Priyanship commited on
Commit
ab678ea
·
verified ·
1 Parent(s): ed073a3

Training in progress, step 500

Browse files
indicwav2vec_trainwtagsv2ibs_MUCS_warmup500_s300shuff100_2933139.out ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/15000 [00:00<?, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
2
+ wandb: - Waiting for wandb.init()...
3
+ wandb: $ pip install wandb --upgrade
4
+ wandb: Tracking run with wandb version 0.17.6
5
+ wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240924_172213-gwlxc9jh
6
+ wandb: Run `wandb offline` to turn off syncing.
7
+ wandb: Syncing run retrainwithtagsv2ibs_indicw2v_ad0_3_hd_02_featd_0_3_lr6e-4_warmup500_s300_shuff100
8
+ wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
9
+ wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/gwlxc9jh
10
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
11
+ warnings.warn(
12
+ 09/24/2024 17:22:18 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
13
+
14
+
15
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
16
+ warnings.warn(
17
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
18
+ warnings.warn(
19
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
20
+ warnings.warn(
21
+ /scratch/elec/puhe/p/palp3/MUCS/finetune_script_wtags_partdata.py:509: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
22
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
23
+ Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
24
+ - This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
25
+ - This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
26
+ Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
27
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
28
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
29
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
30
+ max_steps is given, it will override any value given in num_train_epochs
31
+ Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=151, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
32
+ 149: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
33
+ 150: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
34
+ 151: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
35
+ 152: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
36
+ }
37
+ CHECK MODEL PARAMS Wav2Vec2ForCTC(
38
+ (wav2vec2): Wav2Vec2Model(
39
+ (feature_extractor): Wav2Vec2FeatureEncoder(
40
+ (conv_layers): ModuleList(
41
+ (0): Wav2Vec2LayerNormConvLayer(
42
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
43
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
44
+ (activation): GELUActivation()
45
+ )
46
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
47
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
48
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
49
+ (activation): GELUActivation()
50
+ )
51
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
52
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
53
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
54
+ (activation): GELUActivation()
55
+ )
56
+ )
57
+ )
58
+ (feature_projection): Wav2Vec2FeatureProjection(
59
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
60
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
61
+ (dropout): Dropout(p=0.3, inplace=False)
62
+ )
63
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
64
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
65
+ (conv): ParametrizedConv1d(
66
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
67
+ (parametrizations): ModuleDict(
68
+ (weight): ParametrizationList(
69
+ (0): _WeightNorm()
70
+ )
71
+ )
72
+ )
73
+ (padding): Wav2Vec2SamePadLayer()
74
+ (activation): GELUActivation()
75
+ )
76
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
77
+ (dropout): Dropout(p=0.2, inplace=False)
78
+ (layers): ModuleList(
79
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
80
+ (attention): Wav2Vec2SdpaAttention(
81
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
82
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
83
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
84
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
85
+ )
86
+ (dropout): Dropout(p=0.2, inplace=False)
87
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
88
+ (feed_forward): Wav2Vec2FeedForward(
89
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
90
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
91
+ (intermediate_act_fn): GELUActivation()
92
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
93
+ (output_dropout): Dropout(p=0.2, inplace=False)
94
+ )
95
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
96
+ )
97
+ )
98
+ )
99
+ )
100
+ (dropout): Dropout(p=0.0, inplace=False)
101
+ (lm_head): Linear(in_features=1024, out_features=153, bias=True)
102
+ )
103
+
104
  0%| | 0/15000 [00:00<?, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
105
+ warnings.warn(
106
+ Traceback (most recent call last):
107
+ File "/scratch/elec/puhe/p/palp3/MUCS/finetune_script_wtags_partdata.py", line 799, in <module>
108
+ main()
109
+ File "/scratch/elec/puhe/p/palp3/MUCS/finetune_script_wtags_partdata.py", line 750, in main
110
+ train_result = trainer.train()
111
+ ^^^^^^^^^^^^^^^
112
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 1929, in train
113
+ return inner_training_loop(
114
+ ^^^^^^^^^^^^^^^^^^^^
115
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 2279, in _inner_training_loop
116
+ tr_loss_step = self.training_step(model, inputs)
117
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
118
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3318, in training_step
119
+ loss = self.compute_loss(model, inputs)
120
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
121
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3363, in compute_loss
122
+ outputs = model(**inputs)
123
+ ^^^^^^^^^^^^^^^
124
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
125
+ return self._call_impl(*args, **kwargs)
126
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
127
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
128
+ return forward_call(*args, **kwargs)
129
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
130
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/utils/operations.py", line 819, in forward
131
+ return model_forward(*args, **kwargs)
132
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
133
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/utils/operations.py", line 807, in __call__
134
+ return convert_to_fp32(self.model_forward(*args, **kwargs))
135
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
136
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/amp/autocast_mode.py", line 43, in decorate_autocast
137
+ return func(*args, **kwargs)
138
+ ^^^^^^^^^^^^^^^^^^^^^
139
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 2228, in forward
140
+ outputs = self.wav2vec2(
141
+ ^^^^^^^^^^^^^^
142
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
143
+ return self._call_impl(*args, **kwargs)
144
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
145
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
146
+ return forward_call(*args, **kwargs)
147
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
148
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1809, in forward
149
+ extract_features = self.feature_extractor(input_values)
150
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
151
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
152
+ return self._call_impl(*args, **kwargs)
153
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
154
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
155
+ return forward_call(*args, **kwargs)
156
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
157
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 463, in forward
158
+ hidden_states = conv_layer(hidden_states)
159
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
160
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
161
+ return self._call_impl(*args, **kwargs)
162
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
163
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
164
+ return forward_call(*args, **kwargs)
165
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
166
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 335, in forward
167
+ hidden_states = self.layer_norm(hidden_states)
168
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
169
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
170
+ return self._call_impl(*args, **kwargs)
171
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
172
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
173
+ return forward_call(*args, **kwargs)
174
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
175
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/normalization.py", line 202, in forward
176
+ return F.layer_norm(
177
+ ^^^^^^^^^^^^^
178
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/functional.py", line 2576, in layer_norm
179
+ return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
180
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
181
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 22.27 GiB. GPU 0 has a total capacity of 31.73 GiB of which 18.62 GiB is free. Including non-PyTorch memory, this process has 13.11 GiB memory in use. Of the allocated memory 12.74 GiB is allocated by PyTorch, and 6.49 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
182
+ wandb: - 0.008 MB of 0.008 MB uploaded
183
+ wandb: ⭐️ View project at: https://wandb.ai/priyanshipal/huggingface
184
+ wandb: Synced 6 W&B file(s), 0 media file(s), 1 artifact file(s) and 0 other file(s)
185
+ wandb: Find logs at: ./wandb/run-20240924_172213-gwlxc9jh/logs
186
+ wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.
indicwav2vec_trainwtagsv2ibs_MUCS_warmup500_s300shuff100_2933695.out ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/15000 [00:00<?, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
2
+ wandb: wandb version 0.18.1 is available! To upgrade, please run:
3
+ wandb: $ pip install wandb --upgrade
4
+ wandb: Tracking run with wandb version 0.17.6
5
+ wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240924_173727-kvrf6uiu
6
+ wandb: Run `wandb offline` to turn off syncing.
7
+ wandb: Syncing run retrainwithtagsv2ibs_indicw2v_ad0_3_hd_02_featd_0_3_lr6e-4_warmup500_s300_shuff100
8
+ wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
9
+ wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/kvrf6uiu
10
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
11
+ warnings.warn(
12
+ 09/24/2024 17:37:32 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
13
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
14
+ warnings.warn(
15
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
16
+ warnings.warn(
17
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
18
+ warnings.warn(
19
+ /scratch/elec/puhe/p/palp3/MUCS/finetune_script_wtags_partdata.py:509: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
20
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
21
+ Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
22
+ - This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
23
+ - This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
24
+ Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
25
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
26
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
27
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
28
+ max_steps is given, it will override any value given in num_train_epochs
29
+ Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=151, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
30
+ 149: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
31
+ 150: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
32
+ 151: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
33
+ 152: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
34
+ }
35
+ CHECK MODEL PARAMS Wav2Vec2ForCTC(
36
+ (wav2vec2): Wav2Vec2Model(
37
+ (feature_extractor): Wav2Vec2FeatureEncoder(
38
+ (conv_layers): ModuleList(
39
+ (0): Wav2Vec2LayerNormConvLayer(
40
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
41
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
42
+ (activation): GELUActivation()
43
+ )
44
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
45
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
46
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
47
+ (activation): GELUActivation()
48
+ )
49
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
50
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
51
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
52
+ (activation): GELUActivation()
53
+ )
54
+ )
55
+ )
56
+ (feature_projection): Wav2Vec2FeatureProjection(
57
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
58
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
59
+ (dropout): Dropout(p=0.3, inplace=False)
60
+ )
61
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
62
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
63
+ (conv): ParametrizedConv1d(
64
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
65
+ (parametrizations): ModuleDict(
66
+ (weight): ParametrizationList(
67
+ (0): _WeightNorm()
68
+ )
69
+ )
70
+ )
71
+ (padding): Wav2Vec2SamePadLayer()
72
+ (activation): GELUActivation()
73
+ )
74
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
75
+ (dropout): Dropout(p=0.2, inplace=False)
76
+ (layers): ModuleList(
77
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
78
+ (attention): Wav2Vec2SdpaAttention(
79
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
80
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
81
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
82
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
83
+ )
84
+ (dropout): Dropout(p=0.2, inplace=False)
85
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
86
+ (feed_forward): Wav2Vec2FeedForward(
87
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
88
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
89
+ (intermediate_act_fn): GELUActivation()
90
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
91
+ (output_dropout): Dropout(p=0.2, inplace=False)
92
+ )
93
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
94
+ )
95
+ )
96
+ )
97
+ )
98
+ (dropout): Dropout(p=0.0, inplace=False)
99
+ (lm_head): Linear(in_features=1024, out_features=153, bias=True)
100
+ )
101
+
102
  0%| | 0/15000 [00:00<?, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
103
+ warnings.warn(
104
+ Traceback (most recent call last):
105
+ File "/scratch/elec/puhe/p/palp3/MUCS/finetune_script_wtags_partdata.py", line 799, in <module>
106
+ main()
107
+ File "/scratch/elec/puhe/p/palp3/MUCS/finetune_script_wtags_partdata.py", line 750, in main
108
+ train_result = trainer.train()
109
+ ^^^^^^^^^^^^^^^
110
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 1929, in train
111
+ return inner_training_loop(
112
+ ^^^^^^^^^^^^^^^^^^^^
113
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 2279, in _inner_training_loop
114
+ tr_loss_step = self.training_step(model, inputs)
115
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
116
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3318, in training_step
117
+ loss = self.compute_loss(model, inputs)
118
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
119
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3363, in compute_loss
120
+ outputs = model(**inputs)
121
+ ^^^^^^^^^^^^^^^
122
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
123
+ return self._call_impl(*args, **kwargs)
124
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
125
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
126
+ return forward_call(*args, **kwargs)
127
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
128
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/utils/operations.py", line 819, in forward
129
+ return model_forward(*args, **kwargs)
130
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
131
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/utils/operations.py", line 807, in __call__
132
+ return convert_to_fp32(self.model_forward(*args, **kwargs))
133
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
134
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/amp/autocast_mode.py", line 43, in decorate_autocast
135
+ return func(*args, **kwargs)
136
+ ^^^^^^^^^^^^^^^^^^^^^
137
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 2228, in forward
138
+ outputs = self.wav2vec2(
139
+ ^^^^^^^^^^^^^^
140
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
141
+ return self._call_impl(*args, **kwargs)
142
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
143
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
144
+ return forward_call(*args, **kwargs)
145
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
146
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1809, in forward
147
+ extract_features = self.feature_extractor(input_values)
148
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
149
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
150
+ return self._call_impl(*args, **kwargs)
151
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
152
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
153
+ return forward_call(*args, **kwargs)
154
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
155
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 463, in forward
156
+ hidden_states = conv_layer(hidden_states)
157
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
158
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
159
+ return self._call_impl(*args, **kwargs)
160
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
161
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
162
+ return forward_call(*args, **kwargs)
163
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
164
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 335, in forward
165
+ hidden_states = self.layer_norm(hidden_states)
166
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
167
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
168
+ return self._call_impl(*args, **kwargs)
169
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
170
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
171
+ return forward_call(*args, **kwargs)
172
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
173
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/normalization.py", line 202, in forward
174
+ return F.layer_norm(
175
+ ^^^^^^^^^^^^^
176
+ File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/functional.py", line 2576, in layer_norm
177
+ return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
178
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
179
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 11.13 GiB. GPU 0 has a total capacity of 31.73 GiB of which 2.14 GiB is free. Including non-PyTorch memory, this process has 29.59 GiB memory in use. Of the allocated memory 29.23 GiB is allocated by PyTorch, and 3.95 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
180
+ wandb: - 0.005 MB of 0.005 MB uploaded
181
+ wandb: ⭐️ View project at: https://wandb.ai/priyanshipal/huggingface
182
+ wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
183
+ wandb: Find logs at: ./wandb/run-20240924_173727-kvrf6uiu/logs
184
+ wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.
indicwav2vec_trainwtagsv2ibs_MUCS_warmup500_s300shuff100_2934458.out ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:755cae88caa8f24d53735adc78d12bd512963cb249de7b114547f4cf8cb99e82
3
  size 1262434780
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17fac35be207ce7ebad7efa802ab5b4a5c67e53ee66146b88ae1e9f2f41d6a71
3
  size 1262434780
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0092b7cc3b323327fa74f2b31a42ea84e9e278a8ba73c73085af0ac7838c9a28
3
  size 5496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:071e6d4afa796c2acebfd47a3664f0a7ea8528a7313422e5fdfafeede8b71d61
3
  size 5496