--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: fafe2507-c35f-4499-822e-38a96e48c8f4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml adapter: lora auto_find_batch_size: true base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 51b6f30e316baa4d_train_data.json ds_type: json format: custom path: /workspace/input_data/51b6f30e316baa4d_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json eval_max_new_tokens: 128 eval_sample_packing: false eval_steps: 10 eval_table_size: null flash_attention: true fp16: false gpu_memory_limit: 80GiB gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: PhoenixB/fafe2507-c35f-4499-822e-38a96e48c8f4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2e-4 liger_fused_linear_cross_entropy: true liger_glu_activation: true liger_layer_norm: true liger_rms_norm: true liger_rope: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/51b6f30e316baa4d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 2048 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e25ed374-80f2-4135-b735-30345241b0e6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e25ed374-80f2-4135-b735-30345241b0e6 warmup_steps: 10 weight_decay: 0.0 ```

# fafe2507-c35f-4499-822e-38a96e48c8f4 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | 3.3796 | | 3.2285 | 0.0171 | 10 | 3.3232 | | 3.2074 | 0.0342 | 20 | 3.2459 | | 3.1801 | 0.0513 | 30 | 3.2354 | | 3.3996 | 0.0684 | 40 | 3.2215 | | 3.5703 | 0.0855 | 50 | 3.2112 | | 3.1746 | 0.1026 | 60 | 3.1977 | | 3.1637 | 0.1197 | 70 | 3.1740 | | 3.0516 | 0.1368 | 80 | 3.1484 | | 3.1172 | 0.1539 | 90 | 3.1574 | | 3.4377 | 0.1710 | 100 | 3.1491 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3