File size: 1,782 Bytes
698584a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1bc9f
698584a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: base_sami_22k_cont_pt_ftpseudo_wr25esp5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base_sami_22k_cont_pt_ftpseudo_wr25esp5

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1150.1907
- Wer: 1.0
- Cer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:---:|:---:|
| 4573.469      | 1.0   | 1080 | 1150.0875       | 1.0 | 1.0 |
| 3561.5266     | 2.0   | 2160 | 1153.8236       | 1.0 | 1.0 |
| 3604.4681     | 3.0   | 3240 | 1157.7269       | 1.0 | 1.0 |
| 3641.2648     | 4.0   | 4320 | 1146.7615       | 1.0 | 1.0 |
| 3689.1912     | 5.0   | 5400 | 1146.6725       | 1.0 | 1.0 |
| 3582.5692     | 6.0   | 6480 | 1147.8068       | 1.0 | 1.0 |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0