Priyanship commited on
Commit
ae96f08
·
verified ·
1 Parent(s): 494fe78

End of training

Browse files
README.md CHANGED
@@ -16,9 +16,9 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model was trained from scratch on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 3.2885
20
- - Cer: 0.5196
21
- - Wer: 0.8050
22
 
23
  ## Model description
24
 
 
16
 
17
  This model was trained from scratch on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.9947
20
+ - Cer: 0.4133
21
+ - Wer: 0.6195
22
 
23
  ## Model description
24
 
all_results.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
- "epoch": 5.6,
3
- "eval_cer": 0.39621716426834613,
4
- "eval_loss": 2.00065016746521,
5
- "eval_runtime": 157.5611,
6
  "eval_samples": 3136,
7
- "eval_samples_per_second": 19.903,
8
- "eval_steps_per_second": 1.244,
9
- "eval_wer": 0.6068801160501502,
10
- "total_flos": 2.158464150901847e+19,
11
- "train_loss": 1.3790143143790108,
12
- "train_runtime": 12492.843,
13
  "train_samples": 20000,
14
- "train_samples_per_second": 8.965,
15
- "train_steps_per_second": 0.28
16
  }
 
1
  {
2
+ "epoch": 9.6,
3
+ "eval_cer": 0.4133216406903974,
4
+ "eval_loss": 1.9947007894515991,
5
+ "eval_runtime": 158.2803,
6
  "eval_samples": 3136,
7
+ "eval_samples_per_second": 19.813,
8
+ "eval_steps_per_second": 1.238,
9
+ "eval_wer": 0.6194798466480157,
10
+ "total_flos": 3.700768773245485e+19,
11
+ "train_loss": 2.825458660195271,
12
+ "train_runtime": 12931.7591,
13
  "train_samples": 20000,
14
+ "train_samples_per_second": 14.847,
15
+ "train_steps_per_second": 0.464
16
  }
eval_results.json CHANGED
@@ -1,10 +1,10 @@
1
  {
2
- "epoch": 5.6,
3
- "eval_cer": 0.39621716426834613,
4
- "eval_loss": 2.00065016746521,
5
- "eval_runtime": 157.5611,
6
  "eval_samples": 3136,
7
- "eval_samples_per_second": 19.903,
8
- "eval_steps_per_second": 1.244,
9
- "eval_wer": 0.6068801160501502
10
  }
 
1
  {
2
+ "epoch": 9.6,
3
+ "eval_cer": 0.4133216406903974,
4
+ "eval_loss": 1.9947007894515991,
5
+ "eval_runtime": 158.2803,
6
  "eval_samples": 3136,
7
+ "eval_samples_per_second": 19.813,
8
+ "eval_steps_per_second": 1.238,
9
+ "eval_wer": 0.6194798466480157
10
  }
indicwav2vec_trainwtags_MUCS_warmup2000_s300shuff100_2212172.out CHANGED
@@ -7586,3 +7586,127 @@ last prediction string <>धलता<>धवारा अधुवाधित
7586
 
7587
 
7588
 
7589
 
7590
  
7591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7592
  0%| | 0/196 [00:00<?, ?it/s]
7593
  1%| | 2/196 [00:00<01:02, 3.08it/s]
7594
  2%|▏ | 3/196 [00:01<01:30, 2.13it/s]
7595
  2%|▏ | 4/196 [00:02<01:51, 1.72it/s]
7596
  3%|▎ | 5/196 [00:02<02:04, 1.53it/s]
7597
  3%|▎ | 6/196 [00:03<02:21, 1.34it/s]
7598
  4%|▎ | 7/196 [00:04<02:24, 1.31it/s]
7599
  4%|▍ | 8/196 [00:05<02:34, 1.22it/s]
7600
  5%|▍ | 9/196 [00:07<03:23, 1.09s/it]
7601
  5%|▌ | 10/196 [00:08<03:55, 1.27s/it]
7602
  6%|▌ | 11/196 [00:10<04:30, 1.46s/it]
7603
  6%|▌ | 12/196 [00:12<04:35, 1.50s/it]
7604
  7%|▋ | 13/196 [00:13<03:59, 1.31s/it]
7605
  7%|▋ | 14/196 [00:13<03:23, 1.12s/it]
7606
  8%|▊ | 15/196 [00:14<02:53, 1.04it/s]
7607
  8%|▊ | 16/196 [00:15<02:43, 1.10it/s]
7608
  9%|▊ | 17/196 [00:16<02:41, 1.11it/s]
7609
  9%|▉ | 18/196 [00:17<03:04, 1.04s/it]
7610
  10%|▉ | 19/196 [00:19<03:51, 1.31s/it]
7611
  10%|█ | 20/196 [00:21<04:01, 1.37s/it]
7612
  11%|█ | 21/196 [00:22<04:08, 1.42s/it]
7613
  11%|█ | 22/196 [00:23<03:52, 1.34s/it]
7614
  12%|█▏ | 23/196 [00:24<03:26, 1.20s/it]
7615
  12%|█▏ | 24/196 [00:25<02:47, 1.03it/s]
7616
  13%|█▎ | 25/196 [00:25<02:26, 1.17it/s]
7617
  13%|█▎ | 26/196 [00:26<02:10, 1.31it/s]
7618
  14%|█▍ | 27/196 [00:26<02:00, 1.40it/s]
7619
  14%|█▍ | 28/196 [00:27<01:56, 1.45it/s]
7620
  15%|█▍ | 29/196 [00:28<01:56, 1.43it/s]
7621
  15%|█▌ | 30/196 [00:28<01:54, 1.44it/s]
7622
  16%|█▌ | 31/196 [00:29<01:43, 1.59it/s]
7623
  16%|█▋ | 32/196 [00:29<01:44, 1.57it/s]
7624
  17%|█▋ | 33/196 [00:30<01:59, 1.37it/s]
7625
  17%|█▋ | 34/196 [00:32<02:24, 1.12it/s]
7626
  18%|█▊ | 35/196 [00:33<02:35, 1.03it/s]
7627
  18%|█▊ | 36/196 [00:34<02:51, 1.07s/it]
7628
  19%|█▉ | 37/196 [00:35<02:45, 1.04s/it]
7629
  19%|█▉ | 38/196 [00:36<02:34, 1.03it/s]
7630
  20%|█▉ | 39/196 [00:37<02:22, 1.10it/s]
7631
  20%|██ | 40/196 [00:37<02:13, 1.17it/s]
7632
  21%|██ | 41/196 [00:38<02:02, 1.27it/s]
7633
  21%|██▏ | 42/196 [00:39<01:57, 1.31it/s]
7634
  22%|██▏ | 43/196 [00:39<01:55, 1.33it/s]
7635
  22%|██▏ | 44/196 [00:40<01:50, 1.38it/s]
7636
  23%|██▎ | 45/196 [00:41<01:44, 1.45it/s]
7637
  23%|██▎ | 46/196 [00:41<01:39, 1.51it/s]
7638
  24%|██▍ | 47/196 [00:42<01:37, 1.52it/s]
7639
  24%|██▍ | 48/196 [00:43<01:34, 1.57it/s]
7640
  25%|██▌ | 49/196 [00:43<01:33, 1.58it/s]
7641
  26%|██▌ | 50/196 [00:44<01:31, 1.60it/s]
7642
  26%|██▌ | 51/196 [00:44<01:29, 1.62it/s]
7643
  27%|██▋ | 52/196 [00:45<01:30, 1.59it/s]
7644
  27%|██▋ | 53/196 [00:46<01:30, 1.58it/s]
7645
  28%|██▊ | 54/196 [00:46<01:30, 1.57it/s]
7646
  28%|██▊ | 55/196 [00:47<01:39, 1.42it/s]
7647
  29%|██▊ | 56/196 [00:48<01:46, 1.32it/s]
7648
  29%|██▉ | 57/196 [00:49<01:51, 1.24it/s]
7649
  30%|██▉ | 58/196 [00:50<01:52, 1.22it/s]
7650
  30%|███ | 59/196 [00:51<01:50, 1.24it/s]
7651
  31%|███ | 60/196 [00:51<01:38, 1.38it/s]
7652
  31%|███ | 61/196 [00:52<01:32, 1.45it/s]
7653
  32%|███▏ | 62/196 [00:52<01:34, 1.42it/s]
7654
  32%|███▏ | 63/196 [00:53<01:35, 1.39it/s]
7655
  33%|███▎ | 64/196 [00:54<01:34, 1.39it/s]
7656
  33%|███▎ | 65/196 [00:55<01:33, 1.40it/s]
7657
  34%|███▎ | 66/196 [00:55<01:37, 1.33it/s]
7658
  34%|███▍ | 67/196 [00:56<01:39, 1.29it/s]
7659
  35%|███▍ | 68/196 [00:57<01:50, 1.15it/s]
7660
  35%|███▌ | 69/196 [00:58<01:48, 1.17it/s]
7661
  36%|███▌ | 70/196 [00:59<01:41, 1.24it/s]
7662
  36%|███▌ | 71/196 [01:00<01:35, 1.31it/s]
7663
  37%|███▋ | 72/196 [01:00<01:29, 1.38it/s]
7664
  37%|███▋ | 73/196 [01:01<01:22, 1.49it/s]
7665
  38%|███▊ | 74/196 [01:01<01:18, 1.56it/s]
7666
  38%|███▊ | 75/196 [01:02<01:16, 1.59it/s]
7667
  39%|███▉ | 76/196 [01:03<01:14, 1.62it/s]
7668
  39%|███▉ | 77/196 [01:03<01:17, 1.54it/s]
7669
  40%|███▉ | 78/196 [01:04<01:18, 1.50it/s]
7670
  40%|████ | 79/196 [01:05<01:17, 1.52it/s]
7671
  41%|████ | 80/196 [01:05<01:20, 1.43it/s]
7672
  41%|████▏ | 81/196 [01:06<01:21, 1.41it/s]
7673
  42%|████▏ | 82/196 [01:07<01:20, 1.42it/s]
7674
  42%|████▏ | 83/196 [01:08<01:22, 1.37it/s]
7675
  43%|████▎ | 84/196 [01:08<01:21, 1.37it/s]
7676
  43%|████▎ | 85/196 [01:09<01:21, 1.36it/s]
7677
  44%|████▍ | 86/196 [01:10<01:22, 1.33it/s]
7678
  44%|████▍ | 87/196 [01:11<01:22, 1.32it/s]
7679
  45%|████▍ | 88/196 [01:11<01:23, 1.29it/s]
7680
  45%|████▌ | 89/196 [01:12<01:24, 1.26it/s]
7681
  46%|████▌ | 90/196 [01:13<01:22, 1.28it/s]
7682
  46%|████▋ | 91/196 [01:14<01:18, 1.35it/s]
7683
  47%|████▋ | 92/196 [01:14<01:14, 1.39it/s]
7684
  47%|████▋ | 93/196 [01:15<01:18, 1.32it/s]
7685
  48%|████▊ | 94/196 [01:16<01:16, 1.33it/s]
7686
  48%|████▊ | 95/196 [01:17<01:15, 1.34it/s]
7687
  49%|████▉ | 96/196 [01:18<01:17, 1.29it/s]
7688
  49%|████▉ | 97/196 [01:18<01:13, 1.34it/s]
7689
  50%|████�� | 98/196 [01:19<01:14, 1.31it/s]
7690
  51%|█████ | 99/196 [01:20<01:08, 1.41it/s]
7691
  51%|█████ | 100/196 [01:20<01:00, 1.58it/s]
7692
  52%|█████▏ | 101/196 [01:21<00:59, 1.60it/s]
7693
  52%|█████▏ | 102/196 [01:21<01:02, 1.49it/s]
7694
  53%|█████▎ | 103/196 [01:22<01:08, 1.35it/s]
7695
  53%|█████▎ | 104/196 [01:23<01:15, 1.21it/s]
7696
  54%|█████▎ | 105/196 [01:24<01:16, 1.20it/s]
7697
  54%|█████▍ | 106/196 [01:25<01:14, 1.22it/s]
7698
  55%|█████▍ | 107/196 [01:26<01:08, 1.29it/s]
7699
  55%|█████▌ | 108/196 [01:26<01:01, 1.44it/s]
7700
  56%|█████▌ | 109/196 [01:27<00:58, 1.50it/s]
7701
  56%|█████▌ | 110/196 [01:27<00:56, 1.51it/s]
7702
  57%|█████▋ | 111/196 [01:28<00:56, 1.50it/s]
7703
  57%|█████▋ | 112/196 [01:29<00:58, 1.44it/s]
7704
  58%|█████▊ | 113/196 [01:30<00:56, 1.46it/s]
7705
  58%|█████▊ | 114/196 [01:30<00:52, 1.55it/s]
7706
  59%|█████▊ | 115/196 [01:31<00:51, 1.57it/s]
7707
  59%|█████▉ | 116/196 [01:31<00:50, 1.58it/s]
7708
  60%|█████▉ | 117/196 [01:32<00:46, 1.69it/s]
7709
  60%|██████ | 118/196 [01:32<00:42, 1.85it/s]
7710
  61%|██████ | 119/196 [01:33<00:45, 1.71it/s]
7711
  61%|██████ | 120/196 [01:34<00:46, 1.65it/s]
7712
  62%|██████▏ | 121/196 [01:34<00:46, 1.62it/s]
7713
  62%|██████▏ | 122/196 [01:35<00:47, 1.57it/s]
7714
  63%|██████▎ | 123/196 [01:35<00:45, 1.61it/s]
7715
  63%|██████▎ | 124/196 [01:36<00:46, 1.56it/s]
7716
  64%|██████▍ | 125/196 [01:37<00:45, 1.54it/s]
7717
  64%|██████▍ | 126/196 [01:38<00:51, 1.36it/s]
7718
  65%|██████▍ | 127/196 [01:38<00:49, 1.40it/s]
7719
  65%|██████▌ | 128/196 [01:39<00:46, 1.46it/s]
7720
  66%|██████▌ | 129/196 [01:40<00:45, 1.48it/s]
7721
  66%|██████▋ | 130/196 [01:40<00:45, 1.45it/s]
7722
  67%|██████▋ | 131/196 [01:41<00:44, 1.45it/s]
7723
  67%|██████▋ | 132/196 [01:42<00:41, 1.55it/s]
7724
  68%|██████▊ | 133/196 [01:42<00:40, 1.56it/s]
7725
  68%|██████▊ | 134/196 [01:43<00:40, 1.51it/s]
7726
  69%|██████▉ | 135/196 [01:44<00:39, 1.54it/s]
7727
  69%|██████▉ | 136/196 [01:44<00:38, 1.55it/s]
7728
  70%|██████▉ | 137/196 [01:45<00:38, 1.55it/s]
7729
  70%|███████ | 138/196 [01:46<00:37, 1.57it/s]
7730
  71%|███████ | 139/196 [01:46<00:37, 1.52it/s]
7731
  71%|███████▏ | 140/196 [01:47<00:35, 1.57it/s]
7732
  72%|███████▏ | 141/196 [01:47<00:34, 1.60it/s]
7733
  72%|███████▏ | 142/196 [01:48<00:34, 1.55it/s]
7734
  73%|███████▎ | 143/196 [01:49<00:35, 1.49it/s]
7735
  73%|███████▎ | 144/196 [01:49<00:33, 1.55it/s]
7736
  74%|███████▍ | 145/196 [01:50<00:30, 1.67it/s]
7737
  74%|███████▍ | 146/196 [01:50<00:28, 1.73it/s]
7738
  75%|███████▌ | 147/196 [01:51<00:28, 1.73it/s]
7739
  76%|███████▌ | 148/196 [01:52<00:28, 1.71it/s]
7740
  76%|███████▌ | 149/196 [01:52<00:26, 1.80it/s]
7741
  77%|███████▋ | 150/196 [01:53<00:27, 1.64it/s]
7742
  77%|███████▋ | 151/196 [01:54<00:28, 1.59it/s]
7743
  78%|███████▊ | 152/196 [01:54<00:27, 1.59it/s]
7744
  78%|███████▊ | 153/196 [01:55<00:27, 1.58it/s]
7745
  79%|███████▊ | 154/196 [01:55<00:26, 1.58it/s]
7746
  79%|███████▉ | 155/196 [01:56<00:27, 1.48it/s]
7747
  80%|███████▉ | 156/196 [01:57<00:29, 1.34it/s]
7748
  80%|████████ | 157/196 [01:58<00:30, 1.29it/s]
7749
  81%|████████ | 158/196 [01:58<00:26, 1.43it/s]
7750
  81%|████████ | 159/196 [01:59<00:24, 1.52it/s]
7751
  82%|████████▏ | 160/196 [02:00<00:23, 1.56it/s]
7752
  82%|████████▏ | 161/196 [02:00<00:22, 1.53it/s]
7753
  83%|████████▎ | 162/196 [02:01<00:21, 1.55it/s]
7754
  83%|████████▎ | 163/196 [02:02<00:20, 1.58it/s]
7755
  84%|████████▎ | 164/196 [02:02<00:20, 1.58it/s]
7756
  84%|████████▍ | 165/196 [02:03<00:20, 1.53it/s]
7757
  85%|████████▍ | 166/196 [02:04<00:19, 1.56it/s]
7758
  85%|████████▌ | 167/196 [02:04<00:18, 1.60it/s]
7759
  86%|████████▌ | 168/196 [02:05<00:16, 1.68it/s]
7760
  86%|████████▌ | 169/196 [02:05<00:16, 1.59it/s]
7761
  87%|████████▋ | 170/196 [02:06<00:17, 1.51it/s]
7762
  87%|████████▋ | 171/196 [02:07<00:16, 1.52it/s]
7763
  88%|████████▊ | 172/196 [02:07<00:16, 1.49it/s]
7764
  88%|████████▊ | 173/196 [02:08<00:15, 1.49it/s]
7765
  89%|████████▉ | 174/196 [02:09<00:15, 1.42it/s]
7766
  89%|████████▉ | 175/196 [02:10<00:18, 1.16it/s]
7767
  90%|████████▉ | 176/196 [02:12<00:25, 1.28s/it]
7768
  90%|█████████ | 177/196 [02:14<00:27, 1.45s/it]
7769
  91%|█████████ | 178/196 [02:16<00:29, 1.62s/it]
7770
  91%|█████████▏| 179/196 [02:18<00:27, 1.63s/it]
7771
  92%|█████████▏| 180/196 [02:19<00:21, 1.34s/it]
7772
  92%|█████████▏| 181/196 [02:19<00:17, 1.14s/it]
7773
  93%|█████████▎| 182/196 [02:20<00:13, 1.01it/s]
7774
  93%|█████████▎| 183/196 [02:21<00:12, 1.02it/s]
7775
  94%|█████████▍| 184/196 [02:21<00:10, 1.13it/s]
7776
  94%|█████████▍| 185/196 [02:22<00:09, 1.17it/s]
7777
  95%|█████████▍| 186/196 [02:23<00:08, 1.16it/s]
7778
  95%|█████████▌| 187/196 [02:24<00:07, 1.26it/s]
7779
  96%|█████████▌| 188/196 [02:24<00:06, 1.33it/s]
7780
  96%|█████████▋| 189/196 [02:25<00:05, 1.36it/s]
7781
  97%|█████████▋| 190/196 [02:26<00:04, 1.44it/s]
7782
  97%|█████████▋| 191/196 [02:26<00:03, 1.52it/s]
7783
  98%|█████████▊| 192/196 [02:27<00:02, 1.50it/s]
7784
  98%|█████████▊| 193/196 [02:28<00:02, 1.48it/s]
7785
  99%|█████████▉| 194/196 [02:28<00:01, 1.51it/s]
7786
  99%|█████████▉| 195/196 [02:29<00:00, 1.56it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7586
 
7587
 
7588
 
7589
 
7590
  
7591
 
7592
+ Printing predictions for a few samples:
7593
+ Sample 1:
7594
+ Reference: लिबर ऑफिस <cs> impress </cs> में एक प्रस्तुति <cs> document </cs> बनाना और बुनियादी <cs> formatting </cs> के इस <cs> spoken tutorial </cs> में आपका स्वागत है
7595
+ ######
7596
+
7597
+
7598
+ Prediction: > लिbeरॉफe <s> enp्रe</cs> में एक <्स्धुध<cs>धो्ुमn </c> बनधानाअर<बुधियाध <s> फर्मmेटen </cs> के इस <s>्ोकn <>्uुटोर </cs> में अपका सधवाधँहंह
7599
+
7600
+
7601
+
7602
+ Sample 2:
7603
+ Reference: इस <cs> tutorial </cs> में हम <cs> impress window </cs> के भागों के बारे में सीखेंगे और कैसे स्लाइड इन्सर्ट करें और कॉपी करें फॉन्ट तथा फॉन्ट को फॉर्मेट करना सीखेंगे
7604
+ ######
7605
+
7606
+
7607
+ Prediction: इस<cs>्ुटोaल </s> में<हम<> em्res> विnधो </s> के धागों केबारे मं सीखेंगेउर<कैसे <cs> लae </s> इnser्</cs> करेंअर <cs> cॉ </cs> कर>n </c>तधा <cs> on</cs> को <s> ॉर्मa</cs> करधा सीखेंगे
7608
+
7609
+
7610
+
7611
+ Sample 3:
7612
+ Reference: यहाँ हम अपने ऑपरेटिंग सिस्टम के रूप में gnu/linux और लिबरऑफिस वर्जन <cs> 334 </cs> का उपयोग कर रहे हैं
7613
+ ######
7614
+
7615
+
7616
+ Prediction: धहाँ हम अपने <cs> ॉp्रेen <>सिs्टeम </cs> के रधुमें <s>जnuउ<s> लिnc्/अउर<cs> लिber>ॉफe<s> वer्जon <</cs> का उप्योगकरधहंं
7617
+
7618
+
7619
+
7620
+ Sample 4:
7621
+ Reference: चलिए अपनी प्रस्तुति प्रेजैटेशन <cs> sample impress open </cs> करते हैं जिसे पिछले <cs> tutorial </cs> में बनाया था
7622
+ ######
7623
+
7624
+
7625
+ Prediction: चलिएअपधी >्रस्धुतधि<ape <> ene<उn </cs> करते हैंजिसेधल्हं
7626
+
7627
+
7628
+
7629
+ Sample 5:
7630
+ Reference: चलिए देखते हैं कि <cs> screen </cs> पर क्या क्या है
7631
+ ######
7632
+
7633
+
7634
+ Prediction: अचलिएदेखते हैंकि <cs>्क्रीn </cs> पर क्ा क्ा है
7635
+
7636
+
7637
+
7638
+ last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
7639
+
7640
+
7641
+ last prediction string <>धलता<>धवारा अधुवाधितहअउट>मुnंब> की उरसेमैं रविकुमारअब अपसे विधा लेता हूँहमसेजुधने के लिए धध्यवाद
7642
+ {'eval_loss': 3.2885050773620605, 'eval_cer': 0.5195918204647826, 'eval_wer': 0.8050150243498083, 'eval_runtime': 157.437, 'eval_samples_per_second': 19.919, 'eval_steps_per_second': 1.245, 'epoch': 9.6}
7643
+ {'train_runtime': 12931.7591, 'train_samples_per_second': 14.847, 'train_steps_per_second': 0.464, 'train_loss': 2.825458660195271, 'epoch': 9.6}
7644
+ ***** train metrics *****
7645
+ epoch = 9.6
7646
+ total_flos = 34466095019GF
7647
+ train_loss = 2.8255
7648
+ train_runtime = 3:35:31.75
7649
+ train_samples = 20000
7650
+ train_samples_per_second = 14.847
7651
+ train_steps_per_second = 0.464
7652
+ 08/28/2024 06:04:48 - INFO - __main__ - *** Evaluate ***
7653
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
7654
+ warnings.warn(
7655
+
7656
  0%| | 0/196 [00:00<?, ?it/s]
7657
  1%| | 2/196 [00:00<01:02, 3.08it/s]
7658
  2%|▏ | 3/196 [00:01<01:30, 2.13it/s]
7659
  2%|▏ | 4/196 [00:02<01:51, 1.72it/s]
7660
  3%|▎ | 5/196 [00:02<02:04, 1.53it/s]
7661
  3%|▎ | 6/196 [00:03<02:21, 1.34it/s]
7662
  4%|▎ | 7/196 [00:04<02:24, 1.31it/s]
7663
  4%|▍ | 8/196 [00:05<02:34, 1.22it/s]
7664
  5%|▍ | 9/196 [00:07<03:23, 1.09s/it]
7665
  5%|▌ | 10/196 [00:08<03:55, 1.27s/it]
7666
  6%|▌ | 11/196 [00:10<04:30, 1.46s/it]
7667
  6%|▌ | 12/196 [00:12<04:35, 1.50s/it]
7668
  7%|▋ | 13/196 [00:13<03:59, 1.31s/it]
7669
  7%|▋ | 14/196 [00:13<03:23, 1.12s/it]
7670
  8%|▊ | 15/196 [00:14<02:53, 1.04it/s]
7671
  8%|▊ | 16/196 [00:15<02:43, 1.10it/s]
7672
  9%|▊ | 17/196 [00:16<02:41, 1.11it/s]
7673
  9%|▉ | 18/196 [00:17<03:04, 1.04s/it]
7674
  10%|▉ | 19/196 [00:19<03:51, 1.31s/it]
7675
  10%|█ | 20/196 [00:21<04:01, 1.37s/it]
7676
  11%|█ | 21/196 [00:22<04:08, 1.42s/it]
7677
  11%|█ | 22/196 [00:23<03:52, 1.34s/it]
7678
  12%|█▏ | 23/196 [00:24<03:26, 1.20s/it]
7679
  12%|█▏ | 24/196 [00:25<02:47, 1.03it/s]
7680
  13%|█▎ | 25/196 [00:25<02:26, 1.17it/s]
7681
  13%|█▎ | 26/196 [00:26<02:10, 1.31it/s]
7682
  14%|█▍ | 27/196 [00:26<02:00, 1.40it/s]
7683
  14%|█▍ | 28/196 [00:27<01:56, 1.45it/s]
7684
  15%|█▍ | 29/196 [00:28<01:56, 1.43it/s]
7685
  15%|█▌ | 30/196 [00:28<01:54, 1.44it/s]
7686
  16%|█▌ | 31/196 [00:29<01:43, 1.59it/s]
7687
  16%|█▋ | 32/196 [00:29<01:44, 1.57it/s]
7688
  17%|█▋ | 33/196 [00:30<01:59, 1.37it/s]
7689
  17%|█▋ | 34/196 [00:32<02:24, 1.12it/s]
7690
  18%|█▊ | 35/196 [00:33<02:35, 1.03it/s]
7691
  18%|█▊ | 36/196 [00:34<02:51, 1.07s/it]
7692
  19%|█▉ | 37/196 [00:35<02:45, 1.04s/it]
7693
  19%|█▉ | 38/196 [00:36<02:34, 1.03it/s]
7694
  20%|█▉ | 39/196 [00:37<02:22, 1.10it/s]
7695
  20%|██ | 40/196 [00:37<02:13, 1.17it/s]
7696
  21%|██ | 41/196 [00:38<02:02, 1.27it/s]
7697
  21%|██▏ | 42/196 [00:39<01:57, 1.31it/s]
7698
  22%|██▏ | 43/196 [00:39<01:55, 1.33it/s]
7699
  22%|██▏ | 44/196 [00:40<01:50, 1.38it/s]
7700
  23%|██▎ | 45/196 [00:41<01:44, 1.45it/s]
7701
  23%|██▎ | 46/196 [00:41<01:39, 1.51it/s]
7702
  24%|██▍ | 47/196 [00:42<01:37, 1.52it/s]
7703
  24%|██▍ | 48/196 [00:43<01:34, 1.57it/s]
7704
  25%|██▌ | 49/196 [00:43<01:33, 1.58it/s]
7705
  26%|██▌ | 50/196 [00:44<01:31, 1.60it/s]
7706
  26%|██▌ | 51/196 [00:44<01:29, 1.62it/s]
7707
  27%|██▋ | 52/196 [00:45<01:30, 1.59it/s]
7708
  27%|██▋ | 53/196 [00:46<01:30, 1.58it/s]
7709
  28%|██▊ | 54/196 [00:46<01:30, 1.57it/s]
7710
  28%|██▊ | 55/196 [00:47<01:39, 1.42it/s]
7711
  29%|██▊ | 56/196 [00:48<01:46, 1.32it/s]
7712
  29%|██▉ | 57/196 [00:49<01:51, 1.24it/s]
7713
  30%|██▉ | 58/196 [00:50<01:52, 1.22it/s]
7714
  30%|███ | 59/196 [00:51<01:50, 1.24it/s]
7715
  31%|███ | 60/196 [00:51<01:38, 1.38it/s]
7716
  31%|███ | 61/196 [00:52<01:32, 1.45it/s]
7717
  32%|███▏ | 62/196 [00:52<01:34, 1.42it/s]
7718
  32%|███▏ | 63/196 [00:53<01:35, 1.39it/s]
7719
  33%|███▎ | 64/196 [00:54<01:34, 1.39it/s]
7720
  33%|███▎ | 65/196 [00:55<01:33, 1.40it/s]
7721
  34%|███▎ | 66/196 [00:55<01:37, 1.33it/s]
7722
  34%|███▍ | 67/196 [00:56<01:39, 1.29it/s]
7723
  35%|███▍ | 68/196 [00:57<01:50, 1.15it/s]
7724
  35%|███▌ | 69/196 [00:58<01:48, 1.17it/s]
7725
  36%|███▌ | 70/196 [00:59<01:41, 1.24it/s]
7726
  36%|███▌ | 71/196 [01:00<01:35, 1.31it/s]
7727
  37%|███▋ | 72/196 [01:00<01:29, 1.38it/s]
7728
  37%|███▋ | 73/196 [01:01<01:22, 1.49it/s]
7729
  38%|███▊ | 74/196 [01:01<01:18, 1.56it/s]
7730
  38%|███▊ | 75/196 [01:02<01:16, 1.59it/s]
7731
  39%|███▉ | 76/196 [01:03<01:14, 1.62it/s]
7732
  39%|███▉ | 77/196 [01:03<01:17, 1.54it/s]
7733
  40%|███▉ | 78/196 [01:04<01:18, 1.50it/s]
7734
  40%|████ | 79/196 [01:05<01:17, 1.52it/s]
7735
  41%|████ | 80/196 [01:05<01:20, 1.43it/s]
7736
  41%|████▏ | 81/196 [01:06<01:21, 1.41it/s]
7737
  42%|████▏ | 82/196 [01:07<01:20, 1.42it/s]
7738
  42%|████▏ | 83/196 [01:08<01:22, 1.37it/s]
7739
  43%|████▎ | 84/196 [01:08<01:21, 1.37it/s]
7740
  43%|████▎ | 85/196 [01:09<01:21, 1.36it/s]
7741
  44%|████▍ | 86/196 [01:10<01:22, 1.33it/s]
7742
  44%|████▍ | 87/196 [01:11<01:22, 1.32it/s]
7743
  45%|████▍ | 88/196 [01:11<01:23, 1.29it/s]
7744
  45%|████▌ | 89/196 [01:12<01:24, 1.26it/s]
7745
  46%|████▌ | 90/196 [01:13<01:22, 1.28it/s]
7746
  46%|████▋ | 91/196 [01:14<01:18, 1.35it/s]
7747
  47%|████▋ | 92/196 [01:14<01:14, 1.39it/s]
7748
  47%|████▋ | 93/196 [01:15<01:18, 1.32it/s]
7749
  48%|████▊ | 94/196 [01:16<01:16, 1.33it/s]
7750
  48%|████▊ | 95/196 [01:17<01:15, 1.34it/s]
7751
  49%|████▉ | 96/196 [01:18<01:17, 1.29it/s]
7752
  49%|████▉ | 97/196 [01:18<01:13, 1.34it/s]
7753
  50%|████�� | 98/196 [01:19<01:14, 1.31it/s]
7754
  51%|█████ | 99/196 [01:20<01:08, 1.41it/s]
7755
  51%|█████ | 100/196 [01:20<01:00, 1.58it/s]
7756
  52%|█████▏ | 101/196 [01:21<00:59, 1.60it/s]
7757
  52%|█████▏ | 102/196 [01:21<01:02, 1.49it/s]
7758
  53%|█████▎ | 103/196 [01:22<01:08, 1.35it/s]
7759
  53%|█████▎ | 104/196 [01:23<01:15, 1.21it/s]
7760
  54%|█████▎ | 105/196 [01:24<01:16, 1.20it/s]
7761
  54%|█████▍ | 106/196 [01:25<01:14, 1.22it/s]
7762
  55%|█████▍ | 107/196 [01:26<01:08, 1.29it/s]
7763
  55%|█████▌ | 108/196 [01:26<01:01, 1.44it/s]
7764
  56%|█████▌ | 109/196 [01:27<00:58, 1.50it/s]
7765
  56%|█████▌ | 110/196 [01:27<00:56, 1.51it/s]
7766
  57%|█████▋ | 111/196 [01:28<00:56, 1.50it/s]
7767
  57%|█████▋ | 112/196 [01:29<00:58, 1.44it/s]
7768
  58%|█████▊ | 113/196 [01:30<00:56, 1.46it/s]
7769
  58%|█████▊ | 114/196 [01:30<00:52, 1.55it/s]
7770
  59%|█████▊ | 115/196 [01:31<00:51, 1.57it/s]
7771
  59%|█████▉ | 116/196 [01:31<00:50, 1.58it/s]
7772
  60%|█████▉ | 117/196 [01:32<00:46, 1.69it/s]
7773
  60%|██████ | 118/196 [01:32<00:42, 1.85it/s]
7774
  61%|██████ | 119/196 [01:33<00:45, 1.71it/s]
7775
  61%|██████ | 120/196 [01:34<00:46, 1.65it/s]
7776
  62%|██████▏ | 121/196 [01:34<00:46, 1.62it/s]
7777
  62%|██████▏ | 122/196 [01:35<00:47, 1.57it/s]
7778
  63%|██████▎ | 123/196 [01:35<00:45, 1.61it/s]
7779
  63%|██████▎ | 124/196 [01:36<00:46, 1.56it/s]
7780
  64%|██████▍ | 125/196 [01:37<00:45, 1.54it/s]
7781
  64%|██████▍ | 126/196 [01:38<00:51, 1.36it/s]
7782
  65%|██████▍ | 127/196 [01:38<00:49, 1.40it/s]
7783
  65%|██████▌ | 128/196 [01:39<00:46, 1.46it/s]
7784
  66%|██████▌ | 129/196 [01:40<00:45, 1.48it/s]
7785
  66%|██████▋ | 130/196 [01:40<00:45, 1.45it/s]
7786
  67%|██████▋ | 131/196 [01:41<00:44, 1.45it/s]
7787
  67%|██████▋ | 132/196 [01:42<00:41, 1.55it/s]
7788
  68%|██████▊ | 133/196 [01:42<00:40, 1.56it/s]
7789
  68%|██████▊ | 134/196 [01:43<00:40, 1.51it/s]
7790
  69%|██████▉ | 135/196 [01:44<00:39, 1.54it/s]
7791
  69%|██████▉ | 136/196 [01:44<00:38, 1.55it/s]
7792
  70%|██████▉ | 137/196 [01:45<00:38, 1.55it/s]
7793
  70%|███████ | 138/196 [01:46<00:37, 1.57it/s]
7794
  71%|███████ | 139/196 [01:46<00:37, 1.52it/s]
7795
  71%|███████▏ | 140/196 [01:47<00:35, 1.57it/s]
7796
  72%|███████▏ | 141/196 [01:47<00:34, 1.60it/s]
7797
  72%|███████▏ | 142/196 [01:48<00:34, 1.55it/s]
7798
  73%|███████▎ | 143/196 [01:49<00:35, 1.49it/s]
7799
  73%|███████▎ | 144/196 [01:49<00:33, 1.55it/s]
7800
  74%|███████▍ | 145/196 [01:50<00:30, 1.67it/s]
7801
  74%|███████▍ | 146/196 [01:50<00:28, 1.73it/s]
7802
  75%|███████▌ | 147/196 [01:51<00:28, 1.73it/s]
7803
  76%|███████▌ | 148/196 [01:52<00:28, 1.71it/s]
7804
  76%|███████▌ | 149/196 [01:52<00:26, 1.80it/s]
7805
  77%|███████▋ | 150/196 [01:53<00:27, 1.64it/s]
7806
  77%|███████▋ | 151/196 [01:54<00:28, 1.59it/s]
7807
  78%|███████▊ | 152/196 [01:54<00:27, 1.59it/s]
7808
  78%|███████▊ | 153/196 [01:55<00:27, 1.58it/s]
7809
  79%|███████▊ | 154/196 [01:55<00:26, 1.58it/s]
7810
  79%|███████▉ | 155/196 [01:56<00:27, 1.48it/s]
7811
  80%|███████▉ | 156/196 [01:57<00:29, 1.34it/s]
7812
  80%|████████ | 157/196 [01:58<00:30, 1.29it/s]
7813
  81%|████████ | 158/196 [01:58<00:26, 1.43it/s]
7814
  81%|████████ | 159/196 [01:59<00:24, 1.52it/s]
7815
  82%|████████▏ | 160/196 [02:00<00:23, 1.56it/s]
7816
  82%|████████▏ | 161/196 [02:00<00:22, 1.53it/s]
7817
  83%|████████▎ | 162/196 [02:01<00:21, 1.55it/s]
7818
  83%|████████▎ | 163/196 [02:02<00:20, 1.58it/s]
7819
  84%|████████▎ | 164/196 [02:02<00:20, 1.58it/s]
7820
  84%|████████▍ | 165/196 [02:03<00:20, 1.53it/s]
7821
  85%|████████▍ | 166/196 [02:04<00:19, 1.56it/s]
7822
  85%|████████▌ | 167/196 [02:04<00:18, 1.60it/s]
7823
  86%|████████▌ | 168/196 [02:05<00:16, 1.68it/s]
7824
  86%|████████▌ | 169/196 [02:05<00:16, 1.59it/s]
7825
  87%|████████▋ | 170/196 [02:06<00:17, 1.51it/s]
7826
  87%|████████▋ | 171/196 [02:07<00:16, 1.52it/s]
7827
  88%|████████▊ | 172/196 [02:07<00:16, 1.49it/s]
7828
  88%|████████▊ | 173/196 [02:08<00:15, 1.49it/s]
7829
  89%|████████▉ | 174/196 [02:09<00:15, 1.42it/s]
7830
  89%|████████▉ | 175/196 [02:10<00:18, 1.16it/s]
7831
  90%|████████▉ | 176/196 [02:12<00:25, 1.28s/it]
7832
  90%|█████████ | 177/196 [02:14<00:27, 1.45s/it]
7833
  91%|█████████ | 178/196 [02:16<00:29, 1.62s/it]
7834
  91%|█████████▏| 179/196 [02:18<00:27, 1.63s/it]
7835
  92%|█████████▏| 180/196 [02:19<00:21, 1.34s/it]
7836
  92%|█████████▏| 181/196 [02:19<00:17, 1.14s/it]
7837
  93%|█████████▎| 182/196 [02:20<00:13, 1.01it/s]
7838
  93%|█████████▎| 183/196 [02:21<00:12, 1.02it/s]
7839
  94%|█████████▍| 184/196 [02:21<00:10, 1.13it/s]
7840
  94%|█████████▍| 185/196 [02:22<00:09, 1.17it/s]
7841
  95%|█████████▍| 186/196 [02:23<00:08, 1.16it/s]
7842
  95%|█████████▌| 187/196 [02:24<00:07, 1.26it/s]
7843
  96%|█████████▌| 188/196 [02:24<00:06, 1.33it/s]
7844
  96%|█████████▋| 189/196 [02:25<00:05, 1.36it/s]
7845
  97%|█████████▋| 190/196 [02:26<00:04, 1.44it/s]
7846
  97%|█████████▋| 191/196 [02:26<00:03, 1.52it/s]
7847
  98%|█████████▊| 192/196 [02:27<00:02, 1.50it/s]
7848
  98%|█████████▊| 193/196 [02:28<00:02, 1.48it/s]
7849
  99%|█████████▉| 194/196 [02:28<00:01, 1.51it/s]
7850
  99%|█████████▉| 195/196 [02:29<00:00, 1.56it/s]
7851
+ Printing predictions for a few samples:
7852
+ Sample 1:
7853
+ Reference: लिबर ऑफिस <cs> impress </cs> में एक प्रस्तुति <cs> document </cs> बनाना और बुनियादी <cs> formatting </cs> के इस <cs> spoken tutorial </cs> में आपका स्वागत है
7854
+ ######
7855
+
7856
+
7857
+ Prediction: s> liber oफis impres </cs> में एक प्रस्तुति > doकumnt /cs> बनाना और बुनियादी c> foरmatig </cs> के इस > pोken tयutोरil /cs> में आपका सवाैहैहैह
7858
+
7859
+
7860
+
7861
+ Sample 2:
7862
+ Reference: इस <cs> tutorial </cs> में हम <cs> impress window </cs> के भागों के बारे में सीखेंगे और कैसे स्लाइड इन्सर्ट करें और कॉपी करें फॉन्ट तथा फॉन्ट को फॉर्मेट करना सीखेंगे
7863
+ ######
7864
+
7865
+
7866
+ Prediction: इस <cs> tutoral </cs> में हम <s> eimpres < winडो </cs> के भागों के बारे में सीखेंगे और कैसे <cs> slide < insert </cs> करें और <cs> cope </c> cs> forn </cs> तथा <cs> font </cs> को <cs> foरmat </cs> करना सीखेंगे
7867
+
7868
+
7869
+
7870
+ Sample 3:
7871
+ Reference: यहाँ हम अपने ऑपरेटिंग सिस्टम के रूप में gnu/linux और लिबरऑफिस वर्जन <cs> 334 </cs> का उपयोग कर रहे हैं
7872
+ ######
7873
+
7874
+
7875
+ Prediction: यहाँ हम अपने <cs> oprेting सistem </cs> के रूप में <cs> gnu linx </cs> और cs> liber ofis vergons </cs>s> </c> का उपयोग कर रह हैंं
7876
+
7877
+
7878
+
7879
+ Sample 4:
7880
+ Reference: चलिए अपनी प्रस्तुति प्रेजैटेशन <cs> sample impress open </cs> करते हैं जिसे पिछले <cs> tutorial </cs> में बनाया था
7881
+ ######
7882
+
7883
+
7884
+ Prediction: चलिए अपनी प्रस्तुति <cs> sampl impcs open </cs> करते हैं जिसे पिछले ं
7885
+
7886
+
7887
+
7888
+ Sample 5:
7889
+ Reference: चलिए देखते हैं कि <cs> screen </cs> पर क्या क्या है
7890
+ ######
7891
+
7892
+
7893
+ Prediction: चलिए देखते हैं कि sक्रीन </cs> पर क्या क्या है
7894
+
7895
+
7896
+
7897
+ last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
7898
+
7899
+
7900
+ last prediction string >लता द्वारा अनुवादित है आईआईटी मुमंबई की ओर से मैं रविकुमार अब आपसे विदा लेता हूँ हमसे जु़ने के लिए धन्यवाद
7901
+ ***** eval metrics *****
7902
+ epoch = 9.6
7903
+ eval_cer = 0.4133
7904
+ eval_loss = 1.9947
7905
+ eval_runtime = 0:02:38.28
7906
+ eval_samples = 3136
7907
+ eval_samples_per_second = 19.813
7908
+ eval_steps_per_second = 1.238
7909
+ eval_wer = 0.6195
7910
+
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d6e542b15e77cd1bb8a7693945d939d7b6324a0178a2a54a151c7870a9a3a70
3
  size 1262426580
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11123f516d513f049ccf8eca7a64f45fe94183f0c16009563846a3cba3ca71e4
3
  size 1262426580
predictionswtags_indicw2v_ad0_3_hd_02_featd_0_2_lr6e-4_warmup2000_s300_shuff100.txt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a83a46fa419ec5d9c1de83cff6b5473d12a65029127b92cbbd408597d51997f5
3
- size 30012168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b80776faf14765af4462d6d31aaa0c48e2ef5a0992cf1aa97bdf95d9d8e25c7c
3
+ size 30974098
train_results.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
- "epoch": 5.6,
3
- "total_flos": 2.158464150901847e+19,
4
- "train_loss": 1.3790143143790108,
5
- "train_runtime": 12492.843,
6
  "train_samples": 20000,
7
- "train_samples_per_second": 8.965,
8
- "train_steps_per_second": 0.28
9
  }
 
1
  {
2
+ "epoch": 9.6,
3
+ "total_flos": 3.700768773245485e+19,
4
+ "train_loss": 2.825458660195271,
5
+ "train_runtime": 12931.7591,
6
  "train_samples": 20000,
7
+ "train_samples_per_second": 14.847,
8
+ "train_steps_per_second": 0.464
9
  }
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:360e5454f79c3f727fc27756fff70b6813ee1d83db4d96e1406670ae6b1e3e02
3
  size 5496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83f52cedbc94f4a9afc031c9289677879e1c4f30bc20bbb9df0588e106379758
3
  size 5496