Model save
Browse files
README.md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: indicwav2vec_outputs
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# indicwav2vec_outputs
|
15 |
+
|
16 |
+
This model was trained from scratch on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: nan
|
19 |
+
- Cer: 1.0
|
20 |
+
- Wer: 1.0
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 1011
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 2000
|
48 |
+
- num_epochs: 35.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|
54 |
+
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
|
55 |
+
| 3.8795 | 0.3028 | 500 | 3.7869 | 0.9860 | 1.0 |
|
56 |
+
| 1.8805 | 0.6057 | 1000 | 2.0423 | 0.4124 | 0.6416 |
|
57 |
+
| 1.5823 | 0.9085 | 1500 | 1.7622 | 0.3701 | 0.5792 |
|
58 |
+
| 2.2702 | 1.2114 | 2000 | 2.0595 | 0.5233 | 0.8442 |
|
59 |
+
| 2.7429 | 1.5142 | 2500 | 2.9181 | 0.8706 | 0.9792 |
|
60 |
+
| 3.1077 | 1.8171 | 3000 | 3.0393 | 0.9061 | 0.9898 |
|
61 |
+
| 2.9896 | 2.1199 | 3500 | 2.8581 | 0.8528 | 0.9778 |
|
62 |
+
| 3.2643 | 2.4228 | 4000 | 3.0456 | 0.8025 | 0.9649 |
|
63 |
+
| 3.6542 | 2.7256 | 4500 | 3.4606 | 0.8008 | 0.9658 |
|
64 |
+
| 3.7622 | 3.0285 | 5000 | 3.6476 | 0.8315 | 0.9835 |
|
65 |
+
| 3.8614 | 3.3313 | 5500 | 3.8326 | 0.8628 | 0.9924 |
|
66 |
+
| 3.9769 | 3.6342 | 6000 | 4.0055 | 0.8808 | 0.9953 |
|
67 |
+
| 4.1241 | 3.9370 | 6500 | 4.1374 | 0.8920 | 0.9965 |
|
68 |
+
| 4.1261 | 4.2399 | 7000 | 4.1374 | 0.8920 | 0.9965 |
|
69 |
+
| 4.1009 | 4.5427 | 7500 | 4.1374 | 0.8920 | 0.9965 |
|
70 |
+
| 4.1698 | 4.8455 | 8000 | 4.1374 | 0.8920 | 0.9965 |
|
71 |
+
| 4.129 | 5.1484 | 8500 | 4.1374 | 0.8920 | 0.9965 |
|
72 |
+
| 4.1413 | 5.4512 | 9000 | 4.1374 | 0.8920 | 0.9965 |
|
73 |
+
| 4.122 | 5.7541 | 9500 | 4.1374 | 0.8920 | 0.9965 |
|
74 |
+
| 4.1652 | 6.0569 | 10000 | 4.1374 | 0.8920 | 0.9965 |
|
75 |
+
| 4.1801 | 6.3598 | 10500 | 4.1374 | 0.8920 | 0.9965 |
|
76 |
+
| 4.092 | 6.6626 | 11000 | 4.1374 | 0.8920 | 0.9965 |
|
77 |
+
| 4.0204 | 6.9655 | 11500 | 4.1374 | 0.8920 | 0.9965 |
|
78 |
+
| 4.1036 | 7.2683 | 12000 | 4.1374 | 0.8920 | 0.9965 |
|
79 |
+
| 4.1918 | 7.5712 | 12500 | 4.1374 | 0.8920 | 0.9965 |
|
80 |
+
| 4.1059 | 7.8740 | 13000 | 4.1374 | 0.8920 | 0.9965 |
|
81 |
+
| 4.0833 | 8.1769 | 13500 | 4.1374 | 0.8920 | 0.9965 |
|
82 |
+
| 4.1278 | 8.4797 | 14000 | 4.1374 | 0.8920 | 0.9965 |
|
83 |
+
| 4.1365 | 8.7826 | 14500 | 4.1374 | 0.8920 | 0.9965 |
|
84 |
+
| 4.1201 | 9.0854 | 15000 | 4.1374 | 0.8920 | 0.9965 |
|
85 |
+
| 4.1476 | 9.3882 | 15500 | 4.1374 | 0.8920 | 0.9965 |
|
86 |
+
| 4.0935 | 9.6911 | 16000 | 4.1374 | 0.8920 | 0.9965 |
|
87 |
+
| 4.1109 | 9.9939 | 16500 | 4.1374 | 0.8920 | 0.9965 |
|
88 |
+
| 4.1389 | 10.2968 | 17000 | 4.1374 | 0.8920 | 0.9965 |
|
89 |
+
| 4.0907 | 10.5996 | 17500 | 4.1374 | 0.8920 | 0.9965 |
|
90 |
+
| 4.0825 | 10.9025 | 18000 | 4.1374 | 0.8920 | 0.9965 |
|
91 |
+
| 4.1094 | 11.2053 | 18500 | 4.1374 | 0.8920 | 0.9965 |
|
92 |
+
| 4.0689 | 11.5082 | 19000 | 4.1374 | 0.8920 | 0.9965 |
|
93 |
+
| 4.0984 | 11.8110 | 19500 | 4.1374 | 0.8920 | 0.9965 |
|
94 |
+
| 4.0569 | 12.1139 | 20000 | 4.1374 | 0.8920 | 0.9965 |
|
95 |
+
| 4.1462 | 12.4167 | 20500 | 4.1374 | 0.8920 | 0.9965 |
|
96 |
+
| 4.1554 | 12.7196 | 21000 | 4.1374 | 0.8920 | 0.9965 |
|
97 |
+
| 4.2207 | 13.0224 | 21500 | 4.1374 | 0.8920 | 0.9965 |
|
98 |
+
| 4.1518 | 13.3253 | 22000 | 4.1374 | 0.8920 | 0.9965 |
|
99 |
+
| 4.1521 | 13.6281 | 22500 | 4.1374 | 0.8920 | 0.9965 |
|
100 |
+
| 4.1367 | 13.9310 | 23000 | 4.1374 | 0.8920 | 0.9965 |
|
101 |
+
| 4.0904 | 14.2338 | 23500 | 4.1374 | 0.8920 | 0.9965 |
|
102 |
+
| 4.0813 | 14.5366 | 24000 | 4.1374 | 0.8920 | 0.9965 |
|
103 |
+
| 4.1001 | 14.8395 | 24500 | 4.1374 | 0.8920 | 0.9965 |
|
104 |
+
| 4.1333 | 15.1423 | 25000 | 4.1374 | 0.8920 | 0.9965 |
|
105 |
+
| 4.0785 | 15.4452 | 25500 | 4.1374 | 0.8920 | 0.9965 |
|
106 |
+
| 4.1651 | 15.7480 | 26000 | 4.1374 | 0.8920 | 0.9965 |
|
107 |
+
| 4.0987 | 16.0509 | 26500 | 4.1374 | 0.8920 | 0.9965 |
|
108 |
+
| 4.1327 | 16.3537 | 27000 | 4.1374 | 0.8920 | 0.9965 |
|
109 |
+
| 4.1128 | 16.6566 | 27500 | 4.1374 | 0.8920 | 0.9965 |
|
110 |
+
| 4.0694 | 16.9594 | 28000 | 4.1374 | 0.8920 | 0.9965 |
|
111 |
+
| 5.946 | 17.2623 | 28500 | nan | 1.0 | 1.0 |
|
112 |
+
| 0.0 | 17.5651 | 29000 | nan | 1.0 | 1.0 |
|
113 |
+
| 0.0 | 17.8680 | 29500 | nan | 1.0 | 1.0 |
|
114 |
+
| 0.0 | 18.1708 | 30000 | nan | 1.0 | 1.0 |
|
115 |
+
| 0.0 | 18.4737 | 30500 | nan | 1.0 | 1.0 |
|
116 |
+
| 0.0 | 18.7765 | 31000 | nan | 1.0 | 1.0 |
|
117 |
+
| 0.0 | 19.0793 | 31500 | nan | 1.0 | 1.0 |
|
118 |
+
| 0.0 | 19.3822 | 32000 | nan | 1.0 | 1.0 |
|
119 |
+
| 0.0 | 19.6850 | 32500 | nan | 1.0 | 1.0 |
|
120 |
+
| 0.0 | 19.9879 | 33000 | nan | 1.0 | 1.0 |
|
121 |
+
| 0.0 | 20.2907 | 33500 | nan | 1.0 | 1.0 |
|
122 |
+
| 0.0 | 20.5936 | 34000 | nan | 1.0 | 1.0 |
|
123 |
+
| 0.0 | 20.8964 | 34500 | nan | 1.0 | 1.0 |
|
124 |
+
| 0.0 | 21.1993 | 35000 | nan | 1.0 | 1.0 |
|
125 |
+
| 0.0 | 21.5021 | 35500 | nan | 1.0 | 1.0 |
|
126 |
+
| 0.0 | 21.8050 | 36000 | nan | 1.0 | 1.0 |
|
127 |
+
| 0.0 | 22.1078 | 36500 | nan | 1.0 | 1.0 |
|
128 |
+
| 0.0 | 22.4107 | 37000 | nan | 1.0 | 1.0 |
|
129 |
+
| 0.0 | 22.7135 | 37500 | nan | 1.0 | 1.0 |
|
130 |
+
| 0.0 | 23.0164 | 38000 | nan | 1.0 | 1.0 |
|
131 |
+
| 0.0 | 23.3192 | 38500 | nan | 1.0 | 1.0 |
|
132 |
+
| 0.0 | 23.6220 | 39000 | nan | 1.0 | 1.0 |
|
133 |
+
| 0.0 | 23.9249 | 39500 | nan | 1.0 | 1.0 |
|
134 |
+
| 0.0 | 24.2277 | 40000 | nan | 1.0 | 1.0 |
|
135 |
+
| 0.0 | 24.5306 | 40500 | nan | 1.0 | 1.0 |
|
136 |
+
| 0.0 | 24.8334 | 41000 | nan | 1.0 | 1.0 |
|
137 |
+
| 0.0 | 25.1363 | 41500 | nan | 1.0 | 1.0 |
|
138 |
+
| 0.0 | 25.4391 | 42000 | nan | 1.0 | 1.0 |
|
139 |
+
| 0.0 | 25.7420 | 42500 | nan | 1.0 | 1.0 |
|
140 |
+
| 0.0 | 26.0448 | 43000 | nan | 1.0 | 1.0 |
|
141 |
+
| 0.0 | 26.3477 | 43500 | nan | 1.0 | 1.0 |
|
142 |
+
| 0.0 | 26.6505 | 44000 | nan | 1.0 | 1.0 |
|
143 |
+
| 0.0 | 26.9534 | 44500 | nan | 1.0 | 1.0 |
|
144 |
+
| 0.0 | 27.2562 | 45000 | nan | 1.0 | 1.0 |
|
145 |
+
| 0.0 | 27.5591 | 45500 | nan | 1.0 | 1.0 |
|
146 |
+
| 0.0 | 27.8619 | 46000 | nan | 1.0 | 1.0 |
|
147 |
+
| 0.0 | 28.1647 | 46500 | nan | 1.0 | 1.0 |
|
148 |
+
| 0.0 | 28.4676 | 47000 | nan | 1.0 | 1.0 |
|
149 |
+
| 0.0 | 28.7704 | 47500 | nan | 1.0 | 1.0 |
|
150 |
+
| 0.0 | 29.0733 | 48000 | nan | 1.0 | 1.0 |
|
151 |
+
| 0.0 | 29.3761 | 48500 | nan | 1.0 | 1.0 |
|
152 |
+
| 0.0 | 29.6790 | 49000 | nan | 1.0 | 1.0 |
|
153 |
+
| 0.0 | 29.9818 | 49500 | nan | 1.0 | 1.0 |
|
154 |
+
| 0.0 | 30.2847 | 50000 | nan | 1.0 | 1.0 |
|
155 |
+
| 0.0 | 30.5875 | 50500 | nan | 1.0 | 1.0 |
|
156 |
+
| 0.0 | 30.8904 | 51000 | nan | 1.0 | 1.0 |
|
157 |
+
| 0.0 | 31.1932 | 51500 | nan | 1.0 | 1.0 |
|
158 |
+
| 0.0 | 31.4961 | 52000 | nan | 1.0 | 1.0 |
|
159 |
+
| 0.0 | 31.7989 | 52500 | nan | 1.0 | 1.0 |
|
160 |
+
| 0.0 | 32.1018 | 53000 | nan | 1.0 | 1.0 |
|
161 |
+
| 0.0 | 32.4046 | 53500 | nan | 1.0 | 1.0 |
|
162 |
+
| 0.0 | 32.7075 | 54000 | nan | 1.0 | 1.0 |
|
163 |
+
| 0.0 | 33.0103 | 54500 | nan | 1.0 | 1.0 |
|
164 |
+
| 0.0 | 33.3131 | 55000 | nan | 1.0 | 1.0 |
|
165 |
+
| 0.0 | 33.6160 | 55500 | nan | 1.0 | 1.0 |
|
166 |
+
| 0.0 | 33.9188 | 56000 | nan | 1.0 | 1.0 |
|
167 |
+
| 0.0 | 34.2217 | 56500 | nan | 1.0 | 1.0 |
|
168 |
+
| 0.0 | 34.5245 | 57000 | nan | 1.0 | 1.0 |
|
169 |
+
| 0.0 | 34.8274 | 57500 | nan | 1.0 | 1.0 |
|
170 |
+
|
171 |
+
|
172 |
+
### Framework versions
|
173 |
+
|
174 |
+
- Transformers 4.43.1
|
175 |
+
- Pytorch 2.4.0
|
176 |
+
- Datasets 2.20.0
|
177 |
+
- Tokenizers 0.19.1
|