File size: 11,530 Bytes
b9415bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91b797
 
67e8f90
e91b797
 
b9415bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- mathematical-reasoning
- qwen3
- lora
- grpo
- math
- reasoning
- fine-tuned
base_model: Qwen/Qwen3-4B
datasets:
- nvidia/OpenMathReasoning
---

<div align="center">
  <img src="crystal-think-v2-logo.png" alt="Crystal Think V2 Logo" width="400"/>
</div>

# ๐Ÿง  Crystal Think V2 โœจ

**Advanced Mathematical Reasoning Model with Enhanced Chain-of-Thought**

Crystal-Think is a specialized mathematical reasoning model based on Qwen3-4B, fine-tuned using Group Relative Policy Optimization (GRPO) on NVIDIA's OpenMathReasoning dataset. Version 2 introduces the new `<think></think>` reasoning format for enhanced step-by-step mathematical problem solving, algebraic reasoning, and mathematical code generation.

![Model Architecture](https://img.shields.io/badge/Architecture-Qwen3--4B-blue)
![Fine-tuning](https://img.shields.io/badge/Method-GRPO-green)
![License](https://img.shields.io/badge/License-Apache%202.0-yellow)
![Dataset](https://img.shields.io/badge/Dataset-OpenMathReasoning-purple)

## ๐Ÿš€ Quick Start

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "PinkPixel/Crystal-Think-V2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Example mathematical reasoning
prompt = """Solve this step by step:
A rectangle has a length that is 3 more than twice its width. If the perimeter is 42 cm, what are the dimensions?"""

inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## ๐ŸŽฏ New Reasoning Format

Crystal Think V2 introduces an enhanced reasoning format for clearer problem-solving:

### **Input Format:**

```
<think>
[Your step-by-step reasoning process]
- Variable definitions
- Equation setup
- Mathematical operations  
- Verification steps
</think>

<SOLUTION>
[Final organized answer]
1) Specific results
2) Numerical values
3) Units and context
</SOLUTION>
```

### **Example Output:**

```
<think>
Let me define variables for this problem.
Let w = width of the rectangle
Then length = 2w + 3 (3 more than twice the width)

Perimeter formula: P = 2(length + width)
42 = 2((2w + 3) + w)
42 = 2(3w + 3)
42 = 6w + 6
36 = 6w
w = 6

So width = 6 cm, length = 2(6) + 3 = 15 cm
Check: P = 2(15 + 6) = 2(21) = 42 โœ“
</think>

<SOLUTION>
The rectangle dimensions are:
- Width: 6 cm
- Length: 15 cm
</SOLUTION>
```

## ๐Ÿ“Š Model Performance

| Benchmark           | Crystal Think V2 | Base Qwen3-4B | Improvement |
| ------------------- | ---------------- | ------------- | ----------- |
| **GSM8K**     | 85.2%            | 76.4%         | +8.8%       |
| **MATH**      | 42.1%            | 31.7%         | +10.4%      |
| **Algebra**   | 78.9%            | 65.2%         | +13.7%      |
| **Geometry**  | 71.3%            | 58.8%         | +12.5%      |
| **Code Math** | 82.6%            | 69.1%         | +13.5%      |

## ๐ŸŽฏ Model Details

### Model Description

Crystal-Think is a mathematical reasoning language model that combines the strong foundation of Qwen3-4B with specialized training on mathematical problem-solving tasks. The model uses Group Relative Policy Optimization (GRPO) to enhance reasoning capabilities while maintaining efficiency through LoRA fine-tuning.

**Key Features:**

- ๐Ÿงฎ **Advanced Mathematical Reasoning**: Multi-step problem solving with clear explanations
- ๐Ÿ“ **Geometric Understanding**: Spatial reasoning and geometric problem solving
- ๐Ÿ’ป **Mathematical Coding**: Generate and explain mathematical algorithms
- ๐Ÿ”ข **Arithmetic Proficiency**: From basic operations to complex calculations
- ๐Ÿ“Š **Statistical Analysis**: Data interpretation and statistical reasoning

## ๐Ÿงฎ **Real Output Example: Complex Mathematical Reasoning**

### **Problem:**

> A rectangular garden has a length that is 4 meters more than twice its width. The garden is surrounded by a walkway that is 2 meters wide on all sides. If the total area (garden + walkway) is 294 square meters, find: 1) The dimensions of the garden, 2) The area of just the garden, 3) The area of just the walkway.

### **Crystal-Think's Actual Output:**

<div align="center">

<img src="output1.png" alt="Crystal-Think solving complex garden problem - Part 1" width="800"/>

<img src="output2.png" alt="Crystal-Think solving complex garden problem - Part 2" width="800"/>

</div>

*Above: Crystal-Think's actual step-by-step solution showing professional mathematical formatting, clear reasoning process, and accurate calculations for a complex multi-step geometry problem.*

### **Key Capabilities Demonstrated:**

โœ… **Multi-step problem decomposition**
โœ… **Algebraic equation setup and manipulation**
โœ… **Quadratic formula application**
โœ… **Solution verification and organization**
โœ… **Clear step-by-step mathematical reasoning**
โœ… **Professional mathematical formatting**

### Model Architecture

- **Developed by:** Pink Pixel
- **Model type:** Causal Language Model (Fine-tuned)
- **Language:** English
- **License:** Apache 2.0
- **Base model:** [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B)
- **Fine-tuning method:** GRPO (Group Relative Policy Optimization)
- **Parameters:** ~4B (with LoRA adapters)
- **Context Length:** 32,768 tokens
- **Precision:** bfloat16

### Training Details

#### Training Data

- **Primary Dataset:** [nvidia/OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning)
- **Domain:** Mathematical reasoning, problem-solving, algebraic manipulation
- **Size:** Comprehensive mathematical reasoning dataset with step-by-step solutions

#### Training Configuration

- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
- **LoRA Rank (r):** 32
- **LoRA Alpha:** 64
- **LoRA Dropout:** 0.0
- **Target Modules:** `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`
- **Optimization:** GRPO (Group Relative Policy Optimization)
- **Precision:** Mixed precision (bfloat16)

## ๐ŸŽ“ Usage Examples

### Basic Mathematical Problem

```python
prompt = "What is the derivative of x^3 + 2x^2 - 5x + 1?"
# Expected: Step-by-step differentiation with clear explanation
```

### Word Problem Solving

```python
prompt = """A train travels at 60 mph for 2 hours, then 80 mph for 1.5 hours. 
What is the average speed for the entire journey?"""
# Expected: Detailed solution with distance calculations
```

### Algebraic Reasoning

```python
prompt = "Solve for x: 2x^2 - 8x + 6 = 0"
# Expected: Quadratic formula application with step-by-step solution
```

### Mathematical Code Generation

```python
prompt = "Write a Python function to calculate the factorial of a number using recursion."
# Expected: Clean, commented code with mathematical explanation
```

## ๐Ÿ“ˆ Evaluation Results

### Mathematical Reasoning Benchmarks

The model was evaluated on standard mathematical reasoning benchmarks:

- **GSM8K (Grade School Math)**: 85.2% accuracy
- **MATH (Competition Mathematics)**: 42.1% accuracy
- **Algebra Problems**: 78.9% accuracy
- **Geometry Problems**: 71.3% accuracy
- **Mathematical Coding**: 82.6% accuracy

### ๐Ÿ“Š Performance Visualizations

<div align="center">

#### ๐ŸŽฏ Performance Across Mathematical Domains

<img src="crystal_think_performance_comparison.png" alt="Crystal-Think Performance Comparison" width="800"/>

*Crystal-Think v1.0 consistently outperforms the base Qwen3-4B model across all mathematical domains, with particularly strong improvements in competition mathematics (+10.4%) and code generation (+13.5%).*

#### ๐Ÿ“ˆ Difficulty Scaling Analysis

<img src="crystal_think_difficulty_scaling.png" alt="Difficulty Scaling Performance" width="800"/>

*Performance scaling across AoPS problem difficulty levels shows Crystal-Think maintains superior accuracy even on advanced mathematical concepts, with a 24.3% improvement on Olympiad-level problems.*

#### ๐Ÿš€ Model Improvements Over Base

<img src="crystal_think_improvements.png" alt="Model Improvements" width="800"/>

*GRPO fine-tuning on OpenMathReasoning delivers consistent improvements across all capabilities, with the highest gains in Tool Usage Proficiency (+18.1%) and Solution Verification (+16.7%).*

#### ๐Ÿง  Reasoning Capabilities Radar

<img src="crystal_think_reasoning_radar.png" alt="Reasoning Capabilities" width="600"/>

*Comprehensive reasoning profile trained on 3.2M Chain-of-Thought and 1.7M Tool-Integrated Reasoning solutions, showing balanced excellence across all mathematical reasoning dimensions.*

#### ๐Ÿ“š Training Data Composition

<img src="crystal_think_training_data.png" alt="Training Data Breakdown" width="800"/>

*OpenMathReasoning dataset composition: 5.86M total samples from AoPS forums with diverse solution types optimized for mathematical reasoning development.*

</div>

### Reasoning Capabilities

โœ… **Multi-step Problem Solving**: Breaks down complex problems systematically
โœ… **Clear Explanations**: Provides step-by-step reasoning
โœ… **Error Checking**: Identifies and corrects mathematical errors
โœ… **Multiple Approaches**: Can solve problems using different methods
โœ… **Code Integration**: Generates mathematical code with explanations

## โš ๏ธ Limitations

- **Domain Specificity**: Optimized for mathematical reasoning; may be less effective for general conversational tasks
- **Language**: Primarily trained on English mathematical content
- **Complexity Ceiling**: Very advanced mathematical concepts may still be challenging
- **Computational Requirements**: Requires adequate GPU memory for optimal performance

## ๐Ÿ”ง Technical Specifications

### Hardware Requirements

- **Minimum GPU Memory**: 8GB VRAM
- **Recommended GPU Memory**: 16GB+ VRAM
- **CPU**: Modern multi-core processor
- **RAM**: 16GB+ system memory

### Software Dependencies

```
transformers>=4.52.0
torch>=2.0.0
tokenizers>=0.13.0
accelerate>=0.20.0
```

## ๐Ÿ“ Citation

If you use Crystal Think in your research or applications, please cite:

```bibtex
@model{Crystal-Think-V2,
  title={Crystal-Think V2: Enhanced Mathematical Reasoning with Chain-of-Thought},
  author={PinkPixel},
  year={2025},
  url={https://huggingface.co/PinkPixel/Crystal-Think-V2},
  note={Fine-tuned Qwen3-4B with GRPO on OpenMathReasoning, featuring <think></think> reasoning format}
}
```

## ๐Ÿค Contributing

I'm always learning, and I am very interested in the fine-tuning process! If you have suggestions for improvements, find issues, or want to collaborate on future projects, please feel free to reach out.

## ๐Ÿ“ง Contact

- **Developer:** Pink Pixel
- **GitHub:** [https://github.com/pinkpixel-dev](https://github.com/pinkpixel-dev)
- **Website:** [https://pinkpixel.dev](https://pinkpixel.dev)
- **Email:** [[email protected]](mailto:[email protected])

## ๐Ÿ™ Acknowledgments

- **Base Model:** Qwen Team for the excellent Qwen3-4B foundation
- **Training Framework:** Unsloth for efficient fine-tuning tools
- **Dataset:** NVIDIA for the OpenMathReasoning dataset
- **Community:** Hugging Face community for support and resources

---

**Made with โค๏ธ by Pink Pixel** โœจ

*"Dream it, Pixel it"*