--- license: apache-2.0 datasets: - ciol-research/global-festivals-wiki - WorkWithData/cities - Yelp/yelp_review_full - dair-ai/emotion language: - en - kn - hi - es - zh - te - de - ko - sq - fr - id - pl - it - vi - tr - ru - he - ar - fa - bn - th - ja base_model: - google/gemma-3-1b-it pipeline_tag: text-generation --- # Gemma-3-1B Event-Planner (4-bit QLoRA) **Adapter-only repo** for a culturally sensitive event-planning assistant fine-tuned via LoRA on `google/gemma-3-1b-it`. This adapter (~50 MB) can be applied to the 4-bit base model at inference time, so you don’t need to ship multi-GB merged weights. **Base model:** google/gemma-3-4b-it **Fine-tuned with:** LoRA r=8, α=32, dropout=0.05, 4-bit NF4 quant. ## Intended use Generates culturally sensitive event plans (weddings, baby-naming, college fests …). Asks clarifying questions about culture, guest count, budget, dietary needs. ## Training data * dair-ai/emotion (3 k / 0.5 k) * ciol-research/global-festivals-wiki (9 k / 1 k) * corbt/all-recipes (15 k / 1.5 k) * WorkWithData/cities (6 k / 1 k) * Yelp/yelp_review_full (12 k / 2 k) --- ## Model Details - **Base model**: `google/gemma-3-1b-it` (4 B parameters, instruction-tuned) - **Quantization**: 4-bit NF4 via `bitsandbytes` - **LoRA config**: - rank `r = 8` - α = 32 - dropout = 0.05 - target modules = `["q_proj","v_proj"]` - **Trainable params**: ~0.75 M (0.07 % of base) ### Fine-tuning data (≈ 75 k examples total) | Domain | Dataset | Train / Val | Why included | |----------------------|------------------------------------------|---------------|-----------------------------------------| | Emotion & Tone | `dair-ai/emotion` | 3 k / 0.5 k | Adapt style & follow-up questioning | | Cultural Festivals | `ciol-research/global-festivals-wiki` | 9 k / 1 k | Rituals, symbols, dates across cultures | | Cuisine & Menus | `corbt/all-recipes` | 15 k / 1.5 k | Authentic recipes for menu planning | | Venue / Geodata | `WorkWithData/cities` | 6 k / 1 k | Real cities + coords for location tips | | Vendors & Services | `Yelp/yelp_review_full` | 12 k / 2 k | Business vocabulary & recommendation tone | --- ## Local Usage ```py # Install runtime dependencies: pip install accelerate==1.7.0 bitsandbytes==0.45.5 peft==0.15.2 sentencepiece==0.2.0 torch==2.7.0 transformers==4.51.3 trl==0.17.0 # Load the 4-bit base + adapter: import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline, ) from peft import PeftModel # 1. Quant config bnb_cfg = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_quant_type = "nf4", bnb_4bit_use_double_quant = True, bnb_4bit_compute_dtype = torch.float16, ) # 2. Tokenizer BASE = "google/gemma-3-1b-it" tokenizer = AutoTokenizer.from_pretrained( BASE, trust_remote_code=True, use_auth_token=True, ) # 3. Base model base = AutoModelForCausalLM.from_pretrained( BASE, quantization_config=bnb_cfg, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True, use_auth_token=True, ) # 4. LoRA adapter ADAPTER = "PranavKeshav/event-planner-gemma-4bit" model = PeftModel.from_pretrained( base, ADAPTER, device_map="auto", torch_dtype=torch.float16, use_auth_token=True, ) model.eval() # 5. Pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", max_new_tokens=150, temperature=0.7, top_p=0.9, ) # 6. Test print(pipe("Plan a Gujarati wedding for 120 guests in Ahmedabad.")[0]["generated_text"]) ``` ## Model Card & Citation 1. Intended use: Generate culturally sensitive event plans; ask clarifying questions about dates, budgets, dietary needs. 2. Limitations: May hallucinate or miss rare cultural details; verify all critical recommendations. 3. License: Same as google/gemma-3-1b-it (Apache-2.0) + dataset licenses; see individual datasets. 4. Citation: ```bash @misc{gemma_event_planner_2025, title = {Gemma-3-4B Event-Planner LoRA Adapter}, author = {Keshav, Pranav}, year = {2025}, howpublished = {\url{https://huggingface.co/YOUR_USERNAME/event-planner-gemma-4bit}} } ```