diff --git "a/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out" "b/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out" --- "a/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out" +++ "b/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out" @@ -4264,4 +4264,1058 @@ last prediction string लता द्वारा अनुवादित ह warnings.warn( /scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead. with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined] - 8%|▊ | 1201/15000 [35:44<142:17:07, 37.12s/it] 8%|▊ | 1201/15000 [35:44<142:17:07, 37.12s/it] 8%|▊ | 1202/15000 [35:46<101:05:57, 26.38s/it] 8%|▊ | 1202/15000 [35:46<101:05:57, 26.38s/it] 8%|▊ | 1203/15000 [35:47<72:08:33, 18.82s/it] 8%|▊ | 1203/15000 [35:47<72:08:33, 18.82s/it] 8%|▊ | 1204/15000 [35:48<51:46:01, 13.51s/it] 8%|▊ | 1204/15000 [35:48<51:46:01, 13.51s/it] 8%|▊ | 1205/15000 [35:49<37:24:46, 9.76s/it] 8%|▊ | 1205/15000 [35:49<37:24:46, 9.76s/it] 8%|▊ | 1206/15000 [35:50<27:23:57, 7.15s/it] 8%|▊ | 1206/15000 [35:50<27:23:57, 7.15s/it] 8%|▊ | 1207/15000 [35:51<20:13:48, 5.28s/it] 8%|▊ | 1207/15000 [35:51<20:13:48, 5.28s/it] 8%|▊ | 1208/15000 [35:52<15:08:46, 3.95s/it] 8%|▊ | 1208/15000 [35:52<15:08:46, 3.95s/it] 8%|▊ | 1209/15000 [35:53<11:32:10, 3.01s/it] 8%|▊ | 1209/15000 [35:53<11:32:10, 3.01s/it] 8%|▊ | 1210/15000 [35:53<8:59:02, 2.35s/it] 8%|▊ | 1210/15000 [35:53<8:59:02, 2.35s/it] 8%|▊ | 1211/15000 [35:54<7:07:36, 1.86s/it] 8%|▊ | 1211/15000 [35:54<7:07:36, 1.86s/it] 8%|▊ | 1212/15000 [35:55<5:48:37, 1.52s/it] 8%|▊ | 1212/15000 [35:55<5:48:37, 1.52s/it] 8%|▊ | 1213/15000 [35:56<4:52:37, 1.27s/it] 8%|▊ | 1213/15000 [35:56<4:52:37, 1.27s/it] 8%|▊ | 1214/15000 [35:56<4:13:11, 1.10s/it] 8%|▊ | 1214/15000 [35:56<4:13:11, 1.10s/it] 8%|▊ | 1215/15000 [35:57<3:44:30, 1.02it/s] 8%|▊ | 1215/15000 [35:57<3:44:30, 1.02it/s] 8%|▊ | 1216/15000 [35:58<3:24:15, 1.12it/s] 8%|▊ | 1216/15000 [35:58<3:24:15, 1.12it/s] 8%|▊ | 1217/15000 [35:58<3:05:48, 1.24it/s] 8%|▊ | 1217/15000 [35:58<3:05:48, 1.24it/s] 8%|▊ | 1218/15000 [35:59<2:50:46, 1.35it/s] 8%|▊ | 1218/15000 [35:59<2:50:46, 1.35it/s] 8%|▊ | 1219/15000 [35:59<2:40:16, 1.43it/s] 8%|▊ | 1219/15000 [35:59<2:40:16, 1.43it/s] 8%|▊ | 1220/15000 [36:00<2:33:31, 1.50it/s] 8%|▊ | 1220/15000 [36:00<2:33:31, 1.50it/s] 8%|▊ | 1221/15000 [36:01<2:27:46, 1.55it/s] 8%|▊ | 1221/15000 [36:01<2:27:46, 1.55it/s] 8%|▊ | 1222/15000 [36:01<2:24:30, 1.59it/s] 8%|▊ | 1222/15000 [36:01<2:24:30, 1.59it/s] 8%|▊ | 1223/15000 [36:02<2:22:08, 1.62it/s] 8%|▊ | 1223/15000 [36:02<2:22:08, 1.62it/s] 8%|▊ | 1224/15000 [36:02<2:15:40, 1.69it/s] 8%|▊ | 1224/15000 [36:02<2:15:40, 1.69it/s] 8%|▊ | 1225/15000 [36:03<2:11:10, 1.75it/s] 8%|▊ | 1225/15000 [36:03<2:11:10, 1.75it/s] 8%|▊ | 1226/15000 [36:03<2:06:48, 1.81it/s] 8%|▊ | 1226/15000 [36:03<2:06:48, 1.81it/s] 8%|▊ | 1227/15000 [36:04<2:03:35, 1.86it/s] 8%|▊ | 1227/15000 [36:04<2:03:35, 1.86it/s] 8%|▊ | 1228/15000 [36:04<2:01:09, 1.89it/s] 8%|▊ | 1228/15000 [36:04<2:01:09, 1.89it/s] 8%|▊ | 1229/15000 [36:05<1:59:38, 1.92it/s] 8%|▊ | 1229/15000 [36:05<1:59:38, 1.92it/s] 8%|▊ | 1230/15000 [36:05<1:58:39, 1.93it/s] 8%|▊ | 1230/15000 [36:05<1:58:39, 1.93it/s] 8%|▊ | 1231/15000 [36:06<1:58:04, 1.94it/s] 8%|▊ | 1231/15000 [36:06<1:58:04, 1.94it/s] 8%|▊ | 1232/15000 [36:06<1:57:15, 1.96it/s] 8%|▊ | 1232/15000 [36:06<1:57:15, 1.96it/s] 8%|▊ | 1233/15000 [36:07<1:52:23, 2.04it/s] 8%|▊ | 1233/15000 [36:07<1:52:23, 2.04it/s] 8%|▊ | 1234/15000 [36:07<1:47:41, 2.13it/s] 8%|▊ | 1234/15000 [36:07<1:47:41, 2.13it/s] 8%|▊ | 1235/15000 [36:08<1:43:53, 2.21it/s] 8%|▊ | 1235/15000 [36:08<1:43:53, 2.21it/s] 8%|▊ | 1236/15000 [36:08<1:40:56, 2.27it/s] 8%|▊ | 1236/15000 [36:08<1:40:56, 2.27it/s] 8%|▊ | 1237/15000 [36:08<1:39:58, 2.29it/s] 8%|▊ | 1237/15000 [36:08<1:39:58, 2.29it/s] 8%|▊ | 1238/15000 [36:09<1:38:38, 2.33it/s] 8%|▊ | 1238/15000 [36:09<1:38:38, 2.33it/s] 8%|▊ | 1239/15000 [36:09<1:38:02, 2.34it/s] 8%|▊ | 1239/15000 [36:09<1:38:02, 2.34it/s] 8%|▊ | 1240/15000 [36:10<1:35:09, 2.41it/s] 8%|▊ | 1240/15000 [36:10<1:35:09, 2.41it/s] 8%|▊ | 1241/15000 [36:10<1:29:59, 2.55it/s] 8%|▊ | 1241/15000 [36:10<1:29:59, 2.55it/s] 8%|▊ | 1242/15000 [36:10<1:26:15, 2.66it/s] 8%|▊ | 1242/15000 [36:10<1:26:15, 2.66it/s] 8%|▊ | 1243/15000 [36:11<1:23:00, 2.76it/s] 8%|▊ | 1243/15000 [36:11<1:23:00, 2.76it/s] 8%|▊ | 1244/15000 [36:11<1:20:11, 2.86it/s] 8%|▊ | 1244/15000 [36:11<1:20:11, 2.86it/s] 8%|▊ | 1245/15000 [36:11<1:19:02, 2.90it/s] 8%|▊ | 1245/15000 [36:11<1:19:02, 2.90it/s] 8%|▊ | 1246/15000 [36:12<1:15:14, 3.05it/s] 8%|▊ | 1246/15000 [36:12<1:15:14, 3.05it/s] 8%|▊ | 1247/15000 [36:12<1:10:35, 3.25it/s] 8%|▊ | 1247/15000 [36:12<1:10:35, 3.25it/s] 8%|▊ | 1248/15000 [36:12<1:06:27, 3.45it/s] 8%|▊ | 1248/15000 [36:12<1:06:27, 3.45it/s] 8%|▊ | 1249/15000 [36:12<1:01:45, 3.71it/s] 8%|▊ | 1249/15000 [36:12<1:01:45, 3.71it/s] 8%|▊ | 1250/15000 [36:12<50:24, 4.55it/s] 8%|▊ | 1250/15000 [36:12<50:24, 4.55it/s] 8%|▊ | 1251/15000 [36:18<6:35:48, 1.73s/it] 8%|▊ | 1251/15000 [36:18<6:35:48, 1.73s/it] 8%|▊ | 1252/15000 [36:19<6:04:30, 1.59s/it] 8%|▊ | 1252/15000 [36:19<6:04:30, 1.59s/it] 8%|▊ | 1253/15000 [36:20<5:42:29, 1.49s/it] 8%|▊ | 1253/15000 [36:20<5:42:29, 1.49s/it] 8%|▊ | 1254/15000 [36:21<5:13:02, 1.37s/it] 8%|▊ | 1254/15000 [36:21<5:13:02, 1.37s/it] 8%|▊ | 1255/15000 [36:22<4:50:05, 1.27s/it] 8%|▊ | 1255/15000 [36:22<4:50:05, 1.27s/it] 8%|▊ | 1256/15000 [36:23<4:25:21, 1.16s/it] 8%|▊ | 1256/15000 [36:23<4:25:21, 1.16s/it] 8%|▊ | 1257/15000 [36:24<4:07:13, 1.08s/it] 8%|▊ | 1257/15000 [36:24<4:07:13, 1.08s/it] 8%|▊ | 1258/15000 [36:25<3:51:42, 1.01s/it] 8%|▊ | 1258/15000 [36:25<3:51:42, 1.01s/it] 8%|▊ | 1259/15000 [36:26<3:38:45, 1.05it/s] 8%|▊ | 1259/15000 [36:26<3:38:45, 1.05it/s] 8%|▊ | 1260/15000 [36:27<3:26:33, 1.11it/s] 8%|▊ | 1260/15000 [36:27<3:26:33, 1.11it/s] 8%|▊ | 1261/15000 [36:27<3:17:34, 1.16it/s] 8%|▊ | 1261/15000 [36:27<3:17:34, 1.16it/s] 8%|▊ | 1262/15000 [36:28<3:08:57, 1.21it/s] 8%|▊ | 1262/15000 [36:28<3:08:57, 1.21it/s] 8%|▊ | 1263/15000 [36:29<3:01:25, 1.26it/s] 8%|▊ | 1263/15000 [36:29<3:01:25, 1.26it/s] 8%|▊ | 1264/15000 [36:30<2:54:17, 1.31it/s] 8%|▊ | 1264/15000 [36:30<2:54:17, 1.31it/s] 8%|▊ | 1265/15000 [36:30<2:49:29, 1.35it/s] 8%|▊ | 1265/15000 [36:30<2:49:29, 1.35it/s] 8%|▊ | 1266/15000 [36:31<2:46:30, 1.37it/s] 8%|▊ | 1266/15000 [36:31<2:46:30, 1.37it/s] 8%|▊ | 1267/15000 [36:32<2:42:14, 1.41it/s] 8%|▊ | 1267/15000 [36:32<2:42:14, 1.41it/s] 8%|▊ | 1268/15000 [36:32<2:36:45, 1.46it/s] 8%|▊ | 1268/15000 [36:32<2:36:45, 1.46it/s] 8%|▊ | 1269/15000 [36:33<2:30:44, 1.52it/s] 8%|▊ | 1269/15000 [36:33<2:30:44, 1.52it/s] 8%|▊ | 1270/15000 [36:33<2:26:43, 1.56it/s] 8%|▊ | 1270/15000 [36:33<2:26:43, 1.56it/s] 8%|▊ | 1271/15000 [36:34<2:24:12, 1.59it/s] 8%|▊ | 1271/15000 [36:34<2:24:12, 1.59it/s] 8%|▊ | 1272/15000 [36:35<2:22:22, 1.61it/s] 8%|▊ | 1272/15000 [36:35<2:22:22, 1.61it/s] 8%|▊ | 1273/15000 [36:35<2:19:51, 1.64it/s] 8%|▊ | 1273/15000 [36:35<2:19:51, 1.64it/s] 8%|▊ | 1274/15000 [36:36<2:13:41, 1.71it/s] 8%|▊ | 1274/15000 [36:36<2:13:41, 1.71it/s] 8%|▊ | 1275/15000 [36:36<2:08:43, 1.78it/s] 8%|▊ | 1275/15000 [36:36<2:08:43, 1.78it/s] 9%|▊ | 1276/15000 [36:37<2:04:22, 1.84it/s] 9%|▊ | 1276/15000 [36:37<2:04:22, 1.84it/s] 9%|▊ | 1277/15000 [36:37<2:02:01, 1.87it/s] 9%|▊ | 1277/15000 [36:37<2:02:01, 1.87it/s] 9%|▊ | 1278/15000 [36:38<2:00:27, 1.90it/s] 9%|▊ | 1278/15000 [36:38<2:00:27, 1.90it/s] 9%|▊ | 1279/15000 [36:38<1:59:31, 1.91it/s] 9%|▊ | 1279/15000 [36:38<1:59:31, 1.91it/s] 9%|▊ | 1280/15000 [36:39<1:57:27, 1.95it/s] 9%|▊ | 1280/15000 [36:39<1:57:27, 1.95it/s] 9%|▊ | 1281/15000 [36:39<1:56:19, 1.97it/s] 9%|▊ | 1281/15000 [36:39<1:56:19, 1.97it/s] 9%|▊ | 1282/15000 [36:40<1:53:47, 2.01it/s] 9%|▊ | 1282/15000 [36:40<1:53:47, 2.01it/s] 9%|▊ | 1283/15000 [36:40<1:48:55, 2.10it/s] 9%|▊ | 1283/15000 [36:40<1:48:55, 2.10it/s] 9%|▊ | 1284/15000 [36:41<1:45:20, 2.17it/s] 9%|▊ | 1284/15000 [36:41<1:45:20, 2.17it/s] 9%|▊ | 1285/15000 [36:41<1:42:04, 2.24it/s] 9%|▊ | 1285/15000 [36:41<1:42:04, 2.24it/s] 9%|▊ | 1286/15000 [36:41<1:40:03, 2.28it/s] 9%|▊ | 1286/15000 [36:41<1:40:03, 2.28it/s] 9%|▊ | 1287/15000 [36:42<1:38:11, 2.33it/s] 9%|▊ | 1287/15000 [36:42<1:38:11, 2.33it/s] \ No newline at end of file + 8%|▊ | 1201/15000 [35:44<142:17:07, 37.12s/it] 8%|▊ | 1201/15000 [35:44<142:17:07, 37.12s/it] 8%|▊ | 1202/15000 [35:46<101:05:57, 26.38s/it] 8%|▊ | 1202/15000 [35:46<101:05:57, 26.38s/it] 8%|▊ | 1203/15000 [35:47<72:08:33, 18.82s/it] 8%|▊ | 1203/15000 [35:47<72:08:33, 18.82s/it] 8%|▊ | 1204/15000 [35:48<51:46:01, 13.51s/it] 8%|▊ | 1204/15000 [35:48<51:46:01, 13.51s/it] 8%|▊ | 1205/15000 [35:49<37:24:46, 9.76s/it] 8%|▊ | 1205/15000 [35:49<37:24:46, 9.76s/it] 8%|▊ | 1206/15000 [35:50<27:23:57, 7.15s/it] 8%|▊ | 1206/15000 [35:50<27:23:57, 7.15s/it] 8%|▊ | 1207/15000 [35:51<20:13:48, 5.28s/it] 8%|▊ | 1207/15000 [35:51<20:13:48, 5.28s/it] 8%|▊ | 1208/15000 [35:52<15:08:46, 3.95s/it] 8%|▊ | 1208/15000 [35:52<15:08:46, 3.95s/it] 8%|▊ | 1209/15000 [35:53<11:32:10, 3.01s/it] 8%|▊ | 1209/15000 [35:53<11:32:10, 3.01s/it] 8%|▊ | 1210/15000 [35:53<8:59:02, 2.35s/it] 8%|▊ | 1210/15000 [35:53<8:59:02, 2.35s/it] 8%|▊ | 1211/15000 [35:54<7:07:36, 1.86s/it] 8%|▊ | 1211/15000 [35:54<7:07:36, 1.86s/it] 8%|▊ | 1212/15000 [35:55<5:48:37, 1.52s/it] 8%|▊ | 1212/15000 [35:55<5:48:37, 1.52s/it] 8%|▊ | 1213/15000 [35:56<4:52:37, 1.27s/it] 8%|▊ | 1213/15000 [35:56<4:52:37, 1.27s/it] 8%|▊ | 1214/15000 [35:56<4:13:11, 1.10s/it] 8%|▊ | 1214/15000 [35:56<4:13:11, 1.10s/it] 8%|▊ | 1215/15000 [35:57<3:44:30, 1.02it/s] 8%|▊ | 1215/15000 [35:57<3:44:30, 1.02it/s] 8%|▊ | 1216/15000 [35:58<3:24:15, 1.12it/s] 8%|▊ | 1216/15000 [35:58<3:24:15, 1.12it/s] 8%|▊ | 1217/15000 [35:58<3:05:48, 1.24it/s] 8%|▊ | 1217/15000 [35:58<3:05:48, 1.24it/s] 8%|▊ | 1218/15000 [35:59<2:50:46, 1.35it/s] 8%|▊ | 1218/15000 [35:59<2:50:46, 1.35it/s] 8%|▊ | 1219/15000 [35:59<2:40:16, 1.43it/s] 8%|▊ | 1219/15000 [35:59<2:40:16, 1.43it/s] 8%|▊ | 1220/15000 [36:00<2:33:31, 1.50it/s] 8%|▊ | 1220/15000 [36:00<2:33:31, 1.50it/s] 8%|▊ | 1221/15000 [36:01<2:27:46, 1.55it/s] 8%|▊ | 1221/15000 [36:01<2:27:46, 1.55it/s] 8%|▊ | 1222/15000 [36:01<2:24:30, 1.59it/s] 8%|▊ | 1222/15000 [36:01<2:24:30, 1.59it/s] 8%|▊ | 1223/15000 [36:02<2:22:08, 1.62it/s] 8%|▊ | 1223/15000 [36:02<2:22:08, 1.62it/s] 8%|▊ | 1224/15000 [36:02<2:15:40, 1.69it/s] 8%|▊ | 1224/15000 [36:02<2:15:40, 1.69it/s] 8%|▊ | 1225/15000 [36:03<2:11:10, 1.75it/s] 8%|▊ | 1225/15000 [36:03<2:11:10, 1.75it/s] 8%|▊ | 1226/15000 [36:03<2:06:48, 1.81it/s] 8%|▊ | 1226/15000 [36:03<2:06:48, 1.81it/s] 8%|▊ | 1227/15000 [36:04<2:03:35, 1.86it/s] 8%|▊ | 1227/15000 [36:04<2:03:35, 1.86it/s] 8%|▊ | 1228/15000 [36:04<2:01:09, 1.89it/s] 8%|▊ | 1228/15000 [36:04<2:01:09, 1.89it/s] 8%|▊ | 1229/15000 [36:05<1:59:38, 1.92it/s] 8%|▊ | 1229/15000 [36:05<1:59:38, 1.92it/s] 8%|▊ | 1230/15000 [36:05<1:58:39, 1.93it/s] 8%|▊ | 1230/15000 [36:05<1:58:39, 1.93it/s] 8%|▊ | 1231/15000 [36:06<1:58:04, 1.94it/s] 8%|▊ | 1231/15000 [36:06<1:58:04, 1.94it/s] 8%|▊ | 1232/15000 [36:06<1:57:15, 1.96it/s] 8%|▊ | 1232/15000 [36:06<1:57:15, 1.96it/s] 8%|▊ | 1233/15000 [36:07<1:52:23, 2.04it/s] 8%|▊ | 1233/15000 [36:07<1:52:23, 2.04it/s] 8%|▊ | 1234/15000 [36:07<1:47:41, 2.13it/s] 8%|▊ | 1234/15000 [36:07<1:47:41, 2.13it/s] 8%|▊ | 1235/15000 [36:08<1:43:53, 2.21it/s] 8%|▊ | 1235/15000 [36:08<1:43:53, 2.21it/s] 8%|▊ | 1236/15000 [36:08<1:40:56, 2.27it/s] 8%|▊ | 1236/15000 [36:08<1:40:56, 2.27it/s] 8%|▊ | 1237/15000 [36:08<1:39:58, 2.29it/s] 8%|▊ | 1237/15000 [36:08<1:39:58, 2.29it/s] 8%|▊ | 1238/15000 [36:09<1:38:38, 2.33it/s] 8%|▊ | 1238/15000 [36:09<1:38:38, 2.33it/s] 8%|▊ | 1239/15000 [36:09<1:38:02, 2.34it/s] 8%|▊ | 1239/15000 [36:09<1:38:02, 2.34it/s] 8%|▊ | 1240/15000 [36:10<1:35:09, 2.41it/s] 8%|▊ | 1240/15000 [36:10<1:35:09, 2.41it/s] 8%|▊ | 1241/15000 [36:10<1:29:59, 2.55it/s] 8%|▊ | 1241/15000 [36:10<1:29:59, 2.55it/s] 8%|▊ | 1242/15000 [36:10<1:26:15, 2.66it/s] 8%|▊ | 1242/15000 [36:10<1:26:15, 2.66it/s] 8%|▊ | 1243/15000 [36:11<1:23:00, 2.76it/s] 8%|▊ | 1243/15000 [36:11<1:23:00, 2.76it/s] 8%|▊ | 1244/15000 [36:11<1:20:11, 2.86it/s] 8%|▊ | 1244/15000 [36:11<1:20:11, 2.86it/s] 8%|▊ | 1245/15000 [36:11<1:19:02, 2.90it/s] 8%|▊ | 1245/15000 [36:11<1:19:02, 2.90it/s] 8%|▊ | 1246/15000 [36:12<1:15:14, 3.05it/s] 8%|▊ | 1246/15000 [36:12<1:15:14, 3.05it/s] 8%|▊ | 1247/15000 [36:12<1:10:35, 3.25it/s] 8%|▊ | 1247/15000 [36:12<1:10:35, 3.25it/s] 8%|▊ | 1248/15000 [36:12<1:06:27, 3.45it/s] 8%|▊ | 1248/15000 [36:12<1:06:27, 3.45it/s] 8%|▊ | 1249/15000 [36:12<1:01:45, 3.71it/s] 8%|▊ | 1249/15000 [36:12<1:01:45, 3.71it/s] 8%|▊ | 1250/15000 [36:12<50:24, 4.55it/s] 8%|▊ | 1250/15000 [36:12<50:24, 4.55it/s] 8%|▊ | 1251/15000 [36:18<6:35:48, 1.73s/it] 8%|▊ | 1251/15000 [36:18<6:35:48, 1.73s/it] 8%|▊ | 1252/15000 [36:19<6:04:30, 1.59s/it] 8%|▊ | 1252/15000 [36:19<6:04:30, 1.59s/it] 8%|▊ | 1253/15000 [36:20<5:42:29, 1.49s/it] 8%|▊ | 1253/15000 [36:20<5:42:29, 1.49s/it] 8%|▊ | 1254/15000 [36:21<5:13:02, 1.37s/it] 8%|▊ | 1254/15000 [36:21<5:13:02, 1.37s/it] 8%|▊ | 1255/15000 [36:22<4:50:05, 1.27s/it] 8%|▊ | 1255/15000 [36:22<4:50:05, 1.27s/it] 8%|▊ | 1256/15000 [36:23<4:25:21, 1.16s/it] 8%|▊ | 1256/15000 [36:23<4:25:21, 1.16s/it] 8%|▊ | 1257/15000 [36:24<4:07:13, 1.08s/it] 8%|▊ | 1257/15000 [36:24<4:07:13, 1.08s/it] 8%|▊ | 1258/15000 [36:25<3:51:42, 1.01s/it] 8%|▊ | 1258/15000 [36:25<3:51:42, 1.01s/it] 8%|▊ | 1259/15000 [36:26<3:38:45, 1.05it/s] 8%|▊ | 1259/15000 [36:26<3:38:45, 1.05it/s] 8%|▊ | 1260/15000 [36:27<3:26:33, 1.11it/s] 8%|▊ | 1260/15000 [36:27<3:26:33, 1.11it/s] 8%|▊ | 1261/15000 [36:27<3:17:34, 1.16it/s] 8%|▊ | 1261/15000 [36:27<3:17:34, 1.16it/s] 8%|▊ | 1262/15000 [36:28<3:08:57, 1.21it/s] 8%|▊ | 1262/15000 [36:28<3:08:57, 1.21it/s] 8%|▊ | 1263/15000 [36:29<3:01:25, 1.26it/s] 8%|▊ | 1263/15000 [36:29<3:01:25, 1.26it/s] 8%|▊ | 1264/15000 [36:30<2:54:17, 1.31it/s] 8%|▊ | 1264/15000 [36:30<2:54:17, 1.31it/s] 8%|▊ | 1265/15000 [36:30<2:49:29, 1.35it/s] 8%|▊ | 1265/15000 [36:30<2:49:29, 1.35it/s] 8%|▊ | 1266/15000 [36:31<2:46:30, 1.37it/s] 8%|▊ | 1266/15000 [36:31<2:46:30, 1.37it/s] 8%|▊ | 1267/15000 [36:32<2:42:14, 1.41it/s] 8%|▊ | 1267/15000 [36:32<2:42:14, 1.41it/s] 8%|▊ | 1268/15000 [36:32<2:36:45, 1.46it/s] 8%|▊ | 1268/15000 [36:32<2:36:45, 1.46it/s] 8%|▊ | 1269/15000 [36:33<2:30:44, 1.52it/s] 8%|▊ | 1269/15000 [36:33<2:30:44, 1.52it/s] 8%|▊ | 1270/15000 [36:33<2:26:43, 1.56it/s] 8%|▊ | 1270/15000 [36:33<2:26:43, 1.56it/s] 8%|▊ | 1271/15000 [36:34<2:24:12, 1.59it/s] 8%|▊ | 1271/15000 [36:34<2:24:12, 1.59it/s] 8%|▊ | 1272/15000 [36:35<2:22:22, 1.61it/s] 8%|▊ | 1272/15000 [36:35<2:22:22, 1.61it/s] 8%|▊ | 1273/15000 [36:35<2:19:51, 1.64it/s] 8%|▊ | 1273/15000 [36:35<2:19:51, 1.64it/s] 8%|▊ | 1274/15000 [36:36<2:13:41, 1.71it/s] 8%|▊ | 1274/15000 [36:36<2:13:41, 1.71it/s] 8%|▊ | 1275/15000 [36:36<2:08:43, 1.78it/s] 8%|▊ | 1275/15000 [36:36<2:08:43, 1.78it/s] 9%|▊ | 1276/15000 [36:37<2:04:22, 1.84it/s] 9%|▊ | 1276/15000 [36:37<2:04:22, 1.84it/s] 9%|▊ | 1277/15000 [36:37<2:02:01, 1.87it/s] 9%|▊ | 1277/15000 [36:37<2:02:01, 1.87it/s] 9%|▊ | 1278/15000 [36:38<2:00:27, 1.90it/s] 9%|▊ | 1278/15000 [36:38<2:00:27, 1.90it/s] 9%|▊ | 1279/15000 [36:38<1:59:31, 1.91it/s] 9%|▊ | 1279/15000 [36:38<1:59:31, 1.91it/s] 9%|▊ | 1280/15000 [36:39<1:57:27, 1.95it/s] 9%|▊ | 1280/15000 [36:39<1:57:27, 1.95it/s] 9%|▊ | 1281/15000 [36:39<1:56:19, 1.97it/s] 9%|▊ | 1281/15000 [36:39<1:56:19, 1.97it/s] 9%|▊ | 1282/15000 [36:40<1:53:47, 2.01it/s] 9%|▊ | 1282/15000 [36:40<1:53:47, 2.01it/s] 9%|▊ | 1283/15000 [36:40<1:48:55, 2.10it/s] 9%|▊ | 1283/15000 [36:40<1:48:55, 2.10it/s] 9%|▊ | 1284/15000 [36:41<1:45:20, 2.17it/s] 9%|▊ | 1284/15000 [36:41<1:45:20, 2.17it/s] 9%|▊ | 1285/15000 [36:41<1:42:04, 2.24it/s] 9%|▊ | 1285/15000 [36:41<1:42:04, 2.24it/s] 9%|▊ | 1286/15000 [36:41<1:40:03, 2.28it/s] 9%|▊ | 1286/15000 [36:41<1:40:03, 2.28it/s] 9%|▊ | 1287/15000 [36:42<1:38:11, 2.33it/s] 9%|▊ | 1287/15000 [36:42<1:38:11, 2.33it/s] 9%|▊ | 1288/15000 [36:42<1:37:18, 2.35it/s] 9%|▊ | 1288/15000 [36:42<1:37:18, 2.35it/s] 9%|▊ | 1289/15000 [36:43<1:35:50, 2.38it/s] 9%|▊ | 1289/15000 [36:43<1:35:50, 2.38it/s] 9%|▊ | 1290/15000 [36:43<1:34:39, 2.41it/s] 9%|▊ | 1290/15000 [36:43<1:34:39, 2.41it/s] 9%|▊ | 1291/15000 [36:43<1:29:35, 2.55it/s] 9%|▊ | 1291/15000 [36:43<1:29:35, 2.55it/s] 9%|▊ | 1292/15000 [36:44<1:24:43, 2.70it/s] 9%|▊ | 1292/15000 [36:44<1:24:43, 2.70it/s] 9%|▊ | 1293/15000 [36:44<1:21:14, 2.81it/s] 9%|▊ | 1293/15000 [36:44<1:21:14, 2.81it/s] 9%|▊ | 1294/15000 [36:44<1:18:56, 2.89it/s] 9%|▊ | 1294/15000 [36:44<1:18:56, 2.89it/s] 9%|▊ | 1295/15000 [36:45<1:16:57, 2.97it/s] 9%|▊ | 1295/15000 [36:45<1:16:57, 2.97it/s] 9%|▊ | 1296/15000 [36:45<1:13:44, 3.10it/s] 9%|▊ | 1296/15000 [36:45<1:13:44, 3.10it/s] 9%|▊ | 1297/15000 [36:45<1:08:58, 3.31it/s] 9%|▊ | 1297/15000 [36:45<1:08:58, 3.31it/s] 9%|▊ | 1298/15000 [36:45<1:05:10, 3.50it/s] 9%|▊ | 1298/15000 [36:45<1:05:10, 3.50it/s] 9%|▊ | 1299/15000 [36:46<1:01:41, 3.70it/s] 9%|▊ | 1299/15000 [36:46<1:01:41, 3.70it/s] 9%|▊ | 1300/15000 [36:47<2:25:22, 1.57it/s] 9%|▊ | 1300/15000 [36:47<2:25:22, 1.57it/s]Printing predictions for a few samples: +Sample 1: + Reference: लिबर ऑफिस impress में एक प्रस्तुति document बनाना और बुनियादी formatting के इस spoken tutorial में आपका स्वागत है +###### + + + Prediction: liber office impes में एक प्रस्तुति document बनाना और बुनियादी formating के इस spoken tutorial में आपका स्वा गैै + + + +Sample 2: + Reference: इस tutorial में हम impress window के भागों के बारे में सीखेंगे और कैसे स्लाइड इन्सर्ट करें और कॉपी करें फॉन्ट तथा फॉन्ट को फॉर्मेट करना सीखेंगे +###### + + + Prediction: इस tutorial में हम impres window के भागों के बारे में सीखेंगे और कैसे slide insert करें और copy करेंfont तथा font को format करना सीखेंगे + + + +Sample 3: + Reference: यहाँ हम अपने ऑपरेटिंग सिस्टम के रूप में gnu/linux और लिबरऑफिस वर्जन 334 का उपयोग कर रहे हैं +###### + + + Prediction: यहाँ हम अपने opereting system के रूप में jn linuकस और liber office version 334 का उपयोग कर रह हैं + + + +Sample 4: + Reference: चलिए अपनी प्रस्तुति प्रेजैटेशन sample impress open करते हैं जिसे पिछले tutorial में बनाया था +###### + + + Prediction: चलिए अपनी प्रस्तुति sample impres open करते हैं जिसे पिछल t हैंंं + + + +Sample 5: + Reference: चलिए देखते हैं कि screen पर क्या क्या है +###### + + + Prediction: चलिए देखते हैं कि scren पर क्या क्या है + + + +last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद + + +last prediction string लातार द्वारा अनुवादित है आई आई ट मुम्बई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद +{'eval_loss': 1.5508540868759155, 'eval_cer': 0.32895325256096924, 'eval_wer': 0.4703145356411688, 'eval_runtime': 110.3187, 'eval_samples_per_second': 28.427, 'eval_steps_per_second': 1.777, 'epoch': 0.96} +{'loss': 5.4868, 'grad_norm': 26.70827293395996, 'learning_rate': 0.0005713241379310344, 'epoch': 0.96} +{'loss': 2.7424, 'grad_norm': 7.779392719268799, 'learning_rate': 0.0005712827586206896, 'epoch': 0.96} +{'loss': 1.2021, 'grad_norm': 1.7913457155227661, 'learning_rate': 0.0005712413793103447, 'epoch': 0.96} +{'loss': 1.7324, 'grad_norm': 1.760551929473877, 'learning_rate': 0.0005711999999999999, 'epoch': 0.96} +{'loss': 1.7695, 'grad_norm': 2.5545730590820312, 'learning_rate': 0.0005711586206896552, 'epoch': 0.96} +{'loss': 1.2859, 'grad_norm': 3.367995262145996, 'learning_rate': 0.0005711172413793103, 'epoch': 0.96} +{'loss': 1.1425, 'grad_norm': 2.67651104927063, 'learning_rate': 0.0005710758620689655, 'epoch': 0.97} +{'loss': 1.2813, 'grad_norm': 1.7702245712280273, 'learning_rate': 0.0005710344827586206, 'epoch': 0.97} +{'loss': 1.205, 'grad_norm': 1.4949688911437988, 'learning_rate': 0.0005709931034482758, 'epoch': 0.97} +{'loss': 1.1341, 'grad_norm': 1.0344305038452148, 'learning_rate': 0.000570951724137931, 'epoch': 0.97} +{'loss': 0.9666, 'grad_norm': 0.9068742394447327, 'learning_rate': 0.0005709103448275862, 'epoch': 0.97} +{'loss': 1.1407, 'grad_norm': 3.2932441234588623, 'learning_rate': 0.0005708689655172413, 'epoch': 0.97} +{'loss': 1.0087, 'grad_norm': 1.2329061031341553, 'learning_rate': 0.0005708275862068965, 'epoch': 0.97} +{'loss': 1.1756, 'grad_norm': 1.1002187728881836, 'learning_rate': 0.0005707862068965518, 'epoch': 0.97} +{'loss': 1.4149, 'grad_norm': 2.14863920211792, 'learning_rate': 0.0005707448275862068, 'epoch': 0.97} +{'loss': 0.756, 'grad_norm': 0.8424788117408752, 'learning_rate': 0.0005707034482758621, 'epoch': 0.97} +{'loss': 0.9421, 'grad_norm': 0.9140539169311523, 'learning_rate': 0.0005706620689655172, 'epoch': 0.97} +{'loss': 1.4061, 'grad_norm': 1.0328311920166016, 'learning_rate': 0.0005706206896551724, 'epoch': 0.97} +{'loss': 0.9327, 'grad_norm': 1.1561588048934937, 'learning_rate': 0.0005705793103448275, 'epoch': 0.98} +{'loss': 1.0851, 'grad_norm': 0.998042106628418, 'learning_rate': 0.0005705379310344827, 'epoch': 0.98} +{'loss': 1.156, 'grad_norm': 0.9896425604820251, 'learning_rate': 0.0005704965517241379, 'epoch': 0.98} +{'loss': 0.8168, 'grad_norm': 1.1115268468856812, 'learning_rate': 0.0005704551724137931, 'epoch': 0.98} +{'loss': 0.9202, 'grad_norm': 1.3038030862808228, 'learning_rate': 0.0005704137931034482, 'epoch': 0.98} +{'loss': 1.1559, 'grad_norm': 1.2686210870742798, 'learning_rate': 0.0005703724137931034, 'epoch': 0.98} +{'loss': 0.8931, 'grad_norm': 1.3486443758010864, 'learning_rate': 0.0005703310344827585, 'epoch': 0.98} +{'loss': 1.0435, 'grad_norm': 1.7373155355453491, 'learning_rate': 0.0005702896551724137, 'epoch': 0.98} +{'loss': 1.13, 'grad_norm': 1.5829644203186035, 'learning_rate': 0.000570248275862069, 'epoch': 0.98} +{'loss': 0.9729, 'grad_norm': 1.0416885614395142, 'learning_rate': 0.0005702068965517241, 'epoch': 0.98} +{'loss': 1.4197, 'grad_norm': 3.1023709774017334, 'learning_rate': 0.0005701655172413793, 'epoch': 0.98} +{'loss': 0.7257, 'grad_norm': 1.1935852766036987, 'learning_rate': 0.0005701241379310344, 'epoch': 0.98} +{'loss': 1.169, 'grad_norm': 1.5436975955963135, 'learning_rate': 0.0005700827586206896, 'epoch': 0.98} +{'loss': 0.6172, 'grad_norm': 1.0888906717300415, 'learning_rate': 0.0005700413793103448, 'epoch': 0.99} +{'loss': 1.0974, 'grad_norm': 1.6015293598175049, 'learning_rate': 0.00057, 'epoch': 0.99} +{'loss': 1.3916, 'grad_norm': 1.2442203760147095, 'learning_rate': 0.0005699586206896551, 'epoch': 0.99} +{'loss': 0.8231, 'grad_norm': 1.531297206878662, 'learning_rate': 0.0005699172413793103, 'epoch': 0.99} +{'loss': 1.6418, 'grad_norm': 1.392039179801941, 'learning_rate': 0.0005698758620689654, 'epoch': 0.99} +{'loss': 1.0414, 'grad_norm': 1.469576120376587, 'learning_rate': 0.0005698344827586207, 'epoch': 0.99} +{'loss': 1.0324, 'grad_norm': 1.0751391649246216, 'learning_rate': 0.0005697931034482758, 'epoch': 0.99} +{'loss': 0.9545, 'grad_norm': 1.2098734378814697, 'learning_rate': 0.000569751724137931, 'epoch': 0.99} +{'loss': 0.8175, 'grad_norm': 1.732841968536377, 'learning_rate': 0.0005697103448275862, 'epoch': 0.99} +{'loss': 1.8661, 'grad_norm': 2.4671740531921387, 'learning_rate': 0.0005696689655172413, 'epoch': 0.99} +{'loss': 1.0112, 'grad_norm': 1.2506730556488037, 'learning_rate': 0.0005696275862068965, 'epoch': 0.99} +{'loss': 1.3751, 'grad_norm': 1.1243518590927124, 'learning_rate': 0.0005695862068965517, 'epoch': 0.99} +{'loss': 1.2669, 'grad_norm': 1.3350924253463745, 'learning_rate': 0.0005695448275862069, 'epoch': 1.0} +{'loss': 0.9776, 'grad_norm': 0.9907298684120178, 'learning_rate': 0.000569503448275862, 'epoch': 1.0} +{'loss': 1.5992, 'grad_norm': 1.4338918924331665, 'learning_rate': 0.0005694620689655172, 'epoch': 1.0} +{'loss': 1.0406, 'grad_norm': 1.4308171272277832, 'learning_rate': 0.0005694206896551723, 'epoch': 1.0} +{'loss': 1.3085, 'grad_norm': 1.2638567686080933, 'learning_rate': 0.0005693793103448276, 'epoch': 1.0} +{'loss': 1.8448, 'grad_norm': 2.197087049484253, 'learning_rate': 0.0005693379310344826, 'epoch': 1.0} +{'loss': 1.4058, 'grad_norm': 1.9153947830200195, 'learning_rate': 0.0005692965517241379, 'epoch': 1.0} +{'loss': 5.1747, 'grad_norm': 23.954235076904297, 'learning_rate': 0.000569255172413793, 'epoch': 1.0} +{'loss': 1.5405, 'grad_norm': 2.470468282699585, 'learning_rate': 0.0005692137931034482, 'epoch': 1.0} +{'loss': 1.4613, 'grad_norm': 1.0064260959625244, 'learning_rate': 0.0005691724137931034, 'epoch': 1.0} +{'loss': 1.5191, 'grad_norm': 1.6560035943984985, 'learning_rate': 0.0005691310344827585, 'epoch': 1.0} +{'loss': 0.845, 'grad_norm': 1.1520098447799683, 'learning_rate': 0.0005690896551724138, 'epoch': 1.0} +{'loss': 1.1097, 'grad_norm': 1.6492106914520264, 'learning_rate': 0.0005690482758620689, 'epoch': 1.0} +{'loss': 1.2787, 'grad_norm': 1.7985293865203857, 'learning_rate': 0.0005690068965517241, 'epoch': 1.01} +{'loss': 1.2051, 'grad_norm': 1.5520505905151367, 'learning_rate': 0.0005689655172413792, 'epoch': 1.01} +{'loss': 1.4329, 'grad_norm': 1.1957941055297852, 'learning_rate': 0.0005689241379310345, 'epoch': 1.01} +{'loss': 1.2222, 'grad_norm': 0.951712429523468, 'learning_rate': 0.0005688827586206896, 'epoch': 1.01} +{'loss': 1.0662, 'grad_norm': 0.8774454593658447, 'learning_rate': 0.0005688413793103448, 'epoch': 1.01} +{'loss': 1.4024, 'grad_norm': 2.5327565670013428, 'learning_rate': 0.0005688, 'epoch': 1.01} +{'loss': 0.9136, 'grad_norm': 2.560065984725952, 'learning_rate': 0.0005687586206896551, 'epoch': 1.01} +{'loss': 1.1388, 'grad_norm': 0.9447906613349915, 'learning_rate': 0.0005687172413793104, 'epoch': 1.01} +{'loss': 0.902, 'grad_norm': 1.343140959739685, 'learning_rate': 0.0005686758620689654, 'epoch': 1.01} +{'loss': 1.1009, 'grad_norm': 0.9870138168334961, 'learning_rate': 0.0005686344827586207, 'epoch': 1.01} +{'loss': 0.7532, 'grad_norm': 0.8970255255699158, 'learning_rate': 0.0005685931034482758, 'epoch': 1.01} +{'loss': 1.4048, 'grad_norm': 1.0628588199615479, 'learning_rate': 0.000568551724137931, 'epoch': 1.01} +{'loss': 1.4361, 'grad_norm': 1.2446234226226807, 'learning_rate': 0.0005685103448275861, 'epoch': 1.02} +{'loss': 0.758, 'grad_norm': 1.6840022802352905, 'learning_rate': 0.0005684689655172413, 'epoch': 1.02} +{'loss': 0.7963, 'grad_norm': 1.2187360525131226, 'learning_rate': 0.0005684275862068965, 'epoch': 1.02} +{'loss': 1.4964, 'grad_norm': 2.056363344192505, 'learning_rate': 0.0005683862068965517, 'epoch': 1.02} +{'loss': 1.1649, 'grad_norm': 1.1644407510757446, 'learning_rate': 0.0005683448275862068, 'epoch': 1.02} +{'loss': 1.0061, 'grad_norm': 0.8702163100242615, 'learning_rate': 0.000568303448275862, 'epoch': 1.02} +{'loss': 1.2436, 'grad_norm': 1.4057639837265015, 'learning_rate': 0.0005682620689655172, 'epoch': 1.02} +{'loss': 1.3666, 'grad_norm': 1.9129469394683838, 'learning_rate': 0.0005682206896551723, 'epoch': 1.02} +{'loss': 1.3752, 'grad_norm': 1.2243144512176514, 'learning_rate': 0.0005681793103448276, 'epoch': 1.02} +{'loss': 1.3435, 'grad_norm': 1.1880197525024414, 'learning_rate': 0.0005681379310344827, 'epoch': 1.02} +{'loss': 1.2962, 'grad_norm': 1.1626497507095337, 'learning_rate': 0.0005680965517241379, 'epoch': 1.02} +{'loss': 0.9105, 'grad_norm': 1.4035738706588745, 'learning_rate': 0.0005680551724137931, 'epoch': 1.02} +{'loss': 0.9406, 'grad_norm': 1.151168942451477, 'learning_rate': 0.0005680137931034482, 'epoch': 1.02} +{'loss': 0.9105, 'grad_norm': 1.0252267122268677, 'learning_rate': 0.0005679724137931034, 'epoch': 1.03} +{'loss': 0.8326, 'grad_norm': 1.5198723077774048, 'learning_rate': 0.0005679310344827586, 'epoch': 1.03} +{'loss': 1.0466, 'grad_norm': 1.2462483644485474, 'learning_rate': 0.0005678896551724137, 'epoch': 1.03} +{'loss': 0.5699, 'grad_norm': 0.8513014316558838, 'learning_rate': 0.0005678482758620689, 'epoch': 1.03} +{'loss': 1.1302, 'grad_norm': 2.7643144130706787, 'learning_rate': 0.000567806896551724, 'epoch': 1.03} +{'loss': 1.2368, 'grad_norm': 2.0741894245147705, 'learning_rate': 0.0005677655172413793, 'epoch': 1.03} +{'loss': 0.948, 'grad_norm': 1.9027540683746338, 'learning_rate': 0.0005677241379310345, 'epoch': 1.03} +{'loss': 1.3948, 'grad_norm': 2.3783011436462402, 'learning_rate': 0.0005676827586206896, 'epoch': 1.03} +{'loss': 0.5986, 'grad_norm': 1.4953972101211548, 'learning_rate': 0.0005676413793103448, 'epoch': 1.03} +{'loss': 1.2179, 'grad_norm': 1.5952274799346924, 'learning_rate': 0.0005675999999999999, 'epoch': 1.03} +{'loss': 0.9053, 'grad_norm': 1.6682184934616089, 'learning_rate': 0.0005675586206896551, 'epoch': 1.03} +{'loss': 1.3567, 'grad_norm': 1.7898844480514526, 'learning_rate': 0.0005675172413793103, 'epoch': 1.03} +{'loss': 1.2035, 'grad_norm': 1.3865877389907837, 'learning_rate': 0.0005674758620689655, 'epoch': 1.04} +{'loss': 1.4109, 'grad_norm': 1.596758246421814, 'learning_rate': 0.0005674344827586206, 'epoch': 1.04} +{'loss': 0.7389, 'grad_norm': 1.9485410451889038, 'learning_rate': 0.0005673931034482758, 'epoch': 1.04} +{'loss': 1.5556, 'grad_norm': 2.5500845909118652, 'learning_rate': 0.0005673517241379309, 'epoch': 1.04} +{'loss': 1.1611, 'grad_norm': 1.4791672229766846, 'learning_rate': 0.0005673103448275862, 'epoch': 1.04} +{'loss': 1.5934, 'grad_norm': 1.4281258583068848, 'learning_rate': 0.0005672689655172412, 'epoch': 1.04} +{'loss': 1.7321, 'grad_norm': 1.7893060445785522, 'learning_rate': 0.0005672275862068965, 'epoch': 1.04} + + 0%| | 0/196 [00:00