS/RoCEdAoKOkehf0E3V9lChoBkdAcSJb/wRXfmgHS75oCEdAoKP227Wd3HV9lChoBkdAcjAyOJcgQ2gHTQQBaAhHQKCk5WattAN1fZQoaAZHQHCKUK7ZnL9oB0u0aAhHQKClMAIY3vR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c4b9307f9e4578001f42acea58c22e15893adc5fdd0093ac71afc3c3f0ee597
|
3 |
+
size 148011
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b185817be20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b185817bec0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b185817bf60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b1858184040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b18581840e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b1858184180>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1858184220>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b18581842c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b1858184360>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1858184400>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b18581844a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1858184540>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b18585888c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1751280448234877153,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAznWE9ZkiQP6I0iD5Q50i/era4PSu/3D0AAAAAAAAAAGZIPrzbarU/2n8UvxlPBD6W2DM8jW+rPQAAAAAAAAAAE+YZPpymKLwaUBo70+/ZufXpi71QFZG6AACAPwAAgD96LBO+BYX3uxL3OrwAeI66kGVLPcZVbzsAAIA/AACAP0ZAIj7qtX8+ApKzvU44nL4Pen89S77svAAAAAAAAAAApi7gvVZDBT+j+9y8AToDvz1ps7129KY9AAAAAAAAAAAzXps812swPltxRr3mN8S+C5UVPOOizDwAAAAAAAAAAJp+J70pXFq6+5hzM6moJS87cpm7YAG7swAAgD8AAIA/846OPtLQzD7VwGa+MEvOvhz9aT14wZi9AAAAAAAAAABGSTC+VDWevDjN7jqqO+c5Jy8OPqC/groAAIA/AACAP3OZmT32FBa6kEF/vWaNCTvfsQK62z3wOwAAgD8AAAAAzXlUPXsOrbro7WE4rek5MzkWhjnPeIG3AACAPwAAgD/athU+D6sGvJ61LDu2c4W5gT5evaCwYboAAIA/AACAPxPaTT4Uka+89IJJO8HGoLnSxxi+WUyBugAAgD8AAIA/wE3/vRmHDT5jghE+jV1ovnjrUDzte508AAAAAAAAAAAzrZk9pNoMu/7CZLyJREM8izfWuxZpLD0AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDrYPGyX6MAWyUS8GMAXSUR0Cgj9okJKJ3dX2UKGgGR0Bx1DkaMrEtaAdL3mgIR0CgkC3j+717dX2UKGgGR0BxsbBUJfICaAdLyGgIR0CgkNRvFWGRdX2UKGgGR0BwkLSx7iQ1aAdLs2gIR0CgkObobGWEdX2UKGgGR0BwPBtk4FRpaAdL12gIR0CgkQ7el9BsdX2UKGgGR0BxmrwH7gsLaAdLxGgIR0CgkSgJswcpdX2UKGgGR0BwY/+yZ8a5aAdL2mgIR0CgkYz1CgK4dX2UKGgGR0Bj89TaTOgQaAdN6ANoCEdAoJHpO1v2oXV9lChoBkdAcLTCdBjWkWgHS8VoCEdAoJINN8E3bXV9lChoBkdAcPQesPrfL2gHS75oCEdAoJJOAG0NSnV9lChoBkdAcWH+JP69CmgHS8doCEdAoJJ8yLyc1HV9lChoBkdAc0XuuzQeFWgHS8toCEdAoJKRh4MWoHV9lChoBkdAZX1XXiBGx2gHTegDaAhHQKCSo1lXiit1fZQoaAZHQG9KvszEaVFoB0voaAhHQKCS7kjopx51fZQoaAZHQGbuhrvb48FoB03oA2gIR0CgkydCNS62dX2UKGgGR0BywlsVLzwuaAdL7GgIR0Cgk1A3T/hmdX2UKGgGR0BxgsImgJ1JaAdLxmgIR0Cgk4FtbcGkdX2UKGgGR0BxPggow22oaAdL0GgIR0Cgk5GkFfRedX2UKGgGR0Bjp/GXHBDYaAdN6ANoCEdAoJOVszl90HV9lChoBkdAcXoOWBz3iGgHS8ZoCEdAoJOjAk9lmXV9lChoBkdAbjc8bJfYz2gHS8VoCEdAoJOw2MsH0XV9lChoBkdAcriBxgiNbWgHS9FoCEdAoJQis8xKx3V9lChoBkdAb2dM2WIGhWgHS8VoCEdAoJRJ7Z39rHV9lChoBkdAcP8rE9+w1WgHS8VoCEdAoJRoYR/ViHV9lChoBkdAcG/+6Ae7tmgHS8xoCEdAoJTxusLfDXV9lChoBkdAcC9ODJ2dNGgHS9doCEdAoJUBm7J4jnV9lChoBkdAcFOTnaFmF2gHS+xoCEdAoJUb4BV+7XV9lChoBkdAcJS8mrsByWgHS8BoCEdAoJUmt2cJ+nV9lChoBkdAceUOLBKtgmgHS7poCEdAoJW6qXF98nV9lChoBkdAcXz5Jbt7bGgHS+BoCEdAoJXCVSn+AHV9lChoBkdAcO2grH2h7GgHS9doCEdAoJYUer+5v3V9lChoBkdAcHdGgzxgA2gHS+5oCEdAoJYbCpFTenV9lChoBkdAcXHHbAUL2GgHS85oCEdAoJYdYU34sXV9lChoBkdAcwLDL8rI52gHS/RoCEdAoJZfBeokzHV9lChoBkdAct1cDKYAsGgHS+1oCEdAoJZrFhoduHV9lChoBkdAcVXA6uGKymgHS7NoCEdAoJZ1tygf2nV9lChoBkdAcUDxBE8aGmgHS+RoCEdAoJbbRYzSC3V9lChoBkdAcYmX7+DODGgHS+JoCEdAoJcjSE12q3V9lChoBkdAYjpKKYRdyGgHTegDaAhHQKCXMFpwjt51fZQoaAZHQG7rrs0HhS9oB0vDaAhHQKCXUQbMott1fZQoaAZHQG/z6tknTiNoB0vAaAhHQKCXVj1f3N91fZQoaAZHQG+pI1tO2y9oB0vRaAhHQKCXmJ+lTFV1fZQoaAZHQHJe8g+yJKtoB0vvaAhHQKCX818b70p1fZQoaAZHQHH5/A44p+doB0vGaAhHQKCYAuGsV+J1fZQoaAZHQHCVPDxb0OFoB0vSaAhHQKCYK8qWkad1fZQoaAZHQHEyFpXZGrloB0vYaAhHQKCYi9bHIZJ1fZQoaAZHQHAoJgPVd5ZoB0vMaAhHQKCYuiqQzUJ1fZQoaAZHQHF/WHxjJ+5oB0vmaAhHQKCYvAUtZmt1fZQoaAZHQHDQ3JkoWpJoB0vMaAhHQKCYxZaFEiN1fZQoaAZHQHOzyhSLqD9oB0vxaAhHQKCY1cVxjrl1fZQoaAZHQHE4so2GZeBoB0u6aAhHQKCY9Jrcj7h1fZQoaAZHQHGhNo8IRiBoB0vraAhHQKCZBTER8MN1fZQoaAZHQHA9Z4B3iaRoB0uwaAhHQKCZPllK9PF1fZQoaAZHQG7awswtapxoB0vCaAhHQKCZQ5ggHNZ1fZQoaAZHQHDU2TxG2CxoB0u8aAhHQKCZXwIdELJ1fZQoaAZHQHNwilrM1TBoB0vgaAhHQKCZpb48EFJ1fZQoaAZHQHE0XTy8SPFoB0uqaAhHQKCaDlJYkmh1fZQoaAZHQHPEBXwLE1loB0u/aAhHQKCaIZkTYd11fZQoaAZHQHFjK3NLUTdoB0v/aAhHQKCacCEHt4R1fZQoaAZHQHGBptelbeNoB0viaAhHQKCahVuJk5J1fZQoaAZHQHCiSnpB5X5oB0vGaAhHQKCbLyxRl6J1fZQoaAZHQHDGp0W/JvJoB0vaaAhHQKCbSOdXko51fZQoaAZHQHEqQmeDnNhoB0vYaAhHQKCbg59Vmz11fZQoaAZHQHDUSylenhtoB0u+aAhHQKCb59ZRsM11fZQoaAZHQHBP8bFS88NoB0vcaAhHQKCb7WkJrtV1fZQoaAZHQHJNCylenhtoB0v4aAhHQKCcLyqdYnx1fZQoaAZHQHD2sQEpy6toB0vSaAhHQKCcQc4HX3B1fZQoaAZHQHD2aa1Cw8poB0vLaAhHQKCcRjoZAIJ1fZQoaAZHQHHcuUY8+zNoB0vFaAhHQKCcjt+kP+Z1fZQoaAZHQHCWkqDsdDJoB0uraAhHQKCc0n6VMVV1fZQoaAZHQHMTPlIVdopoB00bAWgIR0CgnPbKRuCPdX2UKGgGR0BwlViONo8IaAdLv2gIR0CgnQWoNutPdX2UKGgGR0Bv+s3l0YCRaAdLvmgIR0CgnZU5uIhydX2UKGgGR0ByKr2K2rn1aAdL72gIR0Cgnmg/s3Q2dX2UKGgGR0ByHaZUkv9MaAdLy2gIR0Cgnq2J79hrdX2UKGgGR0BzOdCfHxSYaAdL1mgIR0CgnsNEXtSidX2UKGgGR0BwZN0xM36zaAdLv2gIR0Cgnzl18stkdX2UKGgGR0Bg5ur2g398aAdN6ANoCEdAoJ+jzZpSJnV9lChoBkdAcQ717pmmL2gHS9hoCEdAoJ+k9fTkQ3V9lChoBkdAc0arcCYCyWgHS/hoCEdAoJ/LtRekYXV9lChoBkdAcx5YpDu0C2gHS75oCEdAoJ/RxrBTGnV9lChoBkdAcwgFc6eXiWgHS/doCEdAoKAOSGJvYXV9lChoBkdAc1nNEw35vmgHS+5oCEdAoKAxJ9RaYHV9lChoBkdAcUZ8IzFdcGgHS9doCEdAoKA+TLW7OHV9lChoBkdAci0PDYRNAWgHS9poCEdAoKBSeTV2BHV9lChoBkdAbyi3H7xd6mgHS8poCEdAoKEfdGiHqXV9lChoBkdAcNSmP5pJw2gHS/xoCEdAoKE0g8r7O3V9lChoBkdAcIftV7x/eGgHS9ZoCEdAoKF5i/fwZ3V9lChoBkdAc3gpKjBVMmgHS8RoCEdAoKJp8fFJhHV9lChoBkdAchmxDst03mgHS/ZoCEdAoKKNfzBhyHV9lChoBkdAcuaPqcEvCmgHS9toCEdAoKKZUaQ3gnV9lChoBkdAbuCgh8pkPWgHS8VoCEdAoKLAL7XQMXV9lChoBkdAcfoHv+fh/GgHS+1oCEdAoKLfKnvUjXV9lChoBkdAcRkI42jwhGgHS/RoCEdAoKMpKHwgDHV9lChoBkdAcrV3ai9Iw2gHS9BoCEdAoKM8O5J9RnV9lChoBkdAcqUZ3cHnlmgHS+9oCEdAoKODPD50sHV9lChoBkdAcfbPCVKPGWgHS/RoCEdAoKOkehf0E3V9lChoBkdAcSJb/wRXfmgHS75oCEdAoKP227Wd3HV9lChoBkdAcjAyOJcgQ2gHTQQBaAhHQKCk5WattAN1fZQoaAZHQHCKUK7ZnL9oB0u0aAhHQKClMAIY3vR1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 380,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c00169cb289cde2bcaf393b3d5a68fc6fe94b7e931992be57226c1b557a490f
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f866687ea6385eddc1f60a6f024ab5115da44788db7c68dce37aa8f2799a2f39
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
|
2 |
+
- Python: 3.11.13
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.6.0+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.0.2
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a31c8abe9fc569d9eb05130c759f9fe1919a08bd02f7e1f6116c40500d1c59c
|
3 |
+
size 157927
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 273.4970941, "std_reward": 15.184418048184156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-06-30T11:23:34.899963"}
|