File size: 8,201 Bytes
81554fc
25ddc0a
5e0d928
81554fc
 
44d1960
25ddc0a
5e0d928
 
 
 
 
 
 
 
44d1960
 
5e0d928
 
44d1960
5e0d928
 
 
3110d47
5e0d928
3110d47
 
 
 
d3ed0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb41caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81554fc
6b96a41
5b3a032
d9fe9bd
 
5fe9bdf
 
5e0d928
8ee1a48
3110d47
25ddc0a
736b696
25ddc0a
9ce02d4
 
 
 
 
 
 
 
 
 
 
 
 
68aff32
3110d47
 
 
 
 
 
 
 
2451c40
 
 
 
 
7b10191
 
 
 
 
 
 
 
 
 
 
 
 
eb41caa
 
7b10191
2451c40
 
 
 
 
 
 
 
 
 
 
 
1b4af34
2451c40
 
 
 
5757143
2451c40
f4ee896
81554fc
 
 
25ddc0a
f4ee896
81554fc
d3ed0cf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
license: mit
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
language:
- en
- multilingual
pipeline_tag: text-generation
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- phi3
- reasoning
- CoT
inference:
  parameters:
    temperature: 0.3
widget:
- messages:
  - role: user
    content: How many R's in strawberry? Think step by step.
library_name: transformers
datasets:
- amphora/QwQ-LongCoT-130K
base_model:
- microsoft/phi-4
model-index:
- name: SuperThoughts-CoT-14B-16k-o1-QwQ
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 5.15
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 52.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 40.79
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.02
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 21.79
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Llmexplorer lmsys elo
      type: elo-score
      config: main
      split: test
    metrics:
    - type: elo
      value: 1203
      name: elo
    source:
      url: https://llm.extractum.io/list/?benchmark=score_elo
      name: LLMexplorer lmsys elo score 
      
---
Renamed to parm-2
Please note, the low IFEVAL results is due to this model always reasoning, instruction following is limited, which caused it to have very low ifeval results, this should not matter for most use cases.
gguf/final version: https://huggingface.co/Pinkstack/PARM-V2-phi-4-16k-CoT-o1-gguf

This model can be merged with phi-4 based LLMs! 

[Phi-4 Technical Report](https://arxiv.org/pdf/2412.08905)
[superthoughts 14B openllm detailed results](https://huggingface.co/datasets/open-llm-leaderboard/Pinkstack__SuperThoughts-CoT-14B-16k-o1-QwQ-details)
Phi-4 that has been tuned to be more advanced at reasoning.

Unlike other Parm models we had to optimize our fine tuning process to ensure accuracy while still being able to release this model. **Training loss: 0.443800**

Beats qwen/qwq at MATH & MuSR & GPQA (MuSR being a reasoning benchmark)
Evaluation:


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/csbdGKzGcDVMPRqMCoH8D.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/HR9WtjBhE4h6wrq88FLAf.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/GLt4ct4yAVMvYEpoYO5o6.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/CP9UF9kdBT_SW8Q79PSui.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/doEIqDrM639hRPSg_J6AF.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/yl5Et2TkCoYuIrNpDhZu9.png)


the model can use this prompt format: (modified phi-4 prompt, by adding a system prompt telling the model to reason before responding you'll get a similar if not better response)
```
{{ if .System }}<|system|>
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|im_end|>
{{ end }}<|assistant|>{{ .CoT }}<|CoT|>
{{ .Response }}<|FinalAnswer|><|im_end|>
```
It is recommended to use a system prompt like this one:
```
You are a helpful ai assistant. Make sure to put your finalanswer at the end. 
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Pinkstack__SuperThoughts-CoT-14B-16k-o1-QwQ-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    31.17|
|IFEval (0-Shot)    |     5.15|
|BBH (3-Shot)       |    52.85|
|MATH Lvl 5 (4-Shot)|    40.79|
|GPQA (0-shot)      |    19.02|
|MuSR (0-shot)      |    21.79|
|MMLU-PRO (5-shot)  |    47.43|
# other leaderboard
According to https://llm.extractum.io/list/?benchmark=score_elo, this model is in the top 20 on their LMSys ELO score leaderboard. 

# 🧀 Examples:
(q4_k_m, 10GB rtx 3080, 64GB memory, running inside of MSTY, all use "You are a friendly ai assistant." as the System prompt.)
**example 1:**
![example1](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/NoLJREYFU8LdMwynyLLMG.png)
**example 2:**
![2](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/uboFipmS1ulfxeDgMBsBH.png)
**example 3:**
![example2](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/c4h-nw0DPTrQgX-_tvBoT.png)
**example 4:**
![example1part1.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/Dcd6-wbpDQuXoulHaqATo.png)
![example1part2.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/CoBYmYiRt9Z4IDFoOwHxc.png)

All generated locally 

# 🧀 Information
- ⚠️ A low temperature must be used to ensure it won't fail at reasoning. we use 0.3 - 0.8!
- ⚠️ Due to the current prompt format, it may sometimes put <|FinalAnswer|> without providing a final answer at the end, you can ignore this or modify the prompt format.
This is our flagship model, with top-tier reasoning, rivaling gemini-flash-exp-2.0-thinking and o1 mini. Overall, the results are similar to both of them.


# Uploaded  model

- **Developed by:** Pinkstack
- **License:** MIT
- **Finetuned from model :** microsoft/phi-4

This phi-4 model was trained with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.