diff --git "a/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out" "b/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out"
new file mode 100644--- /dev/null
+++ "b/gas1_indicwav2vec_MUCS_warmup500_s300shuff100_3751605.out"
@@ -0,0 +1,1105 @@
+wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
+wandb: wandb version 0.18.3 is available! To upgrade, please run:
+wandb: $ pip install wandb --upgrade
+wandb: Tracking run with wandb version 0.17.6
+wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20241015_210853-xt4y0zjk
+wandb: Run `wandb offline` to turn off syncing.
+wandb: Syncing run rerun_bestrun_wgas1_indicw2v_ad0_3_hd_02_featd_0_3_lr6e-4_warmup500_s300_shuff100
+wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
+wandb: ๐ View run at https://wandb.ai/priyanshipal/huggingface/runs/xt4y0zjk
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐ค Transformers. Use `eval_strategy` instead
+ warnings.warn(
+10/15/2024 21:08:58 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:991: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:302: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:331: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:509: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
+Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:494: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
+max_steps is given, it will override any value given in num_train_epochs
+Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=False), added_tokens_decoder={
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+ 150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+}
+CHECK MODEL PARAMS Wav2Vec2ForCTC(
+ (wav2vec2): Wav2Vec2Model(
+ (feature_extractor): Wav2Vec2FeatureEncoder(
+ (conv_layers): ModuleList(
+ (0): Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ )
+ )
+ (feature_projection): Wav2Vec2FeatureProjection(
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
+ (dropout): Dropout(p=0.3, inplace=False)
+ )
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
+ (conv): ParametrizedConv1d(
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
+ (parametrizations): ModuleDict(
+ (weight): ParametrizationList(
+ (0): _WeightNorm()
+ )
+ )
+ )
+ (padding): Wav2Vec2SamePadLayer()
+ (activation): GELUActivation()
+ )
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layers): ModuleList(
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
+ (attention): Wav2Vec2SdpaAttention(
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ )
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (feed_forward): Wav2Vec2FeedForward(
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
+ (intermediate_act_fn): GELUActivation()
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
+ (output_dropout): Dropout(p=0.2, inplace=False)
+ )
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ )
+ )
+ )
+ )
+ (dropout): Dropout(p=0.0, inplace=False)
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
+)
+
0%| | 0/15000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
0%| | 1/15000 [00:18<76:17:06, 18.31s/it]
0%| | 1/15000 [00:18<76:17:06, 18.31s/it]
0%| | 2/15000 [00:19<34:35:09, 8.30s/it]
0%| | 2/15000 [00:19<34:35:09, 8.30s/it]
0%| | 3/15000 [00:20<20:56:20, 5.03s/it]
0%| | 3/15000 [00:20<20:56:20, 5.03s/it]
0%| | 4/15000 [00:22<15:07:06, 3.63s/it]
0%| | 4/15000 [00:22<15:07:06, 3.63s/it]
0%| | 5/15000 [00:23<11:13:21, 2.69s/it]
0%| | 5/15000 [00:23<11:13:21, 2.69s/it]
0%| | 6/15000 [00:24<8:44:48, 2.10s/it]
0%| | 6/15000 [00:24<8:44:48, 2.10s/it]
0%| | 7/15000 [00:25<7:09:33, 1.72s/it]
0%| | 7/15000 [00:25<7:09:33, 1.72s/it]
0%| | 8/15000 [00:26<6:12:57, 1.49s/it]
0%| | 8/15000 [00:26<6:12:57, 1.49s/it]
0%| | 9/15000 [00:26<5:22:25, 1.29s/it]
0%| | 9/15000 [00:27<5:22:25, 1.29s/it]
0%| | 10/15000 [00:27<4:46:24, 1.15s/it]
0%| | 10/15000 [00:27<4:46:24, 1.15s/it]
0%| | 11/15000 [00:28<4:20:58, 1.04s/it]
0%| | 11/15000 [00:28<4:20:58, 1.04s/it]
0%| | 12/15000 [00:29<3:59:59, 1.04it/s]
0%| | 12/15000 [00:29<3:59:59, 1.04it/s]
0%| | 13/15000 [00:30<3:44:29, 1.11it/s]
0%| | 13/15000 [00:30<3:44:29, 1.11it/s]
0%| | 14/15000 [00:30<3:31:45, 1.18it/s]
0%| | 14/15000 [00:30<3:31:45, 1.18it/s]
0%| | 15/15000 [00:31<3:21:01, 1.24it/s]
0%| | 15/15000 [00:31<3:21:01, 1.24it/s]
0%| | 16/15000 [00:32<3:13:37, 1.29it/s]
0%| | 16/15000 [00:32<3:13:37, 1.29it/s]
0%| | 17/15000 [00:33<3:16:03, 1.27it/s]
0%| | 17/15000 [00:33<3:16:03, 1.27it/s]
0%| | 18/15000 [00:33<3:06:16, 1.34it/s]
0%| | 18/15000 [00:33<3:06:16, 1.34it/s]
0%| | 19/15000 [00:34<2:56:49, 1.41it/s]
0%| | 19/15000 [00:34<2:56:49, 1.41it/s]
0%| | 20/15000 [00:34<2:49:34, 1.47it/s]
0%| | 20/15000 [00:35<2:49:34, 1.47it/s]
0%| | 21/15000 [00:35<2:44:04, 1.52it/s]
0%| | 21/15000 [00:35<2:44:04, 1.52it/s]
0%| | 22/15000 [00:36<2:40:19, 1.56it/s]
0%| | 22/15000 [00:36<2:40:19, 1.56it/s]
0%| | 23/15000 [00:36<2:37:36, 1.58it/s]
0%| | 23/15000 [00:36<2:37:36, 1.58it/s]
0%| | 24/15000 [00:37<2:30:53, 1.65it/s]
0%| | 24/15000 [00:37<2:30:53, 1.65it/s]
0%| | 25/15000 [00:37<2:30:10, 1.66it/s]
0%| | 25/15000 [00:37<2:30:10, 1.66it/s]
0%| | 26/15000 [00:38<2:24:22, 1.73it/s]
0%| | 26/15000 [00:38<2:24:22, 1.73it/s]
0%| | 27/15000 [00:38<2:19:13, 1.79it/s]
0%| | 27/15000 [00:38<2:19:13, 1.79it/s]
0%| | 28/15000 [00:39<2:17:37, 1.81it/s]
0%| | 28/15000 [00:39<2:17:37, 1.81it/s]
0%| | 29/15000 [00:40<2:14:33, 1.85it/s]
0%| | 29/15000 [00:40<2:14:33, 1.85it/s]
0%| | 30/15000 [00:40<2:12:33, 1.88it/s]
0%| | 30/15000 [00:40<2:12:33, 1.88it/s]
0%| | 31/15000 [00:41<2:10:59, 1.90it/s]
0%| | 31/15000 [00:41<2:10:59, 1.90it/s]
0%| | 32/15000 [00:41<2:07:16, 1.96it/s]
0%| | 32/15000 [00:41<2:07:16, 1.96it/s]
0%| | 33/15000 [00:41<2:01:59, 2.04it/s]
0%| | 33/15000 [00:41<2:01:59, 2.04it/s]
0%| | 34/15000 [00:42<1:57:45, 2.12it/s]
0%| | 34/15000 [00:42<1:57:45, 2.12it/s]
0%| | 35/15000 [00:42<1:53:46, 2.19it/s]
0%| | 35/15000 [00:42<1:53:46, 2.19it/s]
0%| | 36/15000 [00:43<1:50:43, 2.25it/s]
0%| | 36/15000 [00:43<1:50:43, 2.25it/s]
0%| | 37/15000 [00:43<1:48:54, 2.29it/s]
0%| | 37/15000 [00:43<1:48:54, 2.29it/s]
0%| | 38/15000 [00:44<1:47:04, 2.33it/s]
0%| | 38/15000 [00:44<1:47:04, 2.33it/s]
0%| | 39/15000 [00:44<1:45:06, 2.37it/s]
0%| | 39/15000 [00:44<1:45:06, 2.37it/s]
0%| | 40/15000 [00:44<1:40:07, 2.49it/s]
0%| | 40/15000 [00:44<1:40:07, 2.49it/s]
0%| | 41/15000 [00:45<1:33:52, 2.66it/s]
0%| | 41/15000 [00:45<1:33:52, 2.66it/s]
0%| | 42/15000 [00:45<1:29:18, 2.79it/s]
0%| | 42/15000 [00:45<1:29:18, 2.79it/s]
0%| | 43/15000 [00:45<1:26:06, 2.90it/s]
0%| | 43/15000 [00:45<1:26:06, 2.90it/s]
0%| | 44/15000 [00:46<1:23:27, 2.99it/s]
0%| | 44/15000 [00:46<1:23:27, 2.99it/s]
0%| | 45/15000 [00:46<1:22:04, 3.04it/s]
0%| | 45/15000 [00:46<1:22:04, 3.04it/s]
0%| | 46/15000 [00:46<1:19:18, 3.14it/s]
0%| | 46/15000 [00:46<1:19:18, 3.14it/s]
0%| | 47/15000 [00:46<1:14:21, 3.35it/s]
0%| | 47/15000 [00:46<1:14:21, 3.35it/s]
0%| | 48/15000 [00:47<1:11:07, 3.50it/s]
0%| | 48/15000 [00:47<1:11:07, 3.50it/s]
0%| | 49/15000 [00:47<1:07:51, 3.67it/s]
0%| | 49/15000 [00:47<1:07:51, 3.67it/s]
0%| | 50/15000 [00:48<2:36:59, 1.59it/s]
0%| | 50/15000 [00:48<2:36:59, 1.59it/s]
0%| | 51/15000 [00:50<4:13:59, 1.02s/it]
0%| | 51/15000 [00:50<4:13:59, 1.02s/it]
0%| | 52/15000 [00:52<4:30:09, 1.08s/it]
0%| | 52/15000 [00:52<4:30:09, 1.08s/it]
0%| | 53/15000 [00:53<4:30:32, 1.09s/it]
0%| | 53/15000 [00:53<4:30:32, 1.09s/it]
0%| | 54/15000 [00:54<4:24:58, 1.06s/it]
0%| | 54/15000 [00:54<4:24:58, 1.06s/it]
0%| | 55/15000 [00:55<4:16:12, 1.03s/it]
0%| | 55/15000 [00:55<4:16:12, 1.03s/it]
0%| | 56/15000 [00:56<4:07:54, 1.00it/s]
0%| | 56/15000 [00:56<4:07:54, 1.00it/s]
0%| | 57/15000 [00:56<4:00:05, 1.04it/s]
0%| | 57/15000 [00:56<4:00:05, 1.04it/s]
0%| | 58/15000 [00:57<3:51:13, 1.08it/s]
0%| | 58/15000 [00:57<3:51:13, 1.08it/s]
0%| | 59/15000 [00:58<3:42:43, 1.12it/s]
0%| | 59/15000 [00:58<3:42:43, 1.12it/s]
0%| | 60/15000 [00:59<3:35:09, 1.16it/s]
0%| | 60/15000 [00:59<3:35:09, 1.16it/s]
0%| | 61/15000 [01:00<3:27:09, 1.20it/s]
0%| | 61/15000 [01:00<3:27:09, 1.20it/s]
0%| | 62/15000 [01:00<3:18:11, 1.26it/s]
0%| | 62/15000 [01:00<3:18:11, 1.26it/s]
0%| | 63/15000 [01:01<3:10:40, 1.31it/s]
0%| | 63/15000 [01:01<3:10:40, 1.31it/s]
0%| | 64/15000 [01:02<3:04:58, 1.35it/s]
0%| | 64/15000 [01:02<3:04:58, 1.35it/s]
0%| | 65/15000 [01:02<3:00:31, 1.38it/s]
0%| | 65/15000 [01:02<3:00:31, 1.38it/s]
0%| | 66/15000 [01:03<3:04:17, 1.35it/s]
0%| | 66/15000 [01:03<3:04:17, 1.35it/s]
0%| | 67/15000 [01:04<2:57:22, 1.40it/s]
0%| | 67/15000 [01:04<2:57:22, 1.40it/s]
0%| | 68/15000 [01:04<2:50:21, 1.46it/s]
0%| | 68/15000 [01:04<2:50:21, 1.46it/s]
0%| | 69/15000 [01:05<2:43:30, 1.52it/s]
0%| | 69/15000 [01:05<2:43:30, 1.52it/s]
0%| | 70/15000 [01:06<2:38:59, 1.57it/s]
0%| | 70/15000 [01:06<2:38:59, 1.57it/s]
0%| | 71/15000 [01:06<2:35:03, 1.60it/s]
0%| | 71/15000 [01:06<2:35:03, 1.60it/s]
0%| | 72/15000 [01:07<2:32:51, 1.63it/s]
0%| | 72/15000 [01:07<2:32:51, 1.63it/s]
0%| | 73/15000 [01:07<2:30:08, 1.66it/s]
0%| | 73/15000 [01:07<2:30:08, 1.66it/s]
0%| | 74/15000 [01:08<2:23:50, 1.73it/s]
0%| | 74/15000 [01:08<2:23:50, 1.73it/s]
0%| | 75/15000 [01:08<2:17:51, 1.80it/s]
0%| | 75/15000 [01:08<2:17:51, 1.80it/s]
1%| | 76/15000 [01:09<2:13:42, 1.86it/s]
1%| | 76/15000 [01:09<2:13:42, 1.86it/s]
1%| | 77/15000 [01:09<2:10:24, 1.91it/s]
1%| | 77/15000 [01:09<2:10:24, 1.91it/s]
1%| | 78/15000 [01:10<2:08:50, 1.93it/s]
1%| | 78/15000 [01:10<2:08:50, 1.93it/s]
1%| | 79/15000 [01:10<2:07:10, 1.96it/s]
1%| | 79/15000 [01:10<2:07:10, 1.96it/s]
1%| | 80/15000 [01:11<2:06:05, 1.97it/s]
1%| | 80/15000 [01:11<2:06:05, 1.97it/s]
1%| | 81/15000 [01:11<2:06:08, 1.97it/s]
1%| | 81/15000 [01:11<2:06:08, 1.97it/s]
1%| | 82/15000 [01:12<2:00:57, 2.06it/s]
1%| | 82/15000 [01:12<2:00:57, 2.06it/s]
1%| | 83/15000 [01:12<1:56:10, 2.14it/s]
1%| | 83/15000 [01:12<1:56:10, 2.14it/s]
1%| | 84/15000 [01:13<1:51:42, 2.23it/s]
1%| | 84/15000 [01:13<1:51:42, 2.23it/s]
1%| | 85/15000 [01:13<1:48:52, 2.28it/s]
1%| | 85/15000 [01:13<1:48:52, 2.28it/s]
1%| | 86/15000 [01:14<1:46:26, 2.34it/s]
1%| | 86/15000 [01:14<1:46:26, 2.34it/s]
1%| | 87/15000 [01:14<1:44:49, 2.37it/s]
1%| | 87/15000 [01:14<1:44:49, 2.37it/s]
1%| | 88/15000 [01:14<1:43:59, 2.39it/s]
1%| | 88/15000 [01:14<1:43:59, 2.39it/s]
1%| | 89/15000 [01:15<1:43:09, 2.41it/s]
1%| | 89/15000 [01:15<1:43:09, 2.41it/s]
1%| | 90/15000 [01:15<1:41:28, 2.45it/s]
1%| | 90/15000 [01:15<1:41:28, 2.45it/s]
1%| | 91/15000 [01:15<1:36:22, 2.58it/s]
1%| | 91/15000 [01:15<1:36:22, 2.58it/s]
1%| | 92/15000 [01:16<1:31:08, 2.73it/s]
1%| | 92/15000 [01:16<1:31:08, 2.73it/s]
1%| | 93/15000 [01:16<1:28:56, 2.79it/s]
1%| | 93/15000 [01:16<1:28:56, 2.79it/s]
1%| | 94/15000 [01:16<1:25:59, 2.89it/s]
1%| | 94/15000 [01:16<1:25:59, 2.89it/s]
1%| | 95/15000 [01:17<1:23:56, 2.96it/s]
1%| | 95/15000 [01:17<1:23:56, 2.96it/s]
1%| | 96/15000 [01:17<1:21:54, 3.03it/s]
1%| | 96/15000 [01:17<1:21:54, 3.03it/s]
1%| | 97/15000 [01:17<1:16:02, 3.27it/s]
1%| | 97/15000 [01:17<1:16:02, 3.27it/s]
1%| | 98/15000 [01:18<1:11:27, 3.48it/s]
1%| | 98/15000 [01:18<1:11:27, 3.48it/s]
1%| | 99/15000 [01:18<1:07:10, 3.70it/s]
1%| | 99/15000 [01:18<1:07:10, 3.70it/s]
1%| | 100/15000 [01:20<2:56:13, 1.41it/s]
1%| | 100/15000 [01:20<2:56:13, 1.41it/s]{'loss': 55.1542, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 37.9886, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 38.8318, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 30.9652, 'grad_norm': 17.96964454650879, 'learning_rate': 1.2e-06, 'epoch': 0.0}
+{'loss': 23.1263, 'grad_norm': 12.78707504272461, 'learning_rate': 2.4e-06, 'epoch': 0.0}
+{'loss': 31.4404, 'grad_norm': 18.879587173461914, 'learning_rate': 3.6e-06, 'epoch': 0.0}
+{'loss': 28.9835, 'grad_norm': 21.6163272857666, 'learning_rate': 4.8e-06, 'epoch': 0.01}
+{'loss': 22.4653, 'grad_norm': 12.543450355529785, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.01}
+{'loss': 28.4854, 'grad_norm': 18.418537139892578, 'learning_rate': 7.2e-06, 'epoch': 0.01}
+{'loss': 22.7705, 'grad_norm': 13.545148849487305, 'learning_rate': 8.4e-06, 'epoch': 0.01}
+{'loss': 24.8515, 'grad_norm': 14.551854133605957, 'learning_rate': 9.6e-06, 'epoch': 0.01}
+{'loss': 24.5291, 'grad_norm': 14.127412796020508, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.01}
+{'loss': 19.7274, 'grad_norm': 11.440596580505371, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.01}
+{'loss': 23.3227, 'grad_norm': 13.410787582397461, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.01}
+{'loss': 21.6394, 'grad_norm': 13.178849220275879, 'learning_rate': 1.44e-05, 'epoch': 0.01}
+{'loss': 23.6289, 'grad_norm': 15.701748847961426, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.01}
+{'loss': 19.541, 'grad_norm': 12.061254501342773, 'learning_rate': 1.68e-05, 'epoch': 0.01}
+{'loss': 19.9388, 'grad_norm': 12.707296371459961, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.01}
+{'loss': 20.5331, 'grad_norm': 13.749712944030762, 'learning_rate': 1.92e-05, 'epoch': 0.02}
+{'loss': 22.4664, 'grad_norm': 15.919678688049316, 'learning_rate': 2.04e-05, 'epoch': 0.02}
+{'loss': 23.7601, 'grad_norm': 18.59859848022461, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.02}
+{'loss': 19.0225, 'grad_norm': 14.533405303955078, 'learning_rate': 2.28e-05, 'epoch': 0.02}
+{'loss': 18.4267, 'grad_norm': 14.206658363342285, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.02}
+{'loss': 20.2306, 'grad_norm': 16.416780471801758, 'learning_rate': 2.52e-05, 'epoch': 0.02}
+{'loss': 18.829, 'grad_norm': 19.70071029663086, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.02}
+{'loss': 21.0419, 'grad_norm': 17.897565841674805, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.02}
+{'loss': 21.7333, 'grad_norm': 19.58220672607422, 'learning_rate': 2.88e-05, 'epoch': 0.02}
+{'loss': 19.5153, 'grad_norm': 17.36555290222168, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.02}
+{'loss': 18.3337, 'grad_norm': 17.02399444580078, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.02}
+{'loss': 17.6184, 'grad_norm': 16.63629913330078, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.02}
+{'loss': 17.8978, 'grad_norm': 17.03536605834961, 'learning_rate': 3.36e-05, 'epoch': 0.02}
+{'loss': 25.3284, 'grad_norm': 28.485458374023438, 'learning_rate': 3.48e-05, 'epoch': 0.03}
+{'loss': 17.9009, 'grad_norm': 18.832059860229492, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.03}
+{'loss': 22.9704, 'grad_norm': 26.878889083862305, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.03}
+{'loss': 16.705, 'grad_norm': 18.186336517333984, 'learning_rate': 3.84e-05, 'epoch': 0.03}
+{'loss': 15.134, 'grad_norm': 16.701881408691406, 'learning_rate': 3.96e-05, 'epoch': 0.03}
+{'loss': 16.4317, 'grad_norm': 20.040634155273438, 'learning_rate': 4.08e-05, 'epoch': 0.03}
+{'loss': 17.1893, 'grad_norm': 22.117557525634766, 'learning_rate': 4.2e-05, 'epoch': 0.03}
+{'loss': 17.7823, 'grad_norm': 24.60606575012207, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.03}
+{'loss': 15.9291, 'grad_norm': 21.947547912597656, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.03}
+{'loss': 22.7582, 'grad_norm': 37.87969207763672, 'learning_rate': 4.56e-05, 'epoch': 0.03}
+{'loss': 17.5806, 'grad_norm': 28.23064613342285, 'learning_rate': 4.68e-05, 'epoch': 0.03}
+{'loss': 17.7863, 'grad_norm': nan, 'learning_rate': 4.68e-05, 'epoch': 0.03}
+{'loss': 15.5134, 'grad_norm': 26.94228744506836, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.04}
+{'loss': 18.9837, 'grad_norm': 38.402000427246094, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.04}
+{'loss': 15.5582, 'grad_norm': 31.795564651489258, 'learning_rate': 5.04e-05, 'epoch': 0.04}
+{'loss': 16.5871, 'grad_norm': 37.42509841918945, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.04}
+{'loss': 15.5071, 'grad_norm': 44.28313064575195, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.04}
+{'loss': 16.8833, 'grad_norm': 46.37602233886719, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.04}
+{'loss': 12.1475, 'grad_norm': 32.687171936035156, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.04}
+{'loss': 41.8399, 'grad_norm': nan, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.04}
+{'loss': 22.5877, 'grad_norm': nan, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.04}
+{'loss': 20.2892, 'grad_norm': 79.81075286865234, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.04}
+{'loss': 13.7623, 'grad_norm': 51.3441276550293, 'learning_rate': 5.76e-05, 'epoch': 0.04}
+{'loss': 13.9127, 'grad_norm': 56.58132553100586, 'learning_rate': 5.88e-05, 'epoch': 0.04}
+{'loss': 16.6249, 'grad_norm': 92.03045654296875, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.04}
+{'loss': 11.5261, 'grad_norm': 56.353797912597656, 'learning_rate': 6.12e-05, 'epoch': 0.05}
+{'loss': 11.2498, 'grad_norm': 105.87066650390625, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.05}
+{'loss': 10.1399, 'grad_norm': 55.14802551269531, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.05}
+{'loss': 10.0188, 'grad_norm': 60.194149017333984, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.05}
+{'loss': 10.8106, 'grad_norm': 67.89379119873047, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.05}
+{'loss': 8.0913, 'grad_norm': 44.49636459350586, 'learning_rate': 6.72e-05, 'epoch': 0.05}
+{'loss': 8.0244, 'grad_norm': 48.91301727294922, 'learning_rate': 6.84e-05, 'epoch': 0.05}
+{'loss': 7.0869, 'grad_norm': 38.065032958984375, 'learning_rate': 6.96e-05, 'epoch': 0.05}
+{'loss': 6.4477, 'grad_norm': 43.30170440673828, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.05}
+{'loss': 6.4891, 'grad_norm': 34.24915313720703, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.05}
+{'loss': 6.2846, 'grad_norm': 35.3431396484375, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.05}
+{'loss': 5.757, 'grad_norm': 25.245866775512695, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.05}
+{'loss': 5.8448, 'grad_norm': 28.499452590942383, 'learning_rate': 7.56e-05, 'epoch': 0.06}
+{'loss': 5.7273, 'grad_norm': 27.685880661010742, 'learning_rate': 7.68e-05, 'epoch': 0.06}
+{'loss': 5.2939, 'grad_norm': 18.561939239501953, 'learning_rate': 7.8e-05, 'epoch': 0.06}
+{'loss': 5.1705, 'grad_norm': 17.330448150634766, 'learning_rate': 7.92e-05, 'epoch': 0.06}
+{'loss': 5.0931, 'grad_norm': 13.972268104553223, 'learning_rate': 8.04e-05, 'epoch': 0.06}
+{'loss': 4.9101, 'grad_norm': 11.781927108764648, 'learning_rate': 8.16e-05, 'epoch': 0.06}
+{'loss': 4.9913, 'grad_norm': 11.074613571166992, 'learning_rate': 8.28e-05, 'epoch': 0.06}
+{'loss': 4.6731, 'grad_norm': 4.003204345703125, 'learning_rate': 8.4e-05, 'epoch': 0.06}
+{'loss': 4.6157, 'grad_norm': 4.604231834411621, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.06}
+{'loss': 4.6439, 'grad_norm': 7.601871013641357, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.06}
+{'loss': 4.5867, 'grad_norm': 4.026641845703125, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.06}
+{'loss': 4.5112, 'grad_norm': 4.733554363250732, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.06}
+{'loss': 4.5167, 'grad_norm': 4.968111038208008, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.06}
+{'loss': 4.4579, 'grad_norm': 3.5375003814697266, 'learning_rate': 9.12e-05, 'epoch': 0.07}
+{'loss': 4.396, 'grad_norm': 3.3130784034729004, 'learning_rate': 9.24e-05, 'epoch': 0.07}
+{'loss': 4.3583, 'grad_norm': 5.00295352935791, 'learning_rate': 9.36e-05, 'epoch': 0.07}
+{'loss': 4.2981, 'grad_norm': 3.331820011138916, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.07}
+{'loss': 4.2662, 'grad_norm': 2.923485040664673, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.07}
+{'loss': 4.1509, 'grad_norm': 2.522371292114258, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.07}
+{'loss': 4.1873, 'grad_norm': 5.049018859863281, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.07}
+{'loss': 4.1115, 'grad_norm': 3.2303664684295654, 'learning_rate': 9.96e-05, 'epoch': 0.07}
+{'loss': 4.2181, 'grad_norm': 6.822404384613037, 'learning_rate': 0.0001008, 'epoch': 0.07}
+{'loss': 4.1095, 'grad_norm': 4.521921634674072, 'learning_rate': 0.000102, 'epoch': 0.07}
+{'loss': 4.1798, 'grad_norm': 5.936851501464844, 'learning_rate': 0.00010319999999999999, 'epoch': 0.07}
+{'loss': 4.1257, 'grad_norm': 3.0542469024658203, 'learning_rate': 0.00010439999999999999, 'epoch': 0.07}
+{'loss': 4.1095, 'grad_norm': 3.8467633724212646, 'learning_rate': 0.00010559999999999998, 'epoch': 0.08}
+{'loss': 4.0149, 'grad_norm': 1.7275538444519043, 'learning_rate': 0.00010679999999999998, 'epoch': 0.08}
+{'loss': 3.9475, 'grad_norm': 4.837584495544434, 'learning_rate': 0.00010799999999999998, 'epoch': 0.08}
+{'loss': 3.975, 'grad_norm': 2.737248420715332, 'learning_rate': 0.00010919999999999998, 'epoch': 0.08}
+{'loss': 4.009, 'grad_norm': 1.783756136894226, 'learning_rate': 0.00011039999999999999, 'epoch': 0.08}
+{'loss': 4.0649, 'grad_norm': 3.596461534500122, 'learning_rate': 0.00011159999999999999, 'epoch': 0.08}
+{'loss': 4.0267, 'grad_norm': 4.386580467224121, 'learning_rate': 0.00011279999999999999, 'epoch': 0.08}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<00:51, 3.74it/s][A
+
2%|โ | 3/196 [00:01<01:09, 2.79it/s][A
+
2%|โ | 4/196 [00:01<01:24, 2.28it/s][A
+
3%|โ | 5/196 [00:02<01:33, 2.04it/s][A
+
3%|โ | 6/196 [00:02<01:48, 1.75it/s][A
+
4%|โ | 7/196 [00:03<01:48, 1.74it/s][A
+
4%|โ | 8/196 [00:04<01:56, 1.61it/s][A
+
5%|โ | 9/196 [00:05<02:30, 1.24it/s][A
+
5%|โ | 10/196 [00:06<02:45, 1.12it/s][A
+
6%|โ | 11/196 [00:07<03:07, 1.01s/it][A
+
6%|โ | 12/196 [00:08<02:59, 1.03it/s][A
+
7%|โ | 13/196 [00:09<02:37, 1.17it/s][A
+
7%|โ | 14/196 [00:09<02:15, 1.35it/s][A
+
8%|โ | 15/196 [00:10<01:57, 1.55it/s][A
+
8%|โ | 16/196 [00:10<01:51, 1.62it/s][A
+
9%|โ | 17/196 [00:11<01:53, 1.58it/s][A
+
9%|โ | 18/196 [00:12<02:22, 1.25it/s][A
+
10%|โ | 19/196 [00:13<02:49, 1.04it/s][A
+
10%|โ | 20/196 [00:14<02:52, 1.02it/s][A
+
11%|โ | 21/196 [00:16<02:57, 1.02s/it][A
+
11%|โ | 22/196 [00:16<02:42, 1.07it/s][A
+
12%|โโ | 23/196 [00:17<02:19, 1.24it/s][A
+
12%|โโ | 24/196 [00:17<01:54, 1.51it/s][A
+
13%|โโ | 25/196 [00:18<01:41, 1.69it/s][A
+
13%|โโ | 26/196 [00:18<01:30, 1.89it/s][A
+
14%|โโ | 27/196 [00:18<01:24, 2.01it/s][A
+
14%|โโ | 28/196 [00:19<01:22, 2.04it/s][A
+
15%|โโ | 29/196 [00:19<01:23, 2.00it/s][A
+
15%|โโ | 30/196 [00:20<01:22, 2.02it/s][A
+
16%|โโ | 31/196 [00:20<01:13, 2.25it/s][A
+
16%|โโ | 32/196 [00:21<01:16, 2.15it/s][A
+
17%|โโ | 33/196 [00:21<01:26, 1.88it/s][A
+
17%|โโ | 34/196 [00:22<01:39, 1.62it/s][A
+
18%|โโ | 35/196 [00:23<01:52, 1.43it/s][A
+
18%|โโ | 36/196 [00:24<01:59, 1.34it/s][A
+
19%|โโ | 37/196 [00:25<01:51, 1.42it/s][A
+
19%|โโ | 38/196 [00:25<01:47, 1.47it/s][A
+
20%|โโ | 39/196 [00:26<01:39, 1.58it/s][A
+
20%|โโ | 40/196 [00:26<01:33, 1.66it/s][A
+
21%|โโ | 41/196 [00:27<01:25, 1.81it/s][A
+
21%|โโโ | 42/196 [00:27<01:23, 1.84it/s][A
+
22%|โโโ | 43/196 [00:28<01:22, 1.86it/s][A
+
22%|โโโ | 44/196 [00:28<01:18, 1.93it/s][A
+
23%|โโโ | 45/196 [00:29<01:13, 2.06it/s][A
+
23%|โโโ | 46/196 [00:29<01:10, 2.13it/s][A
+
24%|โโโ | 47/196 [00:29<01:09, 2.15it/s][A
+
24%|โโโ | 48/196 [00:30<01:06, 2.21it/s][A
+
25%|โโโ | 49/196 [00:30<01:06, 2.20it/s][A
+
26%|โโโ | 50/196 [00:31<01:05, 2.24it/s][A
+
26%|โโโ | 51/196 [00:31<01:03, 2.27it/s][A
+
27%|โโโ | 52/196 [00:32<01:05, 2.20it/s][A
+
27%|โโโ | 53/196 [00:32<01:04, 2.23it/s][A
+
28%|โโโ | 54/196 [00:33<01:04, 2.19it/s][A
+
28%|โโโ | 55/196 [00:33<01:12, 1.96it/s][A
+
29%|โโโ | 56/196 [00:34<01:19, 1.77it/s][A
+
29%|โโโ | 57/196 [00:35<01:21, 1.70it/s][A
+
30%|โโโ | 58/196 [00:35<01:21, 1.69it/s][A
+
30%|โโโ | 59/196 [00:36<01:19, 1.72it/s][A
+
31%|โโโ | 60/196 [00:36<01:10, 1.94it/s][A
+
31%|โโโ | 61/196 [00:37<01:06, 2.03it/s][A
+
32%|โโโโ | 62/196 [00:37<01:16, 1.75it/s][A
+
32%|โโโโ | 63/196 [00:38<01:15, 1.77it/s][A
+
33%|โโโโ | 64/196 [00:38<01:12, 1.81it/s][A
+
33%|โโโโ | 65/196 [00:39<01:10, 1.86it/s][A
+
34%|โโโโ | 66/196 [00:39<01:13, 1.76it/s][A
+
34%|โโโโ | 67/196 [00:40<01:15, 1.72it/s][A
+
35%|โโโโ | 68/196 [00:41<01:22, 1.56it/s][A
+
35%|โโโโ | 69/196 [00:41<01:17, 1.63it/s][A
+
36%|โโโโ | 70/196 [00:42<01:16, 1.64it/s][A
+
36%|โโโโ | 71/196 [00:43<01:10, 1.76it/s][A
+
37%|โโโโ | 72/196 [00:43<01:06, 1.87it/s][A
+
37%|โโโโ | 73/196 [00:43<01:00, 2.04it/s][A
+
38%|โโโโ | 74/196 [00:44<00:58, 2.10it/s][A
+
38%|โโโโ | 75/196 [00:44<00:56, 2.14it/s][A
+
39%|โโโโ | 76/196 [00:45<00:54, 2.19it/s][A
+
39%|โโโโ | 77/196 [00:45<00:57, 2.07it/s][A
+
40%|โโโโ | 78/196 [00:46<00:56, 2.08it/s][A
+
40%|โโโโ | 79/196 [00:46<00:55, 2.09it/s][A
+
41%|โโโโ | 80/196 [00:47<00:59, 1.94it/s][A
+
41%|โโโโโ | 81/196 [00:47<00:59, 1.95it/s][A
+
42%|โโโโโ | 82/196 [00:48<00:58, 1.96it/s][A
+
42%|โโโโโ | 83/196 [00:48<00:59, 1.89it/s][A
+
43%|โโโโโ | 84/196 [00:49<00:58, 1.90it/s][A
+
43%|โโโโโ | 85/196 [00:49<00:58, 1.90it/s][A
+
44%|โโโโโ | 86/196 [00:50<00:59, 1.84it/s][A
+
44%|โโโโโ | 87/196 [00:51<00:58, 1.86it/s][A
+
45%|โโโโโ | 88/196 [00:51<00:59, 1.80it/s][A
+
45%|โโโโโ | 89/196 [00:52<01:00, 1.76it/s][A
+
46%|โโโโโ | 90/196 [00:52<00:59, 1.78it/s][A
+
46%|โโโโโ | 91/196 [00:53<00:55, 1.89it/s][A
+
47%|โโโโโ | 92/196 [00:53<00:52, 1.96it/s][A
+
47%|โโโโโ | 93/196 [00:54<00:56, 1.83it/s][A
+
48%|โโโโโ | 94/196 [00:54<00:54, 1.89it/s][A
+
48%|โโโโโ | 95/196 [00:55<00:53, 1.88it/s][A
+
49%|โโโโโ | 96/196 [00:55<00:56, 1.78it/s][A
+
49%|โโโโโ | 97/196 [00:56<00:52, 1.87it/s][A
+
50%|โโโโโ | 98/196 [00:56<00:53, 1.84it/s][A
+
51%|โโโโโ | 99/196 [00:57<00:49, 1.98it/s][A
+
51%|โโโโโ | 100/196 [00:57<00:43, 2.23it/s][A
+
52%|โโโโโโ | 101/196 [00:58<00:42, 2.23it/s][A
+
52%|โโโโโโ | 102/196 [00:58<00:45, 2.07it/s][A
+
53%|โโโโโโ | 103/196 [00:59<00:51, 1.81it/s][A
+
53%|โโโโโโ | 104/196 [01:00<00:55, 1.66it/s][A
+
54%|โโโโโโ | 105/196 [01:00<00:55, 1.65it/s][A
+
54%|โโโโโโ | 106/196 [01:01<00:52, 1.70it/s][A
+
55%|โโโโโโ | 107/196 [01:01<00:48, 1.83it/s][A
+
55%|โโโโโโ | 108/196 [01:02<00:43, 2.05it/s][A
+
56%|โโโโโโ | 109/196 [01:02<00:41, 2.10it/s][A
+
56%|โโโโโโ | 110/196 [01:03<00:40, 2.10it/s][A
+
57%|โโโโโโ | 111/196 [01:03<00:40, 2.08it/s][A
+
57%|โโโโโโ | 112/196 [01:04<00:41, 2.00it/s][A
+
58%|โโโโโโ | 113/196 [01:04<00:40, 2.05it/s][A
+
58%|โโโโโโ | 114/196 [01:04<00:37, 2.19it/s][A
+
59%|โโโโโโ | 115/196 [01:05<00:36, 2.19it/s][A
+
59%|โโโโโโ | 116/196 [01:05<00:36, 2.19it/s][A
+
60%|โโโโโโ | 117/196 [01:06<00:33, 2.36it/s][A
+
60%|โโโโโโ | 118/196 [01:06<00:30, 2.57it/s][A
+
61%|โโโโโโ | 119/196 [01:07<00:33, 2.33it/s][A
+
61%|โโโโโโ | 120/196 [01:07<00:33, 2.26it/s][A
+
62%|โโโโโโโ | 121/196 [01:07<00:33, 2.23it/s][A
+
62%|โโโโโโโ | 122/196 [01:08<00:33, 2.20it/s][A
+
63%|โโโโโโโ | 123/196 [01:08<00:31, 2.28it/s][A
+
63%|โโโโโโโ | 124/196 [01:09<00:33, 2.18it/s][A
+
64%|โโโโโโโ | 125/196 [01:09<00:36, 1.95it/s][A
+
64%|โโโโโโโ | 126/196 [01:10<00:39, 1.75it/s][A
+
65%|โโโโโโโ | 127/196 [01:11<00:37, 1.86it/s][A
+
65%|โโโโโโโ | 128/196 [01:11<00:34, 1.96it/s][A
+
66%|โโโโโโโ | 129/196 [01:12<00:33, 2.00it/s][A
+
66%|โโโโโโโ | 130/196 [01:12<00:36, 1.83it/s][A
+
67%|โโโโโโโ | 131/196 [01:13<00:33, 1.93it/s][A
+
67%|โโโโโโโ | 132/196 [01:13<00:30, 2.09it/s][A
+
68%|โโโโโโโ | 133/196 [01:14<00:30, 2.09it/s][A
+
68%|โโโโโโโ | 134/196 [01:14<00:29, 2.07it/s][A
+
69%|โโโโโโโ | 135/196 [01:14<00:28, 2.11it/s][A
+
69%|โโโโโโโ | 136/196 [01:15<00:28, 2.11it/s][A
+
70%|โโโโโโโ | 137/196 [01:15<00:27, 2.14it/s][A
+
70%|โโโโโโโ | 138/196 [01:16<00:26, 2.16it/s][A
+
71%|โโโโโโโ | 139/196 [01:16<00:27, 2.09it/s][A
+
71%|โโโโโโโโ | 140/196 [01:17<00:25, 2.20it/s][A
+
72%|โโโโโโโโ | 141/196 [01:17<00:24, 2.25it/s][A
+
72%|โโโโโโโโ | 142/196 [01:18<00:25, 2.14it/s][A
+
73%|โโโโโโโโ | 143/196 [01:18<00:25, 2.10it/s][A
+
73%|โโโโโโโโ | 144/196 [01:19<00:23, 2.19it/s][A
+
74%|โโโโโโโโ | 145/196 [01:19<00:21, 2.36it/s][A
+
74%|โโโโโโโโ | 146/196 [01:19<00:20, 2.42it/s][A
+
75%|โโโโโโโโ | 147/196 [01:20<00:20, 2.45it/s][A
+
76%|โโโโโโโโ | 148/196 [01:20<00:20, 2.39it/s][A
+
76%|โโโโโโโโ | 149/196 [01:21<00:18, 2.52it/s][A
+
77%|โโโโโโโโ | 150/196 [01:21<00:20, 2.27it/s][A
+
77%|โโโโโโโโ | 151/196 [01:22<00:20, 2.19it/s][A
+
78%|โโโโโโโโ | 152/196 [01:22<00:20, 2.19it/s][A
+
78%|โโโโโโโโ | 153/196 [01:23<00:19, 2.16it/s][A
+
79%|โโโโโโโโ | 154/196 [01:23<00:19, 2.19it/s][A
+
79%|โโโโโโโโ | 155/196 [01:24<00:20, 2.03it/s][A
+
80%|โโโโโโโโ | 156/196 [01:24<00:21, 1.88it/s][A
+
80%|โโโโโโโโ | 157/196 [01:25<00:20, 1.87it/s][A
+
81%|โโโโโโโโ | 158/196 [01:25<00:18, 2.06it/s][A
+
81%|โโโโโโโโ | 159/196 [01:25<00:17, 2.17it/s][A
+
82%|โโโโโโโโโ | 160/196 [01:26<00:16, 2.20it/s][A
+
82%|โโโโโโโโโ | 161/196 [01:26<00:16, 2.14it/s][A
+
83%|โโโโโโโโโ | 162/196 [01:27<00:15, 2.19it/s][A
+
83%|โโโโโโโโโ | 163/196 [01:27<00:14, 2.22it/s][A
+
84%|โโโโโโโโโ | 164/196 [01:28<00:14, 2.21it/s][A
+
84%|โโโโโโโโโ | 165/196 [01:28<00:14, 2.15it/s][A
+
85%|โโโโโโโโโ | 166/196 [01:29<00:13, 2.20it/s][A
+
85%|โโโโโโโโโ | 167/196 [01:29<00:12, 2.24it/s][A
+
86%|โโโโโโโโโ | 168/196 [01:29<00:11, 2.36it/s][A
+
86%|โโโโโโโโโ | 169/196 [01:30<00:12, 2.21it/s][A
+
87%|โโโโโโโโโ | 170/196 [01:31<00:12, 2.10it/s][A
+
87%|โโโโโโโโโ | 171/196 [01:31<00:11, 2.12it/s][A
+
88%|โโโโโโโโโ | 172/196 [01:31<00:11, 2.08it/s][A
+
88%|โโโโโโโโโ | 173/196 [01:32<00:11, 2.08it/s][A
+
89%|โโโโโโโโโ | 174/196 [01:33<00:11, 1.98it/s][A
+
89%|โโโโโโโโโ | 175/196 [01:33<00:13, 1.55it/s][A
+
90%|โโโโโโโโโ | 176/196 [01:35<00:18, 1.10it/s][A
+
90%|โโโโโโโโโ | 177/196 [01:36<00:19, 1.01s/it][A
+
91%|โโโโโโโโโ | 178/196 [01:38<00:20, 1.15s/it][A
+
91%|โโโโโโโโโโ| 179/196 [01:39<00:18, 1.06s/it][A
+
92%|โโโโโโโโโโ| 180/196 [01:39<00:14, 1.13it/s][A
+
92%|โโโโโโโโโโ| 181/196 [01:40<00:11, 1.32it/s][A
+
93%|โโโโโโโโโโ| 182/196 [01:40<00:09, 1.48it/s][A
+
93%|โโโโโโโโโโ| 183/196 [01:41<00:08, 1.55it/s][A
+
94%|โโโโโโโโโโ| 184/196 [01:41<00:07, 1.69it/s][A
+
94%|โโโโโโโโโโ| 185/196 [01:42<00:06, 1.70it/s][A
+
95%|โโโโโโโโโโ| 186/196 [01:42<00:05, 1.71it/s][A
+
95%|โโโโโโโโโโ| 187/196 [01:43<00:05, 1.74it/s][A
+
96%|โโโโโโโโโโ| 188/196 [01:43<00:04, 1.71it/s][A
+
96%|โโโโโโโโโโ| 189/196 [01:44<00:03, 1.81it/s][A
+
97%|โโโโโโโโโโ| 190/196 [01:44<00:03, 1.93it/s][A
+
97%|โโโโโโโโโโ| 191/196 [01:45<00:02, 2.05it/s][A
+
98%|โโโโโโโโโโ| 192/196 [01:45<00:01, 2.02it/s][A
+
98%|โโโโโโโโโโ| 193/196 [01:46<00:01, 2.01it/s][A
+
99%|โโโโโโโโโโ| 194/196 [01:46<00:00, 2.09it/s][A
+
99%|โโโโโโโโโโ| 195/196 [01:47<00:00, 2.17it/s][A
+
100%|โโโโโโโโโโ| 196/196 [01:47<00:00, 2.82it/s][A
+
[A
1%| | 100/15000 [03:13<2:56:13, 1.41it/s]
+
100%|โโโโโโโโโโ| 196/196 [01:52<00:00, 2.82it/s][A
+
[A
1%| | 101/15000 [03:15<145:46:09, 35.22s/it]
1%| | 101/15000 [03:15<145:46:09, 35.22s/it]
1%| | 102/15000 [03:17<103:51:44, 25.10s/it]
1%| | 102/15000 [03:17<103:51:44, 25.10s/it]
1%| | 103/15000 [03:18<74:14:42, 17.94s/it]
1%| | 103/15000 [03:18<74:14:42, 17.94s/it]
1%| | 104/15000 [03:19<53:20:41, 12.89s/it]
1%| | 104/15000 [03:19<53:20:41, 12.89s/it]
1%| | 105/15000 [03:20<38:35:48, 9.33s/it]
1%| | 105/15000 [03:20<38:35:48, 9.33s/it]
1%| | 106/15000 [03:21<28:10:05, 6.81s/it]
1%| | 106/15000 [03:21<28:10:05, 6.81s/it]
1%| | 107/15000 [03:22<20:50:11, 5.04s/it]
1%| | 107/15000 [03:22<20:50:11, 5.04s/it]
1%| | 108/15000 [03:23<15:36:27, 3.77s/it]
1%| | 108/15000 [03:23<15:36:27, 3.77s/it]
1%| | 109/15000 [03:24<11:55:27, 2.88s/it]
1%| | 109/15000 [03:24<11:55:27, 2.88s/it]
1%| | 110/15000 [03:24<9:19:26, 2.25s/it]
1%| | 110/15000 [03:24<9:19:26, 2.25s/it]
1%| | 111/15000 [03:25<7:28:08, 1.81s/it]
1%| | 111/15000 [03:25<7:28:08, 1.81s/it]
1%| | 112/15000 [03:26<6:07:03, 1.48s/it]
1%| | 112/15000 [03:26<6:07:03, 1.48s/it]
1%| | 113/15000 [03:27<5:07:52, 1.24s/it]
1%| | 113/15000 [03:27<5:07:52, 1.24s/it]
1%| | 114/15000 [03:27<4:27:20, 1.08s/it]
1%| | 114/15000 [03:27<4:27:20, 1.08s/it]
1%| | 115/15000 [03:28<3:58:18, 1.04it/s]
1%| | 115/15000 [03:28<3:58:18, 1.04it/s]
1%| | 116/15000 [03:29<3:37:52, 1.14it/s]
1%| | 116/15000 [03:29<3:37:52, 1.14it/s]
1%| | 117/15000 [03:29<3:22:21, 1.23it/s]
1%| | 117/15000 [03:29<3:22:21, 1.23it/s]
1%| | 118/15000 [03:30<3:07:50, 1.32it/s]
1%| | 118/15000 [03:30<3:07:50, 1.32it/s]
1%| | 119/15000 [03:30<2:56:19, 1.41it/s]
1%| | 119/15000 [03:31<2:56:19, 1.41it/s]
1%| | 120/15000 [03:31<2:47:29, 1.48it/s]
1%| | 120/15000 [03:31<2:47:29, 1.48it/s]
1%| | 121/15000 [03:32<2:40:39, 1.54it/s]
1%| | 121/15000 [03:32<2:40:39, 1.54it/s]
1%| | 122/15000 [03:32<2:36:02, 1.59it/s]
1%| | 122/15000 [03:32<2:36:02, 1.59it/s]
1%| | 123/15000 [03:33<2:30:55, 1.64it/s]
1%| | 123/15000 [03:33<2:30:55, 1.64it/s]
1%| | 124/15000 [03:33<2:23:57, 1.72it/s]
1%| | 124/15000 [03:33<2:23:57, 1.72it/s]
1%| | 125/15000 [03:34<2:26:40, 1.69it/s]
1%| | 125/15000 [03:34<2:26:40, 1.69it/s]
1%| | 126/15000 [03:34<2:19:27, 1.78it/s]
1%| | 126/15000 [03:34<2:19:27, 1.78it/s]
1%| | 127/15000 [03:35<2:14:39, 1.84it/s]
1%| | 127/15000 [03:35<2:14:39, 1.84it/s]
1%| | 128/15000 [03:35<2:11:08, 1.89it/s]
1%| | 128/15000 [03:35<2:11:08, 1.89it/s]
1%| | 129/15000 [03:36<2:08:35, 1.93it/s]
1%| | 129/15000 [03:36<2:08:35, 1.93it/s]
1%| | 130/15000 [03:36<2:06:39, 1.96it/s]
1%| | 130/15000 [03:36<2:06:39, 1.96it/s]
1%| | 131/15000 [03:37<2:05:51, 1.97it/s]
1%| | 131/15000 [03:37<2:05:51, 1.97it/s]
1%| | 132/15000 [03:37<1:59:57, 2.07it/s]
1%| | 132/15000 [03:37<1:59:57, 2.07it/s]
1%| | 133/15000 [03:38<1:54:15, 2.17it/s]
1%| | 133/15000 [03:38<1:54:15, 2.17it/s]
1%| | 134/15000 [03:38<1:50:12, 2.25it/s]
1%| | 134/15000 [03:38<1:50:12, 2.25it/s]
1%| | 135/15000 [03:39<1:47:41, 2.30it/s]
1%| | 135/15000 [03:39<1:47:41, 2.30it/s]
1%| | 136/15000 [03:39<1:45:43, 2.34it/s]
1%| | 136/15000 [03:39<1:45:43, 2.34it/s]
1%| | 137/15000 [03:39<1:44:29, 2.37it/s]
1%| | 137/15000 [03:39<1:44:29, 2.37it/s]
1%| | 138/15000 [03:40<1:43:09, 2.40it/s]
1%| | 138/15000 [03:40<1:43:09, 2.40it/s]
1%| | 139/15000 [03:40<1:43:26, 2.39it/s]
1%| | 139/15000 [03:40<1:43:26, 2.39it/s]
1%| | 140/15000 [03:41<1:39:23, 2.49it/s]
1%| | 140/15000 [03:41<1:39:23, 2.49it/s]
1%| | 141/15000 [03:41<1:34:38, 2.62it/s]
1%| | 141/15000 [03:41<1:34:38, 2.62it/s]
1%| | 142/15000 [03:41<1:30:02, 2.75it/s]
1%| | 142/15000 [03:41<1:30:02, 2.75it/s]
1%| | 143/15000 [03:42<1:26:26, 2.86it/s]
1%| | 143/15000 [03:42<1:26:26, 2.86it/s]
1%| | 144/15000 [03:42<1:24:06, 2.94it/s]
1%| | 144/15000 [03:42<1:24:06, 2.94it/s]
1%| | 145/15000 [03:42<1:22:37, 3.00it/s]
1%| | 145/15000 [03:42<1:22:37, 3.00it/s]
1%| | 146/15000 [03:43<1:21:12, 3.05it/s]
1%| | 146/15000 [03:43<1:21:12, 3.05it/s]
1%| | 147/15000 [03:43<1:16:30, 3.24it/s]
1%| | 147/15000 [03:43<1:16:30, 3.24it/s]
1%| | 148/15000 [03:43<1:12:18, 3.42it/s]
1%| | 148/15000 [03:43<1:12:18, 3.42it/s]
1%| | 149/15000 [03:43<1:08:31, 3.61it/s]
1%| | 149/15000 [03:43<1:08:31, 3.61it/s]
1%| | 150/15000 [03:45<2:33:20, 1.61it/s]
1%| | 150/15000 [03:45<2:33:20, 1.61it/s]
1%| | 151/15000 [03:47<4:02:18, 1.02it/s]
1%| | 151/15000 [03:47<4:02:18, 1.02it/s]
1%| | 152/15000 [03:48<4:30:01, 1.09s/it]
1%| | 152/15000 [03:48<4:30:01, 1.09s/it]
1%| | 153/15000 [03:49<4:39:49, 1.13s/it]
1%| | 153/15000 [03:49<4:39:49, 1.13s/it]
1%| | 154/15000 [03:50<4:40:02, 1.13s/it]
1%| | 154/15000 [03:50<4:40:02, 1.13s/it]
1%| | 155/15000 [03:51<4:31:48, 1.10s/it]
1%| | 155/15000 [03:51<4:31:48, 1.10s/it]
1%| | 156/15000 [03:52<4:19:01, 1.05s/it]
1%| | 156/15000 [03:52<4:19:01, 1.05s/it]
1%| | 157/15000 [03:53<4:09:22, 1.01s/it]
1%| | 157/15000 [03:53<4:09:22, 1.01s/it]
1%| | 158/15000 [03:54<3:56:50, 1.04it/s]
1%| | 158/15000 [03:54<3:56:50, 1.04it/s]
1%| | 159/15000 [03:55<3:45:59, 1.09it/s]
1%| | 159/15000 [03:55<3:45:59, 1.09it/s]
1%| | 160/15000 [03:56<3:36:30, 1.14it/s]
1%| | 160/15000 [03:56<3:36:30, 1.14it/s]
1%| | 161/15000 [03:56<3:26:17, 1.20it/s]
1%| | 161/15000 [03:56<3:26:17, 1.20it/s]
1%| | 162/15000 [03:57<3:18:04, 1.25it/s]
1%| | 162/15000 [03:57<3:18:04, 1.25it/s]
1%| | 163/15000 [03:58<3:09:45, 1.30it/s]
1%| | 163/15000 [03:58<3:09:45, 1.30it/s]
1%| | 164/15000 [03:58<3:03:44, 1.35it/s]
1%| | 164/15000 [03:58<3:03:44, 1.35it/s]
1%| | 165/15000 [03:59<2:59:31, 1.38it/s]
1%| | 165/15000 [03:59<2:59:31, 1.38it/s]
1%| | 166/15000 [04:00<2:55:25, 1.41it/s]
1%| | 166/15000 [04:00<2:55:25, 1.41it/s]
1%| | 167/15000 [04:00<2:48:51, 1.46it/s]
1%| | 167/15000 [04:00<2:48:51, 1.46it/s]
1%| | 168/15000 [04:01<2:43:34, 1.51it/s]
1%| | 168/15000 [04:01<2:43:34, 1.51it/s]
1%| | 169/15000 [04:02<2:38:19, 1.56it/s]
1%| | 169/15000 [04:02<2:38:19, 1.56it/s]
1%| | 170/15000 [04:02<2:34:49, 1.60it/s]
1%| | 170/15000 [04:02<2:34:49, 1.60it/s]
1%| | 171/15000 [04:03<2:32:43, 1.62it/s]
1%| | 171/15000 [04:03<2:32:43, 1.62it/s]
1%| | 172/15000 [04:03<2:30:27, 1.64it/s]
1%| | 172/15000 [04:03<2:30:27, 1.64it/s]
1%| | 173/15000 [04:04<2:28:19, 1.67it/s]
1%| | 173/15000 [04:04<2:28:19, 1.67it/s]
1%| | 174/15000 [04:05<2:29:05, 1.66it/s]
1%| | 174/15000 [04:05<2:29:05, 1.66it/s]
1%| | 175/15000 [04:05<2:21:45, 1.74it/s]
1%| | 175/15000 [04:05<2:21:45, 1.74it/s]
1%| | 176/15000 [04:06<2:15:59, 1.82it/s]
1%| | 176/15000 [04:06<2:15:59, 1.82it/s]
1%| | 177/15000 [04:06<2:12:33, 1.86it/s]
1%| | 177/15000 [04:06<2:12:33, 1.86it/s]
1%| | 178/15000 [04:07<2:09:37, 1.91it/s]
1%| | 178/15000 [04:07<2:09:37, 1.91it/s]
1%| | 179/15000 [04:07<2:07:57, 1.93it/s]
1%| | 179/15000 [04:07<2:07:57, 1.93it/s]
1%| | 180/15000 [04:08<2:06:36, 1.95it/s]
1%| | 180/15000 [04:08<2:06:36, 1.95it/s]
1%| | 181/15000 [04:08<2:05:39, 1.97it/s]
1%| | 181/15000 [04:08<2:05:39, 1.97it/s]
1%| | 182/15000 [04:09<2:03:50, 1.99it/s]
1%| | 182/15000 [04:09<2:03:50, 1.99it/s]
1%| | 183/15000 [04:09<1:58:53, 2.08it/s]
1%| | 183/15000 [04:09<1:58:53, 2.08it/s]
1%| | 184/15000 [04:09<1:53:28, 2.18it/s]
1%| | 184/15000 [04:09<1:53:28, 2.18it/s]
1%| | 185/15000 [04:10<1:49:52, 2.25it/s]
1%| | 185/15000 [04:10<1:49:52, 2.25it/s]
1%| | 186/15000 [04:10<1:47:02, 2.31it/s]
1%| | 186/15000 [04:10<1:47:02, 2.31it/s]
1%| | 187/15000 [04:11<1:45:35, 2.34it/s]
1%| | 187/15000 [04:11<1:45:35, 2.34it/s]
1%|โ | 188/15000 [04:11<1:46:52, 2.31it/s]
1%|โ | 188/15000 [04:11<1:46:52, 2.31it/s]
1%|โ | 189/15000 [04:11<1:45:09, 2.35it/s]
1%|โ | 189/15000 [04:11<1:45:09, 2.35it/s]
1%|โ | 190/15000 [04:12<1:42:20, 2.41it/s]
1%|โ | 190/15000 [04:12<1:42:20, 2.41it/s]
1%|โ | 191/15000 [04:12<1:37:37, 2.53it/s]
1%|โ | 191/15000 [04:12<1:37:37, 2.53it/s]
1%|โ | 192/15000 [04:12<1:31:46, 2.69it/s]
1%|โ | 192/15000 [04:12<1:31:46, 2.69it/s]
1%|โ | 193/15000 [04:13<1:28:08, 2.80it/s]
1%|โ | 193/15000 [04:13<1:28:08, 2.80it/s]
1%|โ | 194/15000 [04:13<1:25:23, 2.89it/s]
1%|โ | 194/15000 [04:13<1:25:23, 2.89it/s]
1%|โ | 195/15000 [04:13<1:23:28, 2.96it/s]
1%|โ | 195/15000 [04:13<1:23:28, 2.96it/s]
1%|โ | 196/15000 [04:14<1:18:52, 3.13it/s]
1%|โ | 196/15000 [04:14<1:18:52, 3.13it/s]
1%|โ | 197/15000 [04:14<1:13:49, 3.34it/s]
1%|โ | 197/15000 [04:14<1:13:49, 3.34it/s]
1%|โ | 198/15000 [04:14<1:10:10, 3.52it/s]
1%|โ | 198/15000 [04:14<1:10:10, 3.52it/s]
1%|โ | 199/15000 [04:14<1:05:03, 3.79it/s]
1%|โ | 199/15000 [04:14<1:05:03, 3.79it/s]
1%|โ | 200/15000 [04:16<2:36:51, 1.57it/s]
1%|โ | 200/15000 [04:16<2:36:51, 1.57it/s]Printing predictions for a few samples:
+Sample 1:
+ Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
+######
+
+
+ Prediction:
+
+
+
+Sample 2:
+ Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
+######
+
+
+ Prediction:
+
+
+
+Sample 3:
+ Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
+######
+
+
+ Prediction:
+
+
+
+Sample 4:
+ Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
+######
+
+
+ Prediction:
+
+
+
+Sample 5:
+ Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
+######
+
+
+ Prediction:
+
+
+
+last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
+
+
+last prediction string
+{'eval_loss': 3.9943349361419678, 'eval_cer': 0.9998336019967761, 'eval_wer': 1.0, 'eval_runtime': 113.4628, 'eval_samples_per_second': 27.639, 'eval_steps_per_second': 1.727, 'epoch': 0.08}
+{'loss': 4.2214, 'grad_norm': 38.630401611328125, 'learning_rate': 0.00011399999999999999, 'epoch': 0.08}
+{'loss': 4.442, 'grad_norm': 21.195056915283203, 'learning_rate': 0.0001152, 'epoch': 0.08}
+{'loss': 4.7759, 'grad_norm': 27.123123168945312, 'learning_rate': 0.0001164, 'epoch': 0.08}
+{'loss': 3.9722, 'grad_norm': 5.956050395965576, 'learning_rate': 0.0001176, 'epoch': 0.08}
+{'loss': 3.8478, 'grad_norm': 1.3097740411758423, 'learning_rate': 0.0001188, 'epoch': 0.08}
+{'loss': 4.0424, 'grad_norm': 4.312746047973633, 'learning_rate': 0.00011999999999999999, 'epoch': 0.08}
+{'loss': 3.8785, 'grad_norm': 1.7255916595458984, 'learning_rate': 0.00012119999999999999, 'epoch': 0.09}
+{'loss': 4.1905, 'grad_norm': 9.151754379272461, 'learning_rate': 0.0001224, 'epoch': 0.09}
+{'loss': 3.9306, 'grad_norm': 3.9887869358062744, 'learning_rate': 0.0001236, 'epoch': 0.09}
+{'loss': 3.8678, 'grad_norm': 5.439779281616211, 'learning_rate': 0.00012479999999999997, 'epoch': 0.09}
+{'loss': 3.8245, 'grad_norm': 3.4951541423797607, 'learning_rate': 0.00012599999999999997, 'epoch': 0.09}
+{'loss': 3.897, 'grad_norm': 5.661304473876953, 'learning_rate': 0.00012719999999999997, 'epoch': 0.09}
+{'loss': 3.8665, 'grad_norm': 5.165394306182861, 'learning_rate': 0.00012839999999999998, 'epoch': 0.09}
+{'loss': 3.8289, 'grad_norm': 1.9865297079086304, 'learning_rate': 0.00012959999999999998, 'epoch': 0.09}
+{'loss': 3.8188, 'grad_norm': 1.3290417194366455, 'learning_rate': 0.00013079999999999998, 'epoch': 0.09}
+{'loss': 3.8035, 'grad_norm': 3.010525941848755, 'learning_rate': 0.00013199999999999998, 'epoch': 0.09}
+{'loss': 3.7899, 'grad_norm': 0.8952946066856384, 'learning_rate': 0.00013319999999999999, 'epoch': 0.09}
+{'loss': 3.8604, 'grad_norm': 3.4040260314941406, 'learning_rate': 0.0001344, 'epoch': 0.09}
+{'loss': 3.803, 'grad_norm': 1.2952313423156738, 'learning_rate': 0.0001356, 'epoch': 0.1}
+{'loss': 3.8015, 'grad_norm': 2.6805081367492676, 'learning_rate': 0.0001368, 'epoch': 0.1}
+{'loss': 3.7151, 'grad_norm': 5.81939172744751, 'learning_rate': 0.000138, 'epoch': 0.1}
+{'loss': 3.8777, 'grad_norm': 2.3587541580200195, 'learning_rate': 0.0001392, 'epoch': 0.1}
+{'loss': 3.8021, 'grad_norm': 2.668508768081665, 'learning_rate': 0.0001404, 'epoch': 0.1}
+{'loss': 3.7843, 'grad_norm': 3.7631447315216064, 'learning_rate': 0.00014159999999999997, 'epoch': 0.1}
+{'loss': 3.8121, 'grad_norm': 1.7273633480072021, 'learning_rate': 0.00014279999999999997, 'epoch': 0.1}
+{'loss': 3.8064, 'grad_norm': 2.2250142097473145, 'learning_rate': 0.00014399999999999998, 'epoch': 0.1}
+{'loss': 3.7282, 'grad_norm': 2.4779739379882812, 'learning_rate': 0.00014519999999999998, 'epoch': 0.1}
+{'loss': 3.8454, 'grad_norm': 2.310012102127075, 'learning_rate': 0.00014639999999999998, 'epoch': 0.1}
+{'loss': 3.7754, 'grad_norm': 3.0356266498565674, 'learning_rate': 0.00014759999999999998, 'epoch': 0.1}
+{'loss': 3.8064, 'grad_norm': 2.448333263397217, 'learning_rate': 0.00014879999999999998, 'epoch': 0.1}
+{'loss': 4.1, 'grad_norm': 10.183699607849121, 'learning_rate': 0.00015, 'epoch': 0.1}
+{'loss': 3.7302, 'grad_norm': 1.1333214044570923, 'learning_rate': 0.0001512, 'epoch': 0.11}
+{'loss': 3.7756, 'grad_norm': 1.886404037475586, 'learning_rate': 0.0001524, 'epoch': 0.11}
+{'loss': 3.8198, 'grad_norm': 2.1193320751190186, 'learning_rate': 0.0001536, 'epoch': 0.11}
+{'loss': 3.9625, 'grad_norm': 8.567766189575195, 'learning_rate': 0.0001548, 'epoch': 0.11}
+{'loss': 3.8082, 'grad_norm': 1.0951957702636719, 'learning_rate': 0.000156, 'epoch': 0.11}
+{'loss': 3.7451, 'grad_norm': 1.6650429964065552, 'learning_rate': 0.0001572, 'epoch': 0.11}
+{'loss': 3.8769, 'grad_norm': 2.261582136154175, 'learning_rate': 0.0001584, 'epoch': 0.11}
+{'loss': 3.7927, 'grad_norm': 3.3259408473968506, 'learning_rate': 0.0001596, 'epoch': 0.11}
+{'loss': 3.9442, 'grad_norm': 2.1035208702087402, 'learning_rate': 0.0001608, 'epoch': 0.11}
+{'loss': 3.9316, 'grad_norm': 1.384024739265442, 'learning_rate': 0.000162, 'epoch': 0.11}
+{'loss': 3.7531, 'grad_norm': 2.0676867961883545, 'learning_rate': 0.0001632, 'epoch': 0.11}
+{'loss': 3.8204, 'grad_norm': 1.900983214378357, 'learning_rate': 0.0001644, 'epoch': 0.11}
+{'loss': 3.7382, 'grad_norm': 1.6750729084014893, 'learning_rate': 0.0001656, 'epoch': 0.12}
+{'loss': 3.7539, 'grad_norm': 2.5998709201812744, 'learning_rate': 0.0001668, 'epoch': 0.12}
+{'loss': 3.8431, 'grad_norm': 2.767449140548706, 'learning_rate': 0.000168, 'epoch': 0.12}
+{'loss': 3.7848, 'grad_norm': 1.013595461845398, 'learning_rate': 0.00016919999999999997, 'epoch': 0.12}
+{'loss': 3.8811, 'grad_norm': 1.5582256317138672, 'learning_rate': 0.00017039999999999997, 'epoch': 0.12}
+{'loss': 3.8026, 'grad_norm': 1.3435918092727661, 'learning_rate': 0.00017159999999999997, 'epoch': 0.12}
+{'loss': 3.9529, 'grad_norm': 1.9466001987457275, 'learning_rate': 0.00017279999999999997, 'epoch': 0.12}
+{'loss': 4.1697, 'grad_norm': 18.16861343383789, 'learning_rate': 0.00017399999999999997, 'epoch': 0.12}
+{'loss': 3.9162, 'grad_norm': 8.557051658630371, 'learning_rate': 0.00017519999999999998, 'epoch': 0.12}
+{'loss': 3.7887, 'grad_norm': 5.588151931762695, 'learning_rate': 0.00017639999999999998, 'epoch': 0.12}
+{'loss': 4.2333, 'grad_norm': 12.71481704711914, 'learning_rate': 0.00017759999999999998, 'epoch': 0.12}
+{'loss': 3.8675, 'grad_norm': 3.4638900756835938, 'learning_rate': 0.00017879999999999998, 'epoch': 0.12}
+{'loss': 3.8723, 'grad_norm': 7.569875240325928, 'learning_rate': 0.00017999999999999998, 'epoch': 0.12}
+{'loss': 3.8551, 'grad_norm': 7.363810062408447, 'learning_rate': 0.00018119999999999999, 'epoch': 0.13}
+{'loss': 3.7981, 'grad_norm': 7.875147819519043, 'learning_rate': 0.0001824, 'epoch': 0.13}
+{'loss': 4.1864, 'grad_norm': 6.5155439376831055, 'learning_rate': 0.0001836, 'epoch': 0.13}
+{'loss': 3.7725, 'grad_norm': 1.7475396394729614, 'learning_rate': 0.0001848, 'epoch': 0.13}
+{'loss': 3.7454, 'grad_norm': 1.5037792921066284, 'learning_rate': 0.000186, 'epoch': 0.13}
+{'loss': 3.7079, 'grad_norm': 1.2274367809295654, 'learning_rate': 0.0001872, 'epoch': 0.13}
+{'loss': 3.7916, 'grad_norm': 5.971051216125488, 'learning_rate': 0.00018839999999999997, 'epoch': 0.13}
+{'loss': 3.7294, 'grad_norm': 3.0287091732025146, 'learning_rate': 0.00018959999999999997, 'epoch': 0.13}
+{'loss': 3.7439, 'grad_norm': 1.2721256017684937, 'learning_rate': 0.00019079999999999998, 'epoch': 0.13}
+{'loss': 3.6524, 'grad_norm': 2.2508842945098877, 'learning_rate': 0.00019199999999999998, 'epoch': 0.13}
+{'loss': 3.7958, 'grad_norm': 2.7845280170440674, 'learning_rate': 0.00019319999999999998, 'epoch': 0.13}
+{'loss': 3.7072, 'grad_norm': 1.8737874031066895, 'learning_rate': 0.00019439999999999998, 'epoch': 0.13}
+{'loss': 3.7352, 'grad_norm': 1.443376898765564, 'learning_rate': 0.00019559999999999998, 'epoch': 0.14}
+{'loss': 3.6939, 'grad_norm': 4.200413227081299, 'learning_rate': 0.00019679999999999999, 'epoch': 0.14}
+{'loss': 3.6721, 'grad_norm': 3.193939208984375, 'learning_rate': 0.000198, 'epoch': 0.14}
+{'loss': 3.6742, 'grad_norm': 2.0180001258850098, 'learning_rate': 0.0001992, 'epoch': 0.14}
+{'loss': 3.7147, 'grad_norm': 1.111635684967041, 'learning_rate': 0.0002004, 'epoch': 0.14}
+{'loss': 3.8237, 'grad_norm': 3.2154812812805176, 'learning_rate': 0.0002016, 'epoch': 0.14}
+{'loss': 3.6871, 'grad_norm': 3.286869764328003, 'learning_rate': 0.0002028, 'epoch': 0.14}
+{'loss': 3.6979, 'grad_norm': 3.6441214084625244, 'learning_rate': 0.000204, 'epoch': 0.14}
+{'loss': 3.671, 'grad_norm': 3.3378500938415527, 'learning_rate': 0.0002052, 'epoch': 0.14}
+{'loss': 3.8046, 'grad_norm': 2.307574987411499, 'learning_rate': 0.00020639999999999998, 'epoch': 0.14}
+{'loss': 3.6824, 'grad_norm': 1.0402367115020752, 'learning_rate': 0.00020759999999999998, 'epoch': 0.14}
+{'loss': 3.6541, 'grad_norm': 1.5945332050323486, 'learning_rate': 0.00020879999999999998, 'epoch': 0.14}
+{'loss': 3.7133, 'grad_norm': 4.810311317443848, 'learning_rate': 0.00020999999999999998, 'epoch': 0.14}
+{'loss': 3.8386, 'grad_norm': 5.7670979499816895, 'learning_rate': 0.00021119999999999996, 'epoch': 0.15}
+{'loss': 3.7119, 'grad_norm': 1.378744125366211, 'learning_rate': 0.00021239999999999996, 'epoch': 0.15}
+{'loss': 3.7774, 'grad_norm': 2.4371070861816406, 'learning_rate': 0.00021359999999999996, 'epoch': 0.15}
+{'loss': 3.7219, 'grad_norm': 1.2896170616149902, 'learning_rate': 0.00021479999999999996, 'epoch': 0.15}
+{'loss': 3.6117, 'grad_norm': 3.7949986457824707, 'learning_rate': 0.00021599999999999996, 'epoch': 0.15}
+{'loss': 3.6356, 'grad_norm': 3.611854076385498, 'learning_rate': 0.00021719999999999997, 'epoch': 0.15}
+{'loss': 3.654, 'grad_norm': 1.3237330913543701, 'learning_rate': 0.00021839999999999997, 'epoch': 0.15}
+{'loss': 3.7408, 'grad_norm': 5.3708062171936035, 'learning_rate': 0.00021959999999999997, 'epoch': 0.15}
+{'loss': 3.6582, 'grad_norm': 3.782602071762085, 'learning_rate': 0.00022079999999999997, 'epoch': 0.15}
+{'loss': 3.6768, 'grad_norm': 4.869500160217285, 'learning_rate': 0.00022199999999999998, 'epoch': 0.15}
+{'loss': 3.7843, 'grad_norm': 3.3290770053863525, 'learning_rate': 0.00022319999999999998, 'epoch': 0.15}
+{'loss': 3.7583, 'grad_norm': 1.880703330039978, 'learning_rate': 0.00022439999999999998, 'epoch': 0.15}
+{'loss': 3.7119, 'grad_norm': 5.056806564331055, 'learning_rate': 0.00022559999999999998, 'epoch': 0.16}
+{'loss': 3.8452, 'grad_norm': 3.9582154750823975, 'learning_rate': 0.00022679999999999998, 'epoch': 0.16}
+{'loss': 3.8002, 'grad_norm': 2.161384105682373, 'learning_rate': 0.00022799999999999999, 'epoch': 0.16}
+{'loss': 3.8551, 'grad_norm': 3.828753709793091, 'learning_rate': 0.0002292, 'epoch': 0.16}
+{'loss': 3.6954, 'grad_norm': 3.1463260650634766, 'learning_rate': 0.0002304, 'epoch': 0.16}
+{'loss': 3.7592, 'grad_norm': 2.2424659729003906, 'learning_rate': 0.0002316, 'epoch': 0.16}
+{'loss': 4.0109, 'grad_norm': 2.5034642219543457, 'learning_rate': 0.0002328, 'epoch': 0.16}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<00:44, 4.31it/s][A
+
2%|โ | 3/196 [00:00<01:03, 3.03it/s][A
+
2%|โ | 4/196 [00:01<01:18, 2.45it/s][A
+
3%|โ | 5/196 [00:02<01:29, 2.14it/s][A
+
3%|โ | 6/196 [00:02<01:41, 1.87it/s][A
+
4%|โ | 7/196 [00:03<01:41, 1.86it/s][A
+
4%|โ | 8/196 [00:03<01:50, 1.70it/s][A
+
5%|โ | 9/196 [00:05<02:25, 1.29it/s][A
+
5%|โ | 10/196 [00:06<02:42, 1.14it/s][A
+
6%|โ | 11/196 [00:07<03:00, 1.02it/s][A
+
6%|โ | 12/196 [00:08<02:54, 1.06it/s][A
+
7%|โ | 13/196 [00:08<02:33, 1.19it/s][A
+
7%|โ | 14/196 [00:09<02:12, 1.37it/s][A
+
8%|โ | 15/196 [00:09<01:55, 1.57it/s][A
+
8%|โ | 16/196 [00:10<01:49, 1.64it/s][A
+
9%|โ | 17/196 [00:11<01:51, 1.60it/s][A
+
9%|โ | 18/196 [00:12<02:13, 1.33it/s][A
+
10%|โ | 19/196 [00:13<02:43, 1.08it/s][A
+
10%|โ | 20/196 [00:14<02:47, 1.05it/s][A
+
11%|โ | 21/196 [00:15<02:53, 1.01it/s][A
+
11%|โ | 22/196 [00:16<02:40, 1.08it/s][A
+
12%|โโ | 23/196 [00:16<02:18, 1.25it/s][A
+
12%|โโ | 24/196 [00:17<01:53, 1.52it/s][A
+
13%|โโ | 25/196 [00:17<01:46, 1.61it/s][A
+
13%|โโ | 26/196 [00:18<01:33, 1.82it/s][A
+
14%|โโ | 27/196 [00:18<01:25, 1.97it/s][A
+
14%|โโ | 28/196 [00:18<01:22, 2.03it/s][A
+
15%|โโ | 29/196 [00:19<01:23, 2.01it/s][A
+
15%|โโ | 30/196 [00:19<01:21, 2.03it/s][A
+
16%|โโ | 31/196 [00:20<01:13, 2.25it/s][A
+
16%|โโ | 32/196 [00:20<01:15, 2.17it/s][A
+
17%|โโ | 33/196 [00:21<01:25, 1.91it/s][A
+
17%|โโ | 34/196 [00:22<01:38, 1.65it/s][A
+
18%|โโ | 35/196 [00:23<01:49, 1.46it/s][A
+
18%|โโ | 36/196 [00:23<01:56, 1.37it/s][A
+
19%|โโ | 37/196 [00:24<01:49, 1.45it/s][A
+
19%|โโ | 38/196 [00:25<01:45, 1.50it/s][A
+
20%|โโ | 39/196 [00:25<01:37, 1.62it/s][A
+
20%|โโ | 40/196 [00:26<01:32, 1.69it/s][A
+
21%|โโ | 41/196 [00:26<01:24, 1.83it/s][A
+
21%|โโโ | 42/196 [00:27<01:22, 1.86it/s][A
+
22%|โโโ | 43/196 [00:27<01:21, 1.89it/s][A
+
22%|โโโ | 44/196 [00:28<01:18, 1.94it/s][A
+
23%|โโโ | 45/196 [00:28<01:11, 2.10it/s][A
+
23%|โโโ | 46/196 [00:28<01:09, 2.17it/s][A
+
24%|โโโ | 47/196 [00:29<01:08, 2.19it/s][A
+
24%|โโโ | 48/196 [00:29<01:05, 2.24it/s][A
+
25%|โโโ | 49/196 [00:30<01:05, 2.24it/s][A
+
26%|โโโ | 50/196 [00:30<01:04, 2.26it/s][A
+
26%|โโโ | 51/196 [00:31<01:02, 2.30it/s][A
+
27%|โโโ | 52/196 [00:31<01:04, 2.23it/s][A
+
27%|โโโ | 53/196 [00:31<01:03, 2.25it/s][A
+
28%|โโโ | 54/196 [00:32<01:04, 2.21it/s][A
+
28%|โโโ | 55/196 [00:33<01:10, 2.00it/s][A
+
29%|โโโ | 56/196 [00:33<01:17, 1.80it/s][A
+
29%|โโโ | 57/196 [00:34<01:20, 1.73it/s][A
+
30%|โโโ | 58/196 [00:34<01:21, 1.69it/s][A
+
30%|โโโ | 59/196 [00:35<01:18, 1.74it/s][A
+
31%|โโโ | 60/196 [00:35<01:09, 1.95it/s][A
+
31%|โโโ | 61/196 [00:36<01:05, 2.05it/s][A
+
32%|โโโโ | 62/196 [00:36<01:07, 1.99it/s][A
+
32%|โโโโ | 63/196 [00:37<01:08, 1.95it/s][A
+
33%|โโโโ | 64/196 [00:37<01:07, 1.94it/s][A
+
33%|โโโโ | 65/196 [00:38<01:06, 1.96it/s][A
+
34%|โโโโ | 66/196 [00:39<01:10, 1.84it/s][A
+
34%|โโโโ | 67/196 [00:39<01:12, 1.78it/s][A
+
35%|โโโโ | 68/196 [00:40<01:19, 1.61it/s][A
+
35%|โโโโ | 69/196 [00:40<01:15, 1.68it/s][A
+
36%|โโโโ | 70/196 [00:41<01:10, 1.79it/s][A
+
36%|โโโโ | 71/196 [00:41<01:06, 1.89it/s][A
+
37%|โโโโ | 72/196 [00:42<01:02, 1.98it/s][A
+
37%|โโโโ | 73/196 [00:42<00:57, 2.12it/s][A
+
38%|โโโโ | 74/196 [00:43<00:55, 2.19it/s][A
+
38%|โโโโ | 75/196 [00:43<00:54, 2.23it/s][A
+
39%|โโโโ | 76/196 [00:43<00:53, 2.26it/s][A
+
39%|โโโโ | 77/196 [00:44<00:56, 2.11it/s][A
+
40%|โโโโ | 78/196 [00:45<00:55, 2.12it/s][A
+
40%|โโโโ | 79/196 [00:45<00:54, 2.13it/s][A
+
41%|โโโโ | 80/196 [00:46<00:58, 1.99it/s][A
+
41%|โโโโโ | 81/196 [00:46<00:57, 1.99it/s][A
+
42%|โโโโโ | 82/196 [00:47<00:57, 1.99it/s][A
+
42%|โโโโโ | 83/196 [00:47<01:03, 1.78it/s][A
+
43%|โโโโโ | 84/196 [00:48<01:01, 1.82it/s][A
+
43%|โโโโโ | 85/196 [00:48<01:00, 1.84it/s][A
+
44%|โโโโโ | 86/196 [00:49<01:01, 1.80it/s][A
+
44%|โโโโโ | 87/196 [00:49<00:59, 1.83it/s][A
+
45%|โโโโโ | 88/196 [00:50<01:00, 1.79it/s][A
+
45%|โโโโโ | 89/196 [00:51<01:00, 1.76it/s][A
+
46%|โโโโโ | 90/196 [00:51<00:59, 1.78it/s][A
+
46%|โโโโโ | 91/196 [00:52<00:55, 1.88it/s][A
+
47%|โโโโโ | 92/196 [00:52<00:52, 1.96it/s][A
+
47%|โโโโโ | 93/196 [00:53<00:55, 1.85it/s][A
+
48%|โโโโโ | 94/196 [00:53<00:54, 1.89it/s][A
+
48%|โโโโโ | 95/196 [00:54<00:53, 1.89it/s][A
+
49%|โโโโโ | 96/196 [00:54<00:55, 1.81it/s][A
+
49%|โโโโโ | 97/196 [00:55<00:52, 1.89it/s][A
+
50%|โโโโโ | 98/196 [00:55<00:52, 1.87it/s][A
+
51%|โโโโโ | 99/196 [00:56<00:48, 2.01it/s][A
+
51%|โโโโโ | 100/196 [00:56<00:42, 2.26it/s][A
+
52%|โโโโโโ | 101/196 [00:56<00:41, 2.27it/s][A
+
52%|โโโโโโ | 102/196 [00:57<00:44, 2.10it/s][A
+
53%|โโโโโโ | 103/196 [00:58<00:49, 1.88it/s][A
+
53%|โโโโโโ | 104/196 [00:58<00:53, 1.71it/s][A
+
54%|โโโโโโ | 105/196 [00:59<00:54, 1.69it/s][A
+
54%|โโโโโโ | 106/196 [01:00<00:51, 1.73it/s][A
+
55%|โโโโโโ | 107/196 [01:00<00:48, 1.85it/s][A
+
55%|โโโโโโ | 108/196 [01:00<00:42, 2.06it/s][A
+
56%|โโโโโโ | 109/196 [01:01<00:40, 2.14it/s][A
+
56%|โโโโโโ | 110/196 [01:01<00:40, 2.14it/s][A
+
57%|โโโโโโ | 111/196 [01:02<00:40, 2.10it/s][A
+
57%|โโโโโโ | 112/196 [01:02<00:41, 2.00it/s][A
+
58%|โโโโโโ | 113/196 [01:03<00:40, 2.06it/s][A
+
58%|โโโโโโ | 114/196 [01:03<00:37, 2.19it/s][A
+
59%|โโโโโโ | 115/196 [01:04<00:36, 2.22it/s][A
+
59%|โโโโโโ | 116/196 [01:04<00:36, 2.22it/s][A
+
60%|โโโโโโ | 117/196 [01:04<00:33, 2.39it/s][A
+
60%|โโโโโโ | 118/196 [01:05<00:29, 2.60it/s][A
+
61%|โโโโโโ | 119/196 [01:05<00:32, 2.36it/s][A
+
61%|โโโโโโ | 120/196 [01:06<00:33, 2.27it/s][A
+
62%|โโโโโโโ | 121/196 [01:06<00:33, 2.26it/s][A
+
62%|โโโโโโโ | 122/196 [01:07<00:33, 2.22it/s][A
+
63%|โโโโโโโ | 123/196 [01:07<00:31, 2.30it/s][A
+
63%|โโโโโโโ | 124/196 [01:08<00:32, 2.21it/s][A
+
64%|โโโโโโโ | 125/196 [01:08<00:32, 2.19it/s][A
+
64%|โโโโโโโ | 126/196 [01:09<00:37, 1.89it/s][A
+
65%|โโโโโโโ | 127/196 [01:09<00:34, 1.97it/s][A
+
65%|โโโโโโโ | 128/196 [01:10<00:33, 2.03it/s][A
+
66%|โโโโโโโ | 129/196 [01:10<00:32, 2.09it/s][A
+
66%|โโโโโโโ | 130/196 [01:11<00:32, 2.03it/s][A
+
67%|โโโโโโโ | 131/196 [01:11<00:31, 2.07it/s][A
+
67%|โโโโโโโ | 132/196 [01:11<00:29, 2.20it/s][A
+
68%|โโโโโโโ | 133/196 [01:12<00:28, 2.19it/s][A
+
68%|โโโโโโโ | 134/196 [01:12<00:28, 2.15it/s][A
+
69%|โโโโโโโ | 135/196 [01:13<00:27, 2.20it/s][A
+
69%|โโโโโโโ | 136/196 [01:13<00:27, 2.18it/s][A
+
70%|โโโโโโโ | 137/196 [01:14<00:26, 2.19it/s][A
+
70%|โโโโโโโ | 138/196 [01:14<00:26, 2.22it/s][A
+
71%|โโโโโโโ | 139/196 [01:15<00:26, 2.14it/s][A
+
71%|โโโโโโโโ | 140/196 [01:15<00:25, 2.23it/s][A
+
72%|โโโโโโโโ | 141/196 [01:15<00:24, 2.26it/s][A
+
72%|โโโโโโโโ | 142/196 [01:16<00:24, 2.19it/s][A
+
73%|โโโโโโโโ | 143/196 [01:16<00:24, 2.14it/s][A
+
73%|โโโโโโโโ | 144/196 [01:17<00:23, 2.21it/s][A
+
74%|โโโโโโโโ | 145/196 [01:17<00:21, 2.38it/s][A
+
74%|โโโโโโโโ | 146/196 [01:18<00:21, 2.29it/s][A
+
75%|โโโโโโโโ | 147/196 [01:18<00:20, 2.36it/s][A
+
76%|โโโโโโโโ | 148/196 [01:19<00:20, 2.34it/s][A
+
76%|โโโโโโโโ | 149/196 [01:19<00:18, 2.48it/s][A
+
77%|โโโโโโโโ | 150/196 [01:19<00:20, 2.25it/s][A
+
77%|โโโโโโโโ | 151/196 [01:20<00:20, 2.20it/s][A
+
78%|โโโโโโโโ | 152/196 [01:20<00:20, 2.19it/s][A
+
78%|โโโโโโโโ | 153/196 [01:21<00:19, 2.19it/s][A
+
79%|โโโโโโโโ | 154/196 [01:21<00:18, 2.21it/s][A
+
79%|โโโโโโโโ | 155/196 [01:22<00:19, 2.07it/s][A
+
80%|โโโโโโโโ | 156/196 [01:22<00:20, 1.94it/s][A
+
80%|โโโโโโโโ | 157/196 [01:23<00:20, 1.92it/s][A
+
81%|โโโโโโโโ | 158/196 [01:23<00:17, 2.11it/s][A
+
81%|โโโโโโโโ | 159/196 [01:24<00:16, 2.24it/s][A
+
82%|โโโโโโโโโ | 160/196 [01:24<00:16, 2.25it/s][A
+
82%|โโโโโโโโโ | 161/196 [01:25<00:15, 2.20it/s][A
+
83%|โโโโโโโโโ | 162/196 [01:25<00:15, 2.23it/s][A
+
83%|โโโโโโโโโ | 163/196 [01:25<00:14, 2.26it/s][A
+
84%|โโโโโโโโโ | 164/196 [01:26<00:14, 2.25it/s][A
+
84%|โโโโโโโโโ | 165/196 [01:26<00:14, 2.18it/s][A
+
85%|โโโโโโโโโ | 166/196 [01:27<00:13, 2.23it/s][A
+
85%|โโโโโโโโโ | 167/196 [01:27<00:12, 2.28it/s][A
+
86%|โโโโโโโโโ | 168/196 [01:28<00:11, 2.39it/s][A
+
86%|โโโโโโโโโ | 169/196 [01:28<00:12, 2.23it/s][A
+
87%|โโโโโโโโโ | 170/196 [01:29<00:12, 2.12it/s][A
+
87%|โโโโโโโโโ | 171/196 [01:29<00:11, 2.14it/s][A
+
88%|โโโโโโโโโ | 172/196 [01:30<00:11, 2.09it/s][A
+
88%|โโโโโโโโโ | 173/196 [01:30<00:10, 2.10it/s][A
+
89%|โโโโโโโโโ | 174/196 [01:31<00:11, 2.00it/s][A
+
89%|โโโโโโโโโ | 175/196 [01:32<00:13, 1.59it/s][A
+
90%|โโโโโโโโโ | 176/196 [01:33<00:17, 1.12it/s][A
+
90%|โโโโโโโโโ | 177/196 [01:34<00:18, 1.01it/s][A
+
91%|โโโโโโโโโ | 178/196 [01:36<00:20, 1.13s/it][A
+
91%|โโโโโโโโโโ| 179/196 [01:37<00:17, 1.04s/it][A
+
92%|โโโโโโโโโโ| 180/196 [01:37<00:14, 1.14it/s][A
+
92%|โโโโโโโโโโ| 181/196 [01:38<00:11, 1.33it/s][A
+
93%|โโโโโโโโโโ| 182/196 [01:38<00:09, 1.49it/s][A
+
93%|โโโโโโโโโโ| 183/196 [01:39<00:08, 1.56it/s][A
+
94%|โโโโโโโโโโ| 184/196 [01:39<00:07, 1.68it/s][A
+
94%|โโโโโโโโโโ| 185/196 [01:40<00:06, 1.70it/s][A
+
95%|โโโโโโโโโโ| 186/196 [01:40<00:05, 1.71it/s][A
+
95%|โโโโโโโโโโ| 187/196 [01:41<00:04, 1.85it/s][A
+
96%|โโโโโโโโโโ| 188/196 [01:41<00:04, 1.92it/s][A
+
96%|โโโโโโโโโโ| 189/196 [01:42<00:03, 1.96it/s][A
+
97%|โโโโโโโโโโ| 190/196 [01:42<00:02, 2.07it/s][A
+
97%|โโโโโโโโโโ| 191/196 [01:42<00:02, 2.17it/s][A
+
98%|โโโโโโโโโโ| 192/196 [01:43<00:01, 2.11it/s][A
+
98%|โโโโโโโโโโ| 193/196 [01:43<00:01, 2.09it/s][A
+
99%|โโโโโโโโโโ| 194/196 [01:44<00:00, 2.15it/s][A
+
99%|โโโโโโโโโโ| 195/196 [01:44<00:00, 2.22it/s][A
+
100%|โโโโโโโโโโ| 196/196 [01:44<00:00, 2.87it/s][A
+
[A
1%|โ | 200/15000 [06:07<2:36:51, 1.57it/s]
+
100%|โโโโโโโโโโ| 196/196 [01:49<00:00, 2.87it/s][A
+
[A
1%|โ | 201/15000 [06:09<140:53:13, 34.27s/it]
1%|โ | 201/15000 [06:09<140:53:13, 34.27s/it]
1%|โ | 202/15000 [06:10<100:09:58, 24.37s/it]
1%|โ | 202/15000 [06:10<100:09:58, 24.37s/it]
1%|โ | 203/15000 [06:11<71:28:54, 17.39s/it]
1%|โ | 203/15000 [06:11<71:28:54, 17.39s/it]
1%|โ | 204/15000 [06:12<51:17:13, 12.48s/it]
1%|โ | 204/15000 [06:12<51:17:13, 12.48s/it]
1%|โ | 205/15000 [06:13<37:04:18, 9.02s/it]
1%|โ | 205/15000 [06:13<37:04:18, 9.02s/it]
1%|โ | 206/15000 [06:14<27:03:21, 6.58s/it]
1%|โ | 206/15000 [06:14<27:03:21, 6.58s/it]
1%|โ | 207/15000 [06:15<20:01:10, 4.87s/it]
1%|โ | 207/15000 [06:15<20:01:10, 4.87s/it]
1%|โ | 208/15000 [06:16<15:02:33, 3.66s/it]
1%|โ | 208/15000 [06:16<15:02:33, 3.66s/it]
1%|โ | 209/15000 [06:16<11:31:34, 2.81s/it]
1%|โ | 209/15000 [06:16<11:31:34, 2.81s/it]
1%|โ | 210/15000 [06:17<9:02:11, 2.20s/it]
1%|โ | 210/15000 [06:17<9:02:11, 2.20s/it]
1%|โ | 211/15000 [06:18<7:18:15, 1.78s/it]
1%|โ | 211/15000 [06:18<7:18:15, 1.78s/it]
1%|โ | 212/15000 [06:19<6:03:34, 1.48s/it]
1%|โ | 212/15000 [06:19<6:03:34, 1.48s/it]
1%|โ | 213/15000 [06:20<5:08:39, 1.25s/it]
1%|โ | 213/15000 [06:20<5:08:39, 1.25s/it]
1%|โ | 214/15000 [06:20<4:26:14, 1.08s/it]
1%|โ | 214/15000 [06:20<4:26:14, 1.08s/it]
1%|โ | 215/15000 [06:21<3:56:41, 1.04it/s]
1%|โ | 215/15000 [06:21<3:56:41, 1.04it/s]
1%|โ | 216/15000 [06:22<3:36:12, 1.14it/s]
1%|โ | 216/15000 [06:22<3:36:12, 1.14it/s]
1%|โ | 217/15000 [06:22<3:18:22, 1.24it/s]
1%|โ | 217/15000 [06:22<3:18:22, 1.24it/s]
1%|โ | 218/15000 [06:23<3:04:13, 1.34it/s]
1%|โ | 218/15000 [06:23<3:04:13, 1.34it/s]
1%|โ | 219/15000 [06:23<2:52:04, 1.43it/s]
1%|โ | 219/15000 [06:23<2:52:04, 1.43it/s]
1%|โ | 220/15000 [06:24<2:43:56, 1.50it/s]
1%|โ | 220/15000 [06:24<2:43:56, 1.50it/s]
1%|โ | 221/15000 [06:25<2:38:06, 1.56it/s]
1%|โ | 221/15000 [06:25<2:38:06, 1.56it/s]
1%|โ | 222/15000 [06:25<2:34:08, 1.60it/s]
1%|โ | 222/15000 [06:25<2:34:08, 1.60it/s]
1%|โ | 223/15000 [06:26<2:30:36, 1.64it/s]
1%|โ | 223/15000 [06:26<2:30:36, 1.64it/s]
1%|โ | 224/15000 [06:26<2:26:14, 1.68it/s]
1%|โ | 224/15000 [06:26<2:26:14, 1.68it/s]
2%|โ | 225/15000 [06:27<2:20:16, 1.76it/s]
2%|โ | 225/15000 [06:27<2:20:16, 1.76it/s]
2%|โ | 226/15000 [06:27<2:14:43, 1.83it/s]
2%|โ | 226/15000 [06:27<2:14:43, 1.83it/s]
2%|โ | 227/15000 [06:28<2:10:37, 1.88it/s]
2%|โ | 227/15000 [06:28<2:10:37, 1.88it/s]
2%|โ | 228/15000 [06:28<2:07:59, 1.92it/s]
2%|โ | 228/15000 [06:28<2:07:59, 1.92it/s]
2%|โ | 229/15000 [06:29<2:05:53, 1.96it/s]
2%|โ | 229/15000 [06:29<2:05:53, 1.96it/s]
2%|โ | 230/15000 [06:29<2:05:25, 1.96it/s]
2%|โ | 230/15000 [06:29<2:05:25, 1.96it/s]
2%|โ | 231/15000 [06:30<2:03:51, 1.99it/s]
2%|โ | 231/15000 [06:30<2:03:51, 1.99it/s]
2%|โ | 232/15000 [06:30<1:59:47, 2.05it/s]
2%|โ | 232/15000 [06:30<1:59:47, 2.05it/s]
2%|โ | 233/15000 [06:31<1:56:13, 2.12it/s]
2%|โ | 233/15000 [06:31<1:56:13, 2.12it/s]
2%|โ | 234/15000 [06:31<1:51:36, 2.20it/s]
2%|โ | 234/15000 [06:31<1:51:36, 2.20it/s]
2%|โ | 235/15000 [06:32<1:49:22, 2.25it/s]
2%|โ | 235/15000 [06:32<1:49:22, 2.25it/s]
2%|โ | 236/15000 [06:32<1:46:34, 2.31it/s]
2%|โ | 236/15000 [06:32<1:46:34, 2.31it/s]
2%|โ | 237/15000 [06:32<1:44:41, 2.35it/s]
2%|โ | 237/15000 [06:32<1:44:41, 2.35it/s]
2%|โ | 238/15000 [06:33<1:43:40, 2.37it/s]
2%|โ | 238/15000 [06:33<1:43:40, 2.37it/s]
2%|โ | 239/15000 [06:33<1:44:20, 2.36it/s]
2%|โ | 239/15000 [06:33<1:44:20, 2.36it/s]
2%|โ | 240/15000 [06:34<1:39:52, 2.46it/s]
2%|โ | 240/15000 [06:34<1:39:52, 2.46it/s]
2%|โ | 241/15000 [06:34<1:35:12, 2.58it/s]
2%|โ | 241/15000 [06:34<1:35:12, 2.58it/s]
2%|โ | 242/15000 [06:34<1:29:57, 2.73it/s]
2%|โ | 242/15000 [06:34<1:29:57, 2.73it/s]
2%|โ | 243/15000 [06:35<1:26:31, 2.84it/s]
2%|โ | 243/15000 [06:35<1:26:31, 2.84it/s]
2%|โ | 244/15000 [06:35<1:24:04, 2.93it/s]
2%|โ | 244/15000 [06:35<1:24:04, 2.93it/s]
2%|โ | 245/15000 [06:35<1:29:12, 2.76it/s]
2%|โ | 245/15000 [06:35<1:29:12, 2.76it/s]
2%|โ | 246/15000 [06:36<1:25:55, 2.86it/s]
2%|โ | 246/15000 [06:36<1:25:55, 2.86it/s]
2%|โ | 247/15000 [06:36<1:18:32, 3.13it/s]
2%|โ | 247/15000 [06:36<1:18:32, 3.13it/s]
2%|โ | 248/15000 [06:36<1:12:52, 3.37it/s]
2%|โ | 248/15000 [06:36<1:12:52, 3.37it/s]
2%|โ | 249/15000 [06:36<1:06:52, 3.68it/s]
2%|โ | 249/15000 [06:36<1:06:52, 3.68it/s]
2%|โ | 250/15000 [06:38<2:54:08, 1.41it/s]
2%|โ | 250/15000 [06:38<2:54:08, 1.41it/s]
2%|โ | 251/15000 [06:40<4:36:04, 1.12s/it]
2%|โ | 251/15000 [06:40<4:36:04, 1.12s/it]
2%|โ | 252/15000 [06:41<4:56:52, 1.21s/it]
2%|โ | 252/15000 [06:42<4:56:52, 1.21s/it]
2%|โ | 253/15000 [06:43<4:57:17, 1.21s/it]
2%|โ | 253/15000 [06:43<4:57:17, 1.21s/it]
2%|โ | 254/15000 [06:44<4:48:53, 1.18s/it]
2%|โ | 254/15000 [06:44<4:48:53, 1.18s/it]
2%|โ | 255/15000 [06:45<4:36:45, 1.13s/it]
2%|โ | 255/15000 [06:45<4:36:45, 1.13s/it]
2%|โ | 256/15000 [06:46<4:22:40, 1.07s/it]
2%|โ | 256/15000 [06:46<4:22:40, 1.07s/it]
2%|โ | 257/15000 [06:47<4:11:36, 1.02s/it]
2%|โ | 257/15000 [06:47<4:11:36, 1.02s/it]
2%|โ | 258/15000 [06:47<3:57:28, 1.03it/s]
2%|โ | 258/15000 [06:48<3:57:28, 1.03it/s]
2%|โ | 259/15000 [06:48<3:45:46, 1.09it/s]
2%|โ | 259/15000 [06:48<3:45:46, 1.09it/s]
2%|โ | 260/15000 [06:49<3:35:22, 1.14it/s]
2%|โ | 260/15000 [06:49<3:35:22, 1.14it/s]
2%|โ | 261/15000 [06:50<3:25:46, 1.19it/s]
2%|โ | 261/15000 [06:50<3:25:46, 1.19it/s]
2%|โ | 262/15000 [06:51<3:15:56, 1.25it/s]
2%|โ | 262/15000 [06:51<3:15:56, 1.25it/s]
2%|โ | 263/15000 [06:51<3:07:43, 1.31it/s]
2%|โ | 263/15000 [06:51<3:07:43, 1.31it/s]
2%|โ | 264/15000 [06:52<3:02:17, 1.35it/s]
2%|โ | 264/15000 [06:52<3:02:17, 1.35it/s]
2%|โ | 265/15000 [06:53<2:57:47, 1.38it/s]
2%|โ | 265/15000 [06:53<2:57:47, 1.38it/s]
2%|โ | 266/15000 [06:53<2:52:51, 1.42it/s]
2%|โ | 266/15000 [06:53<2:52:51, 1.42it/s]
2%|โ | 267/15000 [06:54<2:46:12, 1.48it/s]
2%|โ | 267/15000 [06:54<2:46:12, 1.48it/s]
2%|โ | 268/15000 [06:54<2:39:18, 1.54it/s]
2%|โ | 268/15000 [06:54<2:39:18, 1.54it/s]
2%|โ | 269/15000 [06:55<2:35:02, 1.58it/s]
2%|โ | 269/15000 [06:55<2:35:02, 1.58it/s]
2%|โ | 270/15000 [06:56<2:31:25, 1.62it/s]
2%|โ | 270/15000 [06:56<2:31:25, 1.62it/s]
2%|โ | 271/15000 [06:56<2:29:14, 1.64it/s]
2%|โ | 271/15000 [06:56<2:29:14, 1.64it/s]
2%|โ | 272/15000 [06:57<2:27:26, 1.66it/s]
2%|โ | 272/15000 [06:57<2:27:26, 1.66it/s]
2%|โ | 273/15000 [06:57<2:22:55, 1.72it/s]
2%|โ | 273/15000 [06:57<2:22:55, 1.72it/s]
2%|โ | 274/15000 [06:58<2:17:51, 1.78it/s]
2%|โ | 274/15000 [06:58<2:17:51, 1.78it/s]
2%|โ | 275/15000 [06:58<2:12:58, 1.85it/s]
2%|โ | 275/15000 [06:58<2:12:58, 1.85it/s]
2%|โ | 276/15000 [06:59<2:09:16, 1.90it/s]
2%|โ | 276/15000 [06:59<2:09:16, 1.90it/s]
2%|โ | 277/15000 [06:59<2:07:29, 1.92it/s]
2%|โ | 277/15000 [06:59<2:07:29, 1.92it/s]
2%|โ | 278/15000 [07:00<2:05:27, 1.96it/s]
2%|โ | 278/15000 [07:00<2:05:27, 1.96it/s]
2%|โ | 279/15000 [07:00<2:04:01, 1.98it/s]
2%|โ | 279/15000 [07:00<2:04:01, 1.98it/s]
2%|โ | 280/15000 [07:01<2:03:21, 1.99it/s]
2%|โ | 280/15000 [07:01<2:03:21, 1.99it/s]
2%|โ | 281/15000 [07:01<1:58:42, 2.07it/s]
2%|โ | 281/15000 [07:01<1:58:42, 2.07it/s]
2%|โ | 282/15000 [07:02<1:54:17, 2.15it/s]
2%|โ | 282/15000 [07:02<1:54:17, 2.15it/s]
2%|โ | 283/15000 [07:02<1:49:58, 2.23it/s]
2%|โ | 283/15000 [07:02<1:49:58, 2.23it/s]
2%|โ | 284/15000 [07:03<1:47:22, 2.28it/s]
2%|โ | 284/15000 [07:03<1:47:22, 2.28it/s]
2%|โ | 285/15000 [07:03<1:45:17, 2.33it/s]
2%|โ | 285/15000 [07:03<1:45:17, 2.33it/s]
2%|โ | 286/15000 [07:03<1:43:31, 2.37it/s]
2%|โ | 286/15000 [07:03<1:43:31, 2.37it/s]
2%|โ | 287/15000 [07:04<1:42:05, 2.40it/s]
2%|โ | 287/15000 [07:04<1:42:05, 2.40it/s]
2%|โ | 288/15000 [07:04<1:42:01, 2.40it/s]
2%|โ | 288/15000 [07:04<1:42:01, 2.40it/s]
2%|โ | 289/15000 [07:04<1:37:41, 2.51it/s]
2%|โ | 289/15000 [07:05<1:37:41, 2.51it/s]
2%|โ | 290/15000 [07:05<1:33:30, 2.62it/s]
2%|โ | 290/15000 [07:05<1:33:30, 2.62it/s]
2%|โ | 291/15000 [07:05<1:28:48, 2.76it/s]
2%|โ | 291/15000 [07:05<1:28:48, 2.76it/s]
2%|โ | 292/15000 [07:06<1:34:09, 2.60it/s]
2%|โ | 292/15000 [07:06<1:34:09, 2.60it/s]
2%|โ | 293/15000 [07:06<1:29:23, 2.74it/s]
2%|โ | 293/15000 [07:06<1:29:23, 2.74it/s]
2%|โ | 294/15000 [07:06<1:26:00, 2.85it/s]
2%|โ | 294/15000 [07:06<1:26:00, 2.85it/s]
2%|โ | 295/15000 [07:07<1:22:07, 2.98it/s]
2%|โ | 295/15000 [07:07<1:22:07, 2.98it/s]
2%|โ | 296/15000 [07:07<1:16:14, 3.21it/s]
2%|โ | 296/15000 [07:07<1:16:14, 3.21it/s]
2%|โ | 297/15000 [07:07<1:11:20, 3.44it/s]
2%|โ | 297/15000 [07:07<1:11:20, 3.44it/s]
2%|โ | 298/15000 [07:07<1:07:48, 3.61it/s]
2%|โ | 298/15000 [07:07<1:07:48, 3.61it/s]
2%|โ | 299/15000 [07:07<1:04:29, 3.80it/s]
2%|โ | 299/15000 [07:08<1:04:29, 3.80it/s]
2%|โ | 300/15000 [07:09<2:43:21, 1.50it/s]
2%|โ | 300/15000 [07:09<2:43:21, 1.50it/s]Printing predictions for a few samples:
+Sample 1:
+ Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
+######
+
+
+ Prediction: เค
+
+
+
+Sample 2:
+ Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
+######
+
+
+ Prediction: iiiiiiเฅเค
+
+
+
+Sample 3:
+ Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
+######
+
+
+ Prediction: iiเค
+
+
+
+Sample 4:
+ Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
+######
+
+
+ Prediction: iเคเค
+
+
+
+Sample 5:
+ Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
+######
+
+
+ Prediction: iเฅเคเฅเคเฅเคเฅ
+
+
+
+last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
+
+
+last prediction string เค
+{'eval_loss': 3.7970166206359863, 'eval_cer': 0.9768914773022723, 'eval_wer': 1.0, 'eval_runtime': 110.8371, 'eval_samples_per_second': 28.294, 'eval_steps_per_second': 1.768, 'epoch': 0.16}
+{'loss': 4.8123, 'grad_norm': 44.33531188964844, 'learning_rate': 0.000234, 'epoch': 0.16}
+{'loss': 3.9295, 'grad_norm': 13.5255126953125, 'learning_rate': 0.0002352, 'epoch': 0.16}
+{'loss': 3.7041, 'grad_norm': 7.930710792541504, 'learning_rate': 0.0002364, 'epoch': 0.16}
+{'loss': 4.1326, 'grad_norm': 15.819513320922852, 'learning_rate': 0.0002376, 'epoch': 0.16}
+{'loss': 3.6596, 'grad_norm': 2.3044705390930176, 'learning_rate': 0.0002388, 'epoch': 0.16}
+{'loss': 3.6752, 'grad_norm': 4.406660556793213, 'learning_rate': 0.00023999999999999998, 'epoch': 0.16}
+{'loss': 3.8238, 'grad_norm': 1.5689456462860107, 'learning_rate': 0.00024119999999999998, 'epoch': 0.17}
+{'loss': 3.6739, 'grad_norm': 4.091474533081055, 'learning_rate': 0.00024239999999999998, 'epoch': 0.17}
+{'loss': 3.6039, 'grad_norm': 2.431344509124756, 'learning_rate': 0.00024359999999999999, 'epoch': 0.17}
+{'loss': 3.6975, 'grad_norm': 6.387563228607178, 'learning_rate': 0.0002448, 'epoch': 0.17}
+{'loss': 3.5933, 'grad_norm': 1.397855281829834, 'learning_rate': 0.00024599999999999996, 'epoch': 0.17}
+{'loss': 3.6142, 'grad_norm': 1.5199987888336182, 'learning_rate': 0.0002472, 'epoch': 0.17}
+{'loss': 3.5456, 'grad_norm': 1.8658698797225952, 'learning_rate': 0.00024839999999999997, 'epoch': 0.17}
+{'loss': 3.5829, 'grad_norm': 2.789430618286133, 'learning_rate': 0.00024959999999999994, 'epoch': 0.17}
+{'loss': 3.5776, 'grad_norm': 2.7057807445526123, 'learning_rate': 0.00025079999999999997, 'epoch': 0.17}
+{'loss': 3.6147, 'grad_norm': 1.3090357780456543, 'learning_rate': 0.00025199999999999995, 'epoch': 0.17}
+{'loss': 3.5357, 'grad_norm': 2.7145049571990967, 'learning_rate': 0.0002532, 'epoch': 0.17}
+{'loss': 3.5123, 'grad_norm': 2.474581480026245, 'learning_rate': 0.00025439999999999995, 'epoch': 0.17}
+{'loss': 3.5101, 'grad_norm': 1.5181821584701538, 'learning_rate': 0.0002556, 'epoch': 0.18}
+{'loss': 3.4809, 'grad_norm': 3.233001470565796, 'learning_rate': 0.00025679999999999995, 'epoch': 0.18}
+{'loss': 3.4725, 'grad_norm': 2.563173770904541, 'learning_rate': 0.000258, 'epoch': 0.18}
+{'loss': 3.7571, 'grad_norm': 6.684512615203857, 'learning_rate': 0.00025919999999999996, 'epoch': 0.18}
+{'loss': 3.4911, 'grad_norm': 2.6331961154937744, 'learning_rate': 0.0002604, 'epoch': 0.18}
+{'loss': 3.5992, 'grad_norm': 3.590869665145874, 'learning_rate': 0.00026159999999999996, 'epoch': 0.18}
+{'loss': 3.59, 'grad_norm': 5.324270725250244, 'learning_rate': 0.0002628, 'epoch': 0.18}
+{'loss': 3.5267, 'grad_norm': 1.8775129318237305, 'learning_rate': 0.00026399999999999997, 'epoch': 0.18}
+{'loss': 3.4121, 'grad_norm': 3.1581733226776123, 'learning_rate': 0.0002652, 'epoch': 0.18}
+{'loss': 3.583, 'grad_norm': 5.618217468261719, 'learning_rate': 0.00026639999999999997, 'epoch': 0.18}
+{'loss': 3.7572, 'grad_norm': 8.012947082519531, 'learning_rate': 0.0002676, 'epoch': 0.18}
+{'loss': 3.379, 'grad_norm': 2.0607399940490723, 'learning_rate': 0.0002688, 'epoch': 0.18}
+{'loss': 3.4182, 'grad_norm': 1.6857764720916748, 'learning_rate': 0.00027, 'epoch': 0.18}
+{'loss': 3.3081, 'grad_norm': 1.865372657775879, 'learning_rate': 0.0002712, 'epoch': 0.19}
+{'loss': 3.3932, 'grad_norm': 2.1893064975738525, 'learning_rate': 0.0002724, 'epoch': 0.19}
+{'loss': 3.3868, 'grad_norm': 1.4453455209732056, 'learning_rate': 0.0002736, 'epoch': 0.19}
+{'loss': 3.3775, 'grad_norm': 1.7997658252716064, 'learning_rate': 0.0002748, 'epoch': 0.19}
+{'loss': 3.3936, 'grad_norm': 2.8155877590179443, 'learning_rate': 0.000276, 'epoch': 0.19}
+{'loss': 3.3814, 'grad_norm': 1.806990146636963, 'learning_rate': 0.0002772, 'epoch': 0.19}
+{'loss': 3.3284, 'grad_norm': 1.8661482334136963, 'learning_rate': 0.0002784, 'epoch': 0.19}
+{'loss': 3.2431, 'grad_norm': 1.5124249458312988, 'learning_rate': 0.00027959999999999997, 'epoch': 0.19}
+{'loss': 3.5233, 'grad_norm': 3.585604667663574, 'learning_rate': 0.0002808, 'epoch': 0.19}
+{'loss': 3.3157, 'grad_norm': 1.263960361480713, 'learning_rate': 0.00028199999999999997, 'epoch': 0.19}
+{'loss': 3.3317, 'grad_norm': 1.3749281167984009, 'learning_rate': 0.00028319999999999994, 'epoch': 0.19}
+{'loss': 3.3397, 'grad_norm': 1.6287362575531006, 'learning_rate': 0.0002844, 'epoch': 0.19}
+{'loss': 3.3553, 'grad_norm': 3.005218267440796, 'learning_rate': 0.00028559999999999995, 'epoch': 0.2}
+{'loss': 3.4743, 'grad_norm': 1.6030088663101196, 'learning_rate': 0.0002868, 'epoch': 0.2}
+{'loss': 3.3102, 'grad_norm': 3.804835796356201, 'learning_rate': 0.00028799999999999995, 'epoch': 0.2}
+{'loss': 3.056, 'grad_norm': 2.5691945552825928, 'learning_rate': 0.0002892, 'epoch': 0.2}
+{'loss': 3.2968, 'grad_norm': 2.374863386154175, 'learning_rate': 0.00029039999999999996, 'epoch': 0.2}
+{'loss': 3.2083, 'grad_norm': 2.490882158279419, 'learning_rate': 0.0002916, 'epoch': 0.2}
+{'loss': 3.4295, 'grad_norm': 3.5995731353759766, 'learning_rate': 0.00029279999999999996, 'epoch': 0.2}
+{'loss': 3.6283, 'grad_norm': 10.760212898254395, 'learning_rate': 0.000294, 'epoch': 0.2}
+{'loss': 2.9544, 'grad_norm': 3.02839994430542, 'learning_rate': 0.00029519999999999997, 'epoch': 0.2}
+{'loss': 3.1064, 'grad_norm': 1.8507723808288574, 'learning_rate': 0.0002964, 'epoch': 0.2}
+{'loss': 3.175, 'grad_norm': 2.694658041000366, 'learning_rate': 0.00029759999999999997, 'epoch': 0.2}
+{'loss': 3.1592, 'grad_norm': 5.643454551696777, 'learning_rate': 0.0002988, 'epoch': 0.2}
+{'loss': 2.9435, 'grad_norm': 1.2530089616775513, 'learning_rate': 0.0003, 'epoch': 0.2}
+{'loss': 2.871, 'grad_norm': 2.096090316772461, 'learning_rate': 0.00030119999999999995, 'epoch': 0.21}
+{'loss': 2.6781, 'grad_norm': 2.605058431625366, 'learning_rate': 0.0003024, 'epoch': 0.21}
+{'loss': 2.8263, 'grad_norm': 2.185892105102539, 'learning_rate': 0.00030359999999999995, 'epoch': 0.21}
+{'loss': 2.6912, 'grad_norm': 3.8192028999328613, 'learning_rate': 0.0003048, 'epoch': 0.21}
+{'loss': 2.7986, 'grad_norm': 1.8490557670593262, 'learning_rate': 0.00030599999999999996, 'epoch': 0.21}
+{'loss': 2.8281, 'grad_norm': 1.224406361579895, 'learning_rate': 0.0003072, 'epoch': 0.21}
+{'loss': 2.6572, 'grad_norm': 1.7095181941986084, 'learning_rate': 0.00030839999999999996, 'epoch': 0.21}
+{'loss': 2.5818, 'grad_norm': 1.7448837757110596, 'learning_rate': 0.0003096, 'epoch': 0.21}
+{'loss': 2.6296, 'grad_norm': 4.226468563079834, 'learning_rate': 0.00031079999999999997, 'epoch': 0.21}
+{'loss': 2.7109, 'grad_norm': 4.208134174346924, 'learning_rate': 0.000312, 'epoch': 0.21}
+{'loss': 2.7399, 'grad_norm': 3.128417730331421, 'learning_rate': 0.00031319999999999997, 'epoch': 0.21}
+{'loss': 2.6573, 'grad_norm': 1.4945794343948364, 'learning_rate': 0.0003144, 'epoch': 0.21}
+{'loss': 2.2959, 'grad_norm': 1.5023822784423828, 'learning_rate': 0.0003156, 'epoch': 0.22}
+{'loss': 2.1583, 'grad_norm': 1.6304683685302734, 'learning_rate': 0.0003168, 'epoch': 0.22}
+{'loss': 2.3544, 'grad_norm': 1.9478027820587158, 'learning_rate': 0.000318, 'epoch': 0.22}
+{'loss': 2.2077, 'grad_norm': 1.2731140851974487, 'learning_rate': 0.0003192, 'epoch': 0.22}
+{'loss': 2.261, 'grad_norm': 1.536820411682129, 'learning_rate': 0.0003204, 'epoch': 0.22}
+{'loss': 2.4541, 'grad_norm': 1.2291741371154785, 'learning_rate': 0.0003216, 'epoch': 0.22}
+{'loss': 2.897, 'grad_norm': 1.3447438478469849, 'learning_rate': 0.0003228, 'epoch': 0.22}
+{'loss': 2.1262, 'grad_norm': 1.724320650100708, 'learning_rate': 0.000324, 'epoch': 0.22}
+{'loss': 2.1109, 'grad_norm': 1.354758620262146, 'learning_rate': 0.0003252, 'epoch': 0.22}
+{'loss': 2.251, 'grad_norm': 1.3793139457702637, 'learning_rate': 0.0003264, 'epoch': 0.22}
+{'loss': 2.0116, 'grad_norm': 1.8393211364746094, 'learning_rate': 0.0003276, 'epoch': 0.22}
+{'loss': 2.3671, 'grad_norm': 1.8842530250549316, 'learning_rate': 0.0003288, 'epoch': 0.22}
+{'loss': 2.0962, 'grad_norm': 1.1634886264801025, 'learning_rate': 0.00033, 'epoch': 0.22}
+{'loss': 2.3869, 'grad_norm': 2.0235300064086914, 'learning_rate': 0.0003312, 'epoch': 0.23}
+{'loss': 2.2425, 'grad_norm': 2.894321918487549, 'learning_rate': 0.0003324, 'epoch': 0.23}
+{'loss': 1.8058, 'grad_norm': 1.980172872543335, 'learning_rate': 0.0003336, 'epoch': 0.23}
+{'loss': 2.8249, 'grad_norm': 6.049044609069824, 'learning_rate': 0.0003348, 'epoch': 0.23}
+{'loss': 2.1659, 'grad_norm': 2.8066465854644775, 'learning_rate': 0.000336, 'epoch': 0.23}
+{'loss': 1.8999, 'grad_norm': 2.7360401153564453, 'learning_rate': 0.0003372, 'epoch': 0.23}
+{'loss': 2.3755, 'grad_norm': 2.0018820762634277, 'learning_rate': 0.00033839999999999993, 'epoch': 0.23}
+{'loss': 2.319, 'grad_norm': 2.909717321395874, 'learning_rate': 0.00033959999999999996, 'epoch': 0.23}
+{'loss': 2.7196, 'grad_norm': 2.7874374389648438, 'learning_rate': 0.00034079999999999994, 'epoch': 0.23}
+{'loss': 2.5315, 'grad_norm': 1.637608289718628, 'learning_rate': 0.00034199999999999996, 'epoch': 0.23}
+{'loss': 2.1677, 'grad_norm': 1.843376636505127, 'learning_rate': 0.00034319999999999994, 'epoch': 0.23}
+{'loss': 2.5315, 'grad_norm': 3.6368730068206787, 'learning_rate': 0.00034439999999999997, 'epoch': 0.23}
+{'loss': 2.3111, 'grad_norm': 2.281294822692871, 'learning_rate': 0.00034559999999999994, 'epoch': 0.24}
+{'loss': 2.3826, 'grad_norm': 2.288433074951172, 'learning_rate': 0.0003467999999999999, 'epoch': 0.24}
+{'loss': 2.2136, 'grad_norm': 2.118950366973877, 'learning_rate': 0.00034799999999999995, 'epoch': 0.24}
+{'loss': 2.6552, 'grad_norm': 1.8168818950653076, 'learning_rate': 0.0003491999999999999, 'epoch': 0.24}
+{'loss': 2.5271, 'grad_norm': 2.0924928188323975, 'learning_rate': 0.00035039999999999995, 'epoch': 0.24}
+{'loss': 2.1764, 'grad_norm': 2.575981855392456, 'learning_rate': 0.0003515999999999999, 'epoch': 0.24}
+{'loss': 2.3648, 'grad_norm': 2.989513397216797, 'learning_rate': 0.00035279999999999996, 'epoch': 0.24}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<00:44, 4.32it/s][A
+
2%|โ | 3/196 [00:00<01:03, 3.03it/s][A
+
2%|โ | 4/196 [00:01<01:18, 2.44it/s][A
+
3%|โ | 5/196 [00:02<01:29, 2.14it/s][A
+
3%|โ | 6/196 [00:02<01:41, 1.87it/s][A
+
4%|โ | 7/196 [00:03<01:41, 1.87it/s][A
+
4%|โ | 8/196 [00:03<01:50, 1.70it/s][A
+
5%|โ | 9/196 [00:05<02:25, 1.28it/s][A
+
5%|โ | 10/196 [00:06<02:42, 1.15it/s][A
+
6%|โ | 11/196 [00:07<03:00, 1.02it/s][A
+
6%|โ | 12/196 [00:08<02:53, 1.06it/s][A
+
7%|โ | 13/196 [00:08<02:33, 1.19it/s][A
+
7%|โ | 14/196 [00:09<02:12, 1.37it/s][A
+
8%|โ | 15/196 [00:09<01:55, 1.57it/s][A
+
8%|โ | 16/196 [00:10<01:49, 1.64it/s][A
+
9%|โ | 17/196 [00:11<01:51, 1.60it/s][A
+
9%|โ | 18/196 [00:12<02:12, 1.34it/s][A
+
10%|โ | 19/196 [00:13<02:42, 1.09it/s][A
+
10%|โ | 20/196 [00:14<02:46, 1.06it/s][A
+
11%|โ | 21/196 [00:15<02:52, 1.01it/s][A
+
11%|โ | 22/196 [00:16<02:38, 1.10it/s][A
+
12%|โโ | 23/196 [00:16<02:16, 1.27it/s][A
+
12%|โโ | 24/196 [00:17<01:51, 1.54it/s][A
+
13%|โโ | 25/196 [00:17<01:38, 1.73it/s][A
+
13%|โโ | 26/196 [00:17<01:28, 1.92it/s][A
+
14%|โโ | 27/196 [00:18<01:22, 2.05it/s][A
+
14%|โโ | 28/196 [00:18<01:20, 2.09it/s][A
+
15%|โโ | 29/196 [00:19<01:21, 2.05it/s][A
+
15%|โโ | 30/196 [00:19<01:20, 2.06it/s][A
+
16%|โโ | 31/196 [00:20<01:12, 2.28it/s][A
+
16%|โโ | 32/196 [00:20<01:14, 2.19it/s][A
+
17%|โโ | 33/196 [00:21<01:25, 1.90it/s][A
+
17%|โโ | 34/196 [00:21<01:38, 1.65it/s][A
+
18%|โโ | 35/196 [00:22<01:51, 1.45it/s][A
+
18%|โโ | 36/196 [00:23<01:58, 1.35it/s][A
+
19%|โโ | 37/196 [00:24<01:50, 1.44it/s][A
+
19%|โโ | 38/196 [00:24<01:46, 1.48it/s][A
+
20%|โโ | 39/196 [00:25<01:38, 1.60it/s][A
+
20%|โโ | 40/196 [00:26<01:38, 1.59it/s][A
+
21%|โโ | 41/196 [00:26<01:28, 1.74it/s][A
+
21%|โโโ | 42/196 [00:27<01:25, 1.80it/s][A
+
22%|โโโ | 43/196 [00:27<01:22, 1.84it/s][A
+
22%|โโโ | 44/196 [00:28<01:18, 1.93it/s][A
+
23%|โโโ | 45/196 [00:28<01:11, 2.10it/s][A
+
23%|โโโ | 46/196 [00:28<01:09, 2.17it/s][A
+
24%|โโโ | 47/196 [00:29<01:08, 2.19it/s][A
+
24%|โโโ | 48/196 [00:29<01:05, 2.25it/s][A
+
25%|โโโ | 49/196 [00:30<01:05, 2.24it/s][A
+
26%|โโโ | 50/196 [00:30<01:04, 2.27it/s][A
+
26%|โโโ | 51/196 [00:31<01:02, 2.30it/s][A
+
27%|โโโ | 52/196 [00:31<01:04, 2.24it/s][A
+
27%|โโโ | 53/196 [00:31<01:03, 2.26it/s][A
+
28%|โโโ | 54/196 [00:32<01:03, 2.22it/s][A
+
28%|โโโ | 55/196 [00:32<01:10, 2.00it/s][A
+
29%|โโโ | 56/196 [00:33<01:17, 1.82it/s][A
+
29%|โโโ | 57/196 [00:34<01:20, 1.72it/s][A
+
30%|โโโ | 58/196 [00:34<01:20, 1.71it/s][A
+
30%|โโโ | 59/196 [00:35<01:18, 1.74it/s][A
+
31%|โโโ | 60/196 [00:35<01:09, 1.96it/s][A
+
31%|โโโ | 61/196 [00:36<01:05, 2.06it/s][A
+
32%|โโโโ | 62/196 [00:36<01:07, 2.00it/s][A
+
32%|โโโโ | 63/196 [00:37<01:07, 1.96it/s][A
+
33%|โโโโ | 64/196 [00:37<01:07, 1.95it/s][A
+
33%|โโโโ | 65/196 [00:38<01:06, 1.96it/s][A
+
34%|โโโโ | 66/196 [00:38<01:10, 1.84it/s][A
+
34%|โโโโ | 67/196 [00:39<01:12, 1.78it/s][A
+
35%|โโโโ | 68/196 [00:40<01:20, 1.60it/s][A
+
35%|โโโโ | 69/196 [00:40<01:16, 1.67it/s][A
+
36%|โโโโ | 70/196 [00:41<01:10, 1.78it/s][A
+
36%|โโโโ | 71/196 [00:41<01:06, 1.87it/s][A
+
37%|โโโโ | 72/196 [00:42<01:02, 1.97it/s][A
+
37%|โโโโ | 73/196 [00:42<00:57, 2.13it/s][A
+
38%|โโโโ | 74/196 [00:43<00:56, 2.18it/s][A
+
38%|โโโโ | 75/196 [00:43<00:54, 2.22it/s][A
+
39%|โโโโ | 76/196 [00:43<00:53, 2.26it/s][A
+
39%|โโโโ | 77/196 [00:44<00:55, 2.13it/s][A
+
40%|โโโโ | 78/196 [00:44<00:55, 2.13it/s][A
+
40%|โโโโ | 79/196 [00:45<00:54, 2.13it/s][A
+
41%|โโโโ | 80/196 [00:45<00:58, 1.99it/s][A
+
41%|โโโโโ | 81/196 [00:46<00:57, 1.99it/s][A
+
42%|โโโโโ | 82/196 [00:46<00:57, 1.99it/s][A
+
42%|โโโโโ | 83/196 [00:47<00:59, 1.91it/s][A
+
43%|โโโโโ | 84/196 [00:48<00:58, 1.91it/s][A
+
43%|โโโโโ | 85/196 [00:48<00:58, 1.90it/s][A
+
44%|โโโโโ | 86/196 [00:49<00:59, 1.84it/s][A
+
44%|โโโโโ | 87/196 [00:49<00:58, 1.87it/s][A
+
45%|โโโโโ | 88/196 [00:50<00:59, 1.81it/s][A
+
45%|โโโโโ | 89/196 [00:50<01:00, 1.77it/s][A
+
46%|โโโโโ | 90/196 [00:51<00:59, 1.79it/s][A
+
46%|โโโโโ | 91/196 [00:51<00:55, 1.89it/s][A
+
47%|โโโโโ | 92/196 [00:52<00:53, 1.96it/s][A
+
47%|โโโโโ | 93/196 [00:53<00:56, 1.84it/s][A
+
48%|โโโโโ | 94/196 [00:53<00:53, 1.89it/s][A
+
48%|โโโโโ | 95/196 [00:54<00:53, 1.89it/s][A
+
49%|โโโโโ | 96/196 [00:54<00:54, 1.82it/s][A
+
49%|โโโโโ | 97/196 [00:55<00:52, 1.90it/s][A
+
50%|โโโโโ | 98/196 [00:55<00:52, 1.88it/s][A
+
51%|โโโโโ | 99/196 [00:56<00:51, 1.88it/s][A
+
51%|โโโโโ | 100/196 [00:56<00:44, 2.14it/s][A
+
52%|โโโโโโ | 101/196 [00:56<00:43, 2.18it/s][A
+
52%|โโโโโโ | 102/196 [00:57<00:46, 2.03it/s][A
+
53%|โโโโโโ | 103/196 [00:58<00:50, 1.83it/s][A
+
53%|โโโโโโ | 104/196 [00:58<00:54, 1.67it/s][A
+
54%|โโโโโโ | 105/196 [00:59<00:55, 1.65it/s][A
+
54%|โโโโโโ | 106/196 [01:00<00:52, 1.70it/s][A
+
55%|โโโโโโ | 107/196 [01:00<00:48, 1.82it/s][A
+
55%|โโโโโโ | 108/196 [01:00<00:43, 2.03it/s][A
+
56%|โโโโโโ | 109/196 [01:01<00:40, 2.13it/s][A
+
56%|โโโโโโ | 110/196 [01:01<00:40, 2.12it/s][A
+
57%|โโโโโโ | 111/196 [01:02<00:40, 2.10it/s][A
+
57%|โโโโโโ | 112/196 [01:02<00:42, 1.99it/s][A
+
58%|โโโโโโ | 113/196 [01:03<00:40, 2.05it/s][A
+
58%|โโโโโโ | 114/196 [01:03<00:37, 2.19it/s][A
+
59%|โโโโโโ | 115/196 [01:04<00:36, 2.22it/s][A
+
59%|โโโโโโ | 116/196 [01:04<00:35, 2.23it/s][A
+
60%|โโโโโโ | 117/196 [01:04<00:33, 2.39it/s][A
+
60%|โโโโโโ | 118/196 [01:05<00:29, 2.61it/s][A
+
61%|โโโโโโ | 119/196 [01:05<00:32, 2.36it/s][A
+
61%|โโโโโโ | 120/196 [01:06<00:33, 2.28it/s][A
+
62%|โโโโโโโ | 121/196 [01:06<00:33, 2.27it/s][A
+
62%|โโโโโโโ | 122/196 [01:07<00:33, 2.22it/s][A
+
63%|โโโโโโโ | 123/196 [01:07<00:31, 2.31it/s][A
+
63%|โโโโโโโ | 124/196 [01:07<00:32, 2.21it/s][A
+
64%|โโโโโโโ | 125/196 [01:08<00:32, 2.19it/s][A
+
64%|โโโโโโโ | 126/196 [01:09<00:37, 1.86it/s][A
+
65%|โโโโโโโ | 127/196 [01:09<00:35, 1.94it/s][A
+
65%|โโโโโโโ | 128/196 [01:10<00:33, 2.03it/s][A
+
66%|โโโโโโโ | 129/196 [01:10<00:32, 2.07it/s][A
+
66%|โโโโโโโ | 130/196 [01:11<00:32, 2.01it/s][A
+
67%|โโโโโโโ | 131/196 [01:11<00:31, 2.07it/s][A
+
67%|โโโโโโโ | 132/196 [01:11<00:29, 2.19it/s][A
+
68%|โโโโโโโ | 133/196 [01:12<00:29, 2.17it/s][A
+
68%|โโโโโโโ | 134/196 [01:12<00:29, 2.13it/s][A
+
69%|โโโโโโโ | 135/196 [01:13<00:28, 2.18it/s][A
+
69%|โโโโโโโ | 136/196 [01:13<00:27, 2.16it/s][A
+
70%|โโโโโโโ | 137/196 [01:14<00:27, 2.18it/s][A
+
70%|โโโโโโโ | 138/196 [01:14<00:26, 2.21it/s][A
+
71%|โโโโโโโ | 139/196 [01:15<00:26, 2.12it/s][A
+
71%|โโโโโโโโ | 140/196 [01:15<00:25, 2.22it/s][A
+
72%|โโโโโโโโ | 141/196 [01:16<00:24, 2.29it/s][A
+
72%|โโโโโโโโ | 142/196 [01:16<00:24, 2.21it/s][A
+
73%|โโโโโโโโ | 143/196 [01:16<00:24, 2.15it/s][A
+
73%|โโโโโโโโ | 144/196 [01:17<00:23, 2.23it/s][A
+
74%|โโโโโโโโ | 145/196 [01:17<00:21, 2.40it/s][A
+
74%|โโโโโโโโ | 146/196 [01:18<00:20, 2.46it/s][A
+
75%|โโโโโโโโ | 147/196 [01:18<00:20, 2.45it/s][A
+
76%|โโโโโโโโ | 148/196 [01:18<00:20, 2.40it/s][A
+
76%|โโโโโโโโ | 149/196 [01:19<00:18, 2.53it/s][A
+
77%|โโโโโโโโ | 150/196 [01:19<00:20, 2.27it/s][A
+
77%|โโโโโโโโ | 151/196 [01:20<00:20, 2.20it/s][A
+
78%|โโโโโโโโ | 152/196 [01:20<00:19, 2.21it/s][A
+
78%|โโโโโโโโ | 153/196 [01:21<00:19, 2.20it/s][A
+
79%|โโโโโโโโ | 154/196 [01:21<00:18, 2.22it/s][A
+
79%|โโโโโโโโ | 155/196 [01:22<00:19, 2.07it/s][A
+
80%|โโโโโโโโ | 156/196 [01:22<00:20, 1.93it/s][A
+
80%|โโโโโโโโ | 157/196 [01:23<00:20, 1.91it/s][A
+
81%|โโโโโโโโ | 158/196 [01:23<00:18, 2.10it/s][A
+
81%|โโโโโโโโ | 159/196 [01:24<00:16, 2.23it/s][A
+
82%|โโโโโโโโโ | 160/196 [01:24<00:16, 2.24it/s][A
+
82%|โโโโโโโโโ | 161/196 [01:25<00:16, 2.18it/s][A
+
83%|โโโโโโโโโ | 162/196 [01:25<00:15, 2.22it/s][A
+
83%|โโโโโโโโโ | 163/196 [01:25<00:14, 2.25it/s][A
+
84%|โโโโโโโโโ | 164/196 [01:26<00:15, 2.07it/s][A
+
84%|โโโโโโโโโ | 165/196 [01:27<00:15, 2.03it/s][A
+
85%|โโโโโโโโโ | 166/196 [01:27<00:14, 2.13it/s][A
+
85%|โโโโโโโโโ | 167/196 [01:27<00:13, 2.18it/s][A
+
86%|โโโโโโโโโ | 168/196 [01:28<00:12, 2.31it/s][A
+
86%|โโโโโโโโโ | 169/196 [01:28<00:12, 2.18it/s][A
+
87%|โโโโโโโโโ | 170/196 [01:29<00:12, 2.07it/s][A
+
87%|โโโโโโโโโ | 171/196 [01:29<00:11, 2.10it/s][A
+
88%|โโโโโโโโโ | 172/196 [01:30<00:11, 2.08it/s][A
+
88%|โโโโโโโโโ | 173/196 [01:30<00:11, 2.08it/s][A
+
89%|โโโโโโโโโ | 174/196 [01:31<00:11, 1.97it/s][A
+
89%|โโโโโโโโโ | 175/196 [01:32<00:13, 1.57it/s][A
+
90%|โโโโโโโโโ | 176/196 [01:33<00:17, 1.11it/s][A
+
90%|โโโโโโโโโ | 177/196 [01:34<00:18, 1.01it/s][A
+
91%|โโโโโโโโโ | 178/196 [01:36<00:20, 1.13s/it][A
+
91%|โโโโโโโโโโ| 179/196 [01:37<00:17, 1.05s/it][A
+
92%|โโโโโโโโโโ| 180/196 [01:37<00:14, 1.14it/s][A
+
92%|โโโโโโโโโโ| 181/196 [01:38<00:11, 1.32it/s][A
+
93%|โโโโโโโโโโ| 182/196 [01:38<00:09, 1.48it/s][A
+
93%|โโโโโโโโโโ| 183/196 [01:39<00:08, 1.55it/s][A
+
94%|โโโโโโโโโโ| 184/196 [01:39<00:07, 1.69it/s][A
+
94%|โโโโโโโโโโ| 185/196 [01:40<00:06, 1.71it/s][A
+
95%|โโโโโโโโโโ| 186/196 [01:40<00:05, 1.71it/s][A
+
95%|โโโโโโโโโโ| 187/196 [01:41<00:04, 1.84it/s][A
+
96%|โโโโโโโโโโ| 188/196 [01:41<00:04, 1.92it/s][A
+
96%|โโโโโโโโโโ| 189/196 [01:42<00:03, 1.97it/s][A
+
97%|โโโโโโโโโโ| 190/196 [01:42<00:02, 2.08it/s][A
+
97%|โโโโโโโโโโ| 191/196 [01:43<00:02, 2.18it/s][A
+
98%|โโโโโโโโโโ| 192/196 [01:43<00:01, 2.14it/s][A
+
98%|โโโโโโโโโโ| 193/196 [01:44<00:01, 2.11it/s][A
+
99%|โโโโโโโโโโ| 194/196 [01:44<00:00, 2.16it/s][A
+
99%|โโโโโโโโโโ| 195/196 [01:44<00:00, 2.22it/s][A
+
100%|โโโโโโโโโโ| 196/196 [01:45<00:00, 2.88it/s][A
+
[A
2%|โ | 300/15000 [09:00<2:43:21, 1.50it/s]
+
100%|โโโโโโโโโโ| 196/196 [01:50<00:00, 2.88it/s][A
+
[A/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
2%|โ | 301/15000 [09:12<151:53:41, 37.20s/it]
2%|โ | 301/15000 [09:12<151:53:41, 37.20s/it]
2%|โ | 302/15000 [09:13<108:17:27, 26.52s/it]
2%|โ | 302/15000 [09:13<108:17:27, 26.52s/it]
2%|โ | 303/15000 [09:14<77:21:38, 18.95s/it]
2%|โ | 303/15000 [09:14<77:21:38, 18.95s/it]
2%|โ | 304/15000 [09:16<55:38:07, 13.63s/it]
2%|โ | 304/15000 [09:16<55:38:07, 13.63s/it]
2%|โ | 305/15000 [09:17<40:17:47, 9.87s/it]
2%|โ | 305/15000 [09:17<40:17:47, 9.87s/it]
2%|โ | 306/15000 [09:18<29:27:21, 7.22s/it]
2%|โ | 306/15000 [09:18<29:27:21, 7.22s/it]
2%|โ | 307/15000 [09:19<21:45:46, 5.33s/it]
2%|โ | 307/15000 [09:19<21:45:46, 5.33s/it]
2%|โ | 308/15000 [09:20<16:21:10, 4.01s/it]
2%|โ | 308/15000 [09:20<16:21:10, 4.01s/it]
2%|โ | 309/15000 [09:21<12:31:51, 3.07s/it]
2%|โ | 309/15000 [09:21<12:31:51, 3.07s/it]
2%|โ | 310/15000 [09:21<9:47:50, 2.40s/it]
2%|โ | 310/15000 [09:21<9:47:50, 2.40s/it]
2%|โ | 311/15000 [09:22<7:52:15, 1.93s/it]
2%|โ | 311/15000 [09:22<7:52:15, 1.93s/it]
2%|โ | 312/15000 [09:23<6:28:24, 1.59s/it]
2%|โ | 312/15000 [09:23<6:28:24, 1.59s/it]
2%|โ | 313/15000 [09:24<5:23:44, 1.32s/it]
2%|โ | 313/15000 [09:24<5:23:44, 1.32s/it]
2%|โ | 314/15000 [09:24<4:36:41, 1.13s/it]
2%|โ | 314/15000 [09:24<4:36:41, 1.13s/it]
2%|โ | 315/15000 [09:25<4:04:59, 1.00s/it]
2%|โ | 315/15000 [09:25<4:04:59, 1.00s/it]
2%|โ | 316/15000 [09:26<3:42:58, 1.10it/s]
2%|โ | 316/15000 [09:26<3:42:58, 1.10it/s]
2%|โ | 317/15000 [09:26<3:28:21, 1.17it/s]
2%|โ | 317/15000 [09:26<3:28:21, 1.17it/s]
2%|โ | 318/15000 [09:27<3:14:08, 1.26it/s]
2%|โ | 318/15000 [09:27<3:14:08, 1.26it/s]
2%|โ | 319/15000 [09:28<3:01:35, 1.35it/s]
2%|โ | 319/15000 [09:28<3:01:35, 1.35it/s]
2%|โ | 320/15000 [09:28<2:50:53, 1.43it/s]
2%|โ | 320/15000 [09:28<2:50:53, 1.43it/s]
2%|โ | 321/15000 [09:29<2:43:14, 1.50it/s]
2%|โ | 321/15000 [09:29<2:43:14, 1.50it/s]
2%|โ | 322/15000 [09:30<2:37:33, 1.55it/s]
2%|โ | 322/15000 [09:30<2:37:33, 1.55it/s]
2%|โ | 323/15000 [09:30<2:33:32, 1.59it/s]
2%|โ | 323/15000 [09:30<2:33:32, 1.59it/s]
2%|โ | 324/15000 [09:31<2:28:08, 1.65it/s]
2%|โ | 324/15000 [09:31<2:28:08, 1.65it/s]
2%|โ | 325/15000 [09:31<2:22:10, 1.72it/s]
2%|โ | 325/15000 [09:31<2:22:10, 1.72it/s]
2%|โ | 326/15000 [09:32<2:16:41, 1.79it/s]
2%|โ | 326/15000 [09:32<2:16:41, 1.79it/s]
2%|โ | 327/15000 [09:32<2:11:59, 1.85it/s]
2%|โ | 327/15000 [09:32<2:11:59, 1.85it/s]
2%|โ | 328/15000 [09:33<2:08:52, 1.90it/s]
2%|โ | 328/15000 [09:33<2:08:52, 1.90it/s]
2%|โ | 329/15000 [09:33<2:08:00, 1.91it/s]
2%|โ | 329/15000 [09:33<2:08:00, 1.91it/s]
2%|โ | 330/15000 [09:34<2:06:25, 1.93it/s]
2%|โ | 330/15000 [09:34<2:06:25, 1.93it/s]
2%|โ | 331/15000 [09:34<2:02:36, 1.99it/s]
2%|โ | 331/15000 [09:34<2:02:36, 1.99it/s]
2%|โ | 332/15000 [09:35<1:57:58, 2.07it/s]
2%|โ | 332/15000 [09:35<1:57:58, 2.07it/s]
2%|โ | 333/15000 [09:35<1:52:20, 2.18it/s]
2%|โ | 333/15000 [09:35<1:52:20, 2.18it/s]
2%|โ | 334/15000 [09:35<1:49:04, 2.24it/s]
2%|โ | 334/15000 [09:35<1:49:04, 2.24it/s]
2%|โ | 335/15000 [09:36<1:46:53, 2.29it/s]
2%|โ | 335/15000 [09:36<1:46:53, 2.29it/s]
2%|โ | 336/15000 [09:36<1:45:09, 2.32it/s]
2%|โ | 336/15000 [09:36<1:45:09, 2.32it/s]
2%|โ | 337/15000 [09:37<1:52:12, 2.18it/s]
2%|โ | 337/15000 [09:37<1:52:12, 2.18it/s]
2%|โ | 338/15000 [09:37<1:49:09, 2.24it/s]
2%|โ | 338/15000 [09:37<1:49:09, 2.24it/s]
2%|โ | 339/15000 [09:38<1:43:04, 2.37it/s]
2%|โ | 339/15000 [09:38<1:43:04, 2.37it/s]
2%|โ | 340/15000 [09:38<1:37:16, 2.51it/s]
2%|โ | 340/15000 [09:38<1:37:16, 2.51it/s]
2%|โ | 341/15000 [09:38<1:32:29, 2.64it/s]
2%|โ | 341/15000 [09:38<1:32:29, 2.64it/s]
2%|โ | 342/15000 [09:39<1:28:37, 2.76it/s]
2%|โ | 342/15000 [09:39<1:28:37, 2.76it/s]
2%|โ | 343/15000 [09:39<1:25:39, 2.85it/s]
2%|โ | 343/15000 [09:39<1:25:39, 2.85it/s]
2%|โ | 344/15000 [09:39<1:24:26, 2.89it/s]
2%|โ | 344/15000 [09:39<1:24:26, 2.89it/s]
2%|โ | 345/15000 [09:40<1:22:18, 2.97it/s]
2%|โ | 345/15000 [09:40<1:22:18, 2.97it/s]
2%|โ | 346/15000 [09:40<1:20:42, 3.03it/s]
2%|โ | 346/15000 [09:40<1:20:42, 3.03it/s]
2%|โ | 347/15000 [09:40<1:15:26, 3.24it/s]
2%|โ | 347/15000 [09:40<1:15:26, 3.24it/s]
2%|โ | 348/15000 [09:40<1:11:09, 3.43it/s]
2%|โ | 348/15000 [09:40<1:11:09, 3.43it/s]
2%|โ | 349/15000 [09:41<1:07:04, 3.64it/s]
2%|โ | 349/15000 [09:41<1:07:04, 3.64it/s]
2%|โ | 350/15000 [09:42<2:41:10, 1.51it/s]
2%|โ | 350/15000 [09:42<2:41:10, 1.51it/s]
2%|โ | 351/15000 [09:44<4:29:04, 1.10s/it]
2%|โ | 351/15000 [09:44<4:29:04, 1.10s/it]
2%|โ | 352/15000 [09:46<4:49:37, 1.19s/it]
2%|โ | 352/15000 [09:46<4:49:37, 1.19s/it]
2%|โ | 353/15000 [09:47<4:54:12, 1.21s/it]
2%|โ | 353/15000 [09:47<4:54:12, 1.21s/it]
2%|โ | 354/15000 [09:48<4:47:52, 1.18s/it]
2%|โ | 354/15000 [09:48<4:47:52, 1.18s/it]
2%|โ | 355/15000 [09:49<4:36:45, 1.13s/it]
2%|โ | 355/15000 [09:49<4:36:45, 1.13s/it]
2%|โ | 356/15000 [09:50<4:21:15, 1.07s/it]
2%|โ | 356/15000 [09:50<4:21:15, 1.07s/it]
2%|โ | 357/15000 [09:51<4:08:12, 1.02s/it]
2%|โ | 357/15000 [09:51<4:08:12, 1.02s/it]
2%|โ | 358/15000 [09:52<3:54:37, 1.04it/s]
2%|โ | 358/15000 [09:52<3:54:37, 1.04it/s]
2%|โ | 359/15000 [09:53<3:43:40, 1.09it/s]
2%|โ | 359/15000 [09:53<3:43:40, 1.09it/s]
2%|โ | 360/15000 [09:53<3:34:44, 1.14it/s]
2%|โ | 360/15000 [09:53<3:34:44, 1.14it/s]
2%|โ | 361/15000 [09:54<3:27:43, 1.17it/s]
2%|โ | 361/15000 [09:54<3:27:43, 1.17it/s]
2%|โ | 362/15000 [09:55<3:18:00, 1.23it/s]
2%|โ | 362/15000 [09:55<3:18:00, 1.23it/s]
2%|โ | 363/15000 [09:56<3:09:40, 1.29it/s]
2%|โ | 363/15000 [09:56<3:09:40, 1.29it/s]
2%|โ | 364/15000 [09:56<3:04:00, 1.33it/s]
2%|โ | 364/15000 [09:56<3:04:00, 1.33it/s]
2%|โ | 365/15000 [09:57<2:58:51, 1.36it/s]
2%|โ | 365/15000 [09:57<2:58:51, 1.36it/s]
2%|โ | 366/15000 [09:58<2:56:14, 1.38it/s]
2%|โ | 366/15000 [09:58<2:56:14, 1.38it/s]
2%|โ | 367/15000 [09:58<2:51:54, 1.42it/s]
2%|โ | 367/15000 [09:58<2:51:54, 1.42it/s]
2%|โ | 368/15000 [09:59<2:46:29, 1.46it/s]
2%|โ | 368/15000 [09:59<2:46:29, 1.46it/s]
2%|โ | 369/15000 [10:00<2:40:14, 1.52it/s]
2%|โ | 369/15000 [10:00<2:40:14, 1.52it/s]
2%|โ | 370/15000 [10:00<2:36:03, 1.56it/s]
2%|โ | 370/15000 [10:00<2:36:03, 1.56it/s]
2%|โ | 371/15000 [10:01<2:34:17, 1.58it/s]
2%|โ | 371/15000 [10:01<2:34:17, 1.58it/s]
2%|โ | 372/15000 [10:01<2:32:48, 1.60it/s]
2%|โ | 372/15000 [10:01<2:32:48, 1.60it/s]
2%|โ | 373/15000 [10:02<2:30:24, 1.62it/s]
2%|โ | 373/15000 [10:02<2:30:24, 1.62it/s]
2%|โ | 374/15000 [10:02<2:25:01, 1.68it/s]
2%|โ | 374/15000 [10:02<2:25:01, 1.68it/s]
2%|โ | 375/15000 [10:03<2:19:30, 1.75it/s]
2%|โ | 375/15000 [10:03<2:19:30, 1.75it/s]
3%|โ | 376/15000 [10:03<2:13:45, 1.82it/s]
3%|โ | 376/15000 [10:04<2:13:45, 1.82it/s]
3%|โ | 377/15000 [10:04<2:10:40, 1.87it/s]
3%|โ | 377/15000 [10:04<2:10:40, 1.87it/s]
3%|โ | 378/15000 [10:05<2:09:07, 1.89it/s]
3%|โ | 378/15000 [10:05<2:09:07, 1.89it/s]
3%|โ | 379/15000 [10:05<2:07:39, 1.91it/s]
3%|โ | 379/15000 [10:05<2:07:39, 1.91it/s]
3%|โ | 380/15000 [10:06<2:06:53, 1.92it/s]
3%|โ | 380/15000 [10:06<2:06:53, 1.92it/s]
3%|โ | 381/15000 [10:06<2:06:25, 1.93it/s]
3%|โ | 381/15000 [10:06<2:06:25, 1.93it/s]
3%|โ | 382/15000 [10:07<2:01:53, 2.00it/s]
3%|โ | 382/15000 [10:07<2:01:53, 2.00it/s]
3%|โ | 383/15000 [10:07<2:04:59, 1.95it/s]
3%|โ | 383/15000 [10:07<2:04:59, 1.95it/s]
3%|โ | 384/15000 [10:07<1:58:28, 2.06it/s]
3%|โ | 384/15000 [10:07<1:58:28, 2.06it/s]
3%|โ | 385/15000 [10:08<1:52:59, 2.16it/s]
3%|โ | 385/15000 [10:08<1:52:59, 2.16it/s]
3%|โ | 386/15000 [10:08<1:49:33, 2.22it/s]
3%|โ | 386/15000 [10:08<1:49:33, 2.22it/s]
3%|โ | 387/15000 [10:09<1:47:17, 2.27it/s]
3%|โ | 387/15000 [10:09<1:47:17, 2.27it/s]
3%|โ | 388/15000 [10:09<1:46:03, 2.30it/s]
3%|โ | 388/15000 [10:09<1:46:03, 2.30it/s]
3%|โ | 389/15000 [10:10<1:43:11, 2.36it/s]
3%|โ | 389/15000 [10:10<1:43:11, 2.36it/s]
3%|โ | 390/15000 [10:10<1:37:53, 2.49it/s]
3%|โ | 390/15000 [10:10<1:37:53, 2.49it/s]
3%|โ | 391/15000 [10:10<1:32:11, 2.64it/s]
3%|โ | 391/15000 [10:10<1:32:11, 2.64it/s]
3%|โ | 392/15000 [10:11<1:28:24, 2.75it/s]
3%|โ | 392/15000 [10:11<1:28:24, 2.75it/s]
3%|โ | 393/15000 [10:11<1:24:55, 2.87it/s]
3%|โ | 393/15000 [10:11<1:24:55, 2.87it/s]
3%|โ | 394/15000 [10:11<1:23:14, 2.92it/s]
3%|โ | 394/15000 [10:11<1:23:14, 2.92it/s]
\ No newline at end of file