End of training
Browse files- README.md +3 -3
- all_results.json +12 -12
- eval_results.json +7 -7
- indicwav2vec_trainwtags_MUCS_warmup2000_s300shuff100_2212172.out +124 -0
- model.safetensors +1 -1
- predictionswtags_indicw2v_ad0_3_hd_02_featd_0_2_lr6e-4_warmup2000_s300_shuff100.txt +2 -2
- train_results.json +6 -6
- trainer_state.json +0 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -16,9 +16,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model was trained from scratch on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- Cer: 0.
|
21 |
-
- Wer: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
16 |
|
17 |
This model was trained from scratch on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.9947
|
20 |
+
- Cer: 0.4133
|
21 |
+
- Wer: 0.6195
|
22 |
|
23 |
## Model description
|
24 |
|
all_results.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_cer": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
"eval_samples": 3136,
|
7 |
-
"eval_samples_per_second": 19.
|
8 |
-
"eval_steps_per_second": 1.
|
9 |
-
"eval_wer": 0.
|
10 |
-
"total_flos":
|
11 |
-
"train_loss":
|
12 |
-
"train_runtime":
|
13 |
"train_samples": 20000,
|
14 |
-
"train_samples_per_second":
|
15 |
-
"train_steps_per_second": 0.
|
16 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 9.6,
|
3 |
+
"eval_cer": 0.4133216406903974,
|
4 |
+
"eval_loss": 1.9947007894515991,
|
5 |
+
"eval_runtime": 158.2803,
|
6 |
"eval_samples": 3136,
|
7 |
+
"eval_samples_per_second": 19.813,
|
8 |
+
"eval_steps_per_second": 1.238,
|
9 |
+
"eval_wer": 0.6194798466480157,
|
10 |
+
"total_flos": 3.700768773245485e+19,
|
11 |
+
"train_loss": 2.825458660195271,
|
12 |
+
"train_runtime": 12931.7591,
|
13 |
"train_samples": 20000,
|
14 |
+
"train_samples_per_second": 14.847,
|
15 |
+
"train_steps_per_second": 0.464
|
16 |
}
|
eval_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_cer": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
"eval_samples": 3136,
|
7 |
-
"eval_samples_per_second": 19.
|
8 |
-
"eval_steps_per_second": 1.
|
9 |
-
"eval_wer": 0.
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 9.6,
|
3 |
+
"eval_cer": 0.4133216406903974,
|
4 |
+
"eval_loss": 1.9947007894515991,
|
5 |
+
"eval_runtime": 158.2803,
|
6 |
"eval_samples": 3136,
|
7 |
+
"eval_samples_per_second": 19.813,
|
8 |
+
"eval_steps_per_second": 1.238,
|
9 |
+
"eval_wer": 0.6194798466480157
|
10 |
}
|
indicwav2vec_trainwtags_MUCS_warmup2000_s300shuff100_2212172.out
CHANGED
@@ -7586,3 +7586,127 @@ last prediction string <>धलता<>धवारा अधुवाधित
|
|
7586 |
|
7587 |
|
7588 |
|
7589 |
|
7590 |
[A
|
7591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7592 |
0%| | 0/196 [00:00<?, ?it/s]
|
7593 |
1%| | 2/196 [00:00<01:02, 3.08it/s]
|
7594 |
2%|▏ | 3/196 [00:01<01:30, 2.13it/s]
|
7595 |
2%|▏ | 4/196 [00:02<01:51, 1.72it/s]
|
7596 |
3%|▎ | 5/196 [00:02<02:04, 1.53it/s]
|
7597 |
3%|▎ | 6/196 [00:03<02:21, 1.34it/s]
|
7598 |
4%|▎ | 7/196 [00:04<02:24, 1.31it/s]
|
7599 |
4%|▍ | 8/196 [00:05<02:34, 1.22it/s]
|
7600 |
5%|▍ | 9/196 [00:07<03:23, 1.09s/it]
|
7601 |
5%|▌ | 10/196 [00:08<03:55, 1.27s/it]
|
7602 |
6%|▌ | 11/196 [00:10<04:30, 1.46s/it]
|
7603 |
6%|▌ | 12/196 [00:12<04:35, 1.50s/it]
|
7604 |
7%|▋ | 13/196 [00:13<03:59, 1.31s/it]
|
7605 |
7%|▋ | 14/196 [00:13<03:23, 1.12s/it]
|
7606 |
8%|▊ | 15/196 [00:14<02:53, 1.04it/s]
|
7607 |
8%|▊ | 16/196 [00:15<02:43, 1.10it/s]
|
7608 |
9%|▊ | 17/196 [00:16<02:41, 1.11it/s]
|
7609 |
9%|▉ | 18/196 [00:17<03:04, 1.04s/it]
|
7610 |
10%|▉ | 19/196 [00:19<03:51, 1.31s/it]
|
7611 |
10%|█ | 20/196 [00:21<04:01, 1.37s/it]
|
7612 |
11%|█ | 21/196 [00:22<04:08, 1.42s/it]
|
7613 |
11%|█ | 22/196 [00:23<03:52, 1.34s/it]
|
7614 |
12%|█▏ | 23/196 [00:24<03:26, 1.20s/it]
|
7615 |
12%|█▏ | 24/196 [00:25<02:47, 1.03it/s]
|
7616 |
13%|█▎ | 25/196 [00:25<02:26, 1.17it/s]
|
7617 |
13%|█▎ | 26/196 [00:26<02:10, 1.31it/s]
|
7618 |
14%|█▍ | 27/196 [00:26<02:00, 1.40it/s]
|
7619 |
14%|█▍ | 28/196 [00:27<01:56, 1.45it/s]
|
7620 |
15%|█▍ | 29/196 [00:28<01:56, 1.43it/s]
|
7621 |
15%|█▌ | 30/196 [00:28<01:54, 1.44it/s]
|
7622 |
16%|█▌ | 31/196 [00:29<01:43, 1.59it/s]
|
7623 |
16%|█▋ | 32/196 [00:29<01:44, 1.57it/s]
|
7624 |
17%|█▋ | 33/196 [00:30<01:59, 1.37it/s]
|
7625 |
17%|█▋ | 34/196 [00:32<02:24, 1.12it/s]
|
7626 |
18%|█▊ | 35/196 [00:33<02:35, 1.03it/s]
|
7627 |
18%|█▊ | 36/196 [00:34<02:51, 1.07s/it]
|
7628 |
19%|█▉ | 37/196 [00:35<02:45, 1.04s/it]
|
7629 |
19%|█▉ | 38/196 [00:36<02:34, 1.03it/s]
|
7630 |
20%|█▉ | 39/196 [00:37<02:22, 1.10it/s]
|
7631 |
20%|██ | 40/196 [00:37<02:13, 1.17it/s]
|
7632 |
21%|██ | 41/196 [00:38<02:02, 1.27it/s]
|
7633 |
21%|██▏ | 42/196 [00:39<01:57, 1.31it/s]
|
7634 |
22%|██▏ | 43/196 [00:39<01:55, 1.33it/s]
|
7635 |
22%|██▏ | 44/196 [00:40<01:50, 1.38it/s]
|
7636 |
23%|██▎ | 45/196 [00:41<01:44, 1.45it/s]
|
7637 |
23%|██▎ | 46/196 [00:41<01:39, 1.51it/s]
|
7638 |
24%|██▍ | 47/196 [00:42<01:37, 1.52it/s]
|
7639 |
24%|██▍ | 48/196 [00:43<01:34, 1.57it/s]
|
7640 |
25%|██▌ | 49/196 [00:43<01:33, 1.58it/s]
|
7641 |
26%|██▌ | 50/196 [00:44<01:31, 1.60it/s]
|
7642 |
26%|██▌ | 51/196 [00:44<01:29, 1.62it/s]
|
7643 |
27%|██▋ | 52/196 [00:45<01:30, 1.59it/s]
|
7644 |
27%|██▋ | 53/196 [00:46<01:30, 1.58it/s]
|
7645 |
28%|██▊ | 54/196 [00:46<01:30, 1.57it/s]
|
7646 |
28%|██▊ | 55/196 [00:47<01:39, 1.42it/s]
|
7647 |
29%|██▊ | 56/196 [00:48<01:46, 1.32it/s]
|
7648 |
29%|██▉ | 57/196 [00:49<01:51, 1.24it/s]
|
7649 |
30%|██▉ | 58/196 [00:50<01:52, 1.22it/s]
|
7650 |
30%|███ | 59/196 [00:51<01:50, 1.24it/s]
|
7651 |
31%|███ | 60/196 [00:51<01:38, 1.38it/s]
|
7652 |
31%|███ | 61/196 [00:52<01:32, 1.45it/s]
|
7653 |
32%|███▏ | 62/196 [00:52<01:34, 1.42it/s]
|
7654 |
32%|███▏ | 63/196 [00:53<01:35, 1.39it/s]
|
7655 |
33%|███▎ | 64/196 [00:54<01:34, 1.39it/s]
|
7656 |
33%|███▎ | 65/196 [00:55<01:33, 1.40it/s]
|
7657 |
34%|███▎ | 66/196 [00:55<01:37, 1.33it/s]
|
7658 |
34%|███▍ | 67/196 [00:56<01:39, 1.29it/s]
|
7659 |
35%|███▍ | 68/196 [00:57<01:50, 1.15it/s]
|
7660 |
35%|███▌ | 69/196 [00:58<01:48, 1.17it/s]
|
7661 |
36%|███▌ | 70/196 [00:59<01:41, 1.24it/s]
|
7662 |
36%|███▌ | 71/196 [01:00<01:35, 1.31it/s]
|
7663 |
37%|███▋ | 72/196 [01:00<01:29, 1.38it/s]
|
7664 |
37%|███▋ | 73/196 [01:01<01:22, 1.49it/s]
|
7665 |
38%|███▊ | 74/196 [01:01<01:18, 1.56it/s]
|
7666 |
38%|███▊ | 75/196 [01:02<01:16, 1.59it/s]
|
7667 |
39%|███▉ | 76/196 [01:03<01:14, 1.62it/s]
|
7668 |
39%|███▉ | 77/196 [01:03<01:17, 1.54it/s]
|
7669 |
40%|███▉ | 78/196 [01:04<01:18, 1.50it/s]
|
7670 |
40%|████ | 79/196 [01:05<01:17, 1.52it/s]
|
7671 |
41%|████ | 80/196 [01:05<01:20, 1.43it/s]
|
7672 |
41%|████▏ | 81/196 [01:06<01:21, 1.41it/s]
|
7673 |
42%|████▏ | 82/196 [01:07<01:20, 1.42it/s]
|
7674 |
42%|████▏ | 83/196 [01:08<01:22, 1.37it/s]
|
7675 |
43%|████▎ | 84/196 [01:08<01:21, 1.37it/s]
|
7676 |
43%|████▎ | 85/196 [01:09<01:21, 1.36it/s]
|
7677 |
44%|████▍ | 86/196 [01:10<01:22, 1.33it/s]
|
7678 |
44%|████▍ | 87/196 [01:11<01:22, 1.32it/s]
|
7679 |
45%|████▍ | 88/196 [01:11<01:23, 1.29it/s]
|
7680 |
45%|████▌ | 89/196 [01:12<01:24, 1.26it/s]
|
7681 |
46%|████▌ | 90/196 [01:13<01:22, 1.28it/s]
|
7682 |
46%|████▋ | 91/196 [01:14<01:18, 1.35it/s]
|
7683 |
47%|████▋ | 92/196 [01:14<01:14, 1.39it/s]
|
7684 |
47%|████▋ | 93/196 [01:15<01:18, 1.32it/s]
|
7685 |
48%|████▊ | 94/196 [01:16<01:16, 1.33it/s]
|
7686 |
48%|████▊ | 95/196 [01:17<01:15, 1.34it/s]
|
7687 |
49%|████▉ | 96/196 [01:18<01:17, 1.29it/s]
|
7688 |
49%|████▉ | 97/196 [01:18<01:13, 1.34it/s]
|
7689 |
50%|████�� | 98/196 [01:19<01:14, 1.31it/s]
|
7690 |
51%|█████ | 99/196 [01:20<01:08, 1.41it/s]
|
7691 |
51%|█████ | 100/196 [01:20<01:00, 1.58it/s]
|
7692 |
52%|█████▏ | 101/196 [01:21<00:59, 1.60it/s]
|
7693 |
52%|█████▏ | 102/196 [01:21<01:02, 1.49it/s]
|
7694 |
53%|█████▎ | 103/196 [01:22<01:08, 1.35it/s]
|
7695 |
53%|█████▎ | 104/196 [01:23<01:15, 1.21it/s]
|
7696 |
54%|█████▎ | 105/196 [01:24<01:16, 1.20it/s]
|
7697 |
54%|█████▍ | 106/196 [01:25<01:14, 1.22it/s]
|
7698 |
55%|█████▍ | 107/196 [01:26<01:08, 1.29it/s]
|
7699 |
55%|█████▌ | 108/196 [01:26<01:01, 1.44it/s]
|
7700 |
56%|█████▌ | 109/196 [01:27<00:58, 1.50it/s]
|
7701 |
56%|█████▌ | 110/196 [01:27<00:56, 1.51it/s]
|
7702 |
57%|█████▋ | 111/196 [01:28<00:56, 1.50it/s]
|
7703 |
57%|█████▋ | 112/196 [01:29<00:58, 1.44it/s]
|
7704 |
58%|█████▊ | 113/196 [01:30<00:56, 1.46it/s]
|
7705 |
58%|█████▊ | 114/196 [01:30<00:52, 1.55it/s]
|
7706 |
59%|█████▊ | 115/196 [01:31<00:51, 1.57it/s]
|
7707 |
59%|█████▉ | 116/196 [01:31<00:50, 1.58it/s]
|
7708 |
60%|█████▉ | 117/196 [01:32<00:46, 1.69it/s]
|
7709 |
60%|██████ | 118/196 [01:32<00:42, 1.85it/s]
|
7710 |
61%|██████ | 119/196 [01:33<00:45, 1.71it/s]
|
7711 |
61%|██████ | 120/196 [01:34<00:46, 1.65it/s]
|
7712 |
62%|██████▏ | 121/196 [01:34<00:46, 1.62it/s]
|
7713 |
62%|██████▏ | 122/196 [01:35<00:47, 1.57it/s]
|
7714 |
63%|██████▎ | 123/196 [01:35<00:45, 1.61it/s]
|
7715 |
63%|██████▎ | 124/196 [01:36<00:46, 1.56it/s]
|
7716 |
64%|██████▍ | 125/196 [01:37<00:45, 1.54it/s]
|
7717 |
64%|██████▍ | 126/196 [01:38<00:51, 1.36it/s]
|
7718 |
65%|██████▍ | 127/196 [01:38<00:49, 1.40it/s]
|
7719 |
65%|██████▌ | 128/196 [01:39<00:46, 1.46it/s]
|
7720 |
66%|██████▌ | 129/196 [01:40<00:45, 1.48it/s]
|
7721 |
66%|██████▋ | 130/196 [01:40<00:45, 1.45it/s]
|
7722 |
67%|██████▋ | 131/196 [01:41<00:44, 1.45it/s]
|
7723 |
67%|██████▋ | 132/196 [01:42<00:41, 1.55it/s]
|
7724 |
68%|██████▊ | 133/196 [01:42<00:40, 1.56it/s]
|
7725 |
68%|██████▊ | 134/196 [01:43<00:40, 1.51it/s]
|
7726 |
69%|██████▉ | 135/196 [01:44<00:39, 1.54it/s]
|
7727 |
69%|██████▉ | 136/196 [01:44<00:38, 1.55it/s]
|
7728 |
70%|██████▉ | 137/196 [01:45<00:38, 1.55it/s]
|
7729 |
70%|███████ | 138/196 [01:46<00:37, 1.57it/s]
|
7730 |
71%|███████ | 139/196 [01:46<00:37, 1.52it/s]
|
7731 |
71%|███████▏ | 140/196 [01:47<00:35, 1.57it/s]
|
7732 |
72%|███████▏ | 141/196 [01:47<00:34, 1.60it/s]
|
7733 |
72%|███████▏ | 142/196 [01:48<00:34, 1.55it/s]
|
7734 |
73%|███████▎ | 143/196 [01:49<00:35, 1.49it/s]
|
7735 |
73%|███████▎ | 144/196 [01:49<00:33, 1.55it/s]
|
7736 |
74%|███████▍ | 145/196 [01:50<00:30, 1.67it/s]
|
7737 |
74%|███████▍ | 146/196 [01:50<00:28, 1.73it/s]
|
7738 |
75%|███████▌ | 147/196 [01:51<00:28, 1.73it/s]
|
7739 |
76%|███████▌ | 148/196 [01:52<00:28, 1.71it/s]
|
7740 |
76%|███████▌ | 149/196 [01:52<00:26, 1.80it/s]
|
7741 |
77%|███████▋ | 150/196 [01:53<00:27, 1.64it/s]
|
7742 |
77%|███████▋ | 151/196 [01:54<00:28, 1.59it/s]
|
7743 |
78%|███████▊ | 152/196 [01:54<00:27, 1.59it/s]
|
7744 |
78%|███████▊ | 153/196 [01:55<00:27, 1.58it/s]
|
7745 |
79%|███████▊ | 154/196 [01:55<00:26, 1.58it/s]
|
7746 |
79%|███████▉ | 155/196 [01:56<00:27, 1.48it/s]
|
7747 |
80%|███████▉ | 156/196 [01:57<00:29, 1.34it/s]
|
7748 |
80%|████████ | 157/196 [01:58<00:30, 1.29it/s]
|
7749 |
81%|████████ | 158/196 [01:58<00:26, 1.43it/s]
|
7750 |
81%|████████ | 159/196 [01:59<00:24, 1.52it/s]
|
7751 |
82%|████████▏ | 160/196 [02:00<00:23, 1.56it/s]
|
7752 |
82%|████████▏ | 161/196 [02:00<00:22, 1.53it/s]
|
7753 |
83%|████████▎ | 162/196 [02:01<00:21, 1.55it/s]
|
7754 |
83%|████████▎ | 163/196 [02:02<00:20, 1.58it/s]
|
7755 |
84%|████████▎ | 164/196 [02:02<00:20, 1.58it/s]
|
7756 |
84%|████████▍ | 165/196 [02:03<00:20, 1.53it/s]
|
7757 |
85%|████████▍ | 166/196 [02:04<00:19, 1.56it/s]
|
7758 |
85%|████████▌ | 167/196 [02:04<00:18, 1.60it/s]
|
7759 |
86%|████████▌ | 168/196 [02:05<00:16, 1.68it/s]
|
7760 |
86%|████████▌ | 169/196 [02:05<00:16, 1.59it/s]
|
7761 |
87%|████████▋ | 170/196 [02:06<00:17, 1.51it/s]
|
7762 |
87%|████████▋ | 171/196 [02:07<00:16, 1.52it/s]
|
7763 |
88%|████████▊ | 172/196 [02:07<00:16, 1.49it/s]
|
7764 |
88%|████████▊ | 173/196 [02:08<00:15, 1.49it/s]
|
7765 |
89%|████████▉ | 174/196 [02:09<00:15, 1.42it/s]
|
7766 |
89%|████████▉ | 175/196 [02:10<00:18, 1.16it/s]
|
7767 |
90%|████████▉ | 176/196 [02:12<00:25, 1.28s/it]
|
7768 |
90%|█████████ | 177/196 [02:14<00:27, 1.45s/it]
|
7769 |
91%|█████████ | 178/196 [02:16<00:29, 1.62s/it]
|
7770 |
91%|█████████▏| 179/196 [02:18<00:27, 1.63s/it]
|
7771 |
92%|█████████▏| 180/196 [02:19<00:21, 1.34s/it]
|
7772 |
92%|█████████▏| 181/196 [02:19<00:17, 1.14s/it]
|
7773 |
93%|█████████▎| 182/196 [02:20<00:13, 1.01it/s]
|
7774 |
93%|█████████▎| 183/196 [02:21<00:12, 1.02it/s]
|
7775 |
94%|█████████▍| 184/196 [02:21<00:10, 1.13it/s]
|
7776 |
94%|█████████▍| 185/196 [02:22<00:09, 1.17it/s]
|
7777 |
95%|█████████▍| 186/196 [02:23<00:08, 1.16it/s]
|
7778 |
95%|█████████▌| 187/196 [02:24<00:07, 1.26it/s]
|
7779 |
96%|█████████▌| 188/196 [02:24<00:06, 1.33it/s]
|
7780 |
96%|█████████▋| 189/196 [02:25<00:05, 1.36it/s]
|
7781 |
97%|█████████▋| 190/196 [02:26<00:04, 1.44it/s]
|
7782 |
97%|█████████▋| 191/196 [02:26<00:03, 1.52it/s]
|
7783 |
98%|█████████▊| 192/196 [02:27<00:02, 1.50it/s]
|
7784 |
98%|█████████▊| 193/196 [02:28<00:02, 1.48it/s]
|
7785 |
99%|█████████▉| 194/196 [02:28<00:01, 1.51it/s]
|
7786 |
99%|█████████▉| 195/196 [02:29<00:00, 1.56it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7586 |
|
7587 |
|
7588 |
|
7589 |
|
7590 |
[A
|
7591 |
|
7592 |
+
Printing predictions for a few samples:
|
7593 |
+
Sample 1:
|
7594 |
+
Reference: लिबर ऑफिस <cs> impress </cs> में एक प्रस्तुति <cs> document </cs> बनाना और बुनियादी <cs> formatting </cs> के इस <cs> spoken tutorial </cs> में आपका स्वागत है
|
7595 |
+
######
|
7596 |
+
|
7597 |
+
|
7598 |
+
Prediction: > लिbeरॉफe <s> enp्रe</cs> में एक <्स्धुध<cs>धो्ुमn </c> बनधानाअर<बुधियाध <s> फर्मmेटen </cs> के इस <s>्ोकn <>्uुटोर </cs> में अपका सधवाधँहंह
|
7599 |
+
|
7600 |
+
|
7601 |
+
|
7602 |
+
Sample 2:
|
7603 |
+
Reference: इस <cs> tutorial </cs> में हम <cs> impress window </cs> के भागों के बारे में सीखेंगे और कैसे स्लाइड इन्सर्ट करें और कॉपी करें फॉन्ट तथा फॉन्ट को फॉर्मेट करना सीखेंगे
|
7604 |
+
######
|
7605 |
+
|
7606 |
+
|
7607 |
+
Prediction: इस<cs>्ुटोaल </s> में<हम<> em्res> विnधो </s> के धागों केबारे मं सीखेंगेउर<कैसे <cs> लae </s> इnser्</cs> करेंअर <cs> cॉ </cs> कर>n </c>तधा <cs> on</cs> को <s> ॉर्मa</cs> करधा सीखेंगे
|
7608 |
+
|
7609 |
+
|
7610 |
+
|
7611 |
+
Sample 3:
|
7612 |
+
Reference: यहाँ हम अपने ऑपरेटिंग सिस्टम के रूप में gnu/linux और लिबरऑफिस वर्जन <cs> 334 </cs> का उपयोग कर रहे हैं
|
7613 |
+
######
|
7614 |
+
|
7615 |
+
|
7616 |
+
Prediction: धहाँ हम अपने <cs> ॉp्रेen <>सिs्टeम </cs> के रधुमें <s>जnuउ<s> लिnc्/अउर<cs> लिber>ॉफe<s> वer्जon <</cs> का उप्योगकरधहंं
|
7617 |
+
|
7618 |
+
|
7619 |
+
|
7620 |
+
Sample 4:
|
7621 |
+
Reference: चलिए अपनी प्रस्तुति प्रेजैटेशन <cs> sample impress open </cs> करते हैं जिसे पिछले <cs> tutorial </cs> में बनाया था
|
7622 |
+
######
|
7623 |
+
|
7624 |
+
|
7625 |
+
Prediction: चलिएअपधी >्रस्धुतधि<ape <> ene<उn </cs> करते हैंजिसेधल्हं
|
7626 |
+
|
7627 |
+
|
7628 |
+
|
7629 |
+
Sample 5:
|
7630 |
+
Reference: चलिए देखते हैं कि <cs> screen </cs> पर क्या क्या है
|
7631 |
+
######
|
7632 |
+
|
7633 |
+
|
7634 |
+
Prediction: अचलिएदेखते हैंकि <cs>्क्रीn </cs> पर क्ा क्ा है
|
7635 |
+
|
7636 |
+
|
7637 |
+
|
7638 |
+
last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
|
7639 |
+
|
7640 |
+
|
7641 |
+
last prediction string <>धलता<>धवारा अधुवाधितहअउट>मुnंब> की उरसेमैं रविकुमारअब अपसे विधा लेता हूँहमसेजुधने के लिए धध्यवाद
|
7642 |
+
{'eval_loss': 3.2885050773620605, 'eval_cer': 0.5195918204647826, 'eval_wer': 0.8050150243498083, 'eval_runtime': 157.437, 'eval_samples_per_second': 19.919, 'eval_steps_per_second': 1.245, 'epoch': 9.6}
|
7643 |
+
{'train_runtime': 12931.7591, 'train_samples_per_second': 14.847, 'train_steps_per_second': 0.464, 'train_loss': 2.825458660195271, 'epoch': 9.6}
|
7644 |
+
***** train metrics *****
|
7645 |
+
epoch = 9.6
|
7646 |
+
total_flos = 34466095019GF
|
7647 |
+
train_loss = 2.8255
|
7648 |
+
train_runtime = 3:35:31.75
|
7649 |
+
train_samples = 20000
|
7650 |
+
train_samples_per_second = 14.847
|
7651 |
+
train_steps_per_second = 0.464
|
7652 |
+
08/28/2024 06:04:48 - INFO - __main__ - *** Evaluate ***
|
7653 |
+
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
|
7654 |
+
warnings.warn(
|
7655 |
+
|
7656 |
0%| | 0/196 [00:00<?, ?it/s]
|
7657 |
1%| | 2/196 [00:00<01:02, 3.08it/s]
|
7658 |
2%|▏ | 3/196 [00:01<01:30, 2.13it/s]
|
7659 |
2%|▏ | 4/196 [00:02<01:51, 1.72it/s]
|
7660 |
3%|▎ | 5/196 [00:02<02:04, 1.53it/s]
|
7661 |
3%|▎ | 6/196 [00:03<02:21, 1.34it/s]
|
7662 |
4%|▎ | 7/196 [00:04<02:24, 1.31it/s]
|
7663 |
4%|▍ | 8/196 [00:05<02:34, 1.22it/s]
|
7664 |
5%|▍ | 9/196 [00:07<03:23, 1.09s/it]
|
7665 |
5%|▌ | 10/196 [00:08<03:55, 1.27s/it]
|
7666 |
6%|▌ | 11/196 [00:10<04:30, 1.46s/it]
|
7667 |
6%|▌ | 12/196 [00:12<04:35, 1.50s/it]
|
7668 |
7%|▋ | 13/196 [00:13<03:59, 1.31s/it]
|
7669 |
7%|▋ | 14/196 [00:13<03:23, 1.12s/it]
|
7670 |
8%|▊ | 15/196 [00:14<02:53, 1.04it/s]
|
7671 |
8%|▊ | 16/196 [00:15<02:43, 1.10it/s]
|
7672 |
9%|▊ | 17/196 [00:16<02:41, 1.11it/s]
|
7673 |
9%|▉ | 18/196 [00:17<03:04, 1.04s/it]
|
7674 |
10%|▉ | 19/196 [00:19<03:51, 1.31s/it]
|
7675 |
10%|█ | 20/196 [00:21<04:01, 1.37s/it]
|
7676 |
11%|█ | 21/196 [00:22<04:08, 1.42s/it]
|
7677 |
11%|█ | 22/196 [00:23<03:52, 1.34s/it]
|
7678 |
12%|█▏ | 23/196 [00:24<03:26, 1.20s/it]
|
7679 |
12%|█▏ | 24/196 [00:25<02:47, 1.03it/s]
|
7680 |
13%|█▎ | 25/196 [00:25<02:26, 1.17it/s]
|
7681 |
13%|█▎ | 26/196 [00:26<02:10, 1.31it/s]
|
7682 |
14%|█▍ | 27/196 [00:26<02:00, 1.40it/s]
|
7683 |
14%|█▍ | 28/196 [00:27<01:56, 1.45it/s]
|
7684 |
15%|█▍ | 29/196 [00:28<01:56, 1.43it/s]
|
7685 |
15%|█▌ | 30/196 [00:28<01:54, 1.44it/s]
|
7686 |
16%|█▌ | 31/196 [00:29<01:43, 1.59it/s]
|
7687 |
16%|█▋ | 32/196 [00:29<01:44, 1.57it/s]
|
7688 |
17%|█▋ | 33/196 [00:30<01:59, 1.37it/s]
|
7689 |
17%|█▋ | 34/196 [00:32<02:24, 1.12it/s]
|
7690 |
18%|█▊ | 35/196 [00:33<02:35, 1.03it/s]
|
7691 |
18%|█▊ | 36/196 [00:34<02:51, 1.07s/it]
|
7692 |
19%|█▉ | 37/196 [00:35<02:45, 1.04s/it]
|
7693 |
19%|█▉ | 38/196 [00:36<02:34, 1.03it/s]
|
7694 |
20%|█▉ | 39/196 [00:37<02:22, 1.10it/s]
|
7695 |
20%|██ | 40/196 [00:37<02:13, 1.17it/s]
|
7696 |
21%|██ | 41/196 [00:38<02:02, 1.27it/s]
|
7697 |
21%|██▏ | 42/196 [00:39<01:57, 1.31it/s]
|
7698 |
22%|██▏ | 43/196 [00:39<01:55, 1.33it/s]
|
7699 |
22%|██▏ | 44/196 [00:40<01:50, 1.38it/s]
|
7700 |
23%|██▎ | 45/196 [00:41<01:44, 1.45it/s]
|
7701 |
23%|██▎ | 46/196 [00:41<01:39, 1.51it/s]
|
7702 |
24%|██▍ | 47/196 [00:42<01:37, 1.52it/s]
|
7703 |
24%|██▍ | 48/196 [00:43<01:34, 1.57it/s]
|
7704 |
25%|██▌ | 49/196 [00:43<01:33, 1.58it/s]
|
7705 |
26%|██▌ | 50/196 [00:44<01:31, 1.60it/s]
|
7706 |
26%|██▌ | 51/196 [00:44<01:29, 1.62it/s]
|
7707 |
27%|██▋ | 52/196 [00:45<01:30, 1.59it/s]
|
7708 |
27%|██▋ | 53/196 [00:46<01:30, 1.58it/s]
|
7709 |
28%|██▊ | 54/196 [00:46<01:30, 1.57it/s]
|
7710 |
28%|██▊ | 55/196 [00:47<01:39, 1.42it/s]
|
7711 |
29%|██▊ | 56/196 [00:48<01:46, 1.32it/s]
|
7712 |
29%|██▉ | 57/196 [00:49<01:51, 1.24it/s]
|
7713 |
30%|██▉ | 58/196 [00:50<01:52, 1.22it/s]
|
7714 |
30%|███ | 59/196 [00:51<01:50, 1.24it/s]
|
7715 |
31%|███ | 60/196 [00:51<01:38, 1.38it/s]
|
7716 |
31%|███ | 61/196 [00:52<01:32, 1.45it/s]
|
7717 |
32%|███▏ | 62/196 [00:52<01:34, 1.42it/s]
|
7718 |
32%|███▏ | 63/196 [00:53<01:35, 1.39it/s]
|
7719 |
33%|███▎ | 64/196 [00:54<01:34, 1.39it/s]
|
7720 |
33%|███▎ | 65/196 [00:55<01:33, 1.40it/s]
|
7721 |
34%|███▎ | 66/196 [00:55<01:37, 1.33it/s]
|
7722 |
34%|███▍ | 67/196 [00:56<01:39, 1.29it/s]
|
7723 |
35%|███▍ | 68/196 [00:57<01:50, 1.15it/s]
|
7724 |
35%|███▌ | 69/196 [00:58<01:48, 1.17it/s]
|
7725 |
36%|███▌ | 70/196 [00:59<01:41, 1.24it/s]
|
7726 |
36%|███▌ | 71/196 [01:00<01:35, 1.31it/s]
|
7727 |
37%|███▋ | 72/196 [01:00<01:29, 1.38it/s]
|
7728 |
37%|███▋ | 73/196 [01:01<01:22, 1.49it/s]
|
7729 |
38%|███▊ | 74/196 [01:01<01:18, 1.56it/s]
|
7730 |
38%|███▊ | 75/196 [01:02<01:16, 1.59it/s]
|
7731 |
39%|███▉ | 76/196 [01:03<01:14, 1.62it/s]
|
7732 |
39%|███▉ | 77/196 [01:03<01:17, 1.54it/s]
|
7733 |
40%|███▉ | 78/196 [01:04<01:18, 1.50it/s]
|
7734 |
40%|████ | 79/196 [01:05<01:17, 1.52it/s]
|
7735 |
41%|████ | 80/196 [01:05<01:20, 1.43it/s]
|
7736 |
41%|████▏ | 81/196 [01:06<01:21, 1.41it/s]
|
7737 |
42%|████▏ | 82/196 [01:07<01:20, 1.42it/s]
|
7738 |
42%|████▏ | 83/196 [01:08<01:22, 1.37it/s]
|
7739 |
43%|████▎ | 84/196 [01:08<01:21, 1.37it/s]
|
7740 |
43%|████▎ | 85/196 [01:09<01:21, 1.36it/s]
|
7741 |
44%|████▍ | 86/196 [01:10<01:22, 1.33it/s]
|
7742 |
44%|████▍ | 87/196 [01:11<01:22, 1.32it/s]
|
7743 |
45%|████▍ | 88/196 [01:11<01:23, 1.29it/s]
|
7744 |
45%|████▌ | 89/196 [01:12<01:24, 1.26it/s]
|
7745 |
46%|████▌ | 90/196 [01:13<01:22, 1.28it/s]
|
7746 |
46%|████▋ | 91/196 [01:14<01:18, 1.35it/s]
|
7747 |
47%|████▋ | 92/196 [01:14<01:14, 1.39it/s]
|
7748 |
47%|████▋ | 93/196 [01:15<01:18, 1.32it/s]
|
7749 |
48%|████▊ | 94/196 [01:16<01:16, 1.33it/s]
|
7750 |
48%|████▊ | 95/196 [01:17<01:15, 1.34it/s]
|
7751 |
49%|████▉ | 96/196 [01:18<01:17, 1.29it/s]
|
7752 |
49%|████▉ | 97/196 [01:18<01:13, 1.34it/s]
|
7753 |
50%|████�� | 98/196 [01:19<01:14, 1.31it/s]
|
7754 |
51%|█████ | 99/196 [01:20<01:08, 1.41it/s]
|
7755 |
51%|█████ | 100/196 [01:20<01:00, 1.58it/s]
|
7756 |
52%|█████▏ | 101/196 [01:21<00:59, 1.60it/s]
|
7757 |
52%|█████▏ | 102/196 [01:21<01:02, 1.49it/s]
|
7758 |
53%|█████▎ | 103/196 [01:22<01:08, 1.35it/s]
|
7759 |
53%|█████▎ | 104/196 [01:23<01:15, 1.21it/s]
|
7760 |
54%|█████▎ | 105/196 [01:24<01:16, 1.20it/s]
|
7761 |
54%|█████▍ | 106/196 [01:25<01:14, 1.22it/s]
|
7762 |
55%|█████▍ | 107/196 [01:26<01:08, 1.29it/s]
|
7763 |
55%|█████▌ | 108/196 [01:26<01:01, 1.44it/s]
|
7764 |
56%|█████▌ | 109/196 [01:27<00:58, 1.50it/s]
|
7765 |
56%|█████▌ | 110/196 [01:27<00:56, 1.51it/s]
|
7766 |
57%|█████▋ | 111/196 [01:28<00:56, 1.50it/s]
|
7767 |
57%|█████▋ | 112/196 [01:29<00:58, 1.44it/s]
|
7768 |
58%|█████▊ | 113/196 [01:30<00:56, 1.46it/s]
|
7769 |
58%|█████▊ | 114/196 [01:30<00:52, 1.55it/s]
|
7770 |
59%|█████▊ | 115/196 [01:31<00:51, 1.57it/s]
|
7771 |
59%|█████▉ | 116/196 [01:31<00:50, 1.58it/s]
|
7772 |
60%|█████▉ | 117/196 [01:32<00:46, 1.69it/s]
|
7773 |
60%|██████ | 118/196 [01:32<00:42, 1.85it/s]
|
7774 |
61%|██████ | 119/196 [01:33<00:45, 1.71it/s]
|
7775 |
61%|██████ | 120/196 [01:34<00:46, 1.65it/s]
|
7776 |
62%|██████▏ | 121/196 [01:34<00:46, 1.62it/s]
|
7777 |
62%|██████▏ | 122/196 [01:35<00:47, 1.57it/s]
|
7778 |
63%|██████▎ | 123/196 [01:35<00:45, 1.61it/s]
|
7779 |
63%|██████▎ | 124/196 [01:36<00:46, 1.56it/s]
|
7780 |
64%|██████▍ | 125/196 [01:37<00:45, 1.54it/s]
|
7781 |
64%|██████▍ | 126/196 [01:38<00:51, 1.36it/s]
|
7782 |
65%|██████▍ | 127/196 [01:38<00:49, 1.40it/s]
|
7783 |
65%|██████▌ | 128/196 [01:39<00:46, 1.46it/s]
|
7784 |
66%|██████▌ | 129/196 [01:40<00:45, 1.48it/s]
|
7785 |
66%|██████▋ | 130/196 [01:40<00:45, 1.45it/s]
|
7786 |
67%|██████▋ | 131/196 [01:41<00:44, 1.45it/s]
|
7787 |
67%|██████▋ | 132/196 [01:42<00:41, 1.55it/s]
|
7788 |
68%|██████▊ | 133/196 [01:42<00:40, 1.56it/s]
|
7789 |
68%|██████▊ | 134/196 [01:43<00:40, 1.51it/s]
|
7790 |
69%|██████▉ | 135/196 [01:44<00:39, 1.54it/s]
|
7791 |
69%|██████▉ | 136/196 [01:44<00:38, 1.55it/s]
|
7792 |
70%|██████▉ | 137/196 [01:45<00:38, 1.55it/s]
|
7793 |
70%|███████ | 138/196 [01:46<00:37, 1.57it/s]
|
7794 |
71%|███████ | 139/196 [01:46<00:37, 1.52it/s]
|
7795 |
71%|███████▏ | 140/196 [01:47<00:35, 1.57it/s]
|
7796 |
72%|███████▏ | 141/196 [01:47<00:34, 1.60it/s]
|
7797 |
72%|███████▏ | 142/196 [01:48<00:34, 1.55it/s]
|
7798 |
73%|███████▎ | 143/196 [01:49<00:35, 1.49it/s]
|
7799 |
73%|███████▎ | 144/196 [01:49<00:33, 1.55it/s]
|
7800 |
74%|███████▍ | 145/196 [01:50<00:30, 1.67it/s]
|
7801 |
74%|███████▍ | 146/196 [01:50<00:28, 1.73it/s]
|
7802 |
75%|███████▌ | 147/196 [01:51<00:28, 1.73it/s]
|
7803 |
76%|███████▌ | 148/196 [01:52<00:28, 1.71it/s]
|
7804 |
76%|███████▌ | 149/196 [01:52<00:26, 1.80it/s]
|
7805 |
77%|███████▋ | 150/196 [01:53<00:27, 1.64it/s]
|
7806 |
77%|███████▋ | 151/196 [01:54<00:28, 1.59it/s]
|
7807 |
78%|███████▊ | 152/196 [01:54<00:27, 1.59it/s]
|
7808 |
78%|███████▊ | 153/196 [01:55<00:27, 1.58it/s]
|
7809 |
79%|███████▊ | 154/196 [01:55<00:26, 1.58it/s]
|
7810 |
79%|███████▉ | 155/196 [01:56<00:27, 1.48it/s]
|
7811 |
80%|███████▉ | 156/196 [01:57<00:29, 1.34it/s]
|
7812 |
80%|████████ | 157/196 [01:58<00:30, 1.29it/s]
|
7813 |
81%|████████ | 158/196 [01:58<00:26, 1.43it/s]
|
7814 |
81%|████████ | 159/196 [01:59<00:24, 1.52it/s]
|
7815 |
82%|████████▏ | 160/196 [02:00<00:23, 1.56it/s]
|
7816 |
82%|████████▏ | 161/196 [02:00<00:22, 1.53it/s]
|
7817 |
83%|████████▎ | 162/196 [02:01<00:21, 1.55it/s]
|
7818 |
83%|████████▎ | 163/196 [02:02<00:20, 1.58it/s]
|
7819 |
84%|████████▎ | 164/196 [02:02<00:20, 1.58it/s]
|
7820 |
84%|████████▍ | 165/196 [02:03<00:20, 1.53it/s]
|
7821 |
85%|████████▍ | 166/196 [02:04<00:19, 1.56it/s]
|
7822 |
85%|████████▌ | 167/196 [02:04<00:18, 1.60it/s]
|
7823 |
86%|████████▌ | 168/196 [02:05<00:16, 1.68it/s]
|
7824 |
86%|████████▌ | 169/196 [02:05<00:16, 1.59it/s]
|
7825 |
87%|████████▋ | 170/196 [02:06<00:17, 1.51it/s]
|
7826 |
87%|████████▋ | 171/196 [02:07<00:16, 1.52it/s]
|
7827 |
88%|████████▊ | 172/196 [02:07<00:16, 1.49it/s]
|
7828 |
88%|████████▊ | 173/196 [02:08<00:15, 1.49it/s]
|
7829 |
89%|████████▉ | 174/196 [02:09<00:15, 1.42it/s]
|
7830 |
89%|████████▉ | 175/196 [02:10<00:18, 1.16it/s]
|
7831 |
90%|████████▉ | 176/196 [02:12<00:25, 1.28s/it]
|
7832 |
90%|█████████ | 177/196 [02:14<00:27, 1.45s/it]
|
7833 |
91%|█████████ | 178/196 [02:16<00:29, 1.62s/it]
|
7834 |
91%|█████████▏| 179/196 [02:18<00:27, 1.63s/it]
|
7835 |
92%|█████████▏| 180/196 [02:19<00:21, 1.34s/it]
|
7836 |
92%|█████████▏| 181/196 [02:19<00:17, 1.14s/it]
|
7837 |
93%|█████████▎| 182/196 [02:20<00:13, 1.01it/s]
|
7838 |
93%|█████████▎| 183/196 [02:21<00:12, 1.02it/s]
|
7839 |
94%|█████████▍| 184/196 [02:21<00:10, 1.13it/s]
|
7840 |
94%|█████████▍| 185/196 [02:22<00:09, 1.17it/s]
|
7841 |
95%|█████████▍| 186/196 [02:23<00:08, 1.16it/s]
|
7842 |
95%|█████████▌| 187/196 [02:24<00:07, 1.26it/s]
|
7843 |
96%|█████████▌| 188/196 [02:24<00:06, 1.33it/s]
|
7844 |
96%|█████████▋| 189/196 [02:25<00:05, 1.36it/s]
|
7845 |
97%|█████████▋| 190/196 [02:26<00:04, 1.44it/s]
|
7846 |
97%|█████████▋| 191/196 [02:26<00:03, 1.52it/s]
|
7847 |
98%|█████████▊| 192/196 [02:27<00:02, 1.50it/s]
|
7848 |
98%|█████████▊| 193/196 [02:28<00:02, 1.48it/s]
|
7849 |
99%|█████████▉| 194/196 [02:28<00:01, 1.51it/s]
|
7850 |
99%|█████████▉| 195/196 [02:29<00:00, 1.56it/s]
|
7851 |
+
Printing predictions for a few samples:
|
7852 |
+
Sample 1:
|
7853 |
+
Reference: लिबर ऑफिस <cs> impress </cs> में एक प्रस्तुति <cs> document </cs> बनाना और बुनियादी <cs> formatting </cs> के इस <cs> spoken tutorial </cs> में आपका स्वागत है
|
7854 |
+
######
|
7855 |
+
|
7856 |
+
|
7857 |
+
Prediction: s> liber oफis impres </cs> में एक प्रस्तुति > doकumnt /cs> बनाना और बुनियादी c> foरmatig </cs> के इस > pोken tयutोरil /cs> में आपका सवाैहैहैह
|
7858 |
+
|
7859 |
+
|
7860 |
+
|
7861 |
+
Sample 2:
|
7862 |
+
Reference: इस <cs> tutorial </cs> में हम <cs> impress window </cs> के भागों के बारे में सीखेंगे और कैसे स्लाइड इन्सर्ट करें और कॉपी करें फॉन्ट तथा फॉन्ट को फॉर्मेट करना सीखेंगे
|
7863 |
+
######
|
7864 |
+
|
7865 |
+
|
7866 |
+
Prediction: इस <cs> tutoral </cs> में हम <s> eimpres < winडो </cs> के भागों के बारे में सीखेंगे और कैसे <cs> slide < insert </cs> करें और <cs> cope </c> cs> forn </cs> तथा <cs> font </cs> को <cs> foरmat </cs> करना सीखेंगे
|
7867 |
+
|
7868 |
+
|
7869 |
+
|
7870 |
+
Sample 3:
|
7871 |
+
Reference: यहाँ हम अपने ऑपरेटिंग सिस्टम के रूप में gnu/linux और लिबरऑफिस वर्जन <cs> 334 </cs> का उपयोग कर रहे हैं
|
7872 |
+
######
|
7873 |
+
|
7874 |
+
|
7875 |
+
Prediction: यहाँ हम अपने <cs> oprेting सistem </cs> के रूप में <cs> gnu linx </cs> और cs> liber ofis vergons </cs>s> </c> का उपयोग कर रह हैंं
|
7876 |
+
|
7877 |
+
|
7878 |
+
|
7879 |
+
Sample 4:
|
7880 |
+
Reference: चलिए अपनी प्रस्तुति प्रेजैटेशन <cs> sample impress open </cs> करते हैं जिसे पिछले <cs> tutorial </cs> में बनाया था
|
7881 |
+
######
|
7882 |
+
|
7883 |
+
|
7884 |
+
Prediction: चलिए अपनी प्रस्तुति <cs> sampl impcs open </cs> करते हैं जिसे पिछले ं
|
7885 |
+
|
7886 |
+
|
7887 |
+
|
7888 |
+
Sample 5:
|
7889 |
+
Reference: चलिए देखते हैं कि <cs> screen </cs> पर क्या क्या है
|
7890 |
+
######
|
7891 |
+
|
7892 |
+
|
7893 |
+
Prediction: चलिए देखते हैं कि sक्रीन </cs> पर क्या क्या है
|
7894 |
+
|
7895 |
+
|
7896 |
+
|
7897 |
+
last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
|
7898 |
+
|
7899 |
+
|
7900 |
+
last prediction string >लता द्वारा अनुवादित है आईआईटी मुमंबई की ओर से मैं रविकुमार अब आपसे विदा लेता हूँ हमसे जु़ने के लिए धन्यवाद
|
7901 |
+
***** eval metrics *****
|
7902 |
+
epoch = 9.6
|
7903 |
+
eval_cer = 0.4133
|
7904 |
+
eval_loss = 1.9947
|
7905 |
+
eval_runtime = 0:02:38.28
|
7906 |
+
eval_samples = 3136
|
7907 |
+
eval_samples_per_second = 19.813
|
7908 |
+
eval_steps_per_second = 1.238
|
7909 |
+
eval_wer = 0.6195
|
7910 |
+
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262426580
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11123f516d513f049ccf8eca7a64f45fe94183f0c16009563846a3cba3ca71e4
|
3 |
size 1262426580
|
predictionswtags_indicw2v_ad0_3_hd_02_featd_0_2_lr6e-4_warmup2000_s300_shuff100.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b80776faf14765af4462d6d31aaa0c48e2ef5a0992cf1aa97bdf95d9d8e25c7c
|
3 |
+
size 30974098
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
"train_samples": 20000,
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 0.
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 9.6,
|
3 |
+
"total_flos": 3.700768773245485e+19,
|
4 |
+
"train_loss": 2.825458660195271,
|
5 |
+
"train_runtime": 12931.7591,
|
6 |
"train_samples": 20000,
|
7 |
+
"train_samples_per_second": 14.847,
|
8 |
+
"train_steps_per_second": 0.464
|
9 |
}
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5496
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83f52cedbc94f4a9afc031c9289677879e1c4f30bc20bbb9df0588e106379758
|
3 |
size 5496
|