diff --git "a/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3753218.out" "b/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3753218.out"
new file mode 100644--- /dev/null
+++ "b/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3753218.out"
@@ -0,0 +1,1103 @@
+wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
+wandb: wandb version 0.18.3 is available! To upgrade, please run:
+wandb: $ pip install wandb --upgrade
+wandb: Tracking run with wandb version 0.17.6
+wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20241015_222330-h5k9kszn
+wandb: Run `wandb offline` to turn off syncing.
+wandb: Syncing run rerun_bestrun_wgas1fp16false_indicw2v_ad0_3_hd_02_featd_0_3_lr6e-4_warmup500_s300_shuff100
+wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
+wandb: ๐ View run at https://wandb.ai/priyanshipal/huggingface/runs/h5k9kszn
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐ค Transformers. Use `eval_strategy` instead
+ warnings.warn(
+10/15/2024 22:23:35 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: False
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:991: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:302: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:331: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:509: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
+Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+max_steps is given, it will override any value given in num_train_epochs
+Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=False), added_tokens_decoder={
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+ 150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+}
+CHECK MODEL PARAMS Wav2Vec2ForCTC(
+ (wav2vec2): Wav2Vec2Model(
+ (feature_extractor): Wav2Vec2FeatureEncoder(
+ (conv_layers): ModuleList(
+ (0): Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ )
+ )
+ (feature_projection): Wav2Vec2FeatureProjection(
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
+ (dropout): Dropout(p=0.3, inplace=False)
+ )
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
+ (conv): ParametrizedConv1d(
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
+ (parametrizations): ModuleDict(
+ (weight): ParametrizationList(
+ (0): _WeightNorm()
+ )
+ )
+ )
+ (padding): Wav2Vec2SamePadLayer()
+ (activation): GELUActivation()
+ )
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layers): ModuleList(
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
+ (attention): Wav2Vec2SdpaAttention(
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ )
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (feed_forward): Wav2Vec2FeedForward(
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
+ (intermediate_act_fn): GELUActivation()
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
+ (output_dropout): Dropout(p=0.2, inplace=False)
+ )
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ )
+ )
+ )
+ )
+ (dropout): Dropout(p=0.0, inplace=False)
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
+)
+
0%| | 0/15000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
0%| | 1/15000 [00:25<108:13:26, 25.98s/it]
0%| | 1/15000 [00:25<108:13:26, 25.98s/it]
0%| | 2/15000 [00:29<51:59:14, 12.48s/it]
0%| | 2/15000 [00:29<51:59:14, 12.48s/it]
0%| | 3/15000 [00:31<32:48:51, 7.88s/it]
0%| | 3/15000 [00:31<32:48:51, 7.88s/it]
0%| | 4/15000 [00:33<23:26:59, 5.63s/it]
0%| | 4/15000 [00:33<23:26:59, 5.63s/it]
0%| | 5/15000 [00:35<18:14:45, 4.38s/it]
0%| | 5/15000 [00:35<18:14:45, 4.38s/it]
0%| | 6/15000 [00:37<14:50:31, 3.56s/it]
0%| | 6/15000 [00:37<14:50:31, 3.56s/it]
0%| | 7/15000 [00:39<12:39:24, 3.04s/it]
0%| | 7/15000 [00:39<12:39:24, 3.04s/it]
0%| | 8/15000 [00:41<11:02:18, 2.65s/it]
0%| | 8/15000 [00:41<11:02:18, 2.65s/it]
0%| | 9/15000 [00:43<9:58:49, 2.40s/it]
0%| | 9/15000 [00:43<9:58:49, 2.40s/it]
0%| | 10/15000 [00:44<8:59:09, 2.16s/it]
0%| | 10/15000 [00:44<8:59:09, 2.16s/it]
0%| | 11/15000 [00:46<8:18:46, 2.00s/it]
0%| | 11/15000 [00:46<8:18:46, 2.00s/it]
0%| | 12/15000 [00:48<7:48:36, 1.88s/it]
0%| | 12/15000 [00:48<7:48:36, 1.88s/it]
0%| | 13/15000 [00:49<7:23:58, 1.78s/it]
0%| | 13/15000 [00:49<7:23:58, 1.78s/it]
0%| | 14/15000 [00:51<6:58:10, 1.67s/it]
0%| | 14/15000 [00:51<6:58:10, 1.67s/it]
0%| | 15/15000 [00:52<6:40:16, 1.60s/it]
0%| | 15/15000 [00:52<6:40:16, 1.60s/it]
0%| | 16/15000 [00:54<6:27:19, 1.55s/it]
0%| | 16/15000 [00:54<6:27:19, 1.55s/it]
0%| | 17/15000 [00:55<6:17:36, 1.51s/it]
0%| | 17/15000 [00:55<6:17:36, 1.51s/it]
0%| | 18/15000 [00:56<6:06:43, 1.47s/it]
0%| | 18/15000 [00:56<6:06:43, 1.47s/it]
0%| | 19/15000 [00:58<5:48:21, 1.40s/it]
0%| | 19/15000 [00:58<5:48:21, 1.40s/it]
0%| | 20/15000 [00:59<5:35:53, 1.35s/it]
0%| | 20/15000 [00:59<5:35:53, 1.35s/it]
0%| | 21/15000 [01:00<5:27:21, 1.31s/it]
0%| | 21/15000 [01:00<5:27:21, 1.31s/it]
0%| | 22/15000 [01:01<5:20:53, 1.29s/it]
0%| | 22/15000 [01:01<5:20:53, 1.29s/it]
0%| | 23/15000 [01:02<5:16:10, 1.27s/it]
0%| | 23/15000 [01:02<5:16:10, 1.27s/it]
0%| | 24/15000 [01:04<5:10:23, 1.24s/it]
0%| | 24/15000 [01:04<5:10:23, 1.24s/it]
0%| | 25/15000 [01:05<4:59:47, 1.20s/it]
0%| | 25/15000 [01:05<4:59:47, 1.20s/it]
0%| | 26/15000 [01:06<4:46:52, 1.15s/it]
0%| | 26/15000 [01:06<4:46:52, 1.15s/it]
0%| | 27/15000 [01:07<4:37:32, 1.11s/it]
0%| | 27/15000 [01:07<4:37:32, 1.11s/it]
0%| | 28/15000 [01:08<4:31:23, 1.09s/it]
0%| | 28/15000 [01:08<4:31:23, 1.09s/it]
0%| | 29/15000 [01:09<4:26:44, 1.07s/it]
0%| | 29/15000 [01:09<4:26:44, 1.07s/it]
0%| | 30/15000 [01:10<4:23:35, 1.06s/it]
0%| | 30/15000 [01:10<4:23:35, 1.06s/it]
0%| | 31/15000 [01:11<4:21:05, 1.05s/it]
0%| | 31/15000 [01:11<4:21:05, 1.05s/it]
0%| | 32/15000 [01:12<4:16:43, 1.03s/it]
0%| | 32/15000 [01:12<4:16:43, 1.03s/it]
0%| | 33/15000 [01:13<4:10:50, 1.01s/it]
0%| | 33/15000 [01:13<4:10:50, 1.01s/it]
0%| | 34/15000 [01:14<3:57:48, 1.05it/s]
0%| | 34/15000 [01:14<3:57:48, 1.05it/s]
0%| | 35/15000 [01:15<3:48:00, 1.09it/s]
0%| | 35/15000 [01:15<3:48:00, 1.09it/s]
0%| | 36/15000 [01:15<3:41:02, 1.13it/s]
0%| | 36/15000 [01:15<3:41:02, 1.13it/s]
0%| | 37/15000 [01:16<3:36:06, 1.15it/s]
0%| | 37/15000 [01:16<3:36:06, 1.15it/s]
0%| | 38/15000 [01:17<3:32:32, 1.17it/s]
0%| | 38/15000 [01:17<3:32:32, 1.17it/s]
0%| | 39/15000 [01:18<3:29:17, 1.19it/s]
0%| | 39/15000 [01:18<3:29:17, 1.19it/s]
0%| | 40/15000 [01:19<3:22:39, 1.23it/s]
0%| | 40/15000 [01:19<3:22:39, 1.23it/s]
0%| | 41/15000 [01:19<3:14:10, 1.28it/s]
0%| | 41/15000 [01:19<3:14:10, 1.28it/s]
0%| | 42/15000 [01:20<3:03:15, 1.36it/s]
0%| | 42/15000 [01:20<3:03:15, 1.36it/s]
0%| | 43/15000 [01:21<2:54:59, 1.42it/s]
0%| | 43/15000 [01:21<2:54:59, 1.42it/s]
0%| | 44/15000 [01:21<2:49:06, 1.47it/s]
0%| | 44/15000 [01:21<2:49:06, 1.47it/s]
0%| | 45/15000 [01:22<2:45:04, 1.51it/s]
0%| | 45/15000 [01:22<2:45:04, 1.51it/s]
0%| | 46/15000 [01:22<2:40:08, 1.56it/s]
0%| | 46/15000 [01:22<2:40:08, 1.56it/s]
0%| | 47/15000 [01:23<2:34:03, 1.62it/s]
0%| | 47/15000 [01:23<2:34:03, 1.62it/s]
0%| | 48/15000 [01:23<2:19:50, 1.78it/s]
0%| | 48/15000 [01:23<2:19:50, 1.78it/s]
0%| | 49/15000 [01:24<2:09:25, 1.93it/s]
0%| | 49/15000 [01:24<2:09:25, 1.93it/s]
0%| | 50/15000 [01:25<3:31:31, 1.18it/s]
0%| | 50/15000 [01:25<3:31:31, 1.18it/s]
0%| | 51/15000 [01:31<8:59:52, 2.17s/it]
0%| | 51/15000 [01:31<8:59:52, 2.17s/it]
0%| | 52/15000 [01:33<9:37:33, 2.32s/it]
0%| | 52/15000 [01:33<9:37:33, 2.32s/it]
0%| | 53/15000 [01:36<9:42:34, 2.34s/it]
0%| | 53/15000 [01:36<9:42:34, 2.34s/it]
0%| | 54/15000 [01:38<9:28:10, 2.28s/it]
0%| | 54/15000 [01:38<9:28:10, 2.28s/it]
0%| | 55/15000 [01:40<9:05:53, 2.19s/it]
0%| | 55/15000 [01:40<9:05:53, 2.19s/it]
0%| | 56/15000 [01:42<8:47:02, 2.12s/it]
0%| | 56/15000 [01:42<8:47:02, 2.12s/it]
0%| | 57/15000 [01:44<8:31:04, 2.05s/it]
0%| | 57/15000 [01:44<8:31:04, 2.05s/it]
0%| | 58/15000 [01:45<8:09:32, 1.97s/it]
0%| | 58/15000 [01:45<8:09:32, 1.97s/it]
0%| | 59/15000 [01:47<7:53:32, 1.90s/it]
0%| | 59/15000 [01:47<7:53:32, 1.90s/it]
0%| | 60/15000 [01:49<7:32:24, 1.82s/it]
0%| | 60/15000 [01:49<7:32:24, 1.82s/it]
0%| | 61/15000 [01:50<7:14:57, 1.75s/it]
0%| | 61/15000 [01:50<7:14:57, 1.75s/it]
0%| | 62/15000 [01:52<6:59:33, 1.69s/it]
0%| | 62/15000 [01:52<6:59:33, 1.69s/it]
0%| | 63/15000 [01:53<6:39:27, 1.60s/it]
0%| | 63/15000 [01:53<6:39:27, 1.60s/it]
0%| | 64/15000 [01:55<6:25:48, 1.55s/it]
0%| | 64/15000 [01:55<6:25:48, 1.55s/it]
0%| | 65/15000 [01:56<6:16:11, 1.51s/it]
0%| | 65/15000 [01:56<6:16:11, 1.51s/it]
0%| | 66/15000 [01:58<6:09:15, 1.48s/it]
0%| | 66/15000 [01:58<6:09:15, 1.48s/it]
0%| | 67/15000 [01:59<6:01:46, 1.45s/it]
0%| | 67/15000 [01:59<6:01:46, 1.45s/it]
0%| | 68/15000 [02:00<5:54:23, 1.42s/it]
0%| | 68/15000 [02:00<5:54:23, 1.42s/it]
0%| | 69/15000 [02:02<5:38:07, 1.36s/it]
0%| | 69/15000 [02:02<5:38:07, 1.36s/it]
0%| | 70/15000 [02:03<5:27:08, 1.31s/it]
0%| | 70/15000 [02:03<5:27:08, 1.31s/it]
0%| | 71/15000 [02:04<5:19:26, 1.28s/it]
0%| | 71/15000 [02:04<5:19:26, 1.28s/it]
0%| | 72/15000 [02:05<5:13:55, 1.26s/it]
0%| | 72/15000 [02:05<5:13:55, 1.26s/it]
0%| | 73/15000 [02:06<5:09:22, 1.24s/it]
0%| | 73/15000 [02:06<5:09:22, 1.24s/it]
0%| | 74/15000 [02:08<5:01:45, 1.21s/it]
0%| | 74/15000 [02:08<5:01:45, 1.21s/it]
0%| | 75/15000 [02:09<4:47:23, 1.16s/it]
0%| | 75/15000 [02:09<4:47:23, 1.16s/it]
1%| | 76/15000 [02:10<4:36:48, 1.11s/it]
1%| | 76/15000 [02:10<4:36:48, 1.11s/it]
1%| | 77/15000 [02:11<4:29:08, 1.08s/it]
1%| | 77/15000 [02:11<4:29:08, 1.08s/it]
1%| | 78/15000 [02:12<4:24:17, 1.06s/it]
1%| | 78/15000 [02:12<4:24:17, 1.06s/it]
1%| | 79/15000 [02:13<4:20:52, 1.05s/it]
1%| | 79/15000 [02:13<4:20:52, 1.05s/it]
1%| | 80/15000 [02:14<4:17:55, 1.04s/it]
1%| | 80/15000 [02:14<4:17:55, 1.04s/it]
1%| | 81/15000 [02:15<4:15:57, 1.03s/it]
1%| | 81/15000 [02:15<4:15:57, 1.03s/it]
1%| | 82/15000 [02:16<4:09:54, 1.01s/it]
1%| | 82/15000 [02:16<4:09:54, 1.01s/it]
1%| | 83/15000 [02:17<4:04:59, 1.01it/s]
1%| | 83/15000 [02:17<4:04:59, 1.01it/s]
1%| | 84/15000 [02:17<3:51:51, 1.07it/s]
1%| | 84/15000 [02:17<3:51:51, 1.07it/s]
1%| | 85/15000 [02:18<3:42:30, 1.12it/s]
1%| | 85/15000 [02:18<3:42:30, 1.12it/s]
1%| | 86/15000 [02:19<3:36:02, 1.15it/s]
1%| | 86/15000 [02:19<3:36:02, 1.15it/s]
1%| | 87/15000 [02:20<3:31:36, 1.17it/s]
1%| | 87/15000 [02:20<3:31:36, 1.17it/s]
1%| | 88/15000 [02:21<3:28:53, 1.19it/s]
1%| | 88/15000 [02:21<3:28:53, 1.19it/s]
1%| | 89/15000 [02:21<3:26:29, 1.20it/s]
1%| | 89/15000 [02:21<3:26:29, 1.20it/s]
1%| | 90/15000 [02:22<3:23:50, 1.22it/s]
1%| | 90/15000 [02:22<3:23:50, 1.22it/s]
1%| | 91/15000 [02:23<3:18:10, 1.25it/s]
1%| | 91/15000 [02:23<3:18:10, 1.25it/s]
1%| | 92/15000 [02:24<3:05:27, 1.34it/s]
1%| | 92/15000 [02:24<3:05:27, 1.34it/s]
1%| | 93/15000 [02:24<2:56:24, 1.41it/s]
1%| | 93/15000 [02:24<2:56:24, 1.41it/s]
1%| | 94/15000 [02:25<2:50:37, 1.46it/s]
1%| | 94/15000 [02:25<2:50:37, 1.46it/s]
1%| | 95/15000 [02:25<2:46:03, 1.50it/s]
1%| | 95/15000 [02:25<2:46:03, 1.50it/s]
1%| | 96/15000 [02:26<2:42:03, 1.53it/s]
1%| | 96/15000 [02:26<2:42:03, 1.53it/s]
1%| | 97/15000 [02:27<2:35:06, 1.60it/s]
1%| | 97/15000 [02:27<2:35:06, 1.60it/s]
1%| | 98/15000 [02:27<2:20:18, 1.77it/s]
1%| | 98/15000 [02:27<2:20:18, 1.77it/s]
1%| | 99/15000 [02:27<2:08:56, 1.93it/s]
1%| | 99/15000 [02:27<2:08:56, 1.93it/s]
1%| | 100/15000 [02:29<3:51:46, 1.07it/s]
1%| | 100/15000 [02:29<3:51:46, 1.07it/s]{'loss': 55.1501, 'grad_norm': 55.24320602416992, 'learning_rate': 1.2e-06, 'epoch': 0.0}
+{'loss': 37.9867, 'grad_norm': 23.647079467773438, 'learning_rate': 2.4e-06, 'epoch': 0.0}
+{'loss': 38.8289, 'grad_norm': 78.71797180175781, 'learning_rate': 3.6e-06, 'epoch': 0.0}
+{'loss': 30.949, 'grad_norm': 22.037351608276367, 'learning_rate': 4.8e-06, 'epoch': 0.0}
+{'loss': 23.1032, 'grad_norm': 12.956131935119629, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.0}
+{'loss': 31.3918, 'grad_norm': 20.31169891357422, 'learning_rate': 7.2e-06, 'epoch': 0.0}
+{'loss': 28.9189, 'grad_norm': 17.540878295898438, 'learning_rate': 8.4e-06, 'epoch': 0.01}
+{'loss': 22.3916, 'grad_norm': 13.102218627929688, 'learning_rate': 9.6e-06, 'epoch': 0.01}
+{'loss': 28.3749, 'grad_norm': 17.723081588745117, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.01}
+{'loss': 22.6596, 'grad_norm': 15.419927597045898, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.01}
+{'loss': 24.7073, 'grad_norm': 14.711732864379883, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.01}
+{'loss': 24.3696, 'grad_norm': 15.348709106445312, 'learning_rate': 1.44e-05, 'epoch': 0.01}
+{'loss': 19.5756, 'grad_norm': 12.3980712890625, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.01}
+{'loss': 23.1117, 'grad_norm': 14.994391441345215, 'learning_rate': 1.68e-05, 'epoch': 0.01}
+{'loss': 21.4606, 'grad_norm': 14.228461265563965, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.01}
+{'loss': 23.4022, 'grad_norm': 16.725765228271484, 'learning_rate': 1.92e-05, 'epoch': 0.01}
+{'loss': 19.3385, 'grad_norm': 12.890478134155273, 'learning_rate': 2.04e-05, 'epoch': 0.01}
+{'loss': 19.6988, 'grad_norm': 14.312437057495117, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.01}
+{'loss': 20.3023, 'grad_norm': 15.029579162597656, 'learning_rate': 2.28e-05, 'epoch': 0.02}
+{'loss': 22.1838, 'grad_norm': 17.42087173461914, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.02}
+{'loss': 23.4241, 'grad_norm': 19.851398468017578, 'learning_rate': 2.52e-05, 'epoch': 0.02}
+{'loss': 18.7511, 'grad_norm': 15.883931159973145, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.02}
+{'loss': 18.1496, 'grad_norm': 15.641206741333008, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.02}
+{'loss': 19.8811, 'grad_norm': 17.544893264770508, 'learning_rate': 2.88e-05, 'epoch': 0.02}
+{'loss': 18.4875, 'grad_norm': 17.102035522460938, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.02}
+{'loss': 20.5914, 'grad_norm': 19.561729431152344, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.02}
+{'loss': 21.2235, 'grad_norm': 21.34266471862793, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.02}
+{'loss': 19.0453, 'grad_norm': 18.96493148803711, 'learning_rate': 3.36e-05, 'epoch': 0.02}
+{'loss': 17.8584, 'grad_norm': 18.40350341796875, 'learning_rate': 3.48e-05, 'epoch': 0.02}
+{'loss': 17.1607, 'grad_norm': 17.96097183227539, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.02}
+{'loss': 17.4036, 'grad_norm': 18.478139877319336, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.02}
+{'loss': 24.4918, 'grad_norm': 30.71839714050293, 'learning_rate': 3.84e-05, 'epoch': 0.03}
+{'loss': 17.2703, 'grad_norm': 20.562528610229492, 'learning_rate': 3.96e-05, 'epoch': 0.03}
+{'loss': 22.0235, 'grad_norm': 29.075634002685547, 'learning_rate': 4.08e-05, 'epoch': 0.03}
+{'loss': 16.0123, 'grad_norm': 20.09305763244629, 'learning_rate': 4.2e-05, 'epoch': 0.03}
+{'loss': 14.4792, 'grad_norm': 18.510303497314453, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.03}
+{'loss': 15.6298, 'grad_norm': 22.286174774169922, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.03}
+{'loss': 16.2526, 'grad_norm': 24.687335968017578, 'learning_rate': 4.56e-05, 'epoch': 0.03}
+{'loss': 16.7113, 'grad_norm': 28.12813949584961, 'learning_rate': 4.68e-05, 'epoch': 0.03}
+{'loss': 14.9249, 'grad_norm': 24.97531509399414, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.03}
+{'loss': 20.9556, 'grad_norm': 42.91463088989258, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.03}
+{'loss': 16.2661, 'grad_norm': 32.054107666015625, 'learning_rate': 5.04e-05, 'epoch': 0.03}
+{'loss': 16.2159, 'grad_norm': 70.31315612792969, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.03}
+{'loss': 13.7032, 'grad_norm': 32.60994338989258, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.04}
+{'loss': 16.3465, 'grad_norm': 47.5252799987793, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.04}
+{'loss': 13.4869, 'grad_norm': 38.7507209777832, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.04}
+{'loss': 14.1514, 'grad_norm': 45.27580261230469, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.04}
+{'loss': 13.2299, 'grad_norm': 74.79034423828125, 'learning_rate': 5.76e-05, 'epoch': 0.04}
+{'loss': 14.1863, 'grad_norm': 53.594112396240234, 'learning_rate': 5.88e-05, 'epoch': 0.04}
+{'loss': 10.2234, 'grad_norm': 37.544105529785156, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.04}
+{'loss': 32.0149, 'grad_norm': 210.60939025878906, 'learning_rate': 6.12e-05, 'epoch': 0.04}
+{'loss': 16.5038, 'grad_norm': 283.9588317871094, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.04}
+{'loss': 14.0021, 'grad_norm': 92.21966552734375, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.04}
+{'loss': 9.7727, 'grad_norm': 52.83596420288086, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.04}
+{'loss': 9.7588, 'grad_norm': 57.96211624145508, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.04}
+{'loss': 11.3258, 'grad_norm': 81.57141876220703, 'learning_rate': 6.72e-05, 'epoch': 0.04}
+{'loss': 8.107, 'grad_norm': 49.513389587402344, 'learning_rate': 6.84e-05, 'epoch': 0.05}
+{'loss': 7.9498, 'grad_norm': 51.3297119140625, 'learning_rate': 6.96e-05, 'epoch': 0.05}
+{'loss': 7.2234, 'grad_norm': 49.16130447387695, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.05}
+{'loss': 7.1602, 'grad_norm': 44.431884765625, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.05}
+{'loss': 7.5301, 'grad_norm': 50.24138641357422, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.05}
+{'loss': 5.9971, 'grad_norm': 30.802688598632812, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.05}
+{'loss': 5.9177, 'grad_norm': 29.715532302856445, 'learning_rate': 7.56e-05, 'epoch': 0.05}
+{'loss': 5.4384, 'grad_norm': 21.660947799682617, 'learning_rate': 7.68e-05, 'epoch': 0.05}
+{'loss': 5.131, 'grad_norm': 17.690467834472656, 'learning_rate': 7.8e-05, 'epoch': 0.05}
+{'loss': 5.1511, 'grad_norm': 16.03678321838379, 'learning_rate': 7.92e-05, 'epoch': 0.05}
+{'loss': 5.0105, 'grad_norm': 16.573497772216797, 'learning_rate': 8.04e-05, 'epoch': 0.05}
+{'loss': 4.8401, 'grad_norm': 8.50601863861084, 'learning_rate': 8.16e-05, 'epoch': 0.05}
+{'loss': 4.822, 'grad_norm': 9.597841262817383, 'learning_rate': 8.28e-05, 'epoch': 0.06}
+{'loss': 4.7947, 'grad_norm': 8.359488487243652, 'learning_rate': 8.4e-05, 'epoch': 0.06}
+{'loss': 4.6689, 'grad_norm': 3.957462787628174, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.06}
+{'loss': 4.5875, 'grad_norm': 3.6539266109466553, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.06}
+{'loss': 4.6111, 'grad_norm': 3.8879873752593994, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.06}
+{'loss': 4.4679, 'grad_norm': 4.104447364807129, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.06}
+{'loss': 4.5248, 'grad_norm': 3.684237241744995, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.06}
+{'loss': 4.4057, 'grad_norm': 6.547801494598389, 'learning_rate': 9.12e-05, 'epoch': 0.06}
+{'loss': 4.3263, 'grad_norm': 4.996586799621582, 'learning_rate': 9.24e-05, 'epoch': 0.06}
+{'loss': 4.3208, 'grad_norm': 3.973392963409424, 'learning_rate': 9.36e-05, 'epoch': 0.06}
+{'loss': 4.2673, 'grad_norm': 7.355752468109131, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.06}
+{'loss': 4.1806, 'grad_norm': 2.568572759628296, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.06}
+{'loss': 4.1955, 'grad_norm': 4.414656639099121, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.06}
+{'loss': 4.2109, 'grad_norm': 4.509352207183838, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.07}
+{'loss': 4.1688, 'grad_norm': 4.9976959228515625, 'learning_rate': 9.96e-05, 'epoch': 0.07}
+{'loss': 4.0762, 'grad_norm': 2.1113946437835693, 'learning_rate': 0.0001008, 'epoch': 0.07}
+{'loss': 4.0848, 'grad_norm': 1.612180233001709, 'learning_rate': 0.000102, 'epoch': 0.07}
+{'loss': 4.0572, 'grad_norm': 1.3094934225082397, 'learning_rate': 0.00010319999999999999, 'epoch': 0.07}
+{'loss': 3.9716, 'grad_norm': 3.991403579711914, 'learning_rate': 0.00010439999999999999, 'epoch': 0.07}
+{'loss': 4.0021, 'grad_norm': 2.9913430213928223, 'learning_rate': 0.00010559999999999998, 'epoch': 0.07}
+{'loss': 3.9559, 'grad_norm': 1.6111350059509277, 'learning_rate': 0.00010679999999999998, 'epoch': 0.07}
+{'loss': 4.0387, 'grad_norm': 3.534836769104004, 'learning_rate': 0.00010799999999999998, 'epoch': 0.07}
+{'loss': 3.9655, 'grad_norm': 1.357425332069397, 'learning_rate': 0.00010919999999999998, 'epoch': 0.07}
+{'loss': 4.0018, 'grad_norm': 1.7971723079681396, 'learning_rate': 0.00011039999999999999, 'epoch': 0.07}
+{'loss': 4.0132, 'grad_norm': 1.606231689453125, 'learning_rate': 0.00011159999999999999, 'epoch': 0.07}
+{'loss': 4.0095, 'grad_norm': 1.794319987297058, 'learning_rate': 0.00011279999999999999, 'epoch': 0.08}
+{'loss': 3.9136, 'grad_norm': 1.4456522464752197, 'learning_rate': 0.00011399999999999999, 'epoch': 0.08}
+{'loss': 3.8649, 'grad_norm': 3.3638863563537598, 'learning_rate': 0.0001152, 'epoch': 0.08}
+{'loss': 3.8661, 'grad_norm': 1.408311128616333, 'learning_rate': 0.0001164, 'epoch': 0.08}
+{'loss': 3.9351, 'grad_norm': 2.4918947219848633, 'learning_rate': 0.0001176, 'epoch': 0.08}
+{'loss': 3.97, 'grad_norm': 1.5341547727584839, 'learning_rate': 0.0001188, 'epoch': 0.08}
+{'loss': 3.9552, 'grad_norm': 2.488055944442749, 'learning_rate': 0.00011999999999999999, 'epoch': 0.08}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<01:12, 2.68it/s][A
+
2%|โ | 3/196 [00:01<01:47, 1.80it/s][A
+
2%|โ | 4/196 [00:02<02:11, 1.46it/s][A
+
3%|โ | 5/196 [00:03<02:25, 1.32it/s][A
+
3%|โ | 6/196 [00:04<02:47, 1.13it/s][A
+
4%|โ | 7/196 [00:05<02:52, 1.09it/s][A
+
4%|โ | 8/196 [00:06<02:55, 1.07it/s][A
+
5%|โ | 9/196 [00:08<03:47, 1.22s/it][A
+
5%|โ | 10/196 [00:10<04:26, 1.44s/it][A
+
6%|โ | 11/196 [00:12<05:08, 1.67s/it][A
+
6%|โ | 12/196 [00:14<05:24, 1.76s/it][A
+
7%|โ | 13/196 [00:15<04:42, 1.54s/it][A
+
7%|โ | 14/196 [00:16<03:59, 1.32s/it][A
+
8%|โ | 15/196 [00:16<03:20, 1.11s/it][A
+
8%|โ | 16/196 [00:17<03:07, 1.04s/it][A
+
9%|โ | 17/196 [00:18<03:00, 1.01s/it][A
+
9%|โ | 18/196 [00:20<03:19, 1.12s/it][A
+
10%|โ | 19/196 [00:22<04:12, 1.42s/it][A
+
10%|โ | 20/196 [00:23<04:29, 1.53s/it][A
+
11%|โ | 21/196 [00:25<04:37, 1.59s/it][A
+
11%|โ | 22/196 [00:27<04:25, 1.52s/it][A
+
12%|โโ | 23/196 [00:28<04:03, 1.40s/it][A
+
12%|โโ | 24/196 [00:28<03:14, 1.13s/it][A
+
13%|โโ | 25/196 [00:29<02:45, 1.03it/s][A
+
13%|โโ | 26/196 [00:29<02:25, 1.17it/s][A
+
14%|โโ | 27/196 [00:30<02:14, 1.26it/s][A
+
14%|โโ | 28/196 [00:31<02:08, 1.31it/s][A
+
15%|โโ | 29/196 [00:31<02:08, 1.30it/s][A
+
15%|โโ | 30/196 [00:32<02:08, 1.29it/s][A
+
16%|โโ | 31/196 [00:33<01:57, 1.41it/s][A
+
16%|โโ | 32/196 [00:33<01:52, 1.46it/s][A
+
17%|โโ | 33/196 [00:35<02:09, 1.26it/s][A
+
17%|โโ | 34/196 [00:36<02:47, 1.04s/it][A
+
18%|โโ | 35/196 [00:37<02:54, 1.09s/it][A
+
18%|โโ | 36/196 [00:39<03:17, 1.24s/it][A
+
19%|โโ | 37/196 [00:40<03:14, 1.22s/it][A
+
19%|โโ | 38/196 [00:41<02:58, 1.13s/it][A
+
20%|โโ | 39/196 [00:42<02:47, 1.07s/it][A
+
20%|โโ | 40/196 [00:43<02:33, 1.01it/s][A
+
21%|โโ | 41/196 [00:43<02:20, 1.10it/s][A
+
21%|โโโ | 42/196 [00:44<02:10, 1.18it/s][A
+
22%|โโโ | 43/196 [00:45<02:08, 1.19it/s][A
+
22%|โโโ | 44/196 [00:46<02:05, 1.21it/s][A
+
23%|โโโ | 45/196 [00:46<01:57, 1.29it/s][A
+
23%|โโโ | 46/196 [00:47<01:49, 1.37it/s][A
+
24%|โโโ | 47/196 [00:48<01:49, 1.37it/s][A
+
24%|โโโ | 48/196 [00:48<01:43, 1.43it/s][A
+
25%|โโโ | 49/196 [00:49<01:40, 1.46it/s][A
+
26%|โโโ | 50/196 [00:50<01:39, 1.47it/s][A
+
26%|โโโ | 51/196 [00:50<01:36, 1.51it/s][A
+
27%|โโโ | 52/196 [00:51<01:35, 1.51it/s][A
+
27%|โโโ | 53/196 [00:52<01:39, 1.43it/s][A
+
28%|โโโ | 54/196 [00:52<01:38, 1.45it/s][A
+
28%|โโโ | 55/196 [00:53<01:49, 1.29it/s][A
+
29%|โโโ | 56/196 [00:54<01:57, 1.19it/s][A
+
29%|โโโ | 57/196 [00:55<02:05, 1.11it/s][A
+
30%|โโโ | 58/196 [00:57<02:09, 1.06it/s][A
+
30%|โโโ | 59/196 [00:57<02:07, 1.08it/s][A
+
31%|โโโ | 60/196 [00:58<01:55, 1.17it/s][A
+
31%|โโโ | 61/196 [00:59<01:45, 1.28it/s][A
+
32%|โโโโ | 62/196 [01:00<01:50, 1.22it/s][A
+
32%|โโโโ | 63/196 [01:00<01:48, 1.23it/s][A
+
33%|โโโโ | 64/196 [01:01<01:46, 1.24it/s][A
+
33%|โโโโ | 65/196 [01:02<01:42, 1.27it/s][A
+
34%|โโโโ | 66/196 [01:03<01:46, 1.22it/s][A
+
34%|โโโโ | 67/196 [01:04<01:49, 1.17it/s][A
+
35%|โโโโ | 68/196 [01:05<02:03, 1.03it/s][A
+
35%|โโโโ | 69/196 [01:06<02:04, 1.02it/s][A
+
36%|โโโโ | 70/196 [01:07<01:55, 1.09it/s][A
+
36%|โโโโ | 71/196 [01:08<01:47, 1.16it/s][A
+
37%|โโโโ | 72/196 [01:08<01:39, 1.25it/s][A
+
37%|โโโโ | 73/196 [01:09<01:30, 1.36it/s][A
+
38%|โโโโ | 74/196 [01:09<01:23, 1.45it/s][A
+
38%|โโโโ | 75/196 [01:10<01:21, 1.49it/s][A
+
39%|โโโโ | 76/196 [01:11<01:19, 1.52it/s][A
+
39%|โโโโ | 77/196 [01:11<01:22, 1.45it/s][A
+
40%|โโโโ | 78/196 [01:12<01:26, 1.36it/s][A
+
40%|โโโโ | 79/196 [01:13<01:24, 1.39it/s][A
+
41%|โโโโ | 80/196 [01:14<01:29, 1.29it/s][A
+
41%|โโโโโ | 81/196 [01:15<01:31, 1.25it/s][A
+
42%|โโโโโ | 82/196 [01:15<01:28, 1.29it/s][A
+
42%|โโโโโ | 83/196 [01:16<01:30, 1.25it/s][A
+
43%|โโโโโ | 84/196 [01:17<01:31, 1.22it/s][A
+
43%|โโโโโ | 85/196 [01:18<01:30, 1.23it/s][A
+
44%|โโโโโ | 86/196 [01:19<01:32, 1.19it/s][A
+
44%|โโโโโ | 87/196 [01:20<01:29, 1.22it/s][A
+
45%|โโโโโ | 88/196 [01:21<01:32, 1.17it/s][A
+
45%|โโโโโ | 89/196 [01:21<01:34, 1.13it/s][A
+
46%|โโโโโ | 90/196 [01:22<01:31, 1.16it/s][A
+
46%|โโโโโ | 91/196 [01:23<01:27, 1.20it/s][A
+
47%|โโโโโ | 92/196 [01:24<01:24, 1.23it/s][A
+
47%|โโโโโ | 93/196 [01:25<01:28, 1.16it/s][A
+
48%|โโโโโ | 94/196 [01:26<01:28, 1.15it/s][A
+
48%|โโโโโ | 95/196 [01:26<01:24, 1.19it/s][A
+
49%|โโโโโ | 96/196 [01:27<01:28, 1.13it/s][A
+
49%|โโโโโ | 97/196 [01:28<01:25, 1.16it/s][A
+
50%|โโโโโ | 98/196 [01:29<01:27, 1.12it/s][A
+
51%|โโโโโ | 99/196 [01:30<01:20, 1.21it/s][A
+
51%|โโโโโ | 100/196 [01:30<01:10, 1.37it/s][A
+
52%|โโโโโโ | 101/196 [01:31<01:05, 1.44it/s][A
+
52%|โโโโโโ | 102/196 [01:32<01:09, 1.35it/s][A
+
53%|โโโโโโ | 103/196 [01:33<01:14, 1.25it/s][A
+
53%|โโโโโโ | 104/196 [01:34<01:24, 1.10it/s][A
+
54%|โโโโโโ | 105/196 [01:35<01:25, 1.07it/s][A
+
54%|โโโโโโ | 106/196 [01:36<01:24, 1.06it/s][A
+
55%|โโโโโโ | 107/196 [01:37<01:18, 1.13it/s][A
+
55%|โโโโโโ | 108/196 [01:37<01:09, 1.27it/s][A
+
56%|โโโโโโ | 109/196 [01:38<01:05, 1.33it/s][A
+
56%|โโโโโโ | 110/196 [01:39<01:02, 1.38it/s][A
+
57%|โโโโโโ | 111/196 [01:39<01:01, 1.37it/s][A
+
57%|โโโโโโ | 112/196 [01:40<01:03, 1.32it/s][A
+
58%|โโโโโโ | 113/196 [01:41<01:03, 1.30it/s][A
+
58%|โโโโโโ | 114/196 [01:42<00:58, 1.40it/s][A
+
59%|โโโโโโ | 115/196 [01:42<00:56, 1.44it/s][A
+
59%|โโโโโโ | 116/196 [01:43<00:54, 1.47it/s][A
+
60%|โโโโโโ | 117/196 [01:43<00:51, 1.54it/s][A
+
60%|โโโโโโ | 118/196 [01:44<00:46, 1.69it/s][A
+
61%|โโโโโโ | 119/196 [01:45<00:48, 1.60it/s][A
+
61%|โโโโโโ | 120/196 [01:45<00:49, 1.52it/s][A
+
62%|โโโโโโโ | 121/196 [01:46<00:50, 1.48it/s][A
+
62%|โโโโโโโ | 122/196 [01:47<00:51, 1.45it/s][A
+
63%|โโโโโโโ | 123/196 [01:47<00:49, 1.47it/s][A
+
63%|โโโโโโโ | 124/196 [01:48<00:49, 1.45it/s][A
+
64%|โโโโโโโ | 125/196 [01:49<00:51, 1.37it/s][A
+
64%|โโโโโโโ | 126/196 [01:50<00:56, 1.23it/s][A
+
65%|โโโโโโโ | 127/196 [01:51<00:55, 1.25it/s][A
+
65%|โโโโโโโ | 128/196 [01:51<00:51, 1.32it/s][A
+
66%|โโโโโโโ | 129/196 [01:52<00:49, 1.35it/s][A
+
66%|โโโโโโโ | 130/196 [01:53<00:48, 1.35it/s][A
+
67%|โโโโโโโ | 131/196 [01:53<00:47, 1.36it/s][A
+
67%|โโโโโโโ | 132/196 [01:54<00:44, 1.45it/s][A
+
68%|โโโโโโโ | 133/196 [01:55<00:42, 1.47it/s][A
+
68%|โโโโโโโ | 134/196 [01:56<00:45, 1.38it/s][A
+
69%|โโโโโโโ | 135/196 [01:56<00:43, 1.41it/s][A
+
69%|โโโโโโโ | 136/196 [01:57<00:41, 1.44it/s][A
+
70%|โโโโโโโ | 137/196 [01:58<00:40, 1.44it/s][A
+
70%|โโโโโโโ | 138/196 [01:58<00:40, 1.44it/s][A
+
71%|โโโโโโโ | 139/196 [01:59<00:40, 1.41it/s][A
+
71%|โโโโโโโโ | 140/196 [02:00<00:38, 1.44it/s][A
+
72%|โโโโโโโโ | 141/196 [02:00<00:38, 1.44it/s][A
+
72%|โโโโโโโโ | 142/196 [02:01<00:38, 1.39it/s][A
+
73%|โโโโโโโโ | 143/196 [02:02<00:40, 1.30it/s][A
+
73%|โโโโโโโโ | 144/196 [02:03<00:37, 1.38it/s][A
+
74%|โโโโโโโโ | 145/196 [02:03<00:33, 1.51it/s][A
+
74%|โโโโโโโโ | 146/196 [02:04<00:31, 1.59it/s][A
+
75%|โโโโโโโโ | 147/196 [02:04<00:30, 1.59it/s][A
+
76%|โโโโโโโโ | 148/196 [02:05<00:30, 1.59it/s][A
+
76%|โโโโโโโโ | 149/196 [02:06<00:28, 1.66it/s][A
+
77%|โโโโโโโโ | 150/196 [02:06<00:29, 1.56it/s][A
+
77%|โโโโโโโโ | 151/196 [02:07<00:30, 1.48it/s][A
+
78%|โโโโโโโโ | 152/196 [02:08<00:29, 1.49it/s][A
+
78%|โโโโโโโโ | 153/196 [02:08<00:29, 1.48it/s][A
+
79%|โโโโโโโโ | 154/196 [02:09<00:28, 1.47it/s][A
+
79%|โโโโโโโโ | 155/196 [02:10<00:30, 1.36it/s][A
+
80%|โโโโโโโโ | 156/196 [02:11<00:33, 1.19it/s][A
+
80%|โโโโโโโโ | 157/196 [02:12<00:35, 1.11it/s][A
+
81%|โโโโโโโโ | 158/196 [02:13<00:30, 1.23it/s][A
+
81%|โโโโโโโโ | 159/196 [02:13<00:27, 1.34it/s][A
+
82%|โโโโโโโโโ | 160/196 [02:14<00:25, 1.41it/s][A
+
82%|โโโโโโโโโ | 161/196 [02:15<00:24, 1.40it/s][A
+
83%|โโโโโโโโโ | 162/196 [02:15<00:24, 1.42it/s][A
+
83%|โโโโโโโโโ | 163/196 [02:16<00:22, 1.44it/s][A
+
84%|โโโโโโโโโ | 164/196 [02:17<00:21, 1.46it/s][A
+
84%|โโโโโโโโโ | 165/196 [02:17<00:22, 1.40it/s][A
+
85%|โโโโโโโโโ | 166/196 [02:18<00:21, 1.43it/s][A
+
85%|โโโโโโโโโ | 167/196 [02:19<00:19, 1.47it/s][A
+
86%|โโโโโโโโโ | 168/196 [02:19<00:18, 1.54it/s][A
+
86%|โโโโโโโโโ | 169/196 [02:20<00:17, 1.50it/s][A
+
87%|โโโโโโโโโ | 170/196 [02:21<00:18, 1.37it/s][A
+
87%|โโโโโโโโโ | 171/196 [02:22<00:17, 1.41it/s][A
+
88%|โโโโโโโโโ | 172/196 [02:22<00:17, 1.38it/s][A
+
88%|โโโโโโโโโ | 173/196 [02:23<00:16, 1.39it/s][A
+
89%|โโโโโโโโโ | 174/196 [02:24<00:16, 1.32it/s][A
+
89%|โโโโโโโโโ | 175/196 [02:25<00:19, 1.09it/s][A
+
90%|โโโโโโโโโ | 176/196 [02:28<00:28, 1.41s/it][A
+
90%|โโโโโโโโโ | 177/196 [02:30<00:30, 1.61s/it][A
+
91%|โโโโโโโโโ | 178/196 [02:32<00:31, 1.76s/it][A
+
91%|โโโโโโโโโโ| 179/196 [02:34<00:31, 1.87s/it][A
+
92%|โโโโโโโโโโ| 180/196 [02:35<00:24, 1.51s/it][A
+
92%|โโโโโโโโโโ| 181/196 [02:35<00:19, 1.29s/it][A
+
93%|โโโโโโโโโโ| 182/196 [02:36<00:15, 1.11s/it][A
+
93%|โโโโโโโโโโ| 183/196 [02:37<00:14, 1.13s/it][A
+
94%|โโโโโโโโโโ| 184/196 [02:38<00:11, 1.01it/s][A
+
94%|โโโโโโโโโโ| 185/196 [02:39<00:10, 1.05it/s][A
+
95%|โโโโโโโโโโ| 186/196 [02:40<00:09, 1.02it/s][A
+
95%|โโโโโโโโโโ| 187/196 [02:41<00:08, 1.07it/s][A
+
96%|โโโโโโโโโโ| 188/196 [02:41<00:07, 1.14it/s][A
+
96%|โโโโโโโโโโ| 189/196 [02:42<00:06, 1.15it/s][A
+
97%|โโโโโโโโโโ| 190/196 [02:43<00:04, 1.24it/s][A
+
97%|โโโโโโโโโโ| 191/196 [02:44<00:03, 1.34it/s][A
+
98%|โโโโโโโโโโ| 192/196 [02:44<00:02, 1.35it/s][A
+
98%|โโโโโโโโโโ| 193/196 [02:45<00:02, 1.35it/s][A
+
99%|โโโโโโโโโโ| 194/196 [02:46<00:01, 1.37it/s][A
+
99%|โโโโโโโโโโ| 195/196 [02:46<00:00, 1.41it/s][A
+
100%|โโโโโโโโโโ| 196/196 [02:47<00:00, 1.63it/s][A
+
[A
1%| | 100/15000 [05:23<3:51:46, 1.07it/s]
+
100%|โโโโโโโโโโ| 196/196 [02:52<00:00, 1.63it/s][A
+
[A
1%| | 101/15000 [05:29<225:58:46, 54.60s/it]
1%| | 101/15000 [05:29<225:58:46, 54.60s/it]
1%| | 102/15000 [05:33<162:24:22, 39.24s/it]
1%| | 102/15000 [05:33<162:24:22, 39.24s/it]
1%| | 103/15000 [05:35<116:59:21, 28.27s/it]
1%| | 103/15000 [05:35<116:59:21, 28.27s/it]
1%| | 104/15000 [05:38<84:50:12, 20.50s/it]
1%| | 104/15000 [05:38<84:50:12, 20.50s/it]
1%| | 105/15000 [05:40<62:03:00, 15.00s/it]
1%| | 105/15000 [05:40<62:03:00, 15.00s/it]
1%| | 106/15000 [05:42<45:52:03, 11.09s/it]
1%| | 106/15000 [05:42<45:52:03, 11.09s/it]
1%| | 107/15000 [05:44<34:33:10, 8.35s/it]
1%| | 107/15000 [05:44<34:33:10, 8.35s/it]
1%| | 108/15000 [05:45<26:22:59, 6.38s/it]
1%| | 108/15000 [05:45<26:22:59, 6.38s/it]
1%| | 109/15000 [05:47<20:38:18, 4.99s/it]
1%| | 109/15000 [05:47<20:38:18, 4.99s/it]
1%| | 110/15000 [05:49<16:26:20, 3.97s/it]
1%| | 110/15000 [05:49<16:26:20, 3.97s/it]
1%| | 111/15000 [05:50<13:28:03, 3.26s/it]
1%| | 111/15000 [05:50<13:28:03, 3.26s/it]
1%| | 112/15000 [05:52<11:19:59, 2.74s/it]
1%| | 112/15000 [05:52<11:19:59, 2.74s/it]
1%| | 113/15000 [05:53<9:41:36, 2.34s/it]
1%| | 113/15000 [05:53<9:41:36, 2.34s/it]
1%| | 114/15000 [05:55<8:32:54, 2.07s/it]
1%| | 114/15000 [05:55<8:32:54, 2.07s/it]
1%| | 115/15000 [05:56<7:44:37, 1.87s/it]
1%| | 115/15000 [05:56<7:44:37, 1.87s/it]
1%| | 116/15000 [05:58<7:11:21, 1.74s/it]
1%| | 116/15000 [05:58<7:11:21, 1.74s/it]
1%| | 117/15000 [05:59<6:46:34, 1.64s/it]
1%| | 117/15000 [05:59<6:46:34, 1.64s/it]
1%| | 118/15000 [06:00<6:25:04, 1.55s/it]
1%| | 118/15000 [06:00<6:25:04, 1.55s/it]
1%| | 119/15000 [06:02<5:59:47, 1.45s/it]
1%| | 119/15000 [06:02<5:59:47, 1.45s/it]
1%| | 120/15000 [06:03<5:42:00, 1.38s/it]
1%| | 120/15000 [06:03<5:42:00, 1.38s/it]
1%| | 121/15000 [06:04<5:29:18, 1.33s/it]
1%| | 121/15000 [06:04<5:29:18, 1.33s/it]
1%| | 122/15000 [06:05<5:20:04, 1.29s/it]
1%| | 122/15000 [06:05<5:20:04, 1.29s/it]
1%| | 123/15000 [06:06<5:11:33, 1.26s/it]
1%| | 123/15000 [06:06<5:11:33, 1.26s/it]
1%| | 124/15000 [06:08<5:02:34, 1.22s/it]
1%| | 124/15000 [06:08<5:02:34, 1.22s/it]
1%| | 125/15000 [06:09<4:46:36, 1.16s/it]
1%| | 125/15000 [06:09<4:46:36, 1.16s/it]
1%| | 126/15000 [06:10<4:35:49, 1.11s/it]
1%| | 126/15000 [06:10<4:35:49, 1.11s/it]
1%| | 127/15000 [06:11<4:28:00, 1.08s/it]
1%| | 127/15000 [06:11<4:28:00, 1.08s/it]
1%| | 128/15000 [06:12<4:22:34, 1.06s/it]
1%| | 128/15000 [06:12<4:22:34, 1.06s/it]
1%| | 129/15000 [06:13<4:19:19, 1.05s/it]
1%| | 129/15000 [06:13<4:19:19, 1.05s/it]
1%| | 130/15000 [06:14<4:17:06, 1.04s/it]
1%| | 130/15000 [06:14<4:17:06, 1.04s/it]
1%| | 131/15000 [06:15<4:14:22, 1.03s/it]
1%| | 131/15000 [06:15<4:14:22, 1.03s/it]
1%| | 132/15000 [06:16<4:08:17, 1.00s/it]
1%| | 132/15000 [06:16<4:08:17, 1.00s/it]
1%| | 133/15000 [06:16<3:54:03, 1.06it/s]
1%| | 133/15000 [06:16<3:54:03, 1.06it/s]
1%| | 134/15000 [06:17<3:44:04, 1.11it/s]
1%| | 134/15000 [06:17<3:44:04, 1.11it/s]
1%| | 135/15000 [06:18<3:37:32, 1.14it/s]
1%| | 135/15000 [06:18<3:37:32, 1.14it/s]
1%| | 136/15000 [06:19<3:32:29, 1.17it/s]
1%| | 136/15000 [06:19<3:32:29, 1.17it/s]
1%| | 137/15000 [06:20<3:29:14, 1.18it/s]
1%| | 137/15000 [06:20<3:29:14, 1.18it/s]
1%| | 138/15000 [06:20<3:26:35, 1.20it/s]
1%| | 138/15000 [06:20<3:26:35, 1.20it/s]
1%| | 139/15000 [06:21<3:24:45, 1.21it/s]
1%| | 139/15000 [06:21<3:24:45, 1.21it/s]
1%| | 140/15000 [06:22<3:19:15, 1.24it/s]
1%| | 140/15000 [06:22<3:19:15, 1.24it/s]
1%| | 141/15000 [06:23<3:14:50, 1.27it/s]
1%| | 141/15000 [06:23<3:14:50, 1.27it/s]
1%| | 142/15000 [06:23<3:02:36, 1.36it/s]
1%| | 142/15000 [06:23<3:02:36, 1.36it/s]
1%| | 143/15000 [06:24<2:54:00, 1.42it/s]
1%| | 143/15000 [06:24<2:54:00, 1.42it/s]
1%| | 144/15000 [06:25<2:48:27, 1.47it/s]
1%| | 144/15000 [06:25<2:48:27, 1.47it/s]
1%| | 145/15000 [06:25<2:44:26, 1.51it/s]
1%| | 145/15000 [06:25<2:44:26, 1.51it/s]
1%| | 146/15000 [06:26<2:41:20, 1.53it/s]
1%| | 146/15000 [06:26<2:41:20, 1.53it/s]
1%| | 147/15000 [06:26<2:35:06, 1.60it/s]
1%| | 147/15000 [06:26<2:35:06, 1.60it/s]
1%| | 148/15000 [06:27<2:29:53, 1.65it/s]
1%| | 148/15000 [06:27<2:29:53, 1.65it/s]
1%| | 149/15000 [06:27<2:16:16, 1.82it/s]
1%| | 149/15000 [06:27<2:16:16, 1.82it/s]
1%| | 150/15000 [06:29<3:31:33, 1.17it/s]
1%| | 150/15000 [06:29<3:31:33, 1.17it/s]
1%| | 151/15000 [06:34<8:14:16, 2.00s/it]
1%| | 151/15000 [06:34<8:14:16, 2.00s/it]
1%| | 152/15000 [06:37<9:22:33, 2.27s/it]
1%| | 152/15000 [06:37<9:22:33, 2.27s/it]
1%| | 153/15000 [06:39<9:50:49, 2.39s/it]
1%| | 153/15000 [06:39<9:50:49, 2.39s/it]
1%| | 154/15000 [06:42<9:50:01, 2.38s/it]
1%| | 154/15000 [06:42<9:50:01, 2.38s/it]
1%| | 155/15000 [06:44<9:32:56, 2.32s/it]
1%| | 155/15000 [06:44<9:32:56, 2.32s/it]
1%| | 156/15000 [06:46<9:08:38, 2.22s/it]
1%| | 156/15000 [06:46<9:08:38, 2.22s/it]
1%| | 157/15000 [06:48<8:49:36, 2.14s/it]
1%| | 157/15000 [06:48<8:49:36, 2.14s/it]
1%| | 158/15000 [06:49<8:23:10, 2.03s/it]
1%| | 158/15000 [06:49<8:23:10, 2.03s/it]
1%| | 159/15000 [06:51<8:02:50, 1.95s/it]
1%| | 159/15000 [06:51<8:02:50, 1.95s/it]
1%| | 160/15000 [06:53<7:36:43, 1.85s/it]
1%| | 160/15000 [06:53<7:36:43, 1.85s/it]
1%| | 161/15000 [06:54<7:15:08, 1.76s/it]
1%| | 161/15000 [06:54<7:15:08, 1.76s/it]
1%| | 162/15000 [06:56<6:58:11, 1.69s/it]
1%| | 162/15000 [06:56<6:58:11, 1.69s/it]
1%| | 163/15000 [06:57<6:38:12, 1.61s/it]
1%| | 163/15000 [06:57<6:38:12, 1.61s/it]
1%| | 164/15000 [06:59<6:24:15, 1.55s/it]
1%| | 164/15000 [06:59<6:24:15, 1.55s/it]
1%| | 165/15000 [07:00<6:14:45, 1.52s/it]
1%| | 165/15000 [07:00<6:14:45, 1.52s/it]
1%| | 166/15000 [07:02<6:06:33, 1.48s/it]
1%| | 166/15000 [07:02<6:06:33, 1.48s/it]
1%| | 167/15000 [07:03<5:56:56, 1.44s/it]
1%| | 167/15000 [07:03<5:56:56, 1.44s/it]
1%| | 168/15000 [07:04<5:39:59, 1.38s/it]
1%| | 168/15000 [07:04<5:39:59, 1.38s/it]
1%| | 169/15000 [07:05<5:27:19, 1.32s/it]
1%| | 169/15000 [07:05<5:27:19, 1.32s/it]
1%| | 170/15000 [07:07<5:18:48, 1.29s/it]
1%| | 170/15000 [07:07<5:18:48, 1.29s/it]
1%| | 171/15000 [07:08<5:13:08, 1.27s/it]
1%| | 171/15000 [07:08<5:13:08, 1.27s/it]
1%| | 172/15000 [07:09<5:08:52, 1.25s/it]
1%| | 172/15000 [07:09<5:08:52, 1.25s/it]
1%| | 173/15000 [07:10<5:05:04, 1.23s/it]
1%| | 173/15000 [07:10<5:05:04, 1.23s/it]
1%| | 174/15000 [07:11<4:57:49, 1.21s/it]
1%| | 174/15000 [07:11<4:57:49, 1.21s/it]
1%| | 175/15000 [07:12<4:43:45, 1.15s/it]
1%| | 175/15000 [07:12<4:43:45, 1.15s/it]
1%| | 176/15000 [07:13<4:33:36, 1.11s/it]
1%| | 176/15000 [07:13<4:33:36, 1.11s/it]
1%| | 177/15000 [07:14<4:27:10, 1.08s/it]
1%| | 177/15000 [07:14<4:27:10, 1.08s/it]
1%| | 178/15000 [07:15<4:22:09, 1.06s/it]
1%| | 178/15000 [07:15<4:22:09, 1.06s/it]
1%| | 179/15000 [07:16<4:18:47, 1.05s/it]
1%| | 179/15000 [07:16<4:18:47, 1.05s/it]
1%| | 180/15000 [07:17<4:16:24, 1.04s/it]
1%| | 180/15000 [07:17<4:16:24, 1.04s/it]
1%| | 181/15000 [07:18<4:15:00, 1.03s/it]
1%| | 181/15000 [07:18<4:15:00, 1.03s/it]
1%| | 182/15000 [07:19<4:13:09, 1.03s/it]
1%| | 182/15000 [07:19<4:13:09, 1.03s/it]
1%| | 183/15000 [07:20<4:07:06, 1.00s/it]
1%| | 183/15000 [07:20<4:07:06, 1.00s/it]
1%| | 184/15000 [07:21<3:53:29, 1.06it/s]
1%| | 184/15000 [07:21<3:53:29, 1.06it/s]
1%| | 185/15000 [07:22<3:43:58, 1.10it/s]
1%| | 185/15000 [07:22<3:43:58, 1.10it/s]
1%| | 186/15000 [07:23<3:37:09, 1.14it/s]
1%| | 186/15000 [07:23<3:37:09, 1.14it/s]
1%| | 187/15000 [07:24<3:32:24, 1.16it/s]
1%| | 187/15000 [07:24<3:32:24, 1.16it/s]
1%|โ | 188/15000 [07:24<3:30:05, 1.18it/s]
1%|โ | 188/15000 [07:24<3:30:05, 1.18it/s]
1%|โ | 189/15000 [07:25<3:27:23, 1.19it/s]
1%|โ | 189/15000 [07:25<3:27:23, 1.19it/s]
1%|โ | 190/15000 [07:26<3:23:44, 1.21it/s]
1%|โ | 190/15000 [07:26<3:23:44, 1.21it/s]
1%|โ | 191/15000 [07:27<3:18:06, 1.25it/s]
1%|โ | 191/15000 [07:27<3:18:06, 1.25it/s]
1%|โ | 192/15000 [07:27<3:05:12, 1.33it/s]
1%|โ | 192/15000 [07:27<3:05:12, 1.33it/s]
1%|โ | 193/15000 [07:28<2:56:11, 1.40it/s]
1%|โ | 193/15000 [07:28<2:56:11, 1.40it/s]
1%|โ | 194/15000 [07:29<2:49:54, 1.45it/s]
1%|โ | 194/15000 [07:29<2:49:54, 1.45it/s]
1%|โ | 195/15000 [07:29<2:45:35, 1.49it/s]
1%|โ | 195/15000 [07:29<2:45:35, 1.49it/s]
1%|โ | 196/15000 [07:30<2:38:51, 1.55it/s]
1%|โ | 196/15000 [07:30<2:38:51, 1.55it/s]
1%|โ | 197/15000 [07:30<2:32:40, 1.62it/s]
1%|โ | 197/15000 [07:31<2:32:40, 1.62it/s]
1%|โ | 198/15000 [07:31<2:18:40, 1.78it/s]
1%|โ | 198/15000 [07:31<2:18:40, 1.78it/s]
1%|โ | 199/15000 [07:31<2:06:49, 1.95it/s]
1%|โ | 199/15000 [07:31<2:06:49, 1.95it/s]
1%|โ | 200/15000 [07:33<3:33:07, 1.16it/s]
1%|โ | 200/15000 [07:33<3:33:07, 1.16it/s]Printing predictions for a few samples:
+Sample 1:
+ Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
+######
+
+
+ Prediction:
+
+
+
+Sample 2:
+ Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
+######
+
+
+ Prediction:
+
+
+
+Sample 3:
+ Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
+######
+
+
+ Prediction:
+
+
+
+Sample 4:
+ Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
+######
+
+
+ Prediction:
+
+
+
+Sample 5:
+ Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
+######
+
+
+ Prediction:
+
+
+
+last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
+
+
+last prediction string
+{'eval_loss': 3.885796070098877, 'eval_cer': 0.9998960012479851, 'eval_wer': 1.0, 'eval_runtime': 173.6119, 'eval_samples_per_second': 18.063, 'eval_steps_per_second': 1.129, 'epoch': 0.08}
+{'loss': 4.2514, 'grad_norm': 20.169822692871094, 'learning_rate': 0.00012119999999999999, 'epoch': 0.08}
+{'loss': 4.5197, 'grad_norm': 24.785181045532227, 'learning_rate': 0.0001224, 'epoch': 0.08}
+{'loss': 4.8489, 'grad_norm': 32.11153793334961, 'learning_rate': 0.0001236, 'epoch': 0.08}
+{'loss': 3.959, 'grad_norm': 7.649921417236328, 'learning_rate': 0.00012479999999999997, 'epoch': 0.08}
+{'loss': 3.8201, 'grad_norm': 3.502077341079712, 'learning_rate': 0.00012599999999999997, 'epoch': 0.08}
+{'loss': 4.0117, 'grad_norm': 4.459872722625732, 'learning_rate': 0.00012719999999999997, 'epoch': 0.08}
+{'loss': 3.8403, 'grad_norm': 1.7829786539077759, 'learning_rate': 0.00012839999999999998, 'epoch': 0.09}
+{'loss': 4.1814, 'grad_norm': 9.398163795471191, 'learning_rate': 0.00012959999999999998, 'epoch': 0.09}
+{'loss': 3.9133, 'grad_norm': 4.723393440246582, 'learning_rate': 0.00013079999999999998, 'epoch': 0.09}
+{'loss': 3.8641, 'grad_norm': 6.7561869621276855, 'learning_rate': 0.00013199999999999998, 'epoch': 0.09}
+{'loss': 3.8124, 'grad_norm': 4.843415260314941, 'learning_rate': 0.00013319999999999999, 'epoch': 0.09}
+{'loss': 3.8906, 'grad_norm': 7.363504409790039, 'learning_rate': 0.0001344, 'epoch': 0.09}
+{'loss': 3.8613, 'grad_norm': 6.835638523101807, 'learning_rate': 0.0001356, 'epoch': 0.09}
+{'loss': 3.804, 'grad_norm': 3.9157023429870605, 'learning_rate': 0.0001368, 'epoch': 0.09}
+{'loss': 3.7886, 'grad_norm': 1.6481516361236572, 'learning_rate': 0.000138, 'epoch': 0.09}
+{'loss': 3.7634, 'grad_norm': 3.5203261375427246, 'learning_rate': 0.0001392, 'epoch': 0.09}
+{'loss': 3.7674, 'grad_norm': 1.1627068519592285, 'learning_rate': 0.0001404, 'epoch': 0.09}
+{'loss': 3.8525, 'grad_norm': 4.9674906730651855, 'learning_rate': 0.00014159999999999997, 'epoch': 0.09}
+{'loss': 3.7886, 'grad_norm': 3.2914559841156006, 'learning_rate': 0.00014279999999999997, 'epoch': 0.1}
+{'loss': 3.7983, 'grad_norm': 5.391963481903076, 'learning_rate': 0.00014399999999999998, 'epoch': 0.1}
+{'loss': 3.6936, 'grad_norm': 1.8695930242538452, 'learning_rate': 0.00014519999999999998, 'epoch': 0.1}
+{'loss': 3.8721, 'grad_norm': 4.308910369873047, 'learning_rate': 0.00014639999999999998, 'epoch': 0.1}
+{'loss': 3.776, 'grad_norm': 1.57565176486969, 'learning_rate': 0.00014759999999999998, 'epoch': 0.1}
+{'loss': 3.7622, 'grad_norm': 3.110372304916382, 'learning_rate': 0.00014879999999999998, 'epoch': 0.1}
+{'loss': 3.7813, 'grad_norm': 1.5426779985427856, 'learning_rate': 0.00015, 'epoch': 0.1}
+{'loss': 3.7965, 'grad_norm': 2.3589413166046143, 'learning_rate': 0.0001512, 'epoch': 0.1}
+{'loss': 3.6996, 'grad_norm': 2.4414687156677246, 'learning_rate': 0.0001524, 'epoch': 0.1}
+{'loss': 3.8344, 'grad_norm': 2.1184475421905518, 'learning_rate': 0.0001536, 'epoch': 0.1}
+{'loss': 3.756, 'grad_norm': 2.4570391178131104, 'learning_rate': 0.0001548, 'epoch': 0.1}
+{'loss': 3.7823, 'grad_norm': 1.8269883394241333, 'learning_rate': 0.000156, 'epoch': 0.1}
+{'loss': 4.0439, 'grad_norm': 8.620251655578613, 'learning_rate': 0.0001572, 'epoch': 0.1}
+{'loss': 3.7185, 'grad_norm': 1.8237167596817017, 'learning_rate': 0.0001584, 'epoch': 0.11}
+{'loss': 3.7628, 'grad_norm': 2.52713680267334, 'learning_rate': 0.0001596, 'epoch': 0.11}
+{'loss': 3.7956, 'grad_norm': 1.5142756700515747, 'learning_rate': 0.0001608, 'epoch': 0.11}
+{'loss': 3.9245, 'grad_norm': 7.996574401855469, 'learning_rate': 0.000162, 'epoch': 0.11}
+{'loss': 3.8011, 'grad_norm': 1.181909203529358, 'learning_rate': 0.0001632, 'epoch': 0.11}
+{'loss': 3.7261, 'grad_norm': 1.2953170537948608, 'learning_rate': 0.0001644, 'epoch': 0.11}
+{'loss': 3.8766, 'grad_norm': 3.1350889205932617, 'learning_rate': 0.0001656, 'epoch': 0.11}
+{'loss': 3.7674, 'grad_norm': 2.576002597808838, 'learning_rate': 0.0001668, 'epoch': 0.11}
+{'loss': 3.9272, 'grad_norm': 3.639996290206909, 'learning_rate': 0.000168, 'epoch': 0.11}
+{'loss': 3.9177, 'grad_norm': 1.6465705633163452, 'learning_rate': 0.00016919999999999997, 'epoch': 0.11}
+{'loss': 3.7281, 'grad_norm': 2.0705270767211914, 'learning_rate': 0.00017039999999999997, 'epoch': 0.11}
+{'loss': 3.7971, 'grad_norm': 2.076151132583618, 'learning_rate': 0.00017159999999999997, 'epoch': 0.11}
+{'loss': 3.7204, 'grad_norm': 1.9128029346466064, 'learning_rate': 0.00017279999999999997, 'epoch': 0.12}
+{'loss': 3.7374, 'grad_norm': 2.209845542907715, 'learning_rate': 0.00017399999999999997, 'epoch': 0.12}
+{'loss': 3.8168, 'grad_norm': 2.480881929397583, 'learning_rate': 0.00017519999999999998, 'epoch': 0.12}
+{'loss': 3.7678, 'grad_norm': 2.0733742713928223, 'learning_rate': 0.00017639999999999998, 'epoch': 0.12}
+{'loss': 3.8725, 'grad_norm': 1.4207344055175781, 'learning_rate': 0.00017759999999999998, 'epoch': 0.12}
+{'loss': 3.7738, 'grad_norm': 1.3911476135253906, 'learning_rate': 0.00017879999999999998, 'epoch': 0.12}
+{'loss': 3.9363, 'grad_norm': 1.926467776298523, 'learning_rate': 0.00017999999999999998, 'epoch': 0.12}
+{'loss': 4.109, 'grad_norm': 15.835294723510742, 'learning_rate': 0.00018119999999999999, 'epoch': 0.12}
+{'loss': 3.8775, 'grad_norm': 6.199708461761475, 'learning_rate': 0.0001824, 'epoch': 0.12}
+{'loss': 3.7938, 'grad_norm': 5.658481121063232, 'learning_rate': 0.0001836, 'epoch': 0.12}
+{'loss': 4.162, 'grad_norm': 10.3512601852417, 'learning_rate': 0.0001848, 'epoch': 0.12}
+{'loss': 3.8622, 'grad_norm': 5.191125869750977, 'learning_rate': 0.000186, 'epoch': 0.12}
+{'loss': 3.8732, 'grad_norm': 7.91705322265625, 'learning_rate': 0.0001872, 'epoch': 0.12}
+{'loss': 3.8683, 'grad_norm': 7.932513236999512, 'learning_rate': 0.00018839999999999997, 'epoch': 0.13}
+{'loss': 3.8134, 'grad_norm': 8.634958267211914, 'learning_rate': 0.00018959999999999997, 'epoch': 0.13}
+{'loss': 4.1569, 'grad_norm': 4.877233982086182, 'learning_rate': 0.00019079999999999998, 'epoch': 0.13}
+{'loss': 3.7753, 'grad_norm': 2.702068567276001, 'learning_rate': 0.00019199999999999998, 'epoch': 0.13}
+{'loss': 3.7464, 'grad_norm': 2.783708095550537, 'learning_rate': 0.00019319999999999998, 'epoch': 0.13}
+{'loss': 3.7006, 'grad_norm': 0.9557895660400391, 'learning_rate': 0.00019439999999999998, 'epoch': 0.13}
+{'loss': 3.7859, 'grad_norm': 6.1677327156066895, 'learning_rate': 0.00019559999999999998, 'epoch': 0.13}
+{'loss': 3.7277, 'grad_norm': 4.3974289894104, 'learning_rate': 0.00019679999999999999, 'epoch': 0.13}
+{'loss': 3.7497, 'grad_norm': 3.576399803161621, 'learning_rate': 0.000198, 'epoch': 0.13}
+{'loss': 3.64, 'grad_norm': 1.3737566471099854, 'learning_rate': 0.0001992, 'epoch': 0.13}
+{'loss': 3.779, 'grad_norm': 1.7378631830215454, 'learning_rate': 0.0002004, 'epoch': 0.13}
+{'loss': 3.6911, 'grad_norm': 2.045962333679199, 'learning_rate': 0.0002016, 'epoch': 0.13}
+{'loss': 3.7197, 'grad_norm': 2.5057108402252197, 'learning_rate': 0.0002028, 'epoch': 0.14}
+{'loss': 3.6651, 'grad_norm': 2.0770580768585205, 'learning_rate': 0.000204, 'epoch': 0.14}
+{'loss': 3.6535, 'grad_norm': 1.4965234994888306, 'learning_rate': 0.0002052, 'epoch': 0.14}
+{'loss': 3.6581, 'grad_norm': 1.2921875715255737, 'learning_rate': 0.00020639999999999998, 'epoch': 0.14}
+{'loss': 3.6948, 'grad_norm': 1.2474544048309326, 'learning_rate': 0.00020759999999999998, 'epoch': 0.14}
+{'loss': 3.7892, 'grad_norm': 6.727621555328369, 'learning_rate': 0.00020879999999999998, 'epoch': 0.14}
+{'loss': 3.6541, 'grad_norm': 1.257496953010559, 'learning_rate': 0.00020999999999999998, 'epoch': 0.14}
+{'loss': 3.67, 'grad_norm': 0.9659841656684875, 'learning_rate': 0.00021119999999999996, 'epoch': 0.14}
+{'loss': 3.631, 'grad_norm': 0.9699028134346008, 'learning_rate': 0.00021239999999999996, 'epoch': 0.14}
+{'loss': 3.8212, 'grad_norm': 4.80698299407959, 'learning_rate': 0.00021359999999999996, 'epoch': 0.14}
+{'loss': 3.6576, 'grad_norm': 1.8491942882537842, 'learning_rate': 0.00021479999999999996, 'epoch': 0.14}
+{'loss': 3.633, 'grad_norm': 3.6413612365722656, 'learning_rate': 0.00021599999999999996, 'epoch': 0.14}
+{'loss': 3.6539, 'grad_norm': 2.454993486404419, 'learning_rate': 0.00021719999999999997, 'epoch': 0.14}
+{'loss': 3.7794, 'grad_norm': 1.897018313407898, 'learning_rate': 0.00021839999999999997, 'epoch': 0.15}
+{'loss': 3.6817, 'grad_norm': 3.520036458969116, 'learning_rate': 0.00021959999999999997, 'epoch': 0.15}
+{'loss': 3.7477, 'grad_norm': 1.668845772743225, 'learning_rate': 0.00022079999999999997, 'epoch': 0.15}
+{'loss': 3.6754, 'grad_norm': 1.4667448997497559, 'learning_rate': 0.00022199999999999998, 'epoch': 0.15}
+{'loss': 3.548, 'grad_norm': 1.2006880044937134, 'learning_rate': 0.00022319999999999998, 'epoch': 0.15}
+{'loss': 3.5878, 'grad_norm': 1.2960288524627686, 'learning_rate': 0.00022439999999999998, 'epoch': 0.15}
+{'loss': 3.6003, 'grad_norm': 2.9643332958221436, 'learning_rate': 0.00022559999999999998, 'epoch': 0.15}
+{'loss': 3.6926, 'grad_norm': 6.034687519073486, 'learning_rate': 0.00022679999999999998, 'epoch': 0.15}
+{'loss': 3.6158, 'grad_norm': 3.277177095413208, 'learning_rate': 0.00022799999999999999, 'epoch': 0.15}
+{'loss': 3.623, 'grad_norm': 1.6071703433990479, 'learning_rate': 0.0002292, 'epoch': 0.15}
+{'loss': 3.7235, 'grad_norm': 3.0281198024749756, 'learning_rate': 0.0002304, 'epoch': 0.15}
+{'loss': 3.7183, 'grad_norm': 3.987104654312134, 'learning_rate': 0.0002316, 'epoch': 0.15}
+{'loss': 3.6887, 'grad_norm': 5.8654303550720215, 'learning_rate': 0.0002328, 'epoch': 0.16}
+{'loss': 3.819, 'grad_norm': 3.1405129432678223, 'learning_rate': 0.000234, 'epoch': 0.16}
+{'loss': 3.7654, 'grad_norm': 3.239671468734741, 'learning_rate': 0.0002352, 'epoch': 0.16}
+{'loss': 3.7758, 'grad_norm': 1.674149513244629, 'learning_rate': 0.0002364, 'epoch': 0.16}
+{'loss': 3.6214, 'grad_norm': 2.046180009841919, 'learning_rate': 0.0002376, 'epoch': 0.16}
+{'loss': 3.7908, 'grad_norm': 2.909111261367798, 'learning_rate': 0.0002388, 'epoch': 0.16}
+{'loss': 3.9424, 'grad_norm': 2.224748134613037, 'learning_rate': 0.00023999999999999998, 'epoch': 0.16}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<01:07, 2.87it/s][A
+
2%|โ | 3/196 [00:01<01:45, 1.83it/s][A
+
2%|โ | 4/196 [00:02<02:10, 1.47it/s][A
+
3%|โ | 5/196 [00:03<02:24, 1.32it/s][A
+
3%|โ | 6/196 [00:04<02:43, 1.16it/s][A
+
4%|โ | 7/196 [00:05<02:49, 1.11it/s][A
+
4%|โ | 8/196 [00:06<02:52, 1.09it/s][A
+
5%|โ | 9/196 [00:08<03:43, 1.20s/it][A
+
5%|โ | 10/196 [00:10<04:23, 1.42s/it][A
+
6%|โ | 11/196 [00:12<05:05, 1.65s/it][A
+
6%|โ | 12/196 [00:14<05:23, 1.76s/it][A
+
7%|โ | 13/196 [00:15<04:41, 1.54s/it][A
+
7%|โ | 14/196 [00:16<03:56, 1.30s/it][A
+
8%|โ | 15/196 [00:16<03:18, 1.10s/it][A
+
8%|โ | 16/196 [00:17<03:06, 1.04s/it][A
+
9%|โ | 17/196 [00:18<03:01, 1.01s/it][A
+
9%|โ | 18/196 [00:19<03:21, 1.13s/it][A
+
10%|โ | 19/196 [00:22<04:15, 1.44s/it][A
+
10%|โ | 20/196 [00:23<04:36, 1.57s/it][A
+
11%|โ | 21/196 [00:25<04:41, 1.61s/it][A
+
11%|โ | 22/196 [00:27<04:28, 1.54s/it][A
+
12%|โโ | 23/196 [00:28<04:05, 1.42s/it][A
+
12%|โโ | 24/196 [00:28<03:16, 1.14s/it][A
+
13%|โโ | 25/196 [00:29<02:48, 1.01it/s][A
+
13%|โโ | 26/196 [00:29<02:27, 1.15it/s][A
+
14%|โโ | 27/196 [00:30<02:16, 1.24it/s][A
+
14%|โโ | 28/196 [00:31<02:10, 1.29it/s][A
+
15%|โโ | 29/196 [00:32<02:10, 1.28it/s][A
+
15%|โโ | 30/196 [00:32<02:10, 1.27it/s][A
+
16%|โโ | 31/196 [00:33<01:59, 1.38it/s][A
+
16%|โโ | 32/196 [00:34<01:54, 1.43it/s][A
+
17%|โโ | 33/196 [00:35<02:11, 1.24it/s][A
+
17%|โโ | 34/196 [00:36<02:49, 1.05s/it][A
+
18%|โโ | 35/196 [00:37<02:54, 1.08s/it][A
+
18%|โโ | 36/196 [00:39<03:18, 1.24s/it][A
+
19%|โโ | 37/196 [00:40<03:16, 1.24s/it][A
+
19%|โโ | 38/196 [00:41<03:00, 1.14s/it][A
+
20%|โโ | 39/196 [00:42<02:45, 1.06s/it][A
+
20%|โโ | 40/196 [00:43<02:35, 1.01it/s][A
+
21%|โโ | 41/196 [00:44<02:21, 1.10it/s][A
+
21%|โโโ | 42/196 [00:44<02:13, 1.15it/s][A
+
22%|โโโ | 43/196 [00:45<02:10, 1.17it/s][A
+
22%|โโโ | 44/196 [00:46<02:07, 1.20it/s][A
+
23%|โโโ | 45/196 [00:47<01:57, 1.28it/s][A
+
23%|โโโ | 46/196 [00:47<01:49, 1.36it/s][A
+
24%|โโโ | 47/196 [00:48<01:48, 1.37it/s][A
+
24%|โโโ | 48/196 [00:49<01:45, 1.41it/s][A
+
25%|โโโ | 49/196 [00:49<01:41, 1.45it/s][A
+
26%|โโโ | 50/196 [00:50<01:40, 1.46it/s][A
+
26%|โโโ | 51/196 [00:51<01:36, 1.50it/s][A
+
27%|โโโ | 52/196 [00:51<01:36, 1.49it/s][A
+
27%|โโโ | 53/196 [00:52<01:41, 1.42it/s][A
+
28%|โโโ | 54/196 [00:53<01:39, 1.43it/s][A
+
28%|โโโ | 55/196 [00:54<01:50, 1.27it/s][A
+
29%|โโโ | 56/196 [00:55<01:59, 1.17it/s][A
+
29%|โโโ | 57/196 [00:56<02:06, 1.10it/s][A
+
30%|โโโ | 58/196 [00:57<02:10, 1.06it/s][A
+
30%|โโโ | 59/196 [00:58<02:07, 1.08it/s][A
+
31%|โโโ | 60/196 [00:58<01:56, 1.17it/s][A
+
31%|โโโ | 61/196 [00:59<01:46, 1.27it/s][A
+
32%|โโโโ | 62/196 [01:00<01:44, 1.29it/s][A
+
32%|โโโโ | 63/196 [01:01<01:43, 1.28it/s][A
+
33%|โโโโ | 64/196 [01:01<01:43, 1.28it/s][A
+
33%|โโโโ | 65/196 [01:02<01:41, 1.29it/s][A
+
34%|โโโโ | 66/196 [01:03<01:44, 1.24it/s][A
+
34%|โโโโ | 67/196 [01:04<01:48, 1.18it/s][A
+
35%|โโโโ | 68/196 [01:05<02:04, 1.03it/s][A
+
35%|โโโโ | 69/196 [01:06<02:04, 1.02it/s][A
+
36%|โโโโ | 70/196 [01:07<01:55, 1.09it/s][A
+
36%|โโโโ | 71/196 [01:08<01:47, 1.16it/s][A
+
37%|โโโโ | 72/196 [01:08<01:39, 1.25it/s][A
+
37%|โโโโ | 73/196 [01:09<01:30, 1.36it/s][A
+
38%|โโโโ | 74/196 [01:09<01:24, 1.44it/s][A
+
38%|โโโโ | 75/196 [01:10<01:24, 1.43it/s][A
+
39%|โโโโ | 76/196 [01:11<01:22, 1.46it/s][A
+
39%|โโโโ | 77/196 [01:12<01:23, 1.42it/s][A
+
40%|โโโโ | 78/196 [01:12<01:29, 1.32it/s][A
+
40%|โโโโ | 79/196 [01:13<01:25, 1.37it/s][A
+
41%|โโโโ | 80/196 [01:14<01:29, 1.30it/s][A
+
41%|โโโโโ | 81/196 [01:15<01:32, 1.25it/s][A
+
42%|โโโโโ | 82/196 [01:16<01:29, 1.28it/s][A
+
42%|โโโโโ | 83/196 [01:16<01:30, 1.25it/s][A
+
43%|โโโโโ | 84/196 [01:17<01:32, 1.21it/s][A
+
43%|โโโโโ | 85/196 [01:18<01:31, 1.22it/s][A
+
44%|โโโโโ | 86/196 [01:19<01:33, 1.18it/s][A
+
44%|โโโโโ | 87/196 [01:20<01:30, 1.21it/s][A
+
45%|โโโโโ | 88/196 [01:21<01:33, 1.16it/s][A
+
45%|โโโโโ | 89/196 [01:22<01:35, 1.12it/s][A
+
46%|โโโโโ | 90/196 [01:23<01:31, 1.15it/s][A
+
46%|โโโโโ | 91/196 [01:23<01:28, 1.19it/s][A
+
47%|โโโโโ | 92/196 [01:24<01:24, 1.24it/s][A
+
47%|โโโโโ | 93/196 [01:25<01:29, 1.15it/s][A
+
48%|โโโโโ | 94/196 [01:26<01:29, 1.14it/s][A
+
48%|โโโโโ | 95/196 [01:27<01:25, 1.18it/s][A
+
49%|โโโโโ | 96/196 [01:28<01:28, 1.13it/s][A
+
49%|โโโโโ | 97/196 [01:29<01:25, 1.16it/s][A
+
50%|โโโโโ | 98/196 [01:30<01:27, 1.12it/s][A
+
51%|โโโโโ | 99/196 [01:30<01:19, 1.22it/s][A
+
51%|โโโโโ | 100/196 [01:31<01:10, 1.37it/s][A
+
52%|โโโโโโ | 101/196 [01:31<01:05, 1.45it/s][A
+
52%|โโโโโโ | 102/196 [01:32<01:08, 1.37it/s][A
+
53%|โโโโโโ | 103/196 [01:33<01:14, 1.25it/s][A
+
53%|โโโโโโ | 104/196 [01:34<01:24, 1.09it/s][A
+
54%|โโโโโโ | 105/196 [01:35<01:25, 1.06it/s][A
+
54%|โโโโโโ | 106/196 [01:36<01:24, 1.06it/s][A
+
55%|โโโโโโ | 107/196 [01:37<01:19, 1.12it/s][A
+
55%|โโโโโโ | 108/196 [01:38<01:09, 1.26it/s][A
+
56%|โโโโโโ | 109/196 [01:38<01:04, 1.34it/s][A
+
56%|โโโโโโ | 110/196 [01:39<01:01, 1.40it/s][A
+
57%|โโโโโโ | 111/196 [01:40<01:00, 1.40it/s][A
+
57%|โโโโโโ | 112/196 [01:40<01:04, 1.30it/s][A
+
58%|โโโโโโ | 113/196 [01:41<01:05, 1.27it/s][A
+
58%|โโโโโโ | 114/196 [01:42<00:59, 1.38it/s][A
+
59%|โโโโโโ | 115/196 [01:43<00:57, 1.42it/s][A
+
59%|โโโโโโ | 116/196 [01:43<00:55, 1.45it/s][A
+
60%|โโโโโโ | 117/196 [01:44<00:51, 1.52it/s][A
+
60%|โโโโโโ | 118/196 [01:44<00:46, 1.68it/s][A
+
61%|โโโโโโ | 119/196 [01:45<00:48, 1.59it/s][A
+
61%|โโโโโโ | 120/196 [01:46<00:50, 1.51it/s][A
+
62%|โโโโโโโ | 121/196 [01:46<00:50, 1.47it/s][A
+
62%|โโโโโโโ | 122/196 [01:47<00:51, 1.43it/s][A
+
63%|โโโโโโโ | 123/196 [01:48<00:50, 1.46it/s][A
+
63%|โโโโโโโ | 124/196 [01:48<00:49, 1.46it/s][A
+
64%|โโโโโโโ | 125/196 [01:49<00:49, 1.45it/s][A
+
64%|โโโโโโโ | 126/196 [01:50<00:54, 1.28it/s][A
+
65%|โโโโโโโ | 127/196 [01:51<00:53, 1.28it/s][A
+
65%|โโโโโโโ | 128/196 [01:52<00:50, 1.35it/s][A
+
66%|โโโโโโโ | 129/196 [01:52<00:49, 1.36it/s][A
+
66%|โโโโโโโ | 130/196 [01:53<00:48, 1.37it/s][A
+
67%|โโโโโโโ | 131/196 [01:54<00:47, 1.37it/s][A
+
67%|โโโโโโโ | 132/196 [01:54<00:43, 1.46it/s][A
+
68%|โโโโโโโ | 133/196 [01:55<00:42, 1.47it/s][A
+
68%|โโโโโโโ | 134/196 [01:56<00:45, 1.38it/s][A
+
69%|โโโโโโโ | 135/196 [01:56<00:43, 1.41it/s][A
+
69%|โโโโโโโ | 136/196 [01:57<00:42, 1.42it/s][A
+
70%|โโโโโโโ | 137/196 [01:58<00:41, 1.43it/s][A
+
70%|โโโโโโโ | 138/196 [01:59<00:40, 1.43it/s][A
+
71%|โโโโโโโ | 139/196 [01:59<00:40, 1.42it/s][A
+
71%|โโโโโโโโ | 140/196 [02:00<00:38, 1.45it/s][A
+
72%|โโโโโโโโ | 141/196 [02:01<00:38, 1.44it/s][A
+
72%|โโโโโโโโ | 142/196 [02:01<00:38, 1.40it/s][A
+
73%|โโโโโโโโ | 143/196 [02:02<00:40, 1.31it/s][A
+
73%|โโโโโโโโ | 144/196 [02:03<00:37, 1.40it/s][A
+
74%|โโโโโโโโ | 145/196 [02:03<00:33, 1.52it/s][A
+
74%|โโโโโโโโ | 146/196 [02:04<00:31, 1.60it/s][A
+
75%|โโโโโโโโ | 147/196 [02:05<00:30, 1.58it/s][A
+
76%|โโโโโโโโ | 148/196 [02:05<00:30, 1.57it/s][A
+
76%|โโโโโโโโ | 149/196 [02:06<00:28, 1.64it/s][A
+
77%|โโโโโโโโ | 150/196 [02:07<00:29, 1.55it/s][A
+
77%|โโโโโโโโ | 151/196 [02:07<00:30, 1.48it/s][A
+
78%|โโโโโโโโ | 152/196 [02:08<00:29, 1.49it/s][A
+
78%|โโโโโโโโ | 153/196 [02:09<00:28, 1.49it/s][A
+
79%|โโโโโโโโ | 154/196 [02:09<00:28, 1.47it/s][A
+
79%|โโโโโโโโ | 155/196 [02:10<00:29, 1.37it/s][A
+
80%|โโโโโโโโ | 156/196 [02:11<00:33, 1.20it/s][A
+
80%|โโโโโโโโ | 157/196 [02:12<00:34, 1.12it/s][A
+
81%|โโโโโโโโ | 158/196 [02:13<00:30, 1.24it/s][A
+
81%|โโโโโโโโ | 159/196 [02:13<00:27, 1.35it/s][A
+
82%|โโโโโโโโโ | 160/196 [02:14<00:25, 1.42it/s][A
+
82%|โโโโโโโโโ | 161/196 [02:15<00:24, 1.41it/s][A
+
83%|โโโโโโโโโ | 162/196 [02:15<00:24, 1.41it/s][A
+
83%|โโโโโโโโโ | 163/196 [02:16<00:22, 1.44it/s][A
+
84%|โโโโโโโโโ | 164/196 [02:17<00:22, 1.45it/s][A
+
84%|โโโโโโโโโ | 165/196 [02:18<00:22, 1.40it/s][A
+
85%|โโโโโโโโโ | 166/196 [02:18<00:20, 1.43it/s][A
+
85%|โโโโโโโโโ | 167/196 [02:19<00:19, 1.48it/s][A
+
86%|โโโโโโโโโ | 168/196 [02:19<00:18, 1.55it/s][A
+
86%|โโโโโโโโโ | 169/196 [02:20<00:18, 1.50it/s][A
+
87%|โโโโโโโโโ | 170/196 [02:21<00:18, 1.37it/s][A
+
87%|โโโโโโโโโ | 171/196 [02:22<00:17, 1.41it/s][A
+
88%|โโโโโโโโโ | 172/196 [02:22<00:17, 1.38it/s][A
+
88%|โโโโโโโโโ | 173/196 [02:23<00:16, 1.40it/s][A
+
89%|โโโโโโโโโ | 174/196 [02:24<00:16, 1.33it/s][A
+
89%|โโโโโโโโโ | 175/196 [02:25<00:19, 1.10it/s][A
+
90%|โโโโโโโโโ | 176/196 [02:28<00:27, 1.39s/it][A
+
90%|โโโโโโโโโ | 177/196 [02:30<00:30, 1.60s/it][A
+
91%|โโโโโโโโโ | 178/196 [02:32<00:31, 1.75s/it][A
+
91%|โโโโโโโโโโ| 179/196 [02:34<00:31, 1.86s/it][A
+
92%|โโโโโโโโโโ| 180/196 [02:35<00:24, 1.50s/it][A
+
92%|โโโโโโโโโโ| 181/196 [02:36<00:19, 1.29s/it][A
+
93%|โโโโโโ๏ฟฝ๏ฟฝโโโ| 182/196 [02:36<00:15, 1.10s/it][A
+
93%|โโโโโโโโโโ| 183/196 [02:37<00:14, 1.13s/it][A
+
94%|โโโโโโโโโโ| 184/196 [02:38<00:11, 1.02it/s][A
+
94%|โโโโโโโโโโ| 185/196 [02:39<00:10, 1.05it/s][A
+
95%|โโโโโโโโโโ| 186/196 [02:40<00:09, 1.02it/s][A
+
95%|โโโโโโโโโโ| 187/196 [02:41<00:08, 1.08it/s][A
+
96%|โโโโโโโโโโ| 188/196 [02:41<00:06, 1.18it/s][A
+
96%|โโโโโโโโโโ| 189/196 [02:42<00:05, 1.23it/s][A
+
97%|โโโโโโโโโโ| 190/196 [02:43<00:04, 1.31it/s][A
+
97%|โโโโโโโโโโ| 191/196 [02:43<00:03, 1.39it/s][A
+
98%|โโโโโโโโโโ| 192/196 [02:44<00:02, 1.39it/s][A
+
98%|โโโโโโโโโโ| 193/196 [02:45<00:02, 1.38it/s][A
+
99%|โโโโโโโโโโ| 194/196 [02:46<00:01, 1.40it/s][A
+
99%|โโโโโโโโโโ| 195/196 [02:46<00:00, 1.44it/s][A
+
100%|โโโโโโโโโโ| 196/196 [02:47<00:00, 1.65it/s][A
+
[A
1%|โ | 200/15000 [10:26<3:33:07, 1.16it/s]
+
100%|โโโโโโโโโโ| 196/196 [02:51<00:00, 1.65it/s][A
+
[A
1%|โ | 201/15000 [10:31<222:02:38, 54.01s/it]
1%|โ | 201/15000 [10:31<222:02:38, 54.01s/it]
1%|โ | 202/15000 [10:34<158:54:56, 38.66s/it]
1%|โ | 202/15000 [10:34<158:54:56, 38.66s/it]
1%|โ | 203/15000 [10:36<114:10:23, 27.78s/it]
1%|โ | 203/15000 [10:36<114:10:23, 27.78s/it]
1%|โ | 204/15000 [10:38<82:33:30, 20.09s/it]
1%|โ | 204/15000 [10:38<82:33:30, 20.09s/it]
1%|โ | 205/15000 [10:40<60:14:13, 14.66s/it]
1%|โ | 205/15000 [10:40<60:14:13, 14.66s/it]
1%|โ | 206/15000 [10:42<44:35:26, 10.85s/it]
1%|โ | 206/15000 [10:42<44:35:26, 10.85s/it]
1%|โ | 207/15000 [10:44<33:26:55, 8.14s/it]
1%|โ | 207/15000 [10:44<33:26:55, 8.14s/it]
1%|โ | 208/15000 [10:46<25:35:39, 6.23s/it]
1%|โ | 208/15000 [10:46<25:35:39, 6.23s/it]
1%|โ | 209/15000 [10:48<20:05:11, 4.89s/it]
1%|โ | 209/15000 [10:48<20:05:11, 4.89s/it]
1%|โ | 210/15000 [10:49<16:02:47, 3.91s/it]
1%|โ | 210/15000 [10:49<16:02:47, 3.91s/it]
1%|โ | 211/15000 [10:51<13:12:32, 3.22s/it]
1%|โ | 211/15000 [10:51<13:12:32, 3.22s/it]
1%|โ | 212/15000 [10:53<11:13:02, 2.73s/it]
1%|โ | 212/15000 [10:53<11:13:02, 2.73s/it]
1%|โ | 213/15000 [10:54<9:44:32, 2.37s/it]
1%|โ | 213/15000 [10:54<9:44:32, 2.37s/it]
1%|โ | 214/15000 [10:55<8:33:46, 2.08s/it]
1%|โ | 214/15000 [10:55<8:33:46, 2.08s/it]
1%|โ | 215/15000 [10:57<7:44:10, 1.88s/it]
1%|โ | 215/15000 [10:57<7:44:10, 1.88s/it]
1%|โ | 216/15000 [10:58<7:10:13, 1.75s/it]
1%|โ | 216/15000 [10:58<7:10:13, 1.75s/it]
1%|โ | 217/15000 [11:00<6:42:22, 1.63s/it]
1%|โ | 217/15000 [11:00<6:42:22, 1.63s/it]
1%|โ | 218/15000 [11:01<6:21:09, 1.55s/it]
1%|โ | 218/15000 [11:01<6:21:09, 1.55s/it]
1%|โ | 219/15000 [11:02<5:56:25, 1.45s/it]
1%|โ | 219/15000 [11:02<5:56:25, 1.45s/it]
1%|โ | 220/15000 [11:03<5:40:00, 1.38s/it]
1%|โ | 220/15000 [11:03<5:40:00, 1.38s/it]
1%|โ | 221/15000 [11:05<5:27:13, 1.33s/it]
1%|โ | 221/15000 [11:05<5:27:13, 1.33s/it]
1%|โ | 222/15000 [11:06<5:18:39, 1.29s/it]
1%|โ | 222/15000 [11:06<5:18:39, 1.29s/it]
1%|โ | 223/15000 [11:07<5:12:22, 1.27s/it]
1%|โ | 223/15000 [11:07<5:12:22, 1.27s/it]
1%|โ | 224/15000 [11:08<5:06:03, 1.24s/it]
1%|โ | 224/15000 [11:08<5:06:03, 1.24s/it]
2%|โ | 225/15000 [11:09<4:58:39, 1.21s/it]
2%|โ | 225/15000 [11:09<4:58:39, 1.21s/it]
2%|โ | 226/15000 [11:10<4:43:08, 1.15s/it]
2%|โ | 226/15000 [11:10<4:43:08, 1.15s/it]
2%|โ | 227/15000 [11:11<4:32:36, 1.11s/it]
2%|โ | 227/15000 [11:11<4:32:36, 1.11s/it]
2%|โ | 228/15000 [11:12<4:24:54, 1.08s/it]
2%|โ | 228/15000 [11:12<4:24:54, 1.08s/it]
2%|โ | 229/15000 [11:13<4:19:48, 1.06s/it]
2%|โ | 229/15000 [11:13<4:19:48, 1.06s/it]
2%|โ | 230/15000 [11:14<4:16:14, 1.04s/it]
2%|โ | 230/15000 [11:14<4:16:14, 1.04s/it]
2%|โ | 231/15000 [11:15<4:14:12, 1.03s/it]
2%|โ | 231/15000 [11:15<4:14:12, 1.03s/it]
2%|โ | 232/15000 [11:16<4:08:29, 1.01s/it]
2%|โ | 232/15000 [11:16<4:08:29, 1.01s/it]
2%|โ | 233/15000 [11:17<4:03:12, 1.01it/s]
2%|โ | 233/15000 [11:17<4:03:12, 1.01it/s]
2%|โ | 234/15000 [11:18<3:49:57, 1.07it/s]
2%|โ | 234/15000 [11:18<3:49:57, 1.07it/s]
2%|โ | 235/15000 [11:19<3:41:53, 1.11it/s]
2%|โ | 235/15000 [11:19<3:41:53, 1.11it/s]
2%|โ | 236/15000 [11:20<3:35:09, 1.14it/s]
2%|โ | 236/15000 [11:20<3:35:09, 1.14it/s]
2%|โ | 237/15000 [11:21<3:31:17, 1.16it/s]
2%|โ | 237/15000 [11:21<3:31:17, 1.16it/s]
2%|โ | 238/15000 [11:21<3:28:28, 1.18it/s]
2%|โ | 238/15000 [11:21<3:28:28, 1.18it/s]
2%|โ | 239/15000 [11:22<3:25:29, 1.20it/s]
2%|โ | 239/15000 [11:22<3:25:29, 1.20it/s]
2%|โ | 240/15000 [11:23<3:20:32, 1.23it/s]
2%|โ | 240/15000 [11:23<3:20:32, 1.23it/s]
2%|โ | 241/15000 [11:24<3:15:46, 1.26it/s]
2%|โ | 241/15000 [11:24<3:15:46, 1.26it/s]
2%|โ | 242/15000 [11:24<3:03:14, 1.34it/s]
2%|โ | 242/15000 [11:24<3:03:14, 1.34it/s]
2%|โ | 243/15000 [11:25<2:54:11, 1.41it/s]
2%|โ | 243/15000 [11:25<2:54:11, 1.41it/s]
2%|โ | 244/15000 [11:26<2:48:26, 1.46it/s]
2%|โ | 244/15000 [11:26<2:48:26, 1.46it/s]
2%|โ | 245/15000 [11:26<2:47:28, 1.47it/s]
2%|โ | 245/15000 [11:26<2:47:28, 1.47it/s]
2%|โ | 246/15000 [11:27<2:41:50, 1.52it/s]
2%|โ | 246/15000 [11:27<2:41:50, 1.52it/s]
2%|โ | 247/15000 [11:27<2:34:27, 1.59it/s]
2%|โ | 247/15000 [11:27<2:34:27, 1.59it/s]
2%|โ | 248/15000 [11:28<2:20:00, 1.76it/s]
2%|โ | 248/15000 [11:28<2:20:00, 1.76it/s]
2%|โ | 249/15000 [11:28<2:07:12, 1.93it/s]
2%|โ | 249/15000 [11:28<2:07:12, 1.93it/s]
2%|โ | 250/15000 [11:30<3:46:57, 1.08it/s]
2%|โ | 250/15000 [11:30<3:46:57, 1.08it/s]
2%|โ | 251/15000 [11:36<9:41:18, 2.36s/it]
2%|โ | 251/15000 [11:36<9:41:18, 2.36s/it]
2%|โ | 252/15000 [11:39<10:44:01, 2.62s/it]
2%|โ | 252/15000 [11:39<10:44:01, 2.62s/it]
2%|โ | 253/15000 [11:42<10:41:37, 2.61s/it]
2%|โ | 253/15000 [11:42<10:41:37, 2.61s/it]
2%|โ | 254/15000 [11:44<10:23:39, 2.54s/it]
2%|โ | 254/15000 [11:44<10:23:39, 2.54s/it]
2%|โ | 255/15000 [11:46<9:55:22, 2.42s/it]
2%|โ | 255/15000 [11:46<9:55:22, 2.42s/it]
2%|โ | 256/15000 [11:48<9:23:28, 2.29s/it]
2%|โ | 256/15000 [11:48<9:23:28, 2.29s/it]
2%|โ | 257/15000 [11:50<8:57:58, 2.19s/it]
2%|โ | 257/15000 [11:50<8:57:58, 2.19s/it]
2%|โ | 258/15000 [11:52<8:27:08, 2.06s/it]
2%|โ | 258/15000 [11:52<8:27:08, 2.06s/it]
2%|โ | 259/15000 [11:54<8:04:27, 1.97s/it]
2%|โ | 259/15000 [11:54<8:04:27, 1.97s/it]
2%|โ | 260/15000 [11:55<7:37:40, 1.86s/it]
2%|โ | 260/15000 [11:55<7:37:40, 1.86s/it]
2%|โ | 261/15000 [11:57<7:16:46, 1.78s/it]
2%|โ | 261/15000 [11:57<7:16:46, 1.78s/it]
2%|โ | 262/15000 [11:58<6:58:50, 1.71s/it]
2%|โ | 262/15000 [11:58<6:58:50, 1.71s/it]
2%|โ | 263/15000 [12:00<6:37:29, 1.62s/it]
2%|โ | 263/15000 [12:00<6:37:29, 1.62s/it]
2%|โ | 264/15000 [12:01<6:23:03, 1.56s/it]
2%|โ | 264/15000 [12:01<6:23:03, 1.56s/it]
2%|โ | 265/15000 [12:03<6:13:14, 1.52s/it]
2%|โ | 265/15000 [12:03<6:13:14, 1.52s/it]
2%|โ | 266/15000 [12:04<6:02:51, 1.48s/it]
2%|โ | 266/15000 [12:04<6:02:51, 1.48s/it]
2%|โ | 267/15000 [12:05<5:53:36, 1.44s/it]
2%|โ | 267/15000 [12:05<5:53:36, 1.44s/it]
2%|โ | 268/15000 [12:07<5:37:10, 1.37s/it]
2%|โ | 268/15000 [12:07<5:37:10, 1.37s/it]
2%|โ | 269/15000 [12:08<5:24:46, 1.32s/it]
2%|โ | 269/15000 [12:08<5:24:46, 1.32s/it]
2%|โ | 270/15000 [12:09<5:16:48, 1.29s/it]
2%|โ | 270/15000 [12:09<5:16:48, 1.29s/it]
2%|โ | 271/15000 [12:10<5:10:58, 1.27s/it]
2%|โ | 271/15000 [12:10<5:10:58, 1.27s/it]
2%|โ | 272/15000 [12:11<5:06:39, 1.25s/it]
2%|โ | 272/15000 [12:11<5:06:39, 1.25s/it]
2%|โ | 273/15000 [12:13<5:00:27, 1.22s/it]
2%|โ | 273/15000 [12:13<5:00:27, 1.22s/it]
2%|โ | 274/15000 [12:14<4:53:54, 1.20s/it]
2%|โ | 274/15000 [12:14<4:53:54, 1.20s/it]
2%|โ | 275/15000 [12:15<4:39:50, 1.14s/it]
2%|โ | 275/15000 [12:15<4:39:50, 1.14s/it]
2%|โ | 276/15000 [12:16<4:30:09, 1.10s/it]
2%|โ | 276/15000 [12:16<4:30:09, 1.10s/it]
2%|โ | 277/15000 [12:17<4:23:22, 1.07s/it]
2%|โ | 277/15000 [12:17<4:23:22, 1.07s/it]
2%|โ | 278/15000 [12:18<4:18:53, 1.06s/it]
2%|โ | 278/15000 [12:18<4:18:53, 1.06s/it]
2%|โ | 279/15000 [12:19<4:15:43, 1.04s/it]
2%|โ | 279/15000 [12:19<4:15:43, 1.04s/it]
2%|โ | 280/15000 [12:20<4:13:26, 1.03s/it]
2%|โ | 280/15000 [12:20<4:13:26, 1.03s/it]
2%|โ | 281/15000 [12:21<4:07:40, 1.01s/it]
2%|โ | 281/15000 [12:21<4:07:40, 1.01s/it]
2%|โ | 282/15000 [12:22<4:03:48, 1.01it/s]
2%|โ | 282/15000 [12:22<4:03:48, 1.01it/s]
2%|โ | 283/15000 [12:23<3:50:06, 1.07it/s]
2%|โ | 283/15000 [12:23<3:50:06, 1.07it/s]
2%|โ | 284/15000 [12:23<3:40:31, 1.11it/s]
2%|โ | 284/15000 [12:23<3:40:31, 1.11it/s]
2%|โ | 285/15000 [12:24<3:34:01, 1.15it/s]
2%|โ | 285/15000 [12:24<3:34:01, 1.15it/s]
2%|โ | 286/15000 [12:25<3:30:37, 1.16it/s]
2%|โ | 286/15000 [12:25<3:30:37, 1.16it/s]
2%|โ | 287/15000 [12:26<3:27:47, 1.18it/s]
2%|โ | 287/15000 [12:26<3:27:47, 1.18it/s]
2%|โ | 288/15000 [12:27<3:24:58, 1.20it/s]
2%|โ | 288/15000 [12:27<3:24:58, 1.20it/s]
2%|โ | 289/15000 [12:27<3:19:44, 1.23it/s]
2%|โ | 289/15000 [12:27<3:19:44, 1.23it/s]
2%|โ | 290/15000 [12:28<3:14:42, 1.26it/s]
2%|โ | 290/15000 [12:28<3:14:42, 1.26it/s]
2%|โ | 291/15000 [12:29<3:02:12, 1.35it/s]
2%|โ | 291/15000 [12:29<3:02:12, 1.35it/s]
2%|โ | 292/15000 [12:29<2:53:31, 1.41it/s]
2%|โ | 292/15000 [12:29<2:53:31, 1.41it/s]
2%|โ | 293/15000 [12:30<2:47:20, 1.46it/s]
2%|โ | 293/15000 [12:30<2:47:20, 1.46it/s]
2%|โ | 294/15000 [12:31<2:43:02, 1.50it/s]
2%|โ | 294/15000 [12:31<2:43:02, 1.50it/s]
2%|โ | 295/15000 [12:31<2:38:45, 1.54it/s]
2%|โ | 295/15000 [12:31<2:38:45, 1.54it/s]
2%|โ | 296/15000 [12:32<2:32:26, 1.61it/s]
2%|โ | 296/15000 [12:32<2:32:26, 1.61it/s]
2%|โ | 297/15000 [12:32<2:18:03, 1.77it/s]
2%|โ | 297/15000 [12:32<2:18:03, 1.77it/s]
2%|โ | 298/15000 [12:33<2:08:03, 1.91it/s]
2%|โ | 298/15000 [12:33<2:08:03, 1.91it/s]
2%|โ | 299/15000 [12:33<1:59:42, 2.05it/s]
2%|โ | 299/15000 [12:33<1:59:42, 2.05it/s]
2%|โ | 300/15000 [12:35<3:34:14, 1.14it/s]
2%|โ | 300/15000 [12:35<3:34:14, 1.14it/s]Printing predictions for a few samples:
+Sample 1:
+ Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
+######
+
+
+ Prediction: เค
+
+
+
+Sample 2:
+ Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
+######
+
+
+ Prediction: iiiiเค
+
+
+
+Sample 3:
+ Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
+######
+
+
+ Prediction: iiเค
+
+
+
+Sample 4:
+ Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
+######
+
+
+ Prediction: iเค
+
+
+
+Sample 5:
+ Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
+######
+
+
+ Prediction: iเค
+
+
+
+last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
+
+
+last prediction string iเค
+{'eval_loss': 3.7237977981567383, 'eval_cer': 0.9794186469762363, 'eval_wer': 1.0, 'eval_runtime': 172.9793, 'eval_samples_per_second': 18.129, 'eval_steps_per_second': 1.133, 'epoch': 0.16}
+{'loss': 4.4609, 'grad_norm': 26.96578025817871, 'learning_rate': 0.00024119999999999998, 'epoch': 0.16}
+{'loss': 3.7841, 'grad_norm': 8.302903175354004, 'learning_rate': 0.00024239999999999998, 'epoch': 0.16}
+{'loss': 3.5946, 'grad_norm': 3.032162666320801, 'learning_rate': 0.00024359999999999999, 'epoch': 0.16}
+{'loss': 3.898, 'grad_norm': 8.602944374084473, 'learning_rate': 0.0002448, 'epoch': 0.16}
+{'loss': 3.6618, 'grad_norm': 6.9736328125, 'learning_rate': 0.00024599999999999996, 'epoch': 0.16}
+{'loss': 3.7471, 'grad_norm': 9.89555549621582, 'learning_rate': 0.0002472, 'epoch': 0.16}
+{'loss': 3.8033, 'grad_norm': 5.543049335479736, 'learning_rate': 0.00024839999999999997, 'epoch': 0.17}
+{'loss': 3.6802, 'grad_norm': 6.064131736755371, 'learning_rate': 0.00024959999999999994, 'epoch': 0.17}
+{'loss': 3.5954, 'grad_norm': 2.219118356704712, 'learning_rate': 0.00025079999999999997, 'epoch': 0.17}
+{'loss': 3.6456, 'grad_norm': 7.031081199645996, 'learning_rate': 0.00025199999999999995, 'epoch': 0.17}
+{'loss': 3.5674, 'grad_norm': 10.48225212097168, 'learning_rate': 0.0002532, 'epoch': 0.17}
+{'loss': 3.571, 'grad_norm': 3.56289005279541, 'learning_rate': 0.00025439999999999995, 'epoch': 0.17}
+{'loss': 3.4855, 'grad_norm': 4.0687031745910645, 'learning_rate': 0.0002556, 'epoch': 0.17}
+{'loss': 3.5452, 'grad_norm': 3.365835666656494, 'learning_rate': 0.00025679999999999995, 'epoch': 0.17}
+{'loss': 3.5369, 'grad_norm': 2.1217358112335205, 'learning_rate': 0.000258, 'epoch': 0.17}
+{'loss': 3.5686, 'grad_norm': 1.867909550666809, 'learning_rate': 0.00025919999999999996, 'epoch': 0.17}
+{'loss': 3.4836, 'grad_norm': 2.8415725231170654, 'learning_rate': 0.0002604, 'epoch': 0.17}
+{'loss': 3.4511, 'grad_norm': 2.669870138168335, 'learning_rate': 0.00026159999999999996, 'epoch': 0.17}
+{'loss': 3.4428, 'grad_norm': 1.9584439992904663, 'learning_rate': 0.0002628, 'epoch': 0.18}
+{'loss': 3.4124, 'grad_norm': 3.2222273349761963, 'learning_rate': 0.00026399999999999997, 'epoch': 0.18}
+{'loss': 3.4192, 'grad_norm': 3.4309709072113037, 'learning_rate': 0.0002652, 'epoch': 0.18}
+{'loss': 3.8132, 'grad_norm': 12.915990829467773, 'learning_rate': 0.00026639999999999997, 'epoch': 0.18}
+{'loss': 3.3482, 'grad_norm': 1.7295831441879272, 'learning_rate': 0.0002676, 'epoch': 0.18}
+{'loss': 3.5079, 'grad_norm': 1.6068203449249268, 'learning_rate': 0.0002688, 'epoch': 0.18}
+{'loss': 3.4981, 'grad_norm': 3.6503214836120605, 'learning_rate': 0.00027, 'epoch': 0.18}
+{'loss': 3.4789, 'grad_norm': 2.072453498840332, 'learning_rate': 0.0002712, 'epoch': 0.18}
+{'loss': 3.315, 'grad_norm': 2.106900453567505, 'learning_rate': 0.0002724, 'epoch': 0.18}
+{'loss': 3.4193, 'grad_norm': 1.974164366722107, 'learning_rate': 0.0002736, 'epoch': 0.18}
+{'loss': 3.5646, 'grad_norm': 3.3087480068206787, 'learning_rate': 0.0002748, 'epoch': 0.18}
+{'loss': 3.2766, 'grad_norm': 2.044670581817627, 'learning_rate': 0.000276, 'epoch': 0.18}
+{'loss': 3.3141, 'grad_norm': 1.5916160345077515, 'learning_rate': 0.0002772, 'epoch': 0.18}
+{'loss': 3.1669, 'grad_norm': 1.424303412437439, 'learning_rate': 0.0002784, 'epoch': 0.19}
+{'loss': 3.314, 'grad_norm': 2.2218520641326904, 'learning_rate': 0.00027959999999999997, 'epoch': 0.19}
+{'loss': 3.2746, 'grad_norm': 2.653805732727051, 'learning_rate': 0.0002808, 'epoch': 0.19}
+{'loss': 3.2587, 'grad_norm': 1.881793737411499, 'learning_rate': 0.00028199999999999997, 'epoch': 0.19}
+{'loss': 3.2266, 'grad_norm': 2.108025550842285, 'learning_rate': 0.00028319999999999994, 'epoch': 0.19}
+{'loss': 3.1821, 'grad_norm': 1.625137448310852, 'learning_rate': 0.0002844, 'epoch': 0.19}
+{'loss': 3.1991, 'grad_norm': 1.983460545539856, 'learning_rate': 0.00028559999999999995, 'epoch': 0.19}
+{'loss': 3.092, 'grad_norm': 2.5091729164123535, 'learning_rate': 0.0002868, 'epoch': 0.19}
+{'loss': 3.4309, 'grad_norm': 3.134380578994751, 'learning_rate': 0.00028799999999999995, 'epoch': 0.19}
+{'loss': 3.2115, 'grad_norm': 2.0402188301086426, 'learning_rate': 0.0002892, 'epoch': 0.19}
+{'loss': 3.2342, 'grad_norm': 1.9876617193222046, 'learning_rate': 0.00029039999999999996, 'epoch': 0.19}
+{'loss': 3.2249, 'grad_norm': 2.4581263065338135, 'learning_rate': 0.0002916, 'epoch': 0.19}
+{'loss': 3.2265, 'grad_norm': 4.411339282989502, 'learning_rate': 0.00029279999999999996, 'epoch': 0.2}
+{'loss': 3.3702, 'grad_norm': 1.5390933752059937, 'learning_rate': 0.000294, 'epoch': 0.2}
+{'loss': 3.1885, 'grad_norm': 4.281301021575928, 'learning_rate': 0.00029519999999999997, 'epoch': 0.2}
+{'loss': 2.8806, 'grad_norm': 1.8922605514526367, 'learning_rate': 0.0002964, 'epoch': 0.2}
+{'loss': 3.1556, 'grad_norm': 1.77718186378479, 'learning_rate': 0.00029759999999999997, 'epoch': 0.2}
+{'loss': 3.0803, 'grad_norm': 2.8350770473480225, 'learning_rate': 0.0002988, 'epoch': 0.2}
+{'loss': 3.3388, 'grad_norm': 3.408613443374634, 'learning_rate': 0.0003, 'epoch': 0.2}
+{'loss': 3.5186, 'grad_norm': 9.801575660705566, 'learning_rate': 0.00030119999999999995, 'epoch': 0.2}
+{'loss': 2.809, 'grad_norm': 3.388857364654541, 'learning_rate': 0.0003024, 'epoch': 0.2}
+{'loss': 2.9663, 'grad_norm': 2.2108640670776367, 'learning_rate': 0.00030359999999999995, 'epoch': 0.2}
+{'loss': 3.0539, 'grad_norm': 3.1998515129089355, 'learning_rate': 0.0003048, 'epoch': 0.2}
+{'loss': 2.9738, 'grad_norm': 12.923892974853516, 'learning_rate': 0.00030599999999999996, 'epoch': 0.2}
+{'loss': 2.8021, 'grad_norm': 1.7021923065185547, 'learning_rate': 0.0003072, 'epoch': 0.2}
+{'loss': 2.7467, 'grad_norm': 1.9048188924789429, 'learning_rate': 0.00030839999999999996, 'epoch': 0.21}
+{'loss': 2.5248, 'grad_norm': 3.1580746173858643, 'learning_rate': 0.0003096, 'epoch': 0.21}
+{'loss': 2.6952, 'grad_norm': 2.6319057941436768, 'learning_rate': 0.00031079999999999997, 'epoch': 0.21}
+{'loss': 2.5381, 'grad_norm': 2.645845651626587, 'learning_rate': 0.000312, 'epoch': 0.21}
+{'loss': 2.6515, 'grad_norm': 2.356968641281128, 'learning_rate': 0.00031319999999999997, 'epoch': 0.21}
+{'loss': 2.6954, 'grad_norm': 1.408197283744812, 'learning_rate': 0.0003144, 'epoch': 0.21}
+{'loss': 2.5345, 'grad_norm': 2.070524215698242, 'learning_rate': 0.0003156, 'epoch': 0.21}
+{'loss': 2.4322, 'grad_norm': 1.6709470748901367, 'learning_rate': 0.0003168, 'epoch': 0.21}
+{'loss': 2.5036, 'grad_norm': 3.776127815246582, 'learning_rate': 0.000318, 'epoch': 0.21}
+{'loss': 2.5978, 'grad_norm': 5.0986833572387695, 'learning_rate': 0.0003192, 'epoch': 0.21}
+{'loss': 2.6226, 'grad_norm': 1.3206255435943604, 'learning_rate': 0.0003204, 'epoch': 0.21}
+{'loss': 2.5397, 'grad_norm': 2.7903480529785156, 'learning_rate': 0.0003216, 'epoch': 0.21}
+{'loss': 2.1681, 'grad_norm': 1.451104998588562, 'learning_rate': 0.0003228, 'epoch': 0.22}
+{'loss': 2.0272, 'grad_norm': 1.6839573383331299, 'learning_rate': 0.000324, 'epoch': 0.22}
+{'loss': 2.2599, 'grad_norm': 1.5313794612884521, 'learning_rate': 0.0003252, 'epoch': 0.22}
+{'loss': 2.0953, 'grad_norm': 1.3755935430526733, 'learning_rate': 0.0003264, 'epoch': 0.22}
+{'loss': 2.1622, 'grad_norm': 1.8793798685073853, 'learning_rate': 0.0003276, 'epoch': 0.22}
+{'loss': 2.3754, 'grad_norm': 1.6000730991363525, 'learning_rate': 0.0003288, 'epoch': 0.22}
+{'loss': 2.8361, 'grad_norm': 1.512147068977356, 'learning_rate': 0.00033, 'epoch': 0.22}
+{'loss': 2.0144, 'grad_norm': 1.8131157159805298, 'learning_rate': 0.0003312, 'epoch': 0.22}
+{'loss': 2.0592, 'grad_norm': 2.03875732421875, 'learning_rate': 0.0003324, 'epoch': 0.22}
+{'loss': 2.1667, 'grad_norm': 1.3362442255020142, 'learning_rate': 0.0003336, 'epoch': 0.22}
+{'loss': 1.9056, 'grad_norm': 1.9110103845596313, 'learning_rate': 0.0003348, 'epoch': 0.22}
+{'loss': 2.3029, 'grad_norm': 2.684150218963623, 'learning_rate': 0.000336, 'epoch': 0.22}
+{'loss': 2.0346, 'grad_norm': 2.042858362197876, 'learning_rate': 0.0003372, 'epoch': 0.22}
+{'loss': 2.3462, 'grad_norm': 2.7907986640930176, 'learning_rate': 0.00033839999999999993, 'epoch': 0.23}
+{'loss': 2.1826, 'grad_norm': 3.2884609699249268, 'learning_rate': 0.00033959999999999996, 'epoch': 0.23}
+{'loss': 1.8098, 'grad_norm': 3.9165382385253906, 'learning_rate': 0.00034079999999999994, 'epoch': 0.23}
+{'loss': 2.6455, 'grad_norm': 2.695669651031494, 'learning_rate': 0.00034199999999999996, 'epoch': 0.23}
+{'loss': 2.0712, 'grad_norm': 2.2297255992889404, 'learning_rate': 0.00034319999999999994, 'epoch': 0.23}
+{'loss': 1.8699, 'grad_norm': 1.680782675743103, 'learning_rate': 0.00034439999999999997, 'epoch': 0.23}
+{'loss': 2.3441, 'grad_norm': 1.6716264486312866, 'learning_rate': 0.00034559999999999994, 'epoch': 0.23}
+{'loss': 2.2235, 'grad_norm': 1.9048688411712646, 'learning_rate': 0.0003467999999999999, 'epoch': 0.23}
+{'loss': 2.6224, 'grad_norm': 1.447647213935852, 'learning_rate': 0.00034799999999999995, 'epoch': 0.23}
+{'loss': 2.5202, 'grad_norm': 2.072659492492676, 'learning_rate': 0.0003491999999999999, 'epoch': 0.23}
+{'loss': 2.108, 'grad_norm': 1.948551058769226, 'learning_rate': 0.00035039999999999995, 'epoch': 0.23}
+{'loss': 2.4353, 'grad_norm': 2.221442222595215, 'learning_rate': 0.0003515999999999999, 'epoch': 0.23}
+{'loss': 2.2939, 'grad_norm': 2.1241588592529297, 'learning_rate': 0.00035279999999999996, 'epoch': 0.24}
+{'loss': 2.4416, 'grad_norm': 3.45157527923584, 'learning_rate': 0.00035399999999999993, 'epoch': 0.24}
+{'loss': 2.1823, 'grad_norm': 2.024019479751587, 'learning_rate': 0.00035519999999999996, 'epoch': 0.24}
+{'loss': 2.6813, 'grad_norm': 2.5075910091400146, 'learning_rate': 0.00035639999999999994, 'epoch': 0.24}
+{'loss': 2.5516, 'grad_norm': 4.758941173553467, 'learning_rate': 0.00035759999999999996, 'epoch': 0.24}
+{'loss': 2.2198, 'grad_norm': 3.7219438552856445, 'learning_rate': 0.00035879999999999994, 'epoch': 0.24}
+{'loss': 2.4085, 'grad_norm': 4.64521598815918, 'learning_rate': 0.00035999999999999997, 'epoch': 0.24}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<01:06, 2.92it/s][A
+
2%|โ | 3/196 [00:01<01:43, 1.86it/s][A
+
2%|โ | 4/196 [00:02<02:08, 1.49it/s][A
+
3%|โ | 5/196 [00:03<02:23, 1.33it/s][A
+
3%|โ | 6/196 [00:04<02:41, 1.17it/s][A
+
4%|โ | 7/196 [00:05<02:48, 1.12it/s][A
+
4%|โ | 8/196 [00:06<02:51, 1.10it/s][A
+
5%|โ | 9/196 [00:08<03:43, 1.19s/it][A
+
5%|โ | 10/196 [00:10<04:23, 1.41s/it][A
+
6%|โ | 11/196 [00:12<05:03, 1.64s/it][A
+
6%|โ | 12/196 [00:14<05:20, 1.74s/it][A
+
7%|โ | 13/196 [00:15<04:39, 1.53s/it][A
+
7%|โ | 14/196 [00:15<03:54, 1.29s/it][A
+
8%|โ | 15/196 [00:16<03:16, 1.09s/it][A
+
8%|โ | 16/196 [00:17<03:05, 1.03s/it][A
+
9%|โ | 17/196 [00:18<02:59, 1.00s/it][A
+
9%|โ | 18/196 [00:19<03:19, 1.12s/it][A
+
10%|โ | 19/196 [00:21<04:11, 1.42s/it][A
+
10%|โ | 20/196 [00:23<04:29, 1.53s/it][A
+
11%|โ | 21/196 [00:25<04:37, 1.58s/it][A
+
11%|โ | 22/196 [00:26<04:24, 1.52s/it][A
+
12%|โโ | 23/196 [00:27<04:02, 1.40s/it][A
+
12%|โโ | 24/196 [00:28<03:13, 1.13s/it][A
+
13%|โโ | 25/196 [00:28<02:45, 1.03it/s][A
+
13%|โโ | 26/196 [00:29<02:25, 1.17it/s][A
+
14%|โโ | 27/196 [00:30<02:13, 1.26it/s][A
+
14%|โโ | 28/196 [00:30<02:07, 1.31it/s][A
+
15%|โโ | 29/196 [00:31<02:07, 1.31it/s][A
+
15%|โโ | 30/196 [00:32<02:08, 1.30it/s][A
+
16%|โโ | 31/196 [00:32<01:56, 1.41it/s][A
+
16%|โโ | 32/196 [00:33<01:51, 1.46it/s][A
+
17%|โโ | 33/196 [00:34<02:08, 1.26it/s][A
+
17%|โโ | 34/196 [00:36<02:47, 1.03s/it][A
+
18%|โโ | 35/196 [00:37<02:53, 1.08s/it][A
+
18%|โโ | 36/196 [00:39<03:16, 1.23s/it][A
+
19%|โโ | 37/196 [00:40<03:12, 1.21s/it][A
+
19%|โโ | 38/196 [00:41<02:57, 1.12s/it][A
+
20%|โโ | 39/196 [00:41<02:43, 1.04s/it][A
+
20%|โโ | 40/196 [00:42<02:30, 1.03it/s][A
+
21%|โโ | 41/196 [00:43<02:19, 1.11it/s][A
+
21%|โโโ | 42/196 [00:44<02:09, 1.19it/s][A
+
22%|โโโ | 43/196 [00:45<02:08, 1.19it/s][A
+
22%|โโโ | 44/196 [00:45<02:05, 1.21it/s][A
+
23%|โโโ | 45/196 [00:46<01:55, 1.30it/s][A
+
23%|โโโ | 46/196 [00:47<01:47, 1.39it/s][A
+
24%|โโโ | 47/196 [00:47<01:47, 1.38it/s][A
+
24%|โโโ | 48/196 [00:48<01:42, 1.45it/s][A
+
25%|โโโ | 49/196 [00:49<01:40, 1.47it/s][A
+
26%|โโโ | 50/196 [00:49<01:38, 1.48it/s][A
+
26%|โโโ | 51/196 [00:50<01:35, 1.53it/s][A
+
27%|โโโ | 52/196 [00:50<01:34, 1.52it/s][A
+
27%|โโโ | 53/196 [00:51<01:39, 1.44it/s][A
+
28%|โโโ | 54/196 [00:52<01:37, 1.46it/s][A
+
28%|โโโ | 55/196 [00:53<01:48, 1.29it/s][A
+
29%|โโโ | 56/196 [00:54<01:56, 1.20it/s][A
+
29%|โโโ | 57/196 [00:55<02:05, 1.11it/s][A
+
30%|โโโ | 58/196 [00:56<02:08, 1.07it/s][A
+
30%|โโโ | 59/196 [00:57<02:05, 1.09it/s][A
+
31%|โโโ | 60/196 [00:58<01:54, 1.18it/s][A
+
31%|โโโ | 61/196 [00:58<01:44, 1.29it/s][A
+
32%|โโโโ | 62/196 [00:59<01:42, 1.31it/s][A
+
32%|โโโโ | 63/196 [01:00<01:42, 1.30it/s][A
+
33%|โโโโ | 64/196 [01:00<01:42, 1.28it/s][A
+
33%|โโโโ | 65/196 [01:01<01:40, 1.31it/s][A
+
34%|โโโโ | 66/196 [01:02<01:44, 1.24it/s][A
+
34%|โโโโ | 67/196 [01:03<01:48, 1.19it/s][A
+
35%|โโโโ | 68/196 [01:04<02:02, 1.05it/s][A
+
35%|โโโโ | 69/196 [01:05<02:03, 1.03it/s][A
+
36%|โโโโ | 70/196 [01:06<01:54, 1.10it/s][A
+
36%|โโโโ | 71/196 [01:07<01:46, 1.17it/s][A
+
37%|โโโโ | 72/196 [01:07<01:38, 1.26it/s][A
+
37%|โโโโ | 73/196 [01:08<01:29, 1.37it/s][A
+
38%|โโโโ | 74/196 [01:09<01:23, 1.47it/s][A
+
38%|โโโโ | 75/196 [01:09<01:20, 1.50it/s][A
+
39%|โโโโ | 76/196 [01:10<01:22, 1.46it/s][A
+
39%|โโโโ | 77/196 [01:11<01:24, 1.41it/s][A
+
40%|โโโโ | 78/196 [01:12<01:28, 1.33it/s][A
+
40%|โโโโ | 79/196 [01:12<01:25, 1.37it/s][A
+
41%|โโโโ | 80/196 [01:13<01:30, 1.28it/s][A
+
41%|โโโโโ | 81/196 [01:14<01:32, 1.25it/s][A
+
42%|โโโโโ | 82/196 [01:15<01:28, 1.29it/s][A
+
42%|โโโโโ | 83/196 [01:15<01:29, 1.26it/s][A
+
43%|โโโโโ | 84/196 [01:16<01:31, 1.23it/s][A
+
43%|โโโโโ | 85/196 [01:17<01:30, 1.23it/s][A
+
44%|โโโโโ | 86/196 [01:18<01:31, 1.20it/s][A
+
44%|โโโโโ | 87/196 [01:19<01:29, 1.21it/s][A
+
45%|โโโโโ | 88/196 [01:20<01:32, 1.17it/s][A
+
45%|โโโโโ | 89/196 [01:21<01:34, 1.14it/s][A
+
46%|โโโโโ | 90/196 [01:22<01:31, 1.16it/s][A
+
46%|โโโโโ | 91/196 [01:22<01:27, 1.20it/s][A
+
47%|โโโโโ | 92/196 [01:23<01:23, 1.24it/s][A
+
47%|โโโโโ | 93/196 [01:24<01:27, 1.18it/s][A
+
48%|โโโโโ | 94/196 [01:25<01:28, 1.16it/s][A
+
48%|โโโโโ | 95/196 [01:26<01:23, 1.20it/s][A
+
49%|โโโโโ | 96/196 [01:27<01:27, 1.14it/s][A
+
49%|โโโโโ | 97/196 [01:27<01:24, 1.17it/s][A
+
50%|โโโโโ | 98/196 [01:28<01:27, 1.13it/s][A
+
51%|โโโโโ | 99/196 [01:29<01:19, 1.23it/s][A
+
51%|โโโโโ | 100/196 [01:30<01:09, 1.38it/s][A
+
52%|โโโโโโ | 101/196 [01:30<01:05, 1.46it/s][A
+
52%|โโโโโโ | 102/196 [01:31<01:08, 1.37it/s][A
+
53%|โโโโโโ | 103/196 [01:32<01:13, 1.27it/s][A
+
53%|โโโโโโ | 104/196 [01:33<01:23, 1.11it/s][A
+
54%|โโโโโโ | 105/196 [01:34<01:24, 1.07it/s][A
+
54%|โโโโโโ | 106/196 [01:35<01:24, 1.07it/s][A
+
55%|โโโโโโ | 107/196 [01:36<01:18, 1.13it/s][A
+
55%|โโโโโโ | 108/196 [01:36<01:09, 1.27it/s][A
+
56%|โโโโโโ | 109/196 [01:37<01:04, 1.35it/s][A
+
56%|โโโโโโ | 110/196 [01:38<01:01, 1.40it/s][A
+
57%|โโโโโโ | 111/196 [01:38<01:00, 1.40it/s][A
+
57%|โโโโโโ | 112/196 [01:39<01:02, 1.34it/s][A
+
58%|โโโโโโ | 113/196 [01:40<01:03, 1.31it/s][A
+
58%|โโโโโโ | 114/196 [01:41<00:57, 1.42it/s][A
+
59%|โโโโโโ | 115/196 [01:41<00:55, 1.46it/s][A
+
59%|โโโโโโ | 116/196 [01:42<00:53, 1.48it/s][A
+
60%|โโโโโโ | 117/196 [01:42<00:50, 1.56it/s][A
+
60%|โโโโโโ | 118/196 [01:43<00:45, 1.71it/s][A
+
61%|โโโโโโ | 119/196 [01:44<00:47, 1.62it/s][A
+
61%|โโโโโโ | 120/196 [01:44<00:49, 1.53it/s][A
+
62%|โโโโโโโ | 121/196 [01:45<00:50, 1.50it/s][A
+
62%|โโโโโโโ | 122/196 [01:46<00:50, 1.45it/s][A
+
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.47it/s][A
+
63%|โโโโโโโ | 124/196 [01:47<00:49, 1.47it/s][A
+
64%|โโโโโโโ | 125/196 [01:48<00:48, 1.46it/s][A
+
64%|โโโโโโโ | 126/196 [01:49<00:54, 1.29it/s][A
+
65%|โโโโโโโ | 127/196 [01:50<00:53, 1.29it/s][A
+
65%|โโโโโโโ | 128/196 [01:50<00:49, 1.36it/s][A
+
66%|โโโโโโโ | 129/196 [01:51<00:48, 1.38it/s][A
+
66%|โโโโโโโ | 130/196 [01:52<00:47, 1.38it/s][A
+
67%|โโโโโโโ | 131/196 [01:52<00:47, 1.38it/s][A
+
67%|โโโโโโโ | 132/196 [01:53<00:43, 1.47it/s][A
+
68%|โโโโโโโ | 133/196 [01:54<00:42, 1.48it/s][A
+
68%|โโโโโโโ | 134/196 [01:54<00:44, 1.39it/s][A
+
69%|โโโโโโโ | 135/196 [01:55<00:43, 1.42it/s][A
+
69%|โโโโโโโ | 136/196 [01:56<00:41, 1.45it/s][A
+
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.45it/s][A
+
70%|โโโโโโโ | 138/196 [01:57<00:40, 1.45it/s][A
+
71%|โโโโโโโ | 139/196 [01:58<00:39, 1.43it/s][A
+
71%|โโโโโโโโ | 140/196 [01:58<00:38, 1.46it/s][A
+
72%|โโโโโโโโ | 141/196 [01:59<00:37, 1.46it/s][A
+
72%|โโโโโโโโ | 142/196 [02:00<00:37, 1.42it/s][A
+
73%|โโโโโโโโ | 143/196 [02:01<00:39, 1.33it/s][A
+
73%|โโโโโโโโ | 144/196 [02:01<00:37, 1.40it/s][A
+
74%|โโโโโโโโ | 145/196 [02:02<00:33, 1.52it/s][A
+
74%|โโโโโโโโ | 146/196 [02:02<00:30, 1.62it/s][A
+
75%|โโโโโโโโ | 147/196 [02:03<00:30, 1.61it/s][A
+
76%|โโโโโโโโ | 148/196 [02:04<00:29, 1.60it/s][A
+
76%|โโโโโโโโ | 149/196 [02:04<00:28, 1.66it/s][A
+
77%|โโโโโโโโ | 150/196 [02:05<00:29, 1.56it/s][A
+
77%|โโโโโโโโ | 151/196 [02:06<00:30, 1.48it/s][A
+
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.50it/s][A
+
78%|โโโโโโโโ | 153/196 [02:07<00:28, 1.50it/s][A
+
79%|โโโโโโโโ | 154/196 [02:08<00:28, 1.49it/s][A
+
79%|โโโโโโโโ | 155/196 [02:09<00:29, 1.39it/s][A
+
80%|โโโโโโโโ | 156/196 [02:10<00:33, 1.20it/s][A
+
80%|โโโโโโโโ | 157/196 [02:11<00:36, 1.08it/s][A
+
81%|โโโโโโโโ | 158/196 [02:11<00:31, 1.21it/s][A
+
81%|โโโโโโโโ | 159/196 [02:12<00:27, 1.33it/s][A
+
82%|โโโโโโโโโ | 160/196 [02:13<00:25, 1.40it/s][A
+
82%|โโโโโโโโโ | 161/196 [02:13<00:25, 1.39it/s][A
+
83%|โโโโโโโโโ | 162/196 [02:14<00:24, 1.41it/s][A
+
83%|โโโโโโโโโ | 163/196 [02:15<00:23, 1.43it/s][A
+
84%|โโโโโโโโโ | 164/196 [02:15<00:21, 1.46it/s][A
+
84%|โโโโโโโโโ | 165/196 [02:16<00:21, 1.41it/s][A
+
85%|โโโโโโโโโ | 166/196 [02:17<00:20, 1.45it/s][A
+
85%|โโโโโโโโโ | 167/196 [02:17<00:19, 1.49it/s][A
+
86%|โโโโโโโโโ | 168/196 [02:18<00:17, 1.56it/s][A
+
86%|โโโโโโโโโ | 169/196 [02:19<00:17, 1.52it/s][A
+
87%|โโโโโโโโโ | 170/196 [02:19<00:18, 1.39it/s][A
+
87%|โโโโโโโโโ | 171/196 [02:20<00:17, 1.43it/s][A
+
88%|โโโโโโโโโ | 172/196 [02:21<00:17, 1.40it/s][A
+
88%|โโโโโโโโโ | 173/196 [02:22<00:16, 1.41it/s][A
+
89%|โโโโโโโโโ | 174/196 [02:22<00:16, 1.34it/s][A
+
89%|โโโโโโโโโ | 175/196 [02:24<00:19, 1.10it/s][A
+
90%|โโโโโโโโโ | 176/196 [02:26<00:27, 1.39s/it][A
+
90%|โโโโโโโโโ | 177/196 [02:28<00:30, 1.59s/it][A
+
91%|โโโโโโโโโ | 178/196 [02:30<00:31, 1.74s/it][A
+
91%|โโโโโโโโโโ| 179/196 [02:32<00:31, 1.85s/it][A
+
92%|โโโโโโโโโโ| 180/196 [02:33<00:24, 1.50s/it][A
+
92%|โโโโโโโโโโ| 181/196 [02:34<00:19, 1.28s/it][A
+
93%|โโโโโโโโโโ| 182/196 [02:35<00:15, 1.10s/it][A
+
93%|โโโโโโโโโโ| 183/196 [02:36<00:14, 1.12s/it][A
+
94%|โโโโโโโโโโ| 184/196 [02:36<00:11, 1.02it/s][A
+
94%|โโโโโโโโโโ| 185/196 [02:37<00:10, 1.05it/s][A
+
95%|โโโโโโโโโโ| 186/196 [02:38<00:09, 1.02it/s][A
+
95%|โโโโโโโโโโ| 187/196 [02:39<00:08, 1.11it/s][A
+
96%|โโโโโโโโโโ| 188/196 [02:40<00:06, 1.20it/s][A
+
96%|โโโโโโโโโโ| 189/196 [02:41<00:05, 1.21it/s][A
+
97%|โโโโโโโโโโ| 190/196 [02:41<00:04, 1.29it/s][A
+
97%|โโโโโโโโโโ| 191/196 [02:42<00:03, 1.38it/s][A
+
98%|โโโโโโโโโโ| 192/196 [02:43<00:02, 1.38it/s][A
+
98%|โโโโโโโโโโ| 193/196 [02:43<00:02, 1.38it/s][A
+
99%|โโโโโโโโโโ| 194/196 [02:44<00:01, 1.40it/s][A
+
99%|โโโโโโโโโโ| 195/196 [02:45<00:00, 1.44it/s][A
+
100%|โโโโโโโโโโ| 196/196 [02:45<00:00, 1.65it/s][A
+
[A
2%|โ | 300/15000 [15:27<3:34:14, 1.14it/s]
+
100%|โโโโโโโโโโ| 196/196 [02:50<00:00, 1.65it/s][A
+
[A/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
2%|โ | 301/15000 [15:42<231:30:53, 56.70s/it]
2%|โ | 301/15000 [15:42<231:30:53, 56.70s/it]
2%|โ | 302/15000 [15:45<166:04:28, 40.68s/it]
2%|โ | 302/15000 [15:45<166:04:28, 40.68s/it]
2%|โ | 303/15000 [15:48<119:31:38, 29.28s/it]
2%|โ | 303/15000 [15:48<119:31:38, 29.28s/it]
2%|โ | 304/15000 [15:50<86:39:22, 21.23s/it]
2%|โ | 304/15000 [15:50<86:39:22, 21.23s/it]
2%|โ | 305/15000 [15:53<63:35:19, 15.58s/it]
2%|โ | 305/15000 [15:53<63:35:19, 15.58s/it]
2%|โ | 306/15000 [15:55<47:09:10, 11.55s/it]
2%|โ | 306/15000 [15:55<47:09:10, 11.55s/it]
2%|โ | 307/15000 [15:57<35:25:44, 8.68s/it]
2%|โ | 307/15000 [15:57<35:25:44, 8.68s/it]
2%|โ | 308/15000 [15:59<27:10:53, 6.66s/it]
2%|โ | 308/15000 [15:59<27:10:53, 6.66s/it]
2%|โ | 309/15000 [16:01<21:15:09, 5.21s/it]
2%|โ | 309/15000 [16:01<21:15:09, 5.21s/it]
2%|โ | 310/15000 [16:02<17:02:18, 4.18s/it]
2%|โ | 310/15000 [16:02<17:02:18, 4.18s/it]
2%|โ | 311/15000 [16:04<14:03:31, 3.45s/it]
2%|โ | 311/15000 [16:04<14:03:31, 3.45s/it]
2%|โ | 312/15000 [16:06<11:48:00, 2.89s/it]
2%|โ | 312/15000 [16:06<11:48:00, 2.89s/it]
2%|โ | 313/15000 [16:07<10:08:02, 2.48s/it]
2%|โ | 313/15000 [16:07<10:08:02, 2.48s/it]
2%|โ | 314/15000 [16:09<8:50:12, 2.17s/it]
2%|โ | 314/15000 [16:09<8:50:12, 2.17s/it]
2%|โ | 315/15000 [16:10<7:56:28, 1.95s/it]
2%|โ | 315/15000 [16:10<7:56:28, 1.95s/it]
2%|โ | 316/15000 [16:11<7:18:17, 1.79s/it]
2%|โ | 316/15000 [16:11<7:18:17, 1.79s/it]
2%|โ | 317/15000 [16:13<6:52:01, 1.68s/it]
2%|โ | 317/15000 [16:13<6:52:01, 1.68s/it]
2%|โ | 318/15000 [16:14<6:29:54, 1.59s/it]
2%|โ | 318/15000 [16:14<6:29:54, 1.59s/it]
2%|โ | 319/15000 [16:16<6:12:13, 1.52s/it]
2%|โ | 319/15000 [16:16<6:12:13, 1.52s/it]
2%|โ | 320/15000 [16:17<5:48:28, 1.42s/it]
2%|โ | 320/15000 [16:17<5:48:28, 1.42s/it]
2%|โ | 321/15000 [16:18<5:38:51, 1.39s/it]
2%|โ | 321/15000 [16:18<5:38:51, 1.39s/it]
2%|โ | 322/15000 [16:19<5:25:33, 1.33s/it]
2%|โ | 322/15000 [16:19<5:25:33, 1.33s/it]
2%|โ | 323/15000 [16:21<5:16:08, 1.29s/it]
2%|โ | 323/15000 [16:21<5:16:08, 1.29s/it]
2%|โ | 324/15000 [16:22<5:07:30, 1.26s/it]
2%|โ | 324/15000 [16:22<5:07:30, 1.26s/it]
2%|โ | 325/15000 [16:23<4:58:35, 1.22s/it]
2%|โ | 325/15000 [16:23<4:58:35, 1.22s/it]
2%|โ | 326/15000 [16:24<4:43:14, 1.16s/it]
2%|โ | 326/15000 [16:24<4:43:14, 1.16s/it]
2%|โ | 327/15000 [16:25<4:32:01, 1.11s/it]
2%|โ | 327/15000 [16:25<4:32:01, 1.11s/it]
2%|โ | 328/15000 [16:26<4:24:49, 1.08s/it]
2%|โ | 328/15000 [16:26<4:24:49, 1.08s/it]
2%|โ | 329/15000 [16:27<4:19:52, 1.06s/it]
2%|โ | 329/15000 [16:27<4:19:52, 1.06s/it]
2%|โ | 330/15000 [16:28<4:16:57, 1.05s/it]
2%|โ | 330/15000 [16:28<4:16:57, 1.05s/it]
2%|โ | 331/15000 [16:29<4:10:10, 1.02s/it]
2%|โ | 331/15000 [16:29<4:10:10, 1.02s/it]
2%|โ | 332/15000 [16:30<4:04:45, 1.00s/it]
2%|โ | 332/15000 [16:30<4:04:45, 1.00s/it]
2%|โ | 333/15000 [16:31<3:50:35, 1.06it/s]
2%|โ | 333/15000 [16:31<3:50:35, 1.06it/s]
2%|โ | 334/15000 [16:31<3:40:50, 1.11it/s]
2%|โ | 334/15000 [16:31<3:40:50, 1.11it/s]
2%|โ | 335/15000 [16:32<3:34:23, 1.14it/s]
2%|โ | 335/15000 [16:32<3:34:23, 1.14it/s]
2%|โ | 336/15000 [16:33<3:30:14, 1.16it/s]
2%|โ | 336/15000 [16:33<3:30:14, 1.16it/s]
2%|โ | 337/15000 [16:34<3:27:28, 1.18it/s]
2%|โ | 337/15000 [16:34<3:27:28, 1.18it/s]
2%|โ | 338/15000 [16:35<3:25:10, 1.19it/s]
2%|โ | 338/15000 [16:35<3:25:10, 1.19it/s]
2%|โ | 339/15000 [16:35<3:19:17, 1.23it/s]
2%|โ | 339/15000 [16:35<3:19:17, 1.23it/s]
2%|โ | 340/15000 [16:36<3:14:32, 1.26it/s]
2%|โ | 340/15000 [16:36<3:14:32, 1.26it/s]
2%|โ | 341/15000 [16:37<3:02:45, 1.34it/s]
2%|โ | 341/15000 [16:37<3:02:45, 1.34it/s]
2%|โ | 342/15000 [16:37<2:53:45, 1.41it/s]
2%|โ | 342/15000 [16:37<2:53:45, 1.41it/s]
2%|โ | 343/15000 [16:38<2:48:14, 1.45it/s]
2%|โ | 343/15000 [16:38<2:48:14, 1.45it/s]
2%|โ | 344/15000 [16:39<2:43:59, 1.49it/s]
2%|โ | 344/15000 [16:39<2:43:59, 1.49it/s]
2%|โ | 345/15000 [16:39<2:40:59, 1.52it/s]
2%|โ | 345/15000 [16:39<2:40:59, 1.52it/s]
2%|โ | 346/15000 [16:40<2:37:29, 1.55it/s]
2%|โ | 346/15000 [16:40<2:37:29, 1.55it/s]
2%|โ | 347/15000 [16:41<2:31:16, 1.61it/s]
2%|โ | 347/15000 [16:41<2:31:16, 1.61it/s]
2%|โ | 348/15000 [16:41<2:17:42, 1.77it/s]
2%|โ | 348/15000 [16:41<2:17:42, 1.77it/s]
2%|โ | 349/15000 [16:41<2:07:31, 1.91it/s]
2%|โ | 349/15000 [16:41<2:07:31, 1.91it/s]
2%|โ | 350/15000 [16:43<3:32:26, 1.15it/s]
2%|โ | 350/15000 [16:43<3:32:26, 1.15it/s]
\ No newline at end of file