wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.18.3 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20241015_222330-h5k9kszn
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run rerun_bestrun_wgas1fp16false_indicw2v_ad0_3_hd_02_featd_0_3_lr6e-4_warmup500_s300_shuff100
wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
wandb: ๐ View run at https://wandb.ai/priyanshipal/huggingface/runs/h5k9kszn
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐ค Transformers. Use `eval_strategy` instead
warnings.warn(
10/15/2024 22:23:35 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: False
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:991: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:302: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:331: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:509: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
max_steps is given, it will override any value given in num_train_epochs
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=False), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.3, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.2, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.2, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
0%| | 0/15000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
0%| | 1/15000 [00:25<108:13:26, 25.98s/it]
0%| | 1/15000 [00:25<108:13:26, 25.98s/it]
0%| | 2/15000 [00:29<51:59:14, 12.48s/it]
0%| | 2/15000 [00:29<51:59:14, 12.48s/it]
0%| | 3/15000 [00:31<32:48:51, 7.88s/it]
0%| | 3/15000 [00:31<32:48:51, 7.88s/it]
0%| | 4/15000 [00:33<23:26:59, 5.63s/it]
0%| | 4/15000 [00:33<23:26:59, 5.63s/it]
0%| | 5/15000 [00:35<18:14:45, 4.38s/it]
0%| | 5/15000 [00:35<18:14:45, 4.38s/it]
0%| | 6/15000 [00:37<14:50:31, 3.56s/it]
0%| | 6/15000 [00:37<14:50:31, 3.56s/it]
0%| | 7/15000 [00:39<12:39:24, 3.04s/it]
0%| | 7/15000 [00:39<12:39:24, 3.04s/it]
0%| | 8/15000 [00:41<11:02:18, 2.65s/it]
0%| | 8/15000 [00:41<11:02:18, 2.65s/it]
0%| | 9/15000 [00:43<9:58:49, 2.40s/it]
0%| | 9/15000 [00:43<9:58:49, 2.40s/it]
0%| | 10/15000 [00:44<8:59:09, 2.16s/it]
0%| | 10/15000 [00:44<8:59:09, 2.16s/it]
0%| | 11/15000 [00:46<8:18:46, 2.00s/it]
0%| | 11/15000 [00:46<8:18:46, 2.00s/it]
0%| | 12/15000 [00:48<7:48:36, 1.88s/it]
0%| | 12/15000 [00:48<7:48:36, 1.88s/it]
0%| | 13/15000 [00:49<7:23:58, 1.78s/it]
0%| | 13/15000 [00:49<7:23:58, 1.78s/it]
0%| | 14/15000 [00:51<6:58:10, 1.67s/it]
0%| | 14/15000 [00:51<6:58:10, 1.67s/it]
0%| | 15/15000 [00:52<6:40:16, 1.60s/it]
0%| | 15/15000 [00:52<6:40:16, 1.60s/it]
0%| | 16/15000 [00:54<6:27:19, 1.55s/it]
0%| | 16/15000 [00:54<6:27:19, 1.55s/it]
0%| | 17/15000 [00:55<6:17:36, 1.51s/it]
0%| | 17/15000 [00:55<6:17:36, 1.51s/it]
0%| | 18/15000 [00:56<6:06:43, 1.47s/it]
0%| | 18/15000 [00:56<6:06:43, 1.47s/it]
0%| | 19/15000 [00:58<5:48:21, 1.40s/it]
0%| | 19/15000 [00:58<5:48:21, 1.40s/it]
0%| | 20/15000 [00:59<5:35:53, 1.35s/it]
0%| | 20/15000 [00:59<5:35:53, 1.35s/it]
0%| | 21/15000 [01:00<5:27:21, 1.31s/it]
0%| | 21/15000 [01:00<5:27:21, 1.31s/it]
0%| | 22/15000 [01:01<5:20:53, 1.29s/it]
0%| | 22/15000 [01:01<5:20:53, 1.29s/it]
0%| | 23/15000 [01:02<5:16:10, 1.27s/it]
0%| | 23/15000 [01:02<5:16:10, 1.27s/it]
0%| | 24/15000 [01:04<5:10:23, 1.24s/it]
0%| | 24/15000 [01:04<5:10:23, 1.24s/it]
0%| | 25/15000 [01:05<4:59:47, 1.20s/it]
0%| | 25/15000 [01:05<4:59:47, 1.20s/it]
0%| | 26/15000 [01:06<4:46:52, 1.15s/it]
0%| | 26/15000 [01:06<4:46:52, 1.15s/it]
0%| | 27/15000 [01:07<4:37:32, 1.11s/it]
0%| | 27/15000 [01:07<4:37:32, 1.11s/it]
0%| | 28/15000 [01:08<4:31:23, 1.09s/it]
0%| | 28/15000 [01:08<4:31:23, 1.09s/it]
0%| | 29/15000 [01:09<4:26:44, 1.07s/it]
0%| | 29/15000 [01:09<4:26:44, 1.07s/it]
0%| | 30/15000 [01:10<4:23:35, 1.06s/it]
0%| | 30/15000 [01:10<4:23:35, 1.06s/it]
0%| | 31/15000 [01:11<4:21:05, 1.05s/it]
0%| | 31/15000 [01:11<4:21:05, 1.05s/it]
0%| | 32/15000 [01:12<4:16:43, 1.03s/it]
0%| | 32/15000 [01:12<4:16:43, 1.03s/it]
0%| | 33/15000 [01:13<4:10:50, 1.01s/it]
0%| | 33/15000 [01:13<4:10:50, 1.01s/it]
0%| | 34/15000 [01:14<3:57:48, 1.05it/s]
0%| | 34/15000 [01:14<3:57:48, 1.05it/s]
0%| | 35/15000 [01:15<3:48:00, 1.09it/s]
0%| | 35/15000 [01:15<3:48:00, 1.09it/s]
0%| | 36/15000 [01:15<3:41:02, 1.13it/s]
0%| | 36/15000 [01:15<3:41:02, 1.13it/s]
0%| | 37/15000 [01:16<3:36:06, 1.15it/s]
0%| | 37/15000 [01:16<3:36:06, 1.15it/s]
0%| | 38/15000 [01:17<3:32:32, 1.17it/s]
0%| | 38/15000 [01:17<3:32:32, 1.17it/s]
0%| | 39/15000 [01:18<3:29:17, 1.19it/s]
0%| | 39/15000 [01:18<3:29:17, 1.19it/s]
0%| | 40/15000 [01:19<3:22:39, 1.23it/s]
0%| | 40/15000 [01:19<3:22:39, 1.23it/s]
0%| | 41/15000 [01:19<3:14:10, 1.28it/s]
0%| | 41/15000 [01:19<3:14:10, 1.28it/s]
0%| | 42/15000 [01:20<3:03:15, 1.36it/s]
0%| | 42/15000 [01:20<3:03:15, 1.36it/s]
0%| | 43/15000 [01:21<2:54:59, 1.42it/s]
0%| | 43/15000 [01:21<2:54:59, 1.42it/s]
0%| | 44/15000 [01:21<2:49:06, 1.47it/s]
0%| | 44/15000 [01:21<2:49:06, 1.47it/s]
0%| | 45/15000 [01:22<2:45:04, 1.51it/s]
0%| | 45/15000 [01:22<2:45:04, 1.51it/s]
0%| | 46/15000 [01:22<2:40:08, 1.56it/s]
0%| | 46/15000 [01:22<2:40:08, 1.56it/s]
0%| | 47/15000 [01:23<2:34:03, 1.62it/s]
0%| | 47/15000 [01:23<2:34:03, 1.62it/s]
0%| | 48/15000 [01:23<2:19:50, 1.78it/s]
0%| | 48/15000 [01:23<2:19:50, 1.78it/s]
0%| | 49/15000 [01:24<2:09:25, 1.93it/s]
0%| | 49/15000 [01:24<2:09:25, 1.93it/s]
0%| | 50/15000 [01:25<3:31:31, 1.18it/s]
0%| | 50/15000 [01:25<3:31:31, 1.18it/s]
0%| | 51/15000 [01:31<8:59:52, 2.17s/it]
0%| | 51/15000 [01:31<8:59:52, 2.17s/it]
0%| | 52/15000 [01:33<9:37:33, 2.32s/it]
0%| | 52/15000 [01:33<9:37:33, 2.32s/it]
0%| | 53/15000 [01:36<9:42:34, 2.34s/it]
0%| | 53/15000 [01:36<9:42:34, 2.34s/it]
0%| | 54/15000 [01:38<9:28:10, 2.28s/it]
0%| | 54/15000 [01:38<9:28:10, 2.28s/it]
0%| | 55/15000 [01:40<9:05:53, 2.19s/it]
0%| | 55/15000 [01:40<9:05:53, 2.19s/it]
0%| | 56/15000 [01:42<8:47:02, 2.12s/it]
0%| | 56/15000 [01:42<8:47:02, 2.12s/it]
0%| | 57/15000 [01:44<8:31:04, 2.05s/it]
0%| | 57/15000 [01:44<8:31:04, 2.05s/it]
0%| | 58/15000 [01:45<8:09:32, 1.97s/it]
0%| | 58/15000 [01:45<8:09:32, 1.97s/it]
0%| | 59/15000 [01:47<7:53:32, 1.90s/it]
0%| | 59/15000 [01:47<7:53:32, 1.90s/it]
0%| | 60/15000 [01:49<7:32:24, 1.82s/it]
0%| | 60/15000 [01:49<7:32:24, 1.82s/it]
0%| | 61/15000 [01:50<7:14:57, 1.75s/it]
0%| | 61/15000 [01:50<7:14:57, 1.75s/it]
0%| | 62/15000 [01:52<6:59:33, 1.69s/it]
0%| | 62/15000 [01:52<6:59:33, 1.69s/it]
0%| | 63/15000 [01:53<6:39:27, 1.60s/it]
0%| | 63/15000 [01:53<6:39:27, 1.60s/it]
0%| | 64/15000 [01:55<6:25:48, 1.55s/it]
0%| | 64/15000 [01:55<6:25:48, 1.55s/it]
0%| | 65/15000 [01:56<6:16:11, 1.51s/it]
0%| | 65/15000 [01:56<6:16:11, 1.51s/it]
0%| | 66/15000 [01:58<6:09:15, 1.48s/it]
0%| | 66/15000 [01:58<6:09:15, 1.48s/it]
0%| | 67/15000 [01:59<6:01:46, 1.45s/it]
0%| | 67/15000 [01:59<6:01:46, 1.45s/it]
0%| | 68/15000 [02:00<5:54:23, 1.42s/it]
0%| | 68/15000 [02:00<5:54:23, 1.42s/it]
0%| | 69/15000 [02:02<5:38:07, 1.36s/it]
0%| | 69/15000 [02:02<5:38:07, 1.36s/it]
0%| | 70/15000 [02:03<5:27:08, 1.31s/it]
0%| | 70/15000 [02:03<5:27:08, 1.31s/it]
0%| | 71/15000 [02:04<5:19:26, 1.28s/it]
0%| | 71/15000 [02:04<5:19:26, 1.28s/it]
0%| | 72/15000 [02:05<5:13:55, 1.26s/it]
0%| | 72/15000 [02:05<5:13:55, 1.26s/it]
0%| | 73/15000 [02:06<5:09:22, 1.24s/it]
0%| | 73/15000 [02:06<5:09:22, 1.24s/it]
0%| | 74/15000 [02:08<5:01:45, 1.21s/it]
0%| | 74/15000 [02:08<5:01:45, 1.21s/it]
0%| | 75/15000 [02:09<4:47:23, 1.16s/it]
0%| | 75/15000 [02:09<4:47:23, 1.16s/it]
1%| | 76/15000 [02:10<4:36:48, 1.11s/it]
1%| | 76/15000 [02:10<4:36:48, 1.11s/it]
1%| | 77/15000 [02:11<4:29:08, 1.08s/it]
1%| | 77/15000 [02:11<4:29:08, 1.08s/it]
1%| | 78/15000 [02:12<4:24:17, 1.06s/it]
1%| | 78/15000 [02:12<4:24:17, 1.06s/it]
1%| | 79/15000 [02:13<4:20:52, 1.05s/it]
1%| | 79/15000 [02:13<4:20:52, 1.05s/it]
1%| | 80/15000 [02:14<4:17:55, 1.04s/it]
1%| | 80/15000 [02:14<4:17:55, 1.04s/it]
1%| | 81/15000 [02:15<4:15:57, 1.03s/it]
1%| | 81/15000 [02:15<4:15:57, 1.03s/it]
1%| | 82/15000 [02:16<4:09:54, 1.01s/it]
1%| | 82/15000 [02:16<4:09:54, 1.01s/it]
1%| | 83/15000 [02:17<4:04:59, 1.01it/s]
1%| | 83/15000 [02:17<4:04:59, 1.01it/s]
1%| | 84/15000 [02:17<3:51:51, 1.07it/s]
1%| | 84/15000 [02:17<3:51:51, 1.07it/s]
1%| | 85/15000 [02:18<3:42:30, 1.12it/s]
1%| | 85/15000 [02:18<3:42:30, 1.12it/s]
1%| | 86/15000 [02:19<3:36:02, 1.15it/s]
1%| | 86/15000 [02:19<3:36:02, 1.15it/s]
1%| | 87/15000 [02:20<3:31:36, 1.17it/s]
1%| | 87/15000 [02:20<3:31:36, 1.17it/s]
1%| | 88/15000 [02:21<3:28:53, 1.19it/s]
1%| | 88/15000 [02:21<3:28:53, 1.19it/s]
1%| | 89/15000 [02:21<3:26:29, 1.20it/s]
1%| | 89/15000 [02:21<3:26:29, 1.20it/s]
1%| | 90/15000 [02:22<3:23:50, 1.22it/s]
1%| | 90/15000 [02:22<3:23:50, 1.22it/s]
1%| | 91/15000 [02:23<3:18:10, 1.25it/s]
1%| | 91/15000 [02:23<3:18:10, 1.25it/s]
1%| | 92/15000 [02:24<3:05:27, 1.34it/s]
1%| | 92/15000 [02:24<3:05:27, 1.34it/s]
1%| | 93/15000 [02:24<2:56:24, 1.41it/s]
1%| | 93/15000 [02:24<2:56:24, 1.41it/s]
1%| | 94/15000 [02:25<2:50:37, 1.46it/s]
1%| | 94/15000 [02:25<2:50:37, 1.46it/s]
1%| | 95/15000 [02:25<2:46:03, 1.50it/s]
1%| | 95/15000 [02:25<2:46:03, 1.50it/s]
1%| | 96/15000 [02:26<2:42:03, 1.53it/s]
1%| | 96/15000 [02:26<2:42:03, 1.53it/s]
1%| | 97/15000 [02:27<2:35:06, 1.60it/s]
1%| | 97/15000 [02:27<2:35:06, 1.60it/s]
1%| | 98/15000 [02:27<2:20:18, 1.77it/s]
1%| | 98/15000 [02:27<2:20:18, 1.77it/s]
1%| | 99/15000 [02:27<2:08:56, 1.93it/s]
1%| | 99/15000 [02:27<2:08:56, 1.93it/s]
1%| | 100/15000 [02:29<3:51:46, 1.07it/s]
1%| | 100/15000 [02:29<3:51:46, 1.07it/s]{'loss': 55.1501, 'grad_norm': 55.24320602416992, 'learning_rate': 1.2e-06, 'epoch': 0.0}
{'loss': 37.9867, 'grad_norm': 23.647079467773438, 'learning_rate': 2.4e-06, 'epoch': 0.0}
{'loss': 38.8289, 'grad_norm': 78.71797180175781, 'learning_rate': 3.6e-06, 'epoch': 0.0}
{'loss': 30.949, 'grad_norm': 22.037351608276367, 'learning_rate': 4.8e-06, 'epoch': 0.0}
{'loss': 23.1032, 'grad_norm': 12.956131935119629, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.0}
{'loss': 31.3918, 'grad_norm': 20.31169891357422, 'learning_rate': 7.2e-06, 'epoch': 0.0}
{'loss': 28.9189, 'grad_norm': 17.540878295898438, 'learning_rate': 8.4e-06, 'epoch': 0.01}
{'loss': 22.3916, 'grad_norm': 13.102218627929688, 'learning_rate': 9.6e-06, 'epoch': 0.01}
{'loss': 28.3749, 'grad_norm': 17.723081588745117, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.01}
{'loss': 22.6596, 'grad_norm': 15.419927597045898, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.01}
{'loss': 24.7073, 'grad_norm': 14.711732864379883, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.01}
{'loss': 24.3696, 'grad_norm': 15.348709106445312, 'learning_rate': 1.44e-05, 'epoch': 0.01}
{'loss': 19.5756, 'grad_norm': 12.3980712890625, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.01}
{'loss': 23.1117, 'grad_norm': 14.994391441345215, 'learning_rate': 1.68e-05, 'epoch': 0.01}
{'loss': 21.4606, 'grad_norm': 14.228461265563965, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.01}
{'loss': 23.4022, 'grad_norm': 16.725765228271484, 'learning_rate': 1.92e-05, 'epoch': 0.01}
{'loss': 19.3385, 'grad_norm': 12.890478134155273, 'learning_rate': 2.04e-05, 'epoch': 0.01}
{'loss': 19.6988, 'grad_norm': 14.312437057495117, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.01}
{'loss': 20.3023, 'grad_norm': 15.029579162597656, 'learning_rate': 2.28e-05, 'epoch': 0.02}
{'loss': 22.1838, 'grad_norm': 17.42087173461914, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.02}
{'loss': 23.4241, 'grad_norm': 19.851398468017578, 'learning_rate': 2.52e-05, 'epoch': 0.02}
{'loss': 18.7511, 'grad_norm': 15.883931159973145, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.02}
{'loss': 18.1496, 'grad_norm': 15.641206741333008, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.02}
{'loss': 19.8811, 'grad_norm': 17.544893264770508, 'learning_rate': 2.88e-05, 'epoch': 0.02}
{'loss': 18.4875, 'grad_norm': 17.102035522460938, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.02}
{'loss': 20.5914, 'grad_norm': 19.561729431152344, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.02}
{'loss': 21.2235, 'grad_norm': 21.34266471862793, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.02}
{'loss': 19.0453, 'grad_norm': 18.96493148803711, 'learning_rate': 3.36e-05, 'epoch': 0.02}
{'loss': 17.8584, 'grad_norm': 18.40350341796875, 'learning_rate': 3.48e-05, 'epoch': 0.02}
{'loss': 17.1607, 'grad_norm': 17.96097183227539, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.02}
{'loss': 17.4036, 'grad_norm': 18.478139877319336, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.02}
{'loss': 24.4918, 'grad_norm': 30.71839714050293, 'learning_rate': 3.84e-05, 'epoch': 0.03}
{'loss': 17.2703, 'grad_norm': 20.562528610229492, 'learning_rate': 3.96e-05, 'epoch': 0.03}
{'loss': 22.0235, 'grad_norm': 29.075634002685547, 'learning_rate': 4.08e-05, 'epoch': 0.03}
{'loss': 16.0123, 'grad_norm': 20.09305763244629, 'learning_rate': 4.2e-05, 'epoch': 0.03}
{'loss': 14.4792, 'grad_norm': 18.510303497314453, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.03}
{'loss': 15.6298, 'grad_norm': 22.286174774169922, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.03}
{'loss': 16.2526, 'grad_norm': 24.687335968017578, 'learning_rate': 4.56e-05, 'epoch': 0.03}
{'loss': 16.7113, 'grad_norm': 28.12813949584961, 'learning_rate': 4.68e-05, 'epoch': 0.03}
{'loss': 14.9249, 'grad_norm': 24.97531509399414, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.03}
{'loss': 20.9556, 'grad_norm': 42.91463088989258, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.03}
{'loss': 16.2661, 'grad_norm': 32.054107666015625, 'learning_rate': 5.04e-05, 'epoch': 0.03}
{'loss': 16.2159, 'grad_norm': 70.31315612792969, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.03}
{'loss': 13.7032, 'grad_norm': 32.60994338989258, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.04}
{'loss': 16.3465, 'grad_norm': 47.5252799987793, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.04}
{'loss': 13.4869, 'grad_norm': 38.7507209777832, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.04}
{'loss': 14.1514, 'grad_norm': 45.27580261230469, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.04}
{'loss': 13.2299, 'grad_norm': 74.79034423828125, 'learning_rate': 5.76e-05, 'epoch': 0.04}
{'loss': 14.1863, 'grad_norm': 53.594112396240234, 'learning_rate': 5.88e-05, 'epoch': 0.04}
{'loss': 10.2234, 'grad_norm': 37.544105529785156, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.04}
{'loss': 32.0149, 'grad_norm': 210.60939025878906, 'learning_rate': 6.12e-05, 'epoch': 0.04}
{'loss': 16.5038, 'grad_norm': 283.9588317871094, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.04}
{'loss': 14.0021, 'grad_norm': 92.21966552734375, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.04}
{'loss': 9.7727, 'grad_norm': 52.83596420288086, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.04}
{'loss': 9.7588, 'grad_norm': 57.96211624145508, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.04}
{'loss': 11.3258, 'grad_norm': 81.57141876220703, 'learning_rate': 6.72e-05, 'epoch': 0.04}
{'loss': 8.107, 'grad_norm': 49.513389587402344, 'learning_rate': 6.84e-05, 'epoch': 0.05}
{'loss': 7.9498, 'grad_norm': 51.3297119140625, 'learning_rate': 6.96e-05, 'epoch': 0.05}
{'loss': 7.2234, 'grad_norm': 49.16130447387695, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.05}
{'loss': 7.1602, 'grad_norm': 44.431884765625, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.05}
{'loss': 7.5301, 'grad_norm': 50.24138641357422, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.05}
{'loss': 5.9971, 'grad_norm': 30.802688598632812, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.05}
{'loss': 5.9177, 'grad_norm': 29.715532302856445, 'learning_rate': 7.56e-05, 'epoch': 0.05}
{'loss': 5.4384, 'grad_norm': 21.660947799682617, 'learning_rate': 7.68e-05, 'epoch': 0.05}
{'loss': 5.131, 'grad_norm': 17.690467834472656, 'learning_rate': 7.8e-05, 'epoch': 0.05}
{'loss': 5.1511, 'grad_norm': 16.03678321838379, 'learning_rate': 7.92e-05, 'epoch': 0.05}
{'loss': 5.0105, 'grad_norm': 16.573497772216797, 'learning_rate': 8.04e-05, 'epoch': 0.05}
{'loss': 4.8401, 'grad_norm': 8.50601863861084, 'learning_rate': 8.16e-05, 'epoch': 0.05}
{'loss': 4.822, 'grad_norm': 9.597841262817383, 'learning_rate': 8.28e-05, 'epoch': 0.06}
{'loss': 4.7947, 'grad_norm': 8.359488487243652, 'learning_rate': 8.4e-05, 'epoch': 0.06}
{'loss': 4.6689, 'grad_norm': 3.957462787628174, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.06}
{'loss': 4.5875, 'grad_norm': 3.6539266109466553, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.06}
{'loss': 4.6111, 'grad_norm': 3.8879873752593994, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.06}
{'loss': 4.4679, 'grad_norm': 4.104447364807129, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.06}
{'loss': 4.5248, 'grad_norm': 3.684237241744995, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.06}
{'loss': 4.4057, 'grad_norm': 6.547801494598389, 'learning_rate': 9.12e-05, 'epoch': 0.06}
{'loss': 4.3263, 'grad_norm': 4.996586799621582, 'learning_rate': 9.24e-05, 'epoch': 0.06}
{'loss': 4.3208, 'grad_norm': 3.973392963409424, 'learning_rate': 9.36e-05, 'epoch': 0.06}
{'loss': 4.2673, 'grad_norm': 7.355752468109131, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.06}
{'loss': 4.1806, 'grad_norm': 2.568572759628296, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.06}
{'loss': 4.1955, 'grad_norm': 4.414656639099121, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.06}
{'loss': 4.2109, 'grad_norm': 4.509352207183838, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.07}
{'loss': 4.1688, 'grad_norm': 4.9976959228515625, 'learning_rate': 9.96e-05, 'epoch': 0.07}
{'loss': 4.0762, 'grad_norm': 2.1113946437835693, 'learning_rate': 0.0001008, 'epoch': 0.07}
{'loss': 4.0848, 'grad_norm': 1.612180233001709, 'learning_rate': 0.000102, 'epoch': 0.07}
{'loss': 4.0572, 'grad_norm': 1.3094934225082397, 'learning_rate': 0.00010319999999999999, 'epoch': 0.07}
{'loss': 3.9716, 'grad_norm': 3.991403579711914, 'learning_rate': 0.00010439999999999999, 'epoch': 0.07}
{'loss': 4.0021, 'grad_norm': 2.9913430213928223, 'learning_rate': 0.00010559999999999998, 'epoch': 0.07}
{'loss': 3.9559, 'grad_norm': 1.6111350059509277, 'learning_rate': 0.00010679999999999998, 'epoch': 0.07}
{'loss': 4.0387, 'grad_norm': 3.534836769104004, 'learning_rate': 0.00010799999999999998, 'epoch': 0.07}
{'loss': 3.9655, 'grad_norm': 1.357425332069397, 'learning_rate': 0.00010919999999999998, 'epoch': 0.07}
{'loss': 4.0018, 'grad_norm': 1.7971723079681396, 'learning_rate': 0.00011039999999999999, 'epoch': 0.07}
{'loss': 4.0132, 'grad_norm': 1.606231689453125, 'learning_rate': 0.00011159999999999999, 'epoch': 0.07}
{'loss': 4.0095, 'grad_norm': 1.794319987297058, 'learning_rate': 0.00011279999999999999, 'epoch': 0.08}
{'loss': 3.9136, 'grad_norm': 1.4456522464752197, 'learning_rate': 0.00011399999999999999, 'epoch': 0.08}
{'loss': 3.8649, 'grad_norm': 3.3638863563537598, 'learning_rate': 0.0001152, 'epoch': 0.08}
{'loss': 3.8661, 'grad_norm': 1.408311128616333, 'learning_rate': 0.0001164, 'epoch': 0.08}
{'loss': 3.9351, 'grad_norm': 2.4918947219848633, 'learning_rate': 0.0001176, 'epoch': 0.08}
{'loss': 3.97, 'grad_norm': 1.5341547727584839, 'learning_rate': 0.0001188, 'epoch': 0.08}
{'loss': 3.9552, 'grad_norm': 2.488055944442749, 'learning_rate': 0.00011999999999999999, 'epoch': 0.08}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:12, 2.68it/s][A
2%|โ | 3/196 [00:01<01:47, 1.80it/s][A
2%|โ | 4/196 [00:02<02:11, 1.46it/s][A
3%|โ | 5/196 [00:03<02:25, 1.32it/s][A
3%|โ | 6/196 [00:04<02:47, 1.13it/s][A
4%|โ | 7/196 [00:05<02:52, 1.09it/s][A
4%|โ | 8/196 [00:06<02:55, 1.07it/s][A
5%|โ | 9/196 [00:08<03:47, 1.22s/it][A
5%|โ | 10/196 [00:10<04:26, 1.44s/it][A
6%|โ | 11/196 [00:12<05:08, 1.67s/it][A
6%|โ | 12/196 [00:14<05:24, 1.76s/it][A
7%|โ | 13/196 [00:15<04:42, 1.54s/it][A
7%|โ | 14/196 [00:16<03:59, 1.32s/it][A
8%|โ | 15/196 [00:16<03:20, 1.11s/it][A
8%|โ | 16/196 [00:17<03:07, 1.04s/it][A
9%|โ | 17/196 [00:18<03:00, 1.01s/it][A
9%|โ | 18/196 [00:20<03:19, 1.12s/it][A
10%|โ | 19/196 [00:22<04:12, 1.42s/it][A
10%|โ | 20/196 [00:23<04:29, 1.53s/it][A
11%|โ | 21/196 [00:25<04:37, 1.59s/it][A
11%|โ | 22/196 [00:27<04:25, 1.52s/it][A
12%|โโ | 23/196 [00:28<04:03, 1.40s/it][A
12%|โโ | 24/196 [00:28<03:14, 1.13s/it][A
13%|โโ | 25/196 [00:29<02:45, 1.03it/s][A
13%|โโ | 26/196 [00:29<02:25, 1.17it/s][A
14%|โโ | 27/196 [00:30<02:14, 1.26it/s][A
14%|โโ | 28/196 [00:31<02:08, 1.31it/s][A
15%|โโ | 29/196 [00:31<02:08, 1.30it/s][A
15%|โโ | 30/196 [00:32<02:08, 1.29it/s][A
16%|โโ | 31/196 [00:33<01:57, 1.41it/s][A
16%|โโ | 32/196 [00:33<01:52, 1.46it/s][A
17%|โโ | 33/196 [00:35<02:09, 1.26it/s][A
17%|โโ | 34/196 [00:36<02:47, 1.04s/it][A
18%|โโ | 35/196 [00:37<02:54, 1.09s/it][A
18%|โโ | 36/196 [00:39<03:17, 1.24s/it][A
19%|โโ | 37/196 [00:40<03:14, 1.22s/it][A
19%|โโ | 38/196 [00:41<02:58, 1.13s/it][A
20%|โโ | 39/196 [00:42<02:47, 1.07s/it][A
20%|โโ | 40/196 [00:43<02:33, 1.01it/s][A
21%|โโ | 41/196 [00:43<02:20, 1.10it/s][A
21%|โโโ | 42/196 [00:44<02:10, 1.18it/s][A
22%|โโโ | 43/196 [00:45<02:08, 1.19it/s][A
22%|โโโ | 44/196 [00:46<02:05, 1.21it/s][A
23%|โโโ | 45/196 [00:46<01:57, 1.29it/s][A
23%|โโโ | 46/196 [00:47<01:49, 1.37it/s][A
24%|โโโ | 47/196 [00:48<01:49, 1.37it/s][A
24%|โโโ | 48/196 [00:48<01:43, 1.43it/s][A
25%|โโโ | 49/196 [00:49<01:40, 1.46it/s][A
26%|โโโ | 50/196 [00:50<01:39, 1.47it/s][A
26%|โโโ | 51/196 [00:50<01:36, 1.51it/s][A
27%|โโโ | 52/196 [00:51<01:35, 1.51it/s][A
27%|โโโ | 53/196 [00:52<01:39, 1.43it/s][A
28%|โโโ | 54/196 [00:52<01:38, 1.45it/s][A
28%|โโโ | 55/196 [00:53<01:49, 1.29it/s][A
29%|โโโ | 56/196 [00:54<01:57, 1.19it/s][A
29%|โโโ | 57/196 [00:55<02:05, 1.11it/s][A
30%|โโโ | 58/196 [00:57<02:09, 1.06it/s][A
30%|โโโ | 59/196 [00:57<02:07, 1.08it/s][A
31%|โโโ | 60/196 [00:58<01:55, 1.17it/s][A
31%|โโโ | 61/196 [00:59<01:45, 1.28it/s][A
32%|โโโโ | 62/196 [01:00<01:50, 1.22it/s][A
32%|โโโโ | 63/196 [01:00<01:48, 1.23it/s][A
33%|โโโโ | 64/196 [01:01<01:46, 1.24it/s][A
33%|โโโโ | 65/196 [01:02<01:42, 1.27it/s][A
34%|โโโโ | 66/196 [01:03<01:46, 1.22it/s][A
34%|โโโโ | 67/196 [01:04<01:49, 1.17it/s][A
35%|โโโโ | 68/196 [01:05<02:03, 1.03it/s][A
35%|โโโโ | 69/196 [01:06<02:04, 1.02it/s][A
36%|โโโโ | 70/196 [01:07<01:55, 1.09it/s][A
36%|โโโโ | 71/196 [01:08<01:47, 1.16it/s][A
37%|โโโโ | 72/196 [01:08<01:39, 1.25it/s][A
37%|โโโโ | 73/196 [01:09<01:30, 1.36it/s][A
38%|โโโโ | 74/196 [01:09<01:23, 1.45it/s][A
38%|โโโโ | 75/196 [01:10<01:21, 1.49it/s][A
39%|โโโโ | 76/196 [01:11<01:19, 1.52it/s][A
39%|โโโโ | 77/196 [01:11<01:22, 1.45it/s][A
40%|โโโโ | 78/196 [01:12<01:26, 1.36it/s][A
40%|โโโโ | 79/196 [01:13<01:24, 1.39it/s][A
41%|โโโโ | 80/196 [01:14<01:29, 1.29it/s][A
41%|โโโโโ | 81/196 [01:15<01:31, 1.25it/s][A
42%|โโโโโ | 82/196 [01:15<01:28, 1.29it/s][A
42%|โโโโโ | 83/196 [01:16<01:30, 1.25it/s][A
43%|โโโโโ | 84/196 [01:17<01:31, 1.22it/s][A
43%|โโโโโ | 85/196 [01:18<01:30, 1.23it/s][A
44%|โโโโโ | 86/196 [01:19<01:32, 1.19it/s][A
44%|โโโโโ | 87/196 [01:20<01:29, 1.22it/s][A
45%|โโโโโ | 88/196 [01:21<01:32, 1.17it/s][A
45%|โโโโโ | 89/196 [01:21<01:34, 1.13it/s][A
46%|โโโโโ | 90/196 [01:22<01:31, 1.16it/s][A
46%|โโโโโ | 91/196 [01:23<01:27, 1.20it/s][A
47%|โโโโโ | 92/196 [01:24<01:24, 1.23it/s][A
47%|โโโโโ | 93/196 [01:25<01:28, 1.16it/s][A
48%|โโโโโ | 94/196 [01:26<01:28, 1.15it/s][A
48%|โโโโโ | 95/196 [01:26<01:24, 1.19it/s][A
49%|โโโโโ | 96/196 [01:27<01:28, 1.13it/s][A
49%|โโโโโ | 97/196 [01:28<01:25, 1.16it/s][A
50%|โโโโโ | 98/196 [01:29<01:27, 1.12it/s][A
51%|โโโโโ | 99/196 [01:30<01:20, 1.21it/s][A
51%|โโโโโ | 100/196 [01:30<01:10, 1.37it/s][A
52%|โโโโโโ | 101/196 [01:31<01:05, 1.44it/s][A
52%|โโโโโโ | 102/196 [01:32<01:09, 1.35it/s][A
53%|โโโโโโ | 103/196 [01:33<01:14, 1.25it/s][A
53%|โโโโโโ | 104/196 [01:34<01:24, 1.10it/s][A
54%|โโโโโโ | 105/196 [01:35<01:25, 1.07it/s][A
54%|โโโโโโ | 106/196 [01:36<01:24, 1.06it/s][A
55%|โโโโโโ | 107/196 [01:37<01:18, 1.13it/s][A
55%|โโโโโโ | 108/196 [01:37<01:09, 1.27it/s][A
56%|โโโโโโ | 109/196 [01:38<01:05, 1.33it/s][A
56%|โโโโโโ | 110/196 [01:39<01:02, 1.38it/s][A
57%|โโโโโโ | 111/196 [01:39<01:01, 1.37it/s][A
57%|โโโโโโ | 112/196 [01:40<01:03, 1.32it/s][A
58%|โโโโโโ | 113/196 [01:41<01:03, 1.30it/s][A
58%|โโโโโโ | 114/196 [01:42<00:58, 1.40it/s][A
59%|โโโโโโ | 115/196 [01:42<00:56, 1.44it/s][A
59%|โโโโโโ | 116/196 [01:43<00:54, 1.47it/s][A
60%|โโโโโโ | 117/196 [01:43<00:51, 1.54it/s][A
60%|โโโโโโ | 118/196 [01:44<00:46, 1.69it/s][A
61%|โโโโโโ | 119/196 [01:45<00:48, 1.60it/s][A
61%|โโโโโโ | 120/196 [01:45<00:49, 1.52it/s][A
62%|โโโโโโโ | 121/196 [01:46<00:50, 1.48it/s][A
62%|โโโโโโโ | 122/196 [01:47<00:51, 1.45it/s][A
63%|โโโโโโโ | 123/196 [01:47<00:49, 1.47it/s][A
63%|โโโโโโโ | 124/196 [01:48<00:49, 1.45it/s][A
64%|โโโโโโโ | 125/196 [01:49<00:51, 1.37it/s][A
64%|โโโโโโโ | 126/196 [01:50<00:56, 1.23it/s][A
65%|โโโโโโโ | 127/196 [01:51<00:55, 1.25it/s][A
65%|โโโโโโโ | 128/196 [01:51<00:51, 1.32it/s][A
66%|โโโโโโโ | 129/196 [01:52<00:49, 1.35it/s][A
66%|โโโโโโโ | 130/196 [01:53<00:48, 1.35it/s][A
67%|โโโโโโโ | 131/196 [01:53<00:47, 1.36it/s][A
67%|โโโโโโโ | 132/196 [01:54<00:44, 1.45it/s][A
68%|โโโโโโโ | 133/196 [01:55<00:42, 1.47it/s][A
68%|โโโโโโโ | 134/196 [01:56<00:45, 1.38it/s][A
69%|โโโโโโโ | 135/196 [01:56<00:43, 1.41it/s][A
69%|โโโโโโโ | 136/196 [01:57<00:41, 1.44it/s][A
70%|โโโโโโโ | 137/196 [01:58<00:40, 1.44it/s][A
70%|โโโโโโโ | 138/196 [01:58<00:40, 1.44it/s][A
71%|โโโโโโโ | 139/196 [01:59<00:40, 1.41it/s][A
71%|โโโโโโโโ | 140/196 [02:00<00:38, 1.44it/s][A
72%|โโโโโโโโ | 141/196 [02:00<00:38, 1.44it/s][A
72%|โโโโโโโโ | 142/196 [02:01<00:38, 1.39it/s][A
73%|โโโโโโโโ | 143/196 [02:02<00:40, 1.30it/s][A
73%|โโโโโโโโ | 144/196 [02:03<00:37, 1.38it/s][A
74%|โโโโโโโโ | 145/196 [02:03<00:33, 1.51it/s][A
74%|โโโโโโโโ | 146/196 [02:04<00:31, 1.59it/s][A
75%|โโโโโโโโ | 147/196 [02:04<00:30, 1.59it/s][A
76%|โโโโโโโโ | 148/196 [02:05<00:30, 1.59it/s][A
76%|โโโโโโโโ | 149/196 [02:06<00:28, 1.66it/s][A
77%|โโโโโโโโ | 150/196 [02:06<00:29, 1.56it/s][A
77%|โโโโโโโโ | 151/196 [02:07<00:30, 1.48it/s][A
78%|โโโโโโโโ | 152/196 [02:08<00:29, 1.49it/s][A
78%|โโโโโโโโ | 153/196 [02:08<00:29, 1.48it/s][A
79%|โโโโโโโโ | 154/196 [02:09<00:28, 1.47it/s][A
79%|โโโโโโโโ | 155/196 [02:10<00:30, 1.36it/s][A
80%|โโโโโโโโ | 156/196 [02:11<00:33, 1.19it/s][A
80%|โโโโโโโโ | 157/196 [02:12<00:35, 1.11it/s][A
81%|โโโโโโโโ | 158/196 [02:13<00:30, 1.23it/s][A
81%|โโโโโโโโ | 159/196 [02:13<00:27, 1.34it/s][A
82%|โโโโโโโโโ | 160/196 [02:14<00:25, 1.41it/s][A
82%|โโโโโโโโโ | 161/196 [02:15<00:24, 1.40it/s][A
83%|โโโโโโโโโ | 162/196 [02:15<00:24, 1.42it/s][A
83%|โโโโโโโโโ | 163/196 [02:16<00:22, 1.44it/s][A
84%|โโโโโโโโโ | 164/196 [02:17<00:21, 1.46it/s][A
84%|โโโโโโโโโ | 165/196 [02:17<00:22, 1.40it/s][A
85%|โโโโโโโโโ | 166/196 [02:18<00:21, 1.43it/s][A
85%|โโโโโโโโโ | 167/196 [02:19<00:19, 1.47it/s][A
86%|โโโโโโโโโ | 168/196 [02:19<00:18, 1.54it/s][A
86%|โโโโโโโโโ | 169/196 [02:20<00:17, 1.50it/s][A
87%|โโโโโโโโโ | 170/196 [02:21<00:18, 1.37it/s][A
87%|โโโโโโโโโ | 171/196 [02:22<00:17, 1.41it/s][A
88%|โโโโโโโโโ | 172/196 [02:22<00:17, 1.38it/s][A
88%|โโโโโโโโโ | 173/196 [02:23<00:16, 1.39it/s][A
89%|โโโโโโโโโ | 174/196 [02:24<00:16, 1.32it/s][A
89%|โโโโโโโโโ | 175/196 [02:25<00:19, 1.09it/s][A
90%|โโโโโโโโโ | 176/196 [02:28<00:28, 1.41s/it][A
90%|โโโโโโโโโ | 177/196 [02:30<00:30, 1.61s/it][A
91%|โโโโโโโโโ | 178/196 [02:32<00:31, 1.76s/it][A
91%|โโโโโโโโโโ| 179/196 [02:34<00:31, 1.87s/it][A
92%|โโโโโโโโโโ| 180/196 [02:35<00:24, 1.51s/it][A
92%|โโโโโโโโโโ| 181/196 [02:35<00:19, 1.29s/it][A
93%|โโโโโโโโโโ| 182/196 [02:36<00:15, 1.11s/it][A
93%|โโโโโโโโโโ| 183/196 [02:37<00:14, 1.13s/it][A
94%|โโโโโโโโโโ| 184/196 [02:38<00:11, 1.01it/s][A
94%|โโโโโโโโโโ| 185/196 [02:39<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:40<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:41<00:08, 1.07it/s][A
96%|โโโโโโโโโโ| 188/196 [02:41<00:07, 1.14it/s][A
96%|โโโโโโโโโโ| 189/196 [02:42<00:06, 1.15it/s][A
97%|โโโโโโโโโโ| 190/196 [02:43<00:04, 1.24it/s][A
97%|โโโโโโโโโโ| 191/196 [02:44<00:03, 1.34it/s][A
98%|โโโโโโโโโโ| 192/196 [02:44<00:02, 1.35it/s][A
98%|โโโโโโโโโโ| 193/196 [02:45<00:02, 1.35it/s][A
99%|โโโโโโโโโโ| 194/196 [02:46<00:01, 1.37it/s][A
99%|โโโโโโโโโโ| 195/196 [02:46<00:00, 1.41it/s][A
100%|โโโโโโโโโโ| 196/196 [02:47<00:00, 1.63it/s][A
[A
1%| | 100/15000 [05:23<3:51:46, 1.07it/s]
100%|โโโโโโโโโโ| 196/196 [02:52<00:00, 1.63it/s][A
[A
1%| | 101/15000 [05:29<225:58:46, 54.60s/it]
1%| | 101/15000 [05:29<225:58:46, 54.60s/it]
1%| | 102/15000 [05:33<162:24:22, 39.24s/it]
1%| | 102/15000 [05:33<162:24:22, 39.24s/it]
1%| | 103/15000 [05:35<116:59:21, 28.27s/it]
1%| | 103/15000 [05:35<116:59:21, 28.27s/it]
1%| | 104/15000 [05:38<84:50:12, 20.50s/it]
1%| | 104/15000 [05:38<84:50:12, 20.50s/it]
1%| | 105/15000 [05:40<62:03:00, 15.00s/it]
1%| | 105/15000 [05:40<62:03:00, 15.00s/it]
1%| | 106/15000 [05:42<45:52:03, 11.09s/it]
1%| | 106/15000 [05:42<45:52:03, 11.09s/it]
1%| | 107/15000 [05:44<34:33:10, 8.35s/it]
1%| | 107/15000 [05:44<34:33:10, 8.35s/it]
1%| | 108/15000 [05:45<26:22:59, 6.38s/it]
1%| | 108/15000 [05:45<26:22:59, 6.38s/it]
1%| | 109/15000 [05:47<20:38:18, 4.99s/it]
1%| | 109/15000 [05:47<20:38:18, 4.99s/it]
1%| | 110/15000 [05:49<16:26:20, 3.97s/it]
1%| | 110/15000 [05:49<16:26:20, 3.97s/it]
1%| | 111/15000 [05:50<13:28:03, 3.26s/it]
1%| | 111/15000 [05:50<13:28:03, 3.26s/it]
1%| | 112/15000 [05:52<11:19:59, 2.74s/it]
1%| | 112/15000 [05:52<11:19:59, 2.74s/it]
1%| | 113/15000 [05:53<9:41:36, 2.34s/it]
1%| | 113/15000 [05:53<9:41:36, 2.34s/it]
1%| | 114/15000 [05:55<8:32:54, 2.07s/it]
1%| | 114/15000 [05:55<8:32:54, 2.07s/it]
1%| | 115/15000 [05:56<7:44:37, 1.87s/it]
1%| | 115/15000 [05:56<7:44:37, 1.87s/it]
1%| | 116/15000 [05:58<7:11:21, 1.74s/it]
1%| | 116/15000 [05:58<7:11:21, 1.74s/it]
1%| | 117/15000 [05:59<6:46:34, 1.64s/it]
1%| | 117/15000 [05:59<6:46:34, 1.64s/it]
1%| | 118/15000 [06:00<6:25:04, 1.55s/it]
1%| | 118/15000 [06:00<6:25:04, 1.55s/it]
1%| | 119/15000 [06:02<5:59:47, 1.45s/it]
1%| | 119/15000 [06:02<5:59:47, 1.45s/it]
1%| | 120/15000 [06:03<5:42:00, 1.38s/it]
1%| | 120/15000 [06:03<5:42:00, 1.38s/it]
1%| | 121/15000 [06:04<5:29:18, 1.33s/it]
1%| | 121/15000 [06:04<5:29:18, 1.33s/it]
1%| | 122/15000 [06:05<5:20:04, 1.29s/it]
1%| | 122/15000 [06:05<5:20:04, 1.29s/it]
1%| | 123/15000 [06:06<5:11:33, 1.26s/it]
1%| | 123/15000 [06:06<5:11:33, 1.26s/it]
1%| | 124/15000 [06:08<5:02:34, 1.22s/it]
1%| | 124/15000 [06:08<5:02:34, 1.22s/it]
1%| | 125/15000 [06:09<4:46:36, 1.16s/it]
1%| | 125/15000 [06:09<4:46:36, 1.16s/it]
1%| | 126/15000 [06:10<4:35:49, 1.11s/it]
1%| | 126/15000 [06:10<4:35:49, 1.11s/it]
1%| | 127/15000 [06:11<4:28:00, 1.08s/it]
1%| | 127/15000 [06:11<4:28:00, 1.08s/it]
1%| | 128/15000 [06:12<4:22:34, 1.06s/it]
1%| | 128/15000 [06:12<4:22:34, 1.06s/it]
1%| | 129/15000 [06:13<4:19:19, 1.05s/it]
1%| | 129/15000 [06:13<4:19:19, 1.05s/it]
1%| | 130/15000 [06:14<4:17:06, 1.04s/it]
1%| | 130/15000 [06:14<4:17:06, 1.04s/it]
1%| | 131/15000 [06:15<4:14:22, 1.03s/it]
1%| | 131/15000 [06:15<4:14:22, 1.03s/it]
1%| | 132/15000 [06:16<4:08:17, 1.00s/it]
1%| | 132/15000 [06:16<4:08:17, 1.00s/it]
1%| | 133/15000 [06:16<3:54:03, 1.06it/s]
1%| | 133/15000 [06:16<3:54:03, 1.06it/s]
1%| | 134/15000 [06:17<3:44:04, 1.11it/s]
1%| | 134/15000 [06:17<3:44:04, 1.11it/s]
1%| | 135/15000 [06:18<3:37:32, 1.14it/s]
1%| | 135/15000 [06:18<3:37:32, 1.14it/s]
1%| | 136/15000 [06:19<3:32:29, 1.17it/s]
1%| | 136/15000 [06:19<3:32:29, 1.17it/s]
1%| | 137/15000 [06:20<3:29:14, 1.18it/s]
1%| | 137/15000 [06:20<3:29:14, 1.18it/s]
1%| | 138/15000 [06:20<3:26:35, 1.20it/s]
1%| | 138/15000 [06:20<3:26:35, 1.20it/s]
1%| | 139/15000 [06:21<3:24:45, 1.21it/s]
1%| | 139/15000 [06:21<3:24:45, 1.21it/s]
1%| | 140/15000 [06:22<3:19:15, 1.24it/s]
1%| | 140/15000 [06:22<3:19:15, 1.24it/s]
1%| | 141/15000 [06:23<3:14:50, 1.27it/s]
1%| | 141/15000 [06:23<3:14:50, 1.27it/s]
1%| | 142/15000 [06:23<3:02:36, 1.36it/s]
1%| | 142/15000 [06:23<3:02:36, 1.36it/s]
1%| | 143/15000 [06:24<2:54:00, 1.42it/s]
1%| | 143/15000 [06:24<2:54:00, 1.42it/s]
1%| | 144/15000 [06:25<2:48:27, 1.47it/s]
1%| | 144/15000 [06:25<2:48:27, 1.47it/s]
1%| | 145/15000 [06:25<2:44:26, 1.51it/s]
1%| | 145/15000 [06:25<2:44:26, 1.51it/s]
1%| | 146/15000 [06:26<2:41:20, 1.53it/s]
1%| | 146/15000 [06:26<2:41:20, 1.53it/s]
1%| | 147/15000 [06:26<2:35:06, 1.60it/s]
1%| | 147/15000 [06:26<2:35:06, 1.60it/s]
1%| | 148/15000 [06:27<2:29:53, 1.65it/s]
1%| | 148/15000 [06:27<2:29:53, 1.65it/s]
1%| | 149/15000 [06:27<2:16:16, 1.82it/s]
1%| | 149/15000 [06:27<2:16:16, 1.82it/s]
1%| | 150/15000 [06:29<3:31:33, 1.17it/s]
1%| | 150/15000 [06:29<3:31:33, 1.17it/s]
1%| | 151/15000 [06:34<8:14:16, 2.00s/it]
1%| | 151/15000 [06:34<8:14:16, 2.00s/it]
1%| | 152/15000 [06:37<9:22:33, 2.27s/it]
1%| | 152/15000 [06:37<9:22:33, 2.27s/it]
1%| | 153/15000 [06:39<9:50:49, 2.39s/it]
1%| | 153/15000 [06:39<9:50:49, 2.39s/it]
1%| | 154/15000 [06:42<9:50:01, 2.38s/it]
1%| | 154/15000 [06:42<9:50:01, 2.38s/it]
1%| | 155/15000 [06:44<9:32:56, 2.32s/it]
1%| | 155/15000 [06:44<9:32:56, 2.32s/it]
1%| | 156/15000 [06:46<9:08:38, 2.22s/it]
1%| | 156/15000 [06:46<9:08:38, 2.22s/it]
1%| | 157/15000 [06:48<8:49:36, 2.14s/it]
1%| | 157/15000 [06:48<8:49:36, 2.14s/it]
1%| | 158/15000 [06:49<8:23:10, 2.03s/it]
1%| | 158/15000 [06:49<8:23:10, 2.03s/it]
1%| | 159/15000 [06:51<8:02:50, 1.95s/it]
1%| | 159/15000 [06:51<8:02:50, 1.95s/it]
1%| | 160/15000 [06:53<7:36:43, 1.85s/it]
1%| | 160/15000 [06:53<7:36:43, 1.85s/it]
1%| | 161/15000 [06:54<7:15:08, 1.76s/it]
1%| | 161/15000 [06:54<7:15:08, 1.76s/it]
1%| | 162/15000 [06:56<6:58:11, 1.69s/it]
1%| | 162/15000 [06:56<6:58:11, 1.69s/it]
1%| | 163/15000 [06:57<6:38:12, 1.61s/it]
1%| | 163/15000 [06:57<6:38:12, 1.61s/it]
1%| | 164/15000 [06:59<6:24:15, 1.55s/it]
1%| | 164/15000 [06:59<6:24:15, 1.55s/it]
1%| | 165/15000 [07:00<6:14:45, 1.52s/it]
1%| | 165/15000 [07:00<6:14:45, 1.52s/it]
1%| | 166/15000 [07:02<6:06:33, 1.48s/it]
1%| | 166/15000 [07:02<6:06:33, 1.48s/it]
1%| | 167/15000 [07:03<5:56:56, 1.44s/it]
1%| | 167/15000 [07:03<5:56:56, 1.44s/it]
1%| | 168/15000 [07:04<5:39:59, 1.38s/it]
1%| | 168/15000 [07:04<5:39:59, 1.38s/it]
1%| | 169/15000 [07:05<5:27:19, 1.32s/it]
1%| | 169/15000 [07:05<5:27:19, 1.32s/it]
1%| | 170/15000 [07:07<5:18:48, 1.29s/it]
1%| | 170/15000 [07:07<5:18:48, 1.29s/it]
1%| | 171/15000 [07:08<5:13:08, 1.27s/it]
1%| | 171/15000 [07:08<5:13:08, 1.27s/it]
1%| | 172/15000 [07:09<5:08:52, 1.25s/it]
1%| | 172/15000 [07:09<5:08:52, 1.25s/it]
1%| | 173/15000 [07:10<5:05:04, 1.23s/it]
1%| | 173/15000 [07:10<5:05:04, 1.23s/it]
1%| | 174/15000 [07:11<4:57:49, 1.21s/it]
1%| | 174/15000 [07:11<4:57:49, 1.21s/it]
1%| | 175/15000 [07:12<4:43:45, 1.15s/it]
1%| | 175/15000 [07:12<4:43:45, 1.15s/it]
1%| | 176/15000 [07:13<4:33:36, 1.11s/it]
1%| | 176/15000 [07:13<4:33:36, 1.11s/it]
1%| | 177/15000 [07:14<4:27:10, 1.08s/it]
1%| | 177/15000 [07:14<4:27:10, 1.08s/it]
1%| | 178/15000 [07:15<4:22:09, 1.06s/it]
1%| | 178/15000 [07:15<4:22:09, 1.06s/it]
1%| | 179/15000 [07:16<4:18:47, 1.05s/it]
1%| | 179/15000 [07:16<4:18:47, 1.05s/it]
1%| | 180/15000 [07:17<4:16:24, 1.04s/it]
1%| | 180/15000 [07:17<4:16:24, 1.04s/it]
1%| | 181/15000 [07:18<4:15:00, 1.03s/it]
1%| | 181/15000 [07:18<4:15:00, 1.03s/it]
1%| | 182/15000 [07:19<4:13:09, 1.03s/it]
1%| | 182/15000 [07:19<4:13:09, 1.03s/it]
1%| | 183/15000 [07:20<4:07:06, 1.00s/it]
1%| | 183/15000 [07:20<4:07:06, 1.00s/it]
1%| | 184/15000 [07:21<3:53:29, 1.06it/s]
1%| | 184/15000 [07:21<3:53:29, 1.06it/s]
1%| | 185/15000 [07:22<3:43:58, 1.10it/s]
1%| | 185/15000 [07:22<3:43:58, 1.10it/s]
1%| | 186/15000 [07:23<3:37:09, 1.14it/s]
1%| | 186/15000 [07:23<3:37:09, 1.14it/s]
1%| | 187/15000 [07:24<3:32:24, 1.16it/s]
1%| | 187/15000 [07:24<3:32:24, 1.16it/s]
1%|โ | 188/15000 [07:24<3:30:05, 1.18it/s]
1%|โ | 188/15000 [07:24<3:30:05, 1.18it/s]
1%|โ | 189/15000 [07:25<3:27:23, 1.19it/s]
1%|โ | 189/15000 [07:25<3:27:23, 1.19it/s]
1%|โ | 190/15000 [07:26<3:23:44, 1.21it/s]
1%|โ | 190/15000 [07:26<3:23:44, 1.21it/s]
1%|โ | 191/15000 [07:27<3:18:06, 1.25it/s]
1%|โ | 191/15000 [07:27<3:18:06, 1.25it/s]
1%|โ | 192/15000 [07:27<3:05:12, 1.33it/s]
1%|โ | 192/15000 [07:27<3:05:12, 1.33it/s]
1%|โ | 193/15000 [07:28<2:56:11, 1.40it/s]
1%|โ | 193/15000 [07:28<2:56:11, 1.40it/s]
1%|โ | 194/15000 [07:29<2:49:54, 1.45it/s]
1%|โ | 194/15000 [07:29<2:49:54, 1.45it/s]
1%|โ | 195/15000 [07:29<2:45:35, 1.49it/s]
1%|โ | 195/15000 [07:29<2:45:35, 1.49it/s]
1%|โ | 196/15000 [07:30<2:38:51, 1.55it/s]
1%|โ | 196/15000 [07:30<2:38:51, 1.55it/s]
1%|โ | 197/15000 [07:30<2:32:40, 1.62it/s]
1%|โ | 197/15000 [07:31<2:32:40, 1.62it/s]
1%|โ | 198/15000 [07:31<2:18:40, 1.78it/s]
1%|โ | 198/15000 [07:31<2:18:40, 1.78it/s]
1%|โ | 199/15000 [07:31<2:06:49, 1.95it/s]
1%|โ | 199/15000 [07:31<2:06:49, 1.95it/s]
1%|โ | 200/15000 [07:33<3:33:07, 1.16it/s]
1%|โ | 200/15000 [07:33<3:33:07, 1.16it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction:
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction:
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction:
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
{'eval_loss': 3.885796070098877, 'eval_cer': 0.9998960012479851, 'eval_wer': 1.0, 'eval_runtime': 173.6119, 'eval_samples_per_second': 18.063, 'eval_steps_per_second': 1.129, 'epoch': 0.08}
{'loss': 4.2514, 'grad_norm': 20.169822692871094, 'learning_rate': 0.00012119999999999999, 'epoch': 0.08}
{'loss': 4.5197, 'grad_norm': 24.785181045532227, 'learning_rate': 0.0001224, 'epoch': 0.08}
{'loss': 4.8489, 'grad_norm': 32.11153793334961, 'learning_rate': 0.0001236, 'epoch': 0.08}
{'loss': 3.959, 'grad_norm': 7.649921417236328, 'learning_rate': 0.00012479999999999997, 'epoch': 0.08}
{'loss': 3.8201, 'grad_norm': 3.502077341079712, 'learning_rate': 0.00012599999999999997, 'epoch': 0.08}
{'loss': 4.0117, 'grad_norm': 4.459872722625732, 'learning_rate': 0.00012719999999999997, 'epoch': 0.08}
{'loss': 3.8403, 'grad_norm': 1.7829786539077759, 'learning_rate': 0.00012839999999999998, 'epoch': 0.09}
{'loss': 4.1814, 'grad_norm': 9.398163795471191, 'learning_rate': 0.00012959999999999998, 'epoch': 0.09}
{'loss': 3.9133, 'grad_norm': 4.723393440246582, 'learning_rate': 0.00013079999999999998, 'epoch': 0.09}
{'loss': 3.8641, 'grad_norm': 6.7561869621276855, 'learning_rate': 0.00013199999999999998, 'epoch': 0.09}
{'loss': 3.8124, 'grad_norm': 4.843415260314941, 'learning_rate': 0.00013319999999999999, 'epoch': 0.09}
{'loss': 3.8906, 'grad_norm': 7.363504409790039, 'learning_rate': 0.0001344, 'epoch': 0.09}
{'loss': 3.8613, 'grad_norm': 6.835638523101807, 'learning_rate': 0.0001356, 'epoch': 0.09}
{'loss': 3.804, 'grad_norm': 3.9157023429870605, 'learning_rate': 0.0001368, 'epoch': 0.09}
{'loss': 3.7886, 'grad_norm': 1.6481516361236572, 'learning_rate': 0.000138, 'epoch': 0.09}
{'loss': 3.7634, 'grad_norm': 3.5203261375427246, 'learning_rate': 0.0001392, 'epoch': 0.09}
{'loss': 3.7674, 'grad_norm': 1.1627068519592285, 'learning_rate': 0.0001404, 'epoch': 0.09}
{'loss': 3.8525, 'grad_norm': 4.9674906730651855, 'learning_rate': 0.00014159999999999997, 'epoch': 0.09}
{'loss': 3.7886, 'grad_norm': 3.2914559841156006, 'learning_rate': 0.00014279999999999997, 'epoch': 0.1}
{'loss': 3.7983, 'grad_norm': 5.391963481903076, 'learning_rate': 0.00014399999999999998, 'epoch': 0.1}
{'loss': 3.6936, 'grad_norm': 1.8695930242538452, 'learning_rate': 0.00014519999999999998, 'epoch': 0.1}
{'loss': 3.8721, 'grad_norm': 4.308910369873047, 'learning_rate': 0.00014639999999999998, 'epoch': 0.1}
{'loss': 3.776, 'grad_norm': 1.57565176486969, 'learning_rate': 0.00014759999999999998, 'epoch': 0.1}
{'loss': 3.7622, 'grad_norm': 3.110372304916382, 'learning_rate': 0.00014879999999999998, 'epoch': 0.1}
{'loss': 3.7813, 'grad_norm': 1.5426779985427856, 'learning_rate': 0.00015, 'epoch': 0.1}
{'loss': 3.7965, 'grad_norm': 2.3589413166046143, 'learning_rate': 0.0001512, 'epoch': 0.1}
{'loss': 3.6996, 'grad_norm': 2.4414687156677246, 'learning_rate': 0.0001524, 'epoch': 0.1}
{'loss': 3.8344, 'grad_norm': 2.1184475421905518, 'learning_rate': 0.0001536, 'epoch': 0.1}
{'loss': 3.756, 'grad_norm': 2.4570391178131104, 'learning_rate': 0.0001548, 'epoch': 0.1}
{'loss': 3.7823, 'grad_norm': 1.8269883394241333, 'learning_rate': 0.000156, 'epoch': 0.1}
{'loss': 4.0439, 'grad_norm': 8.620251655578613, 'learning_rate': 0.0001572, 'epoch': 0.1}
{'loss': 3.7185, 'grad_norm': 1.8237167596817017, 'learning_rate': 0.0001584, 'epoch': 0.11}
{'loss': 3.7628, 'grad_norm': 2.52713680267334, 'learning_rate': 0.0001596, 'epoch': 0.11}
{'loss': 3.7956, 'grad_norm': 1.5142756700515747, 'learning_rate': 0.0001608, 'epoch': 0.11}
{'loss': 3.9245, 'grad_norm': 7.996574401855469, 'learning_rate': 0.000162, 'epoch': 0.11}
{'loss': 3.8011, 'grad_norm': 1.181909203529358, 'learning_rate': 0.0001632, 'epoch': 0.11}
{'loss': 3.7261, 'grad_norm': 1.2953170537948608, 'learning_rate': 0.0001644, 'epoch': 0.11}
{'loss': 3.8766, 'grad_norm': 3.1350889205932617, 'learning_rate': 0.0001656, 'epoch': 0.11}
{'loss': 3.7674, 'grad_norm': 2.576002597808838, 'learning_rate': 0.0001668, 'epoch': 0.11}
{'loss': 3.9272, 'grad_norm': 3.639996290206909, 'learning_rate': 0.000168, 'epoch': 0.11}
{'loss': 3.9177, 'grad_norm': 1.6465705633163452, 'learning_rate': 0.00016919999999999997, 'epoch': 0.11}
{'loss': 3.7281, 'grad_norm': 2.0705270767211914, 'learning_rate': 0.00017039999999999997, 'epoch': 0.11}
{'loss': 3.7971, 'grad_norm': 2.076151132583618, 'learning_rate': 0.00017159999999999997, 'epoch': 0.11}
{'loss': 3.7204, 'grad_norm': 1.9128029346466064, 'learning_rate': 0.00017279999999999997, 'epoch': 0.12}
{'loss': 3.7374, 'grad_norm': 2.209845542907715, 'learning_rate': 0.00017399999999999997, 'epoch': 0.12}
{'loss': 3.8168, 'grad_norm': 2.480881929397583, 'learning_rate': 0.00017519999999999998, 'epoch': 0.12}
{'loss': 3.7678, 'grad_norm': 2.0733742713928223, 'learning_rate': 0.00017639999999999998, 'epoch': 0.12}
{'loss': 3.8725, 'grad_norm': 1.4207344055175781, 'learning_rate': 0.00017759999999999998, 'epoch': 0.12}
{'loss': 3.7738, 'grad_norm': 1.3911476135253906, 'learning_rate': 0.00017879999999999998, 'epoch': 0.12}
{'loss': 3.9363, 'grad_norm': 1.926467776298523, 'learning_rate': 0.00017999999999999998, 'epoch': 0.12}
{'loss': 4.109, 'grad_norm': 15.835294723510742, 'learning_rate': 0.00018119999999999999, 'epoch': 0.12}
{'loss': 3.8775, 'grad_norm': 6.199708461761475, 'learning_rate': 0.0001824, 'epoch': 0.12}
{'loss': 3.7938, 'grad_norm': 5.658481121063232, 'learning_rate': 0.0001836, 'epoch': 0.12}
{'loss': 4.162, 'grad_norm': 10.3512601852417, 'learning_rate': 0.0001848, 'epoch': 0.12}
{'loss': 3.8622, 'grad_norm': 5.191125869750977, 'learning_rate': 0.000186, 'epoch': 0.12}
{'loss': 3.8732, 'grad_norm': 7.91705322265625, 'learning_rate': 0.0001872, 'epoch': 0.12}
{'loss': 3.8683, 'grad_norm': 7.932513236999512, 'learning_rate': 0.00018839999999999997, 'epoch': 0.13}
{'loss': 3.8134, 'grad_norm': 8.634958267211914, 'learning_rate': 0.00018959999999999997, 'epoch': 0.13}
{'loss': 4.1569, 'grad_norm': 4.877233982086182, 'learning_rate': 0.00019079999999999998, 'epoch': 0.13}
{'loss': 3.7753, 'grad_norm': 2.702068567276001, 'learning_rate': 0.00019199999999999998, 'epoch': 0.13}
{'loss': 3.7464, 'grad_norm': 2.783708095550537, 'learning_rate': 0.00019319999999999998, 'epoch': 0.13}
{'loss': 3.7006, 'grad_norm': 0.9557895660400391, 'learning_rate': 0.00019439999999999998, 'epoch': 0.13}
{'loss': 3.7859, 'grad_norm': 6.1677327156066895, 'learning_rate': 0.00019559999999999998, 'epoch': 0.13}
{'loss': 3.7277, 'grad_norm': 4.3974289894104, 'learning_rate': 0.00019679999999999999, 'epoch': 0.13}
{'loss': 3.7497, 'grad_norm': 3.576399803161621, 'learning_rate': 0.000198, 'epoch': 0.13}
{'loss': 3.64, 'grad_norm': 1.3737566471099854, 'learning_rate': 0.0001992, 'epoch': 0.13}
{'loss': 3.779, 'grad_norm': 1.7378631830215454, 'learning_rate': 0.0002004, 'epoch': 0.13}
{'loss': 3.6911, 'grad_norm': 2.045962333679199, 'learning_rate': 0.0002016, 'epoch': 0.13}
{'loss': 3.7197, 'grad_norm': 2.5057108402252197, 'learning_rate': 0.0002028, 'epoch': 0.14}
{'loss': 3.6651, 'grad_norm': 2.0770580768585205, 'learning_rate': 0.000204, 'epoch': 0.14}
{'loss': 3.6535, 'grad_norm': 1.4965234994888306, 'learning_rate': 0.0002052, 'epoch': 0.14}
{'loss': 3.6581, 'grad_norm': 1.2921875715255737, 'learning_rate': 0.00020639999999999998, 'epoch': 0.14}
{'loss': 3.6948, 'grad_norm': 1.2474544048309326, 'learning_rate': 0.00020759999999999998, 'epoch': 0.14}
{'loss': 3.7892, 'grad_norm': 6.727621555328369, 'learning_rate': 0.00020879999999999998, 'epoch': 0.14}
{'loss': 3.6541, 'grad_norm': 1.257496953010559, 'learning_rate': 0.00020999999999999998, 'epoch': 0.14}
{'loss': 3.67, 'grad_norm': 0.9659841656684875, 'learning_rate': 0.00021119999999999996, 'epoch': 0.14}
{'loss': 3.631, 'grad_norm': 0.9699028134346008, 'learning_rate': 0.00021239999999999996, 'epoch': 0.14}
{'loss': 3.8212, 'grad_norm': 4.80698299407959, 'learning_rate': 0.00021359999999999996, 'epoch': 0.14}
{'loss': 3.6576, 'grad_norm': 1.8491942882537842, 'learning_rate': 0.00021479999999999996, 'epoch': 0.14}
{'loss': 3.633, 'grad_norm': 3.6413612365722656, 'learning_rate': 0.00021599999999999996, 'epoch': 0.14}
{'loss': 3.6539, 'grad_norm': 2.454993486404419, 'learning_rate': 0.00021719999999999997, 'epoch': 0.14}
{'loss': 3.7794, 'grad_norm': 1.897018313407898, 'learning_rate': 0.00021839999999999997, 'epoch': 0.15}
{'loss': 3.6817, 'grad_norm': 3.520036458969116, 'learning_rate': 0.00021959999999999997, 'epoch': 0.15}
{'loss': 3.7477, 'grad_norm': 1.668845772743225, 'learning_rate': 0.00022079999999999997, 'epoch': 0.15}
{'loss': 3.6754, 'grad_norm': 1.4667448997497559, 'learning_rate': 0.00022199999999999998, 'epoch': 0.15}
{'loss': 3.548, 'grad_norm': 1.2006880044937134, 'learning_rate': 0.00022319999999999998, 'epoch': 0.15}
{'loss': 3.5878, 'grad_norm': 1.2960288524627686, 'learning_rate': 0.00022439999999999998, 'epoch': 0.15}
{'loss': 3.6003, 'grad_norm': 2.9643332958221436, 'learning_rate': 0.00022559999999999998, 'epoch': 0.15}
{'loss': 3.6926, 'grad_norm': 6.034687519073486, 'learning_rate': 0.00022679999999999998, 'epoch': 0.15}
{'loss': 3.6158, 'grad_norm': 3.277177095413208, 'learning_rate': 0.00022799999999999999, 'epoch': 0.15}
{'loss': 3.623, 'grad_norm': 1.6071703433990479, 'learning_rate': 0.0002292, 'epoch': 0.15}
{'loss': 3.7235, 'grad_norm': 3.0281198024749756, 'learning_rate': 0.0002304, 'epoch': 0.15}
{'loss': 3.7183, 'grad_norm': 3.987104654312134, 'learning_rate': 0.0002316, 'epoch': 0.15}
{'loss': 3.6887, 'grad_norm': 5.8654303550720215, 'learning_rate': 0.0002328, 'epoch': 0.16}
{'loss': 3.819, 'grad_norm': 3.1405129432678223, 'learning_rate': 0.000234, 'epoch': 0.16}
{'loss': 3.7654, 'grad_norm': 3.239671468734741, 'learning_rate': 0.0002352, 'epoch': 0.16}
{'loss': 3.7758, 'grad_norm': 1.674149513244629, 'learning_rate': 0.0002364, 'epoch': 0.16}
{'loss': 3.6214, 'grad_norm': 2.046180009841919, 'learning_rate': 0.0002376, 'epoch': 0.16}
{'loss': 3.7908, 'grad_norm': 2.909111261367798, 'learning_rate': 0.0002388, 'epoch': 0.16}
{'loss': 3.9424, 'grad_norm': 2.224748134613037, 'learning_rate': 0.00023999999999999998, 'epoch': 0.16}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:07, 2.87it/s][A
2%|โ | 3/196 [00:01<01:45, 1.83it/s][A
2%|โ | 4/196 [00:02<02:10, 1.47it/s][A
3%|โ | 5/196 [00:03<02:24, 1.32it/s][A
3%|โ | 6/196 [00:04<02:43, 1.16it/s][A
4%|โ | 7/196 [00:05<02:49, 1.11it/s][A
4%|โ | 8/196 [00:06<02:52, 1.09it/s][A
5%|โ | 9/196 [00:08<03:43, 1.20s/it][A
5%|โ | 10/196 [00:10<04:23, 1.42s/it][A
6%|โ | 11/196 [00:12<05:05, 1.65s/it][A
6%|โ | 12/196 [00:14<05:23, 1.76s/it][A
7%|โ | 13/196 [00:15<04:41, 1.54s/it][A
7%|โ | 14/196 [00:16<03:56, 1.30s/it][A
8%|โ | 15/196 [00:16<03:18, 1.10s/it][A
8%|โ | 16/196 [00:17<03:06, 1.04s/it][A
9%|โ | 17/196 [00:18<03:01, 1.01s/it][A
9%|โ | 18/196 [00:19<03:21, 1.13s/it][A
10%|โ | 19/196 [00:22<04:15, 1.44s/it][A
10%|โ | 20/196 [00:23<04:36, 1.57s/it][A
11%|โ | 21/196 [00:25<04:41, 1.61s/it][A
11%|โ | 22/196 [00:27<04:28, 1.54s/it][A
12%|โโ | 23/196 [00:28<04:05, 1.42s/it][A
12%|โโ | 24/196 [00:28<03:16, 1.14s/it][A
13%|โโ | 25/196 [00:29<02:48, 1.01it/s][A
13%|โโ | 26/196 [00:29<02:27, 1.15it/s][A
14%|โโ | 27/196 [00:30<02:16, 1.24it/s][A
14%|โโ | 28/196 [00:31<02:10, 1.29it/s][A
15%|โโ | 29/196 [00:32<02:10, 1.28it/s][A
15%|โโ | 30/196 [00:32<02:10, 1.27it/s][A
16%|โโ | 31/196 [00:33<01:59, 1.38it/s][A
16%|โโ | 32/196 [00:34<01:54, 1.43it/s][A
17%|โโ | 33/196 [00:35<02:11, 1.24it/s][A
17%|โโ | 34/196 [00:36<02:49, 1.05s/it][A
18%|โโ | 35/196 [00:37<02:54, 1.08s/it][A
18%|โโ | 36/196 [00:39<03:18, 1.24s/it][A
19%|โโ | 37/196 [00:40<03:16, 1.24s/it][A
19%|โโ | 38/196 [00:41<03:00, 1.14s/it][A
20%|โโ | 39/196 [00:42<02:45, 1.06s/it][A
20%|โโ | 40/196 [00:43<02:35, 1.01it/s][A
21%|โโ | 41/196 [00:44<02:21, 1.10it/s][A
21%|โโโ | 42/196 [00:44<02:13, 1.15it/s][A
22%|โโโ | 43/196 [00:45<02:10, 1.17it/s][A
22%|โโโ | 44/196 [00:46<02:07, 1.20it/s][A
23%|โโโ | 45/196 [00:47<01:57, 1.28it/s][A
23%|โโโ | 46/196 [00:47<01:49, 1.36it/s][A
24%|โโโ | 47/196 [00:48<01:48, 1.37it/s][A
24%|โโโ | 48/196 [00:49<01:45, 1.41it/s][A
25%|โโโ | 49/196 [00:49<01:41, 1.45it/s][A
26%|โโโ | 50/196 [00:50<01:40, 1.46it/s][A
26%|โโโ | 51/196 [00:51<01:36, 1.50it/s][A
27%|โโโ | 52/196 [00:51<01:36, 1.49it/s][A
27%|โโโ | 53/196 [00:52<01:41, 1.42it/s][A
28%|โโโ | 54/196 [00:53<01:39, 1.43it/s][A
28%|โโโ | 55/196 [00:54<01:50, 1.27it/s][A
29%|โโโ | 56/196 [00:55<01:59, 1.17it/s][A
29%|โโโ | 57/196 [00:56<02:06, 1.10it/s][A
30%|โโโ | 58/196 [00:57<02:10, 1.06it/s][A
30%|โโโ | 59/196 [00:58<02:07, 1.08it/s][A
31%|โโโ | 60/196 [00:58<01:56, 1.17it/s][A
31%|โโโ | 61/196 [00:59<01:46, 1.27it/s][A
32%|โโโโ | 62/196 [01:00<01:44, 1.29it/s][A
32%|โโโโ | 63/196 [01:01<01:43, 1.28it/s][A
33%|โโโโ | 64/196 [01:01<01:43, 1.28it/s][A
33%|โโโโ | 65/196 [01:02<01:41, 1.29it/s][A
34%|โโโโ | 66/196 [01:03<01:44, 1.24it/s][A
34%|โโโโ | 67/196 [01:04<01:48, 1.18it/s][A
35%|โโโโ | 68/196 [01:05<02:04, 1.03it/s][A
35%|โโโโ | 69/196 [01:06<02:04, 1.02it/s][A
36%|โโโโ | 70/196 [01:07<01:55, 1.09it/s][A
36%|โโโโ | 71/196 [01:08<01:47, 1.16it/s][A
37%|โโโโ | 72/196 [01:08<01:39, 1.25it/s][A
37%|โโโโ | 73/196 [01:09<01:30, 1.36it/s][A
38%|โโโโ | 74/196 [01:09<01:24, 1.44it/s][A
38%|โโโโ | 75/196 [01:10<01:24, 1.43it/s][A
39%|โโโโ | 76/196 [01:11<01:22, 1.46it/s][A
39%|โโโโ | 77/196 [01:12<01:23, 1.42it/s][A
40%|โโโโ | 78/196 [01:12<01:29, 1.32it/s][A
40%|โโโโ | 79/196 [01:13<01:25, 1.37it/s][A
41%|โโโโ | 80/196 [01:14<01:29, 1.30it/s][A
41%|โโโโโ | 81/196 [01:15<01:32, 1.25it/s][A
42%|โโโโโ | 82/196 [01:16<01:29, 1.28it/s][A
42%|โโโโโ | 83/196 [01:16<01:30, 1.25it/s][A
43%|โโโโโ | 84/196 [01:17<01:32, 1.21it/s][A
43%|โโโโโ | 85/196 [01:18<01:31, 1.22it/s][A
44%|โโโโโ | 86/196 [01:19<01:33, 1.18it/s][A
44%|โโโโโ | 87/196 [01:20<01:30, 1.21it/s][A
45%|โโโโโ | 88/196 [01:21<01:33, 1.16it/s][A
45%|โโโโโ | 89/196 [01:22<01:35, 1.12it/s][A
46%|โโโโโ | 90/196 [01:23<01:31, 1.15it/s][A
46%|โโโโโ | 91/196 [01:23<01:28, 1.19it/s][A
47%|โโโโโ | 92/196 [01:24<01:24, 1.24it/s][A
47%|โโโโโ | 93/196 [01:25<01:29, 1.15it/s][A
48%|โโโโโ | 94/196 [01:26<01:29, 1.14it/s][A
48%|โโโโโ | 95/196 [01:27<01:25, 1.18it/s][A
49%|โโโโโ | 96/196 [01:28<01:28, 1.13it/s][A
49%|โโโโโ | 97/196 [01:29<01:25, 1.16it/s][A
50%|โโโโโ | 98/196 [01:30<01:27, 1.12it/s][A
51%|โโโโโ | 99/196 [01:30<01:19, 1.22it/s][A
51%|โโโโโ | 100/196 [01:31<01:10, 1.37it/s][A
52%|โโโโโโ | 101/196 [01:31<01:05, 1.45it/s][A
52%|โโโโโโ | 102/196 [01:32<01:08, 1.37it/s][A
53%|โโโโโโ | 103/196 [01:33<01:14, 1.25it/s][A
53%|โโโโโโ | 104/196 [01:34<01:24, 1.09it/s][A
54%|โโโโโโ | 105/196 [01:35<01:25, 1.06it/s][A
54%|โโโโโโ | 106/196 [01:36<01:24, 1.06it/s][A
55%|โโโโโโ | 107/196 [01:37<01:19, 1.12it/s][A
55%|โโโโโโ | 108/196 [01:38<01:09, 1.26it/s][A
56%|โโโโโโ | 109/196 [01:38<01:04, 1.34it/s][A
56%|โโโโโโ | 110/196 [01:39<01:01, 1.40it/s][A
57%|โโโโโโ | 111/196 [01:40<01:00, 1.40it/s][A
57%|โโโโโโ | 112/196 [01:40<01:04, 1.30it/s][A
58%|โโโโโโ | 113/196 [01:41<01:05, 1.27it/s][A
58%|โโโโโโ | 114/196 [01:42<00:59, 1.38it/s][A
59%|โโโโโโ | 115/196 [01:43<00:57, 1.42it/s][A
59%|โโโโโโ | 116/196 [01:43<00:55, 1.45it/s][A
60%|โโโโโโ | 117/196 [01:44<00:51, 1.52it/s][A
60%|โโโโโโ | 118/196 [01:44<00:46, 1.68it/s][A
61%|โโโโโโ | 119/196 [01:45<00:48, 1.59it/s][A
61%|โโโโโโ | 120/196 [01:46<00:50, 1.51it/s][A
62%|โโโโโโโ | 121/196 [01:46<00:50, 1.47it/s][A
62%|โโโโโโโ | 122/196 [01:47<00:51, 1.43it/s][A
63%|โโโโโโโ | 123/196 [01:48<00:50, 1.46it/s][A
63%|โโโโโโโ | 124/196 [01:48<00:49, 1.46it/s][A
64%|โโโโโโโ | 125/196 [01:49<00:49, 1.45it/s][A
64%|โโโโโโโ | 126/196 [01:50<00:54, 1.28it/s][A
65%|โโโโโโโ | 127/196 [01:51<00:53, 1.28it/s][A
65%|โโโโโโโ | 128/196 [01:52<00:50, 1.35it/s][A
66%|โโโโโโโ | 129/196 [01:52<00:49, 1.36it/s][A
66%|โโโโโโโ | 130/196 [01:53<00:48, 1.37it/s][A
67%|โโโโโโโ | 131/196 [01:54<00:47, 1.37it/s][A
67%|โโโโโโโ | 132/196 [01:54<00:43, 1.46it/s][A
68%|โโโโโโโ | 133/196 [01:55<00:42, 1.47it/s][A
68%|โโโโโโโ | 134/196 [01:56<00:45, 1.38it/s][A
69%|โโโโโโโ | 135/196 [01:56<00:43, 1.41it/s][A
69%|โโโโโโโ | 136/196 [01:57<00:42, 1.42it/s][A
70%|โโโโโโโ | 137/196 [01:58<00:41, 1.43it/s][A
70%|โโโโโโโ | 138/196 [01:59<00:40, 1.43it/s][A
71%|โโโโโโโ | 139/196 [01:59<00:40, 1.42it/s][A
71%|โโโโโโโโ | 140/196 [02:00<00:38, 1.45it/s][A
72%|โโโโโโโโ | 141/196 [02:01<00:38, 1.44it/s][A
72%|โโโโโโโโ | 142/196 [02:01<00:38, 1.40it/s][A
73%|โโโโโโโโ | 143/196 [02:02<00:40, 1.31it/s][A
73%|โโโโโโโโ | 144/196 [02:03<00:37, 1.40it/s][A
74%|โโโโโโโโ | 145/196 [02:03<00:33, 1.52it/s][A
74%|โโโโโโโโ | 146/196 [02:04<00:31, 1.60it/s][A
75%|โโโโโโโโ | 147/196 [02:05<00:30, 1.58it/s][A
76%|โโโโโโโโ | 148/196 [02:05<00:30, 1.57it/s][A
76%|โโโโโโโโ | 149/196 [02:06<00:28, 1.64it/s][A
77%|โโโโโโโโ | 150/196 [02:07<00:29, 1.55it/s][A
77%|โโโโโโโโ | 151/196 [02:07<00:30, 1.48it/s][A
78%|โโโโโโโโ | 152/196 [02:08<00:29, 1.49it/s][A
78%|โโโโโโโโ | 153/196 [02:09<00:28, 1.49it/s][A
79%|โโโโโโโโ | 154/196 [02:09<00:28, 1.47it/s][A
79%|โโโโโโโโ | 155/196 [02:10<00:29, 1.37it/s][A
80%|โโโโโโโโ | 156/196 [02:11<00:33, 1.20it/s][A
80%|โโโโโโโโ | 157/196 [02:12<00:34, 1.12it/s][A
81%|โโโโโโโโ | 158/196 [02:13<00:30, 1.24it/s][A
81%|โโโโโโโโ | 159/196 [02:13<00:27, 1.35it/s][A
82%|โโโโโโโโโ | 160/196 [02:14<00:25, 1.42it/s][A
82%|โโโโโโโโโ | 161/196 [02:15<00:24, 1.41it/s][A
83%|โโโโโโโโโ | 162/196 [02:15<00:24, 1.41it/s][A
83%|โโโโโโโโโ | 163/196 [02:16<00:22, 1.44it/s][A
84%|โโโโโโโโโ | 164/196 [02:17<00:22, 1.45it/s][A
84%|โโโโโโโโโ | 165/196 [02:18<00:22, 1.40it/s][A
85%|โโโโโโโโโ | 166/196 [02:18<00:20, 1.43it/s][A
85%|โโโโโโโโโ | 167/196 [02:19<00:19, 1.48it/s][A
86%|โโโโโโโโโ | 168/196 [02:19<00:18, 1.55it/s][A
86%|โโโโโโโโโ | 169/196 [02:20<00:18, 1.50it/s][A
87%|โโโโโโโโโ | 170/196 [02:21<00:18, 1.37it/s][A
87%|โโโโโโโโโ | 171/196 [02:22<00:17, 1.41it/s][A
88%|โโโโโโโโโ | 172/196 [02:22<00:17, 1.38it/s][A
88%|โโโโโโโโโ | 173/196 [02:23<00:16, 1.40it/s][A
89%|โโโโโโโโโ | 174/196 [02:24<00:16, 1.33it/s][A
89%|โโโโโโโโโ | 175/196 [02:25<00:19, 1.10it/s][A
90%|โโโโโโโโโ | 176/196 [02:28<00:27, 1.39s/it][A
90%|โโโโโโโโโ | 177/196 [02:30<00:30, 1.60s/it][A
91%|โโโโโโโโโ | 178/196 [02:32<00:31, 1.75s/it][A
91%|โโโโโโโโโโ| 179/196 [02:34<00:31, 1.86s/it][A
92%|โโโโโโโโโโ| 180/196 [02:35<00:24, 1.50s/it][A
92%|โโโโโโโโโโ| 181/196 [02:36<00:19, 1.29s/it][A
93%|โโโโโโโโโโ| 182/196 [02:36<00:15, 1.10s/it][A
93%|โโโโโโโโโโ| 183/196 [02:37<00:14, 1.13s/it][A
94%|โโโโโโโโโโ| 184/196 [02:38<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:39<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:40<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:41<00:08, 1.08it/s][A
96%|โโโโโโโโโโ| 188/196 [02:41<00:06, 1.18it/s][A
96%|โโโโโโโโโโ| 189/196 [02:42<00:05, 1.23it/s][A
97%|โโโโโโโโโโ| 190/196 [02:43<00:04, 1.31it/s][A
97%|โโโโโโโโโโ| 191/196 [02:43<00:03, 1.39it/s][A
98%|โโโโโโโโโโ| 192/196 [02:44<00:02, 1.39it/s][A
98%|โโโโโโโโโโ| 193/196 [02:45<00:02, 1.38it/s][A
99%|โโโโโโโโโโ| 194/196 [02:46<00:01, 1.40it/s][A
99%|โโโโโโโโโโ| 195/196 [02:46<00:00, 1.44it/s][A
100%|โโโโโโโโโโ| 196/196 [02:47<00:00, 1.65it/s][A
[A
1%|โ | 200/15000 [10:26<3:33:07, 1.16it/s]
100%|โโโโโโโโโโ| 196/196 [02:51<00:00, 1.65it/s][A
[A
1%|โ | 201/15000 [10:31<222:02:38, 54.01s/it]
1%|โ | 201/15000 [10:31<222:02:38, 54.01s/it]
1%|โ | 202/15000 [10:34<158:54:56, 38.66s/it]
1%|โ | 202/15000 [10:34<158:54:56, 38.66s/it]
1%|โ | 203/15000 [10:36<114:10:23, 27.78s/it]
1%|โ | 203/15000 [10:36<114:10:23, 27.78s/it]
1%|โ | 204/15000 [10:38<82:33:30, 20.09s/it]
1%|โ | 204/15000 [10:38<82:33:30, 20.09s/it]
1%|โ | 205/15000 [10:40<60:14:13, 14.66s/it]
1%|โ | 205/15000 [10:40<60:14:13, 14.66s/it]
1%|โ | 206/15000 [10:42<44:35:26, 10.85s/it]
1%|โ | 206/15000 [10:42<44:35:26, 10.85s/it]
1%|โ | 207/15000 [10:44<33:26:55, 8.14s/it]
1%|โ | 207/15000 [10:44<33:26:55, 8.14s/it]
1%|โ | 208/15000 [10:46<25:35:39, 6.23s/it]
1%|โ | 208/15000 [10:46<25:35:39, 6.23s/it]
1%|โ | 209/15000 [10:48<20:05:11, 4.89s/it]
1%|โ | 209/15000 [10:48<20:05:11, 4.89s/it]
1%|โ | 210/15000 [10:49<16:02:47, 3.91s/it]
1%|โ | 210/15000 [10:49<16:02:47, 3.91s/it]
1%|โ | 211/15000 [10:51<13:12:32, 3.22s/it]
1%|โ | 211/15000 [10:51<13:12:32, 3.22s/it]
1%|โ | 212/15000 [10:53<11:13:02, 2.73s/it]
1%|โ | 212/15000 [10:53<11:13:02, 2.73s/it]
1%|โ | 213/15000 [10:54<9:44:32, 2.37s/it]
1%|โ | 213/15000 [10:54<9:44:32, 2.37s/it]
1%|โ | 214/15000 [10:55<8:33:46, 2.08s/it]
1%|โ | 214/15000 [10:55<8:33:46, 2.08s/it]
1%|โ | 215/15000 [10:57<7:44:10, 1.88s/it]
1%|โ | 215/15000 [10:57<7:44:10, 1.88s/it]
1%|โ | 216/15000 [10:58<7:10:13, 1.75s/it]
1%|โ | 216/15000 [10:58<7:10:13, 1.75s/it]
1%|โ | 217/15000 [11:00<6:42:22, 1.63s/it]
1%|โ | 217/15000 [11:00<6:42:22, 1.63s/it]
1%|โ | 218/15000 [11:01<6:21:09, 1.55s/it]
1%|โ | 218/15000 [11:01<6:21:09, 1.55s/it]
1%|โ | 219/15000 [11:02<5:56:25, 1.45s/it]
1%|โ | 219/15000 [11:02<5:56:25, 1.45s/it]
1%|โ | 220/15000 [11:03<5:40:00, 1.38s/it]
1%|โ | 220/15000 [11:03<5:40:00, 1.38s/it]
1%|โ | 221/15000 [11:05<5:27:13, 1.33s/it]
1%|โ | 221/15000 [11:05<5:27:13, 1.33s/it]
1%|โ | 222/15000 [11:06<5:18:39, 1.29s/it]
1%|โ | 222/15000 [11:06<5:18:39, 1.29s/it]
1%|โ | 223/15000 [11:07<5:12:22, 1.27s/it]
1%|โ | 223/15000 [11:07<5:12:22, 1.27s/it]
1%|โ | 224/15000 [11:08<5:06:03, 1.24s/it]
1%|โ | 224/15000 [11:08<5:06:03, 1.24s/it]
2%|โ | 225/15000 [11:09<4:58:39, 1.21s/it]
2%|โ | 225/15000 [11:09<4:58:39, 1.21s/it]
2%|โ | 226/15000 [11:10<4:43:08, 1.15s/it]
2%|โ | 226/15000 [11:10<4:43:08, 1.15s/it]
2%|โ | 227/15000 [11:11<4:32:36, 1.11s/it]
2%|โ | 227/15000 [11:11<4:32:36, 1.11s/it]
2%|โ | 228/15000 [11:12<4:24:54, 1.08s/it]
2%|โ | 228/15000 [11:12<4:24:54, 1.08s/it]
2%|โ | 229/15000 [11:13<4:19:48, 1.06s/it]
2%|โ | 229/15000 [11:13<4:19:48, 1.06s/it]
2%|โ | 230/15000 [11:14<4:16:14, 1.04s/it]
2%|โ | 230/15000 [11:14<4:16:14, 1.04s/it]
2%|โ | 231/15000 [11:15<4:14:12, 1.03s/it]
2%|โ | 231/15000 [11:15<4:14:12, 1.03s/it]
2%|โ | 232/15000 [11:16<4:08:29, 1.01s/it]
2%|โ | 232/15000 [11:16<4:08:29, 1.01s/it]
2%|โ | 233/15000 [11:17<4:03:12, 1.01it/s]
2%|โ | 233/15000 [11:17<4:03:12, 1.01it/s]
2%|โ | 234/15000 [11:18<3:49:57, 1.07it/s]
2%|โ | 234/15000 [11:18<3:49:57, 1.07it/s]
2%|โ | 235/15000 [11:19<3:41:53, 1.11it/s]
2%|โ | 235/15000 [11:19<3:41:53, 1.11it/s]
2%|โ | 236/15000 [11:20<3:35:09, 1.14it/s]
2%|โ | 236/15000 [11:20<3:35:09, 1.14it/s]
2%|โ | 237/15000 [11:21<3:31:17, 1.16it/s]
2%|โ | 237/15000 [11:21<3:31:17, 1.16it/s]
2%|โ | 238/15000 [11:21<3:28:28, 1.18it/s]
2%|โ | 238/15000 [11:21<3:28:28, 1.18it/s]
2%|โ | 239/15000 [11:22<3:25:29, 1.20it/s]
2%|โ | 239/15000 [11:22<3:25:29, 1.20it/s]
2%|โ | 240/15000 [11:23<3:20:32, 1.23it/s]
2%|โ | 240/15000 [11:23<3:20:32, 1.23it/s]
2%|โ | 241/15000 [11:24<3:15:46, 1.26it/s]
2%|โ | 241/15000 [11:24<3:15:46, 1.26it/s]
2%|โ | 242/15000 [11:24<3:03:14, 1.34it/s]
2%|โ | 242/15000 [11:24<3:03:14, 1.34it/s]
2%|โ | 243/15000 [11:25<2:54:11, 1.41it/s]
2%|โ | 243/15000 [11:25<2:54:11, 1.41it/s]
2%|โ | 244/15000 [11:26<2:48:26, 1.46it/s]
2%|โ | 244/15000 [11:26<2:48:26, 1.46it/s]
2%|โ | 245/15000 [11:26<2:47:28, 1.47it/s]
2%|โ | 245/15000 [11:26<2:47:28, 1.47it/s]
2%|โ | 246/15000 [11:27<2:41:50, 1.52it/s]
2%|โ | 246/15000 [11:27<2:41:50, 1.52it/s]
2%|โ | 247/15000 [11:27<2:34:27, 1.59it/s]
2%|โ | 247/15000 [11:27<2:34:27, 1.59it/s]
2%|โ | 248/15000 [11:28<2:20:00, 1.76it/s]
2%|โ | 248/15000 [11:28<2:20:00, 1.76it/s]
2%|โ | 249/15000 [11:28<2:07:12, 1.93it/s]
2%|โ | 249/15000 [11:28<2:07:12, 1.93it/s]
2%|โ | 250/15000 [11:30<3:46:57, 1.08it/s]
2%|โ | 250/15000 [11:30<3:46:57, 1.08it/s]
2%|โ | 251/15000 [11:36<9:41:18, 2.36s/it]
2%|โ | 251/15000 [11:36<9:41:18, 2.36s/it]
2%|โ | 252/15000 [11:39<10:44:01, 2.62s/it]
2%|โ | 252/15000 [11:39<10:44:01, 2.62s/it]
2%|โ | 253/15000 [11:42<10:41:37, 2.61s/it]
2%|โ | 253/15000 [11:42<10:41:37, 2.61s/it]
2%|โ | 254/15000 [11:44<10:23:39, 2.54s/it]
2%|โ | 254/15000 [11:44<10:23:39, 2.54s/it]
2%|โ | 255/15000 [11:46<9:55:22, 2.42s/it]
2%|โ | 255/15000 [11:46<9:55:22, 2.42s/it]
2%|โ | 256/15000 [11:48<9:23:28, 2.29s/it]
2%|โ | 256/15000 [11:48<9:23:28, 2.29s/it]
2%|โ | 257/15000 [11:50<8:57:58, 2.19s/it]
2%|โ | 257/15000 [11:50<8:57:58, 2.19s/it]
2%|โ | 258/15000 [11:52<8:27:08, 2.06s/it]
2%|โ | 258/15000 [11:52<8:27:08, 2.06s/it]
2%|โ | 259/15000 [11:54<8:04:27, 1.97s/it]
2%|โ | 259/15000 [11:54<8:04:27, 1.97s/it]
2%|โ | 260/15000 [11:55<7:37:40, 1.86s/it]
2%|โ | 260/15000 [11:55<7:37:40, 1.86s/it]
2%|โ | 261/15000 [11:57<7:16:46, 1.78s/it]
2%|โ | 261/15000 [11:57<7:16:46, 1.78s/it]
2%|โ | 262/15000 [11:58<6:58:50, 1.71s/it]
2%|โ | 262/15000 [11:58<6:58:50, 1.71s/it]
2%|โ | 263/15000 [12:00<6:37:29, 1.62s/it]
2%|โ | 263/15000 [12:00<6:37:29, 1.62s/it]
2%|โ | 264/15000 [12:01<6:23:03, 1.56s/it]
2%|โ | 264/15000 [12:01<6:23:03, 1.56s/it]
2%|โ | 265/15000 [12:03<6:13:14, 1.52s/it]
2%|โ | 265/15000 [12:03<6:13:14, 1.52s/it]
2%|โ | 266/15000 [12:04<6:02:51, 1.48s/it]
2%|โ | 266/15000 [12:04<6:02:51, 1.48s/it]
2%|โ | 267/15000 [12:05<5:53:36, 1.44s/it]
2%|โ | 267/15000 [12:05<5:53:36, 1.44s/it]
2%|โ | 268/15000 [12:07<5:37:10, 1.37s/it]
2%|โ | 268/15000 [12:07<5:37:10, 1.37s/it]
2%|โ | 269/15000 [12:08<5:24:46, 1.32s/it]
2%|โ | 269/15000 [12:08<5:24:46, 1.32s/it]
2%|โ | 270/15000 [12:09<5:16:48, 1.29s/it]
2%|โ | 270/15000 [12:09<5:16:48, 1.29s/it]
2%|โ | 271/15000 [12:10<5:10:58, 1.27s/it]
2%|โ | 271/15000 [12:10<5:10:58, 1.27s/it]
2%|โ | 272/15000 [12:11<5:06:39, 1.25s/it]
2%|โ | 272/15000 [12:11<5:06:39, 1.25s/it]
2%|โ | 273/15000 [12:13<5:00:27, 1.22s/it]
2%|โ | 273/15000 [12:13<5:00:27, 1.22s/it]
2%|โ | 274/15000 [12:14<4:53:54, 1.20s/it]
2%|โ | 274/15000 [12:14<4:53:54, 1.20s/it]
2%|โ | 275/15000 [12:15<4:39:50, 1.14s/it]
2%|โ | 275/15000 [12:15<4:39:50, 1.14s/it]
2%|โ | 276/15000 [12:16<4:30:09, 1.10s/it]
2%|โ | 276/15000 [12:16<4:30:09, 1.10s/it]
2%|โ | 277/15000 [12:17<4:23:22, 1.07s/it]
2%|โ | 277/15000 [12:17<4:23:22, 1.07s/it]
2%|โ | 278/15000 [12:18<4:18:53, 1.06s/it]
2%|โ | 278/15000 [12:18<4:18:53, 1.06s/it]
2%|โ | 279/15000 [12:19<4:15:43, 1.04s/it]
2%|โ | 279/15000 [12:19<4:15:43, 1.04s/it]
2%|โ | 280/15000 [12:20<4:13:26, 1.03s/it]
2%|โ | 280/15000 [12:20<4:13:26, 1.03s/it]
2%|โ | 281/15000 [12:21<4:07:40, 1.01s/it]
2%|โ | 281/15000 [12:21<4:07:40, 1.01s/it]
2%|โ | 282/15000 [12:22<4:03:48, 1.01it/s]
2%|โ | 282/15000 [12:22<4:03:48, 1.01it/s]
2%|โ | 283/15000 [12:23<3:50:06, 1.07it/s]
2%|โ | 283/15000 [12:23<3:50:06, 1.07it/s]
2%|โ | 284/15000 [12:23<3:40:31, 1.11it/s]
2%|โ | 284/15000 [12:23<3:40:31, 1.11it/s]
2%|โ | 285/15000 [12:24<3:34:01, 1.15it/s]
2%|โ | 285/15000 [12:24<3:34:01, 1.15it/s]
2%|โ | 286/15000 [12:25<3:30:37, 1.16it/s]
2%|โ | 286/15000 [12:25<3:30:37, 1.16it/s]
2%|โ | 287/15000 [12:26<3:27:47, 1.18it/s]
2%|โ | 287/15000 [12:26<3:27:47, 1.18it/s]
2%|โ | 288/15000 [12:27<3:24:58, 1.20it/s]
2%|โ | 288/15000 [12:27<3:24:58, 1.20it/s]
2%|โ | 289/15000 [12:27<3:19:44, 1.23it/s]
2%|โ | 289/15000 [12:27<3:19:44, 1.23it/s]
2%|โ | 290/15000 [12:28<3:14:42, 1.26it/s]
2%|โ | 290/15000 [12:28<3:14:42, 1.26it/s]
2%|โ | 291/15000 [12:29<3:02:12, 1.35it/s]
2%|โ | 291/15000 [12:29<3:02:12, 1.35it/s]
2%|โ | 292/15000 [12:29<2:53:31, 1.41it/s]
2%|โ | 292/15000 [12:29<2:53:31, 1.41it/s]
2%|โ | 293/15000 [12:30<2:47:20, 1.46it/s]
2%|โ | 293/15000 [12:30<2:47:20, 1.46it/s]
2%|โ | 294/15000 [12:31<2:43:02, 1.50it/s]
2%|โ | 294/15000 [12:31<2:43:02, 1.50it/s]
2%|โ | 295/15000 [12:31<2:38:45, 1.54it/s]
2%|โ | 295/15000 [12:31<2:38:45, 1.54it/s]
2%|โ | 296/15000 [12:32<2:32:26, 1.61it/s]
2%|โ | 296/15000 [12:32<2:32:26, 1.61it/s]
2%|โ | 297/15000 [12:32<2:18:03, 1.77it/s]
2%|โ | 297/15000 [12:32<2:18:03, 1.77it/s]
2%|โ | 298/15000 [12:33<2:08:03, 1.91it/s]
2%|โ | 298/15000 [12:33<2:08:03, 1.91it/s]
2%|โ | 299/15000 [12:33<1:59:42, 2.05it/s]
2%|โ | 299/15000 [12:33<1:59:42, 2.05it/s]
2%|โ | 300/15000 [12:35<3:34:14, 1.14it/s]
2%|โ | 300/15000 [12:35<3:34:14, 1.14it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction: เค
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction: iiiiเค
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction: iiเค
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction: iเค
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction: iเค
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string iเค
{'eval_loss': 3.7237977981567383, 'eval_cer': 0.9794186469762363, 'eval_wer': 1.0, 'eval_runtime': 172.9793, 'eval_samples_per_second': 18.129, 'eval_steps_per_second': 1.133, 'epoch': 0.16}
{'loss': 4.4609, 'grad_norm': 26.96578025817871, 'learning_rate': 0.00024119999999999998, 'epoch': 0.16}
{'loss': 3.7841, 'grad_norm': 8.302903175354004, 'learning_rate': 0.00024239999999999998, 'epoch': 0.16}
{'loss': 3.5946, 'grad_norm': 3.032162666320801, 'learning_rate': 0.00024359999999999999, 'epoch': 0.16}
{'loss': 3.898, 'grad_norm': 8.602944374084473, 'learning_rate': 0.0002448, 'epoch': 0.16}
{'loss': 3.6618, 'grad_norm': 6.9736328125, 'learning_rate': 0.00024599999999999996, 'epoch': 0.16}
{'loss': 3.7471, 'grad_norm': 9.89555549621582, 'learning_rate': 0.0002472, 'epoch': 0.16}
{'loss': 3.8033, 'grad_norm': 5.543049335479736, 'learning_rate': 0.00024839999999999997, 'epoch': 0.17}
{'loss': 3.6802, 'grad_norm': 6.064131736755371, 'learning_rate': 0.00024959999999999994, 'epoch': 0.17}
{'loss': 3.5954, 'grad_norm': 2.219118356704712, 'learning_rate': 0.00025079999999999997, 'epoch': 0.17}
{'loss': 3.6456, 'grad_norm': 7.031081199645996, 'learning_rate': 0.00025199999999999995, 'epoch': 0.17}
{'loss': 3.5674, 'grad_norm': 10.48225212097168, 'learning_rate': 0.0002532, 'epoch': 0.17}
{'loss': 3.571, 'grad_norm': 3.56289005279541, 'learning_rate': 0.00025439999999999995, 'epoch': 0.17}
{'loss': 3.4855, 'grad_norm': 4.0687031745910645, 'learning_rate': 0.0002556, 'epoch': 0.17}
{'loss': 3.5452, 'grad_norm': 3.365835666656494, 'learning_rate': 0.00025679999999999995, 'epoch': 0.17}
{'loss': 3.5369, 'grad_norm': 2.1217358112335205, 'learning_rate': 0.000258, 'epoch': 0.17}
{'loss': 3.5686, 'grad_norm': 1.867909550666809, 'learning_rate': 0.00025919999999999996, 'epoch': 0.17}
{'loss': 3.4836, 'grad_norm': 2.8415725231170654, 'learning_rate': 0.0002604, 'epoch': 0.17}
{'loss': 3.4511, 'grad_norm': 2.669870138168335, 'learning_rate': 0.00026159999999999996, 'epoch': 0.17}
{'loss': 3.4428, 'grad_norm': 1.9584439992904663, 'learning_rate': 0.0002628, 'epoch': 0.18}
{'loss': 3.4124, 'grad_norm': 3.2222273349761963, 'learning_rate': 0.00026399999999999997, 'epoch': 0.18}
{'loss': 3.4192, 'grad_norm': 3.4309709072113037, 'learning_rate': 0.0002652, 'epoch': 0.18}
{'loss': 3.8132, 'grad_norm': 12.915990829467773, 'learning_rate': 0.00026639999999999997, 'epoch': 0.18}
{'loss': 3.3482, 'grad_norm': 1.7295831441879272, 'learning_rate': 0.0002676, 'epoch': 0.18}
{'loss': 3.5079, 'grad_norm': 1.6068203449249268, 'learning_rate': 0.0002688, 'epoch': 0.18}
{'loss': 3.4981, 'grad_norm': 3.6503214836120605, 'learning_rate': 0.00027, 'epoch': 0.18}
{'loss': 3.4789, 'grad_norm': 2.072453498840332, 'learning_rate': 0.0002712, 'epoch': 0.18}
{'loss': 3.315, 'grad_norm': 2.106900453567505, 'learning_rate': 0.0002724, 'epoch': 0.18}
{'loss': 3.4193, 'grad_norm': 1.974164366722107, 'learning_rate': 0.0002736, 'epoch': 0.18}
{'loss': 3.5646, 'grad_norm': 3.3087480068206787, 'learning_rate': 0.0002748, 'epoch': 0.18}
{'loss': 3.2766, 'grad_norm': 2.044670581817627, 'learning_rate': 0.000276, 'epoch': 0.18}
{'loss': 3.3141, 'grad_norm': 1.5916160345077515, 'learning_rate': 0.0002772, 'epoch': 0.18}
{'loss': 3.1669, 'grad_norm': 1.424303412437439, 'learning_rate': 0.0002784, 'epoch': 0.19}
{'loss': 3.314, 'grad_norm': 2.2218520641326904, 'learning_rate': 0.00027959999999999997, 'epoch': 0.19}
{'loss': 3.2746, 'grad_norm': 2.653805732727051, 'learning_rate': 0.0002808, 'epoch': 0.19}
{'loss': 3.2587, 'grad_norm': 1.881793737411499, 'learning_rate': 0.00028199999999999997, 'epoch': 0.19}
{'loss': 3.2266, 'grad_norm': 2.108025550842285, 'learning_rate': 0.00028319999999999994, 'epoch': 0.19}
{'loss': 3.1821, 'grad_norm': 1.625137448310852, 'learning_rate': 0.0002844, 'epoch': 0.19}
{'loss': 3.1991, 'grad_norm': 1.983460545539856, 'learning_rate': 0.00028559999999999995, 'epoch': 0.19}
{'loss': 3.092, 'grad_norm': 2.5091729164123535, 'learning_rate': 0.0002868, 'epoch': 0.19}
{'loss': 3.4309, 'grad_norm': 3.134380578994751, 'learning_rate': 0.00028799999999999995, 'epoch': 0.19}
{'loss': 3.2115, 'grad_norm': 2.0402188301086426, 'learning_rate': 0.0002892, 'epoch': 0.19}
{'loss': 3.2342, 'grad_norm': 1.9876617193222046, 'learning_rate': 0.00029039999999999996, 'epoch': 0.19}
{'loss': 3.2249, 'grad_norm': 2.4581263065338135, 'learning_rate': 0.0002916, 'epoch': 0.19}
{'loss': 3.2265, 'grad_norm': 4.411339282989502, 'learning_rate': 0.00029279999999999996, 'epoch': 0.2}
{'loss': 3.3702, 'grad_norm': 1.5390933752059937, 'learning_rate': 0.000294, 'epoch': 0.2}
{'loss': 3.1885, 'grad_norm': 4.281301021575928, 'learning_rate': 0.00029519999999999997, 'epoch': 0.2}
{'loss': 2.8806, 'grad_norm': 1.8922605514526367, 'learning_rate': 0.0002964, 'epoch': 0.2}
{'loss': 3.1556, 'grad_norm': 1.77718186378479, 'learning_rate': 0.00029759999999999997, 'epoch': 0.2}
{'loss': 3.0803, 'grad_norm': 2.8350770473480225, 'learning_rate': 0.0002988, 'epoch': 0.2}
{'loss': 3.3388, 'grad_norm': 3.408613443374634, 'learning_rate': 0.0003, 'epoch': 0.2}
{'loss': 3.5186, 'grad_norm': 9.801575660705566, 'learning_rate': 0.00030119999999999995, 'epoch': 0.2}
{'loss': 2.809, 'grad_norm': 3.388857364654541, 'learning_rate': 0.0003024, 'epoch': 0.2}
{'loss': 2.9663, 'grad_norm': 2.2108640670776367, 'learning_rate': 0.00030359999999999995, 'epoch': 0.2}
{'loss': 3.0539, 'grad_norm': 3.1998515129089355, 'learning_rate': 0.0003048, 'epoch': 0.2}
{'loss': 2.9738, 'grad_norm': 12.923892974853516, 'learning_rate': 0.00030599999999999996, 'epoch': 0.2}
{'loss': 2.8021, 'grad_norm': 1.7021923065185547, 'learning_rate': 0.0003072, 'epoch': 0.2}
{'loss': 2.7467, 'grad_norm': 1.9048188924789429, 'learning_rate': 0.00030839999999999996, 'epoch': 0.21}
{'loss': 2.5248, 'grad_norm': 3.1580746173858643, 'learning_rate': 0.0003096, 'epoch': 0.21}
{'loss': 2.6952, 'grad_norm': 2.6319057941436768, 'learning_rate': 0.00031079999999999997, 'epoch': 0.21}
{'loss': 2.5381, 'grad_norm': 2.645845651626587, 'learning_rate': 0.000312, 'epoch': 0.21}
{'loss': 2.6515, 'grad_norm': 2.356968641281128, 'learning_rate': 0.00031319999999999997, 'epoch': 0.21}
{'loss': 2.6954, 'grad_norm': 1.408197283744812, 'learning_rate': 0.0003144, 'epoch': 0.21}
{'loss': 2.5345, 'grad_norm': 2.070524215698242, 'learning_rate': 0.0003156, 'epoch': 0.21}
{'loss': 2.4322, 'grad_norm': 1.6709470748901367, 'learning_rate': 0.0003168, 'epoch': 0.21}
{'loss': 2.5036, 'grad_norm': 3.776127815246582, 'learning_rate': 0.000318, 'epoch': 0.21}
{'loss': 2.5978, 'grad_norm': 5.0986833572387695, 'learning_rate': 0.0003192, 'epoch': 0.21}
{'loss': 2.6226, 'grad_norm': 1.3206255435943604, 'learning_rate': 0.0003204, 'epoch': 0.21}
{'loss': 2.5397, 'grad_norm': 2.7903480529785156, 'learning_rate': 0.0003216, 'epoch': 0.21}
{'loss': 2.1681, 'grad_norm': 1.451104998588562, 'learning_rate': 0.0003228, 'epoch': 0.22}
{'loss': 2.0272, 'grad_norm': 1.6839573383331299, 'learning_rate': 0.000324, 'epoch': 0.22}
{'loss': 2.2599, 'grad_norm': 1.5313794612884521, 'learning_rate': 0.0003252, 'epoch': 0.22}
{'loss': 2.0953, 'grad_norm': 1.3755935430526733, 'learning_rate': 0.0003264, 'epoch': 0.22}
{'loss': 2.1622, 'grad_norm': 1.8793798685073853, 'learning_rate': 0.0003276, 'epoch': 0.22}
{'loss': 2.3754, 'grad_norm': 1.6000730991363525, 'learning_rate': 0.0003288, 'epoch': 0.22}
{'loss': 2.8361, 'grad_norm': 1.512147068977356, 'learning_rate': 0.00033, 'epoch': 0.22}
{'loss': 2.0144, 'grad_norm': 1.8131157159805298, 'learning_rate': 0.0003312, 'epoch': 0.22}
{'loss': 2.0592, 'grad_norm': 2.03875732421875, 'learning_rate': 0.0003324, 'epoch': 0.22}
{'loss': 2.1667, 'grad_norm': 1.3362442255020142, 'learning_rate': 0.0003336, 'epoch': 0.22}
{'loss': 1.9056, 'grad_norm': 1.9110103845596313, 'learning_rate': 0.0003348, 'epoch': 0.22}
{'loss': 2.3029, 'grad_norm': 2.684150218963623, 'learning_rate': 0.000336, 'epoch': 0.22}
{'loss': 2.0346, 'grad_norm': 2.042858362197876, 'learning_rate': 0.0003372, 'epoch': 0.22}
{'loss': 2.3462, 'grad_norm': 2.7907986640930176, 'learning_rate': 0.00033839999999999993, 'epoch': 0.23}
{'loss': 2.1826, 'grad_norm': 3.2884609699249268, 'learning_rate': 0.00033959999999999996, 'epoch': 0.23}
{'loss': 1.8098, 'grad_norm': 3.9165382385253906, 'learning_rate': 0.00034079999999999994, 'epoch': 0.23}
{'loss': 2.6455, 'grad_norm': 2.695669651031494, 'learning_rate': 0.00034199999999999996, 'epoch': 0.23}
{'loss': 2.0712, 'grad_norm': 2.2297255992889404, 'learning_rate': 0.00034319999999999994, 'epoch': 0.23}
{'loss': 1.8699, 'grad_norm': 1.680782675743103, 'learning_rate': 0.00034439999999999997, 'epoch': 0.23}
{'loss': 2.3441, 'grad_norm': 1.6716264486312866, 'learning_rate': 0.00034559999999999994, 'epoch': 0.23}
{'loss': 2.2235, 'grad_norm': 1.9048688411712646, 'learning_rate': 0.0003467999999999999, 'epoch': 0.23}
{'loss': 2.6224, 'grad_norm': 1.447647213935852, 'learning_rate': 0.00034799999999999995, 'epoch': 0.23}
{'loss': 2.5202, 'grad_norm': 2.072659492492676, 'learning_rate': 0.0003491999999999999, 'epoch': 0.23}
{'loss': 2.108, 'grad_norm': 1.948551058769226, 'learning_rate': 0.00035039999999999995, 'epoch': 0.23}
{'loss': 2.4353, 'grad_norm': 2.221442222595215, 'learning_rate': 0.0003515999999999999, 'epoch': 0.23}
{'loss': 2.2939, 'grad_norm': 2.1241588592529297, 'learning_rate': 0.00035279999999999996, 'epoch': 0.24}
{'loss': 2.4416, 'grad_norm': 3.45157527923584, 'learning_rate': 0.00035399999999999993, 'epoch': 0.24}
{'loss': 2.1823, 'grad_norm': 2.024019479751587, 'learning_rate': 0.00035519999999999996, 'epoch': 0.24}
{'loss': 2.6813, 'grad_norm': 2.5075910091400146, 'learning_rate': 0.00035639999999999994, 'epoch': 0.24}
{'loss': 2.5516, 'grad_norm': 4.758941173553467, 'learning_rate': 0.00035759999999999996, 'epoch': 0.24}
{'loss': 2.2198, 'grad_norm': 3.7219438552856445, 'learning_rate': 0.00035879999999999994, 'epoch': 0.24}
{'loss': 2.4085, 'grad_norm': 4.64521598815918, 'learning_rate': 0.00035999999999999997, 'epoch': 0.24}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:06, 2.92it/s][A
2%|โ | 3/196 [00:01<01:43, 1.86it/s][A
2%|โ | 4/196 [00:02<02:08, 1.49it/s][A
3%|โ | 5/196 [00:03<02:23, 1.33it/s][A
3%|โ | 6/196 [00:04<02:41, 1.17it/s][A
4%|โ | 7/196 [00:05<02:48, 1.12it/s][A
4%|โ | 8/196 [00:06<02:51, 1.10it/s][A
5%|โ | 9/196 [00:08<03:43, 1.19s/it][A
5%|โ | 10/196 [00:10<04:23, 1.41s/it][A
6%|โ | 11/196 [00:12<05:03, 1.64s/it][A
6%|โ | 12/196 [00:14<05:20, 1.74s/it][A
7%|โ | 13/196 [00:15<04:39, 1.53s/it][A
7%|โ | 14/196 [00:15<03:54, 1.29s/it][A
8%|โ | 15/196 [00:16<03:16, 1.09s/it][A
8%|โ | 16/196 [00:17<03:05, 1.03s/it][A
9%|โ | 17/196 [00:18<02:59, 1.00s/it][A
9%|โ | 18/196 [00:19<03:19, 1.12s/it][A
10%|โ | 19/196 [00:21<04:11, 1.42s/it][A
10%|โ | 20/196 [00:23<04:29, 1.53s/it][A
11%|โ | 21/196 [00:25<04:37, 1.58s/it][A
11%|โ | 22/196 [00:26<04:24, 1.52s/it][A
12%|โโ | 23/196 [00:27<04:02, 1.40s/it][A
12%|โโ | 24/196 [00:28<03:13, 1.13s/it][A
13%|โโ | 25/196 [00:28<02:45, 1.03it/s][A
13%|โโ | 26/196 [00:29<02:25, 1.17it/s][A
14%|โโ | 27/196 [00:30<02:13, 1.26it/s][A
14%|โโ | 28/196 [00:30<02:07, 1.31it/s][A
15%|โโ | 29/196 [00:31<02:07, 1.31it/s][A
15%|โโ | 30/196 [00:32<02:08, 1.30it/s][A
16%|โโ | 31/196 [00:32<01:56, 1.41it/s][A
16%|โโ | 32/196 [00:33<01:51, 1.46it/s][A
17%|โโ | 33/196 [00:34<02:08, 1.26it/s][A
17%|โโ | 34/196 [00:36<02:47, 1.03s/it][A
18%|โโ | 35/196 [00:37<02:53, 1.08s/it][A
18%|โโ | 36/196 [00:39<03:16, 1.23s/it][A
19%|โโ | 37/196 [00:40<03:12, 1.21s/it][A
19%|โโ | 38/196 [00:41<02:57, 1.12s/it][A
20%|โโ | 39/196 [00:41<02:43, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:30, 1.03it/s][A
21%|โโ | 41/196 [00:43<02:19, 1.11it/s][A
21%|โโโ | 42/196 [00:44<02:09, 1.19it/s][A
22%|โโโ | 43/196 [00:45<02:08, 1.19it/s][A
22%|โโโ | 44/196 [00:45<02:05, 1.21it/s][A
23%|โโโ | 45/196 [00:46<01:55, 1.30it/s][A
23%|โโโ | 46/196 [00:47<01:47, 1.39it/s][A
24%|โโโ | 47/196 [00:47<01:47, 1.38it/s][A
24%|โโโ | 48/196 [00:48<01:42, 1.45it/s][A
25%|โโโ | 49/196 [00:49<01:40, 1.47it/s][A
26%|โโโ | 50/196 [00:49<01:38, 1.48it/s][A
26%|โโโ | 51/196 [00:50<01:35, 1.53it/s][A
27%|โโโ | 52/196 [00:50<01:34, 1.52it/s][A
27%|โโโ | 53/196 [00:51<01:39, 1.44it/s][A
28%|โโโ | 54/196 [00:52<01:37, 1.46it/s][A
28%|โโโ | 55/196 [00:53<01:48, 1.29it/s][A
29%|โโโ | 56/196 [00:54<01:56, 1.20it/s][A
29%|โโโ | 57/196 [00:55<02:05, 1.11it/s][A
30%|โโโ | 58/196 [00:56<02:08, 1.07it/s][A
30%|โโโ | 59/196 [00:57<02:05, 1.09it/s][A
31%|โโโ | 60/196 [00:58<01:54, 1.18it/s][A
31%|โโโ | 61/196 [00:58<01:44, 1.29it/s][A
32%|โโโโ | 62/196 [00:59<01:42, 1.31it/s][A
32%|โโโโ | 63/196 [01:00<01:42, 1.30it/s][A
33%|โโโโ | 64/196 [01:00<01:42, 1.28it/s][A
33%|โโโโ | 65/196 [01:01<01:40, 1.31it/s][A
34%|โโโโ | 66/196 [01:02<01:44, 1.24it/s][A
34%|โโโโ | 67/196 [01:03<01:48, 1.19it/s][A
35%|โโโโ | 68/196 [01:04<02:02, 1.05it/s][A
35%|โโโโ | 69/196 [01:05<02:03, 1.03it/s][A
36%|โโโโ | 70/196 [01:06<01:54, 1.10it/s][A
36%|โโโโ | 71/196 [01:07<01:46, 1.17it/s][A
37%|โโโโ | 72/196 [01:07<01:38, 1.26it/s][A
37%|โโโโ | 73/196 [01:08<01:29, 1.37it/s][A
38%|โโโโ | 74/196 [01:09<01:23, 1.47it/s][A
38%|โโโโ | 75/196 [01:09<01:20, 1.50it/s][A
39%|โโโโ | 76/196 [01:10<01:22, 1.46it/s][A
39%|โโโโ | 77/196 [01:11<01:24, 1.41it/s][A
40%|โโโโ | 78/196 [01:12<01:28, 1.33it/s][A
40%|โโโโ | 79/196 [01:12<01:25, 1.37it/s][A
41%|โโโโ | 80/196 [01:13<01:30, 1.28it/s][A
41%|โโโโโ | 81/196 [01:14<01:32, 1.25it/s][A
42%|โโโโโ | 82/196 [01:15<01:28, 1.29it/s][A
42%|โโโโโ | 83/196 [01:15<01:29, 1.26it/s][A
43%|โโโโโ | 84/196 [01:16<01:31, 1.23it/s][A
43%|โโโโโ | 85/196 [01:17<01:30, 1.23it/s][A
44%|โโโโโ | 86/196 [01:18<01:31, 1.20it/s][A
44%|โโโโโ | 87/196 [01:19<01:29, 1.21it/s][A
45%|โโโโโ | 88/196 [01:20<01:32, 1.17it/s][A
45%|โโโโโ | 89/196 [01:21<01:34, 1.14it/s][A
46%|โโโโโ | 90/196 [01:22<01:31, 1.16it/s][A
46%|โโโโโ | 91/196 [01:22<01:27, 1.20it/s][A
47%|โโโโโ | 92/196 [01:23<01:23, 1.24it/s][A
47%|โโโโโ | 93/196 [01:24<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:25<01:28, 1.16it/s][A
48%|โโโโโ | 95/196 [01:26<01:23, 1.20it/s][A
49%|โโโโโ | 96/196 [01:27<01:27, 1.14it/s][A
49%|โโโโโ | 97/196 [01:27<01:24, 1.17it/s][A
50%|โโโโโ | 98/196 [01:28<01:27, 1.13it/s][A
51%|โโโโโ | 99/196 [01:29<01:19, 1.23it/s][A
51%|โโโโโ | 100/196 [01:30<01:09, 1.38it/s][A
52%|โโโโโโ | 101/196 [01:30<01:05, 1.46it/s][A
52%|โโโโโโ | 102/196 [01:31<01:08, 1.37it/s][A
53%|โโโโโโ | 103/196 [01:32<01:13, 1.27it/s][A
53%|โโโโโโ | 104/196 [01:33<01:23, 1.11it/s][A
54%|โโโโโโ | 105/196 [01:34<01:24, 1.07it/s][A
54%|โโโโโโ | 106/196 [01:35<01:24, 1.07it/s][A
55%|โโโโโโ | 107/196 [01:36<01:18, 1.13it/s][A
55%|โโโโโโ | 108/196 [01:36<01:09, 1.27it/s][A
56%|โโโโโโ | 109/196 [01:37<01:04, 1.35it/s][A
56%|โโโโโโ | 110/196 [01:38<01:01, 1.40it/s][A
57%|โโโโโโ | 111/196 [01:38<01:00, 1.40it/s][A
57%|โโโโโโ | 112/196 [01:39<01:02, 1.34it/s][A
58%|โโโโโโ | 113/196 [01:40<01:03, 1.31it/s][A
58%|โโโโโโ | 114/196 [01:41<00:57, 1.42it/s][A
59%|โโโโโโ | 115/196 [01:41<00:55, 1.46it/s][A
59%|โโโโโโ | 116/196 [01:42<00:53, 1.48it/s][A
60%|โโโโโโ | 117/196 [01:42<00:50, 1.56it/s][A
60%|โโโโโโ | 118/196 [01:43<00:45, 1.71it/s][A
61%|โโโโโโ | 119/196 [01:44<00:47, 1.62it/s][A
61%|โโโโโโ | 120/196 [01:44<00:49, 1.53it/s][A
62%|โโโโโโโ | 121/196 [01:45<00:50, 1.50it/s][A
62%|โโโโโโโ | 122/196 [01:46<00:50, 1.45it/s][A
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.47it/s][A
63%|โโโโโโโ | 124/196 [01:47<00:49, 1.47it/s][A
64%|โโโโโโโ | 125/196 [01:48<00:48, 1.46it/s][A
64%|โโโโโโโ | 126/196 [01:49<00:54, 1.29it/s][A
65%|โโโโโโโ | 127/196 [01:50<00:53, 1.29it/s][A
65%|โโโโโโโ | 128/196 [01:50<00:49, 1.36it/s][A
66%|โโโโโโโ | 129/196 [01:51<00:48, 1.38it/s][A
66%|โโโโโโโ | 130/196 [01:52<00:47, 1.38it/s][A
67%|โโโโโโโ | 131/196 [01:52<00:47, 1.38it/s][A
67%|โโโโโโโ | 132/196 [01:53<00:43, 1.47it/s][A
68%|โโโโโโโ | 133/196 [01:54<00:42, 1.48it/s][A
68%|โโโโโโโ | 134/196 [01:54<00:44, 1.39it/s][A
69%|โโโโโโโ | 135/196 [01:55<00:43, 1.42it/s][A
69%|โโโโโโโ | 136/196 [01:56<00:41, 1.45it/s][A
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.45it/s][A
70%|โโโโโโโ | 138/196 [01:57<00:40, 1.45it/s][A
71%|โโโโโโโ | 139/196 [01:58<00:39, 1.43it/s][A
71%|โโโโโโโโ | 140/196 [01:58<00:38, 1.46it/s][A
72%|โโโโโโโโ | 141/196 [01:59<00:37, 1.46it/s][A
72%|โโโโโโโโ | 142/196 [02:00<00:37, 1.42it/s][A
73%|โโโโโโโโ | 143/196 [02:01<00:39, 1.33it/s][A
73%|โโโโโโโโ | 144/196 [02:01<00:37, 1.40it/s][A
74%|โโโโโโโโ | 145/196 [02:02<00:33, 1.52it/s][A
74%|โโโโโโโโ | 146/196 [02:02<00:30, 1.62it/s][A
75%|โโโโโโโโ | 147/196 [02:03<00:30, 1.61it/s][A
76%|โโโโโโโโ | 148/196 [02:04<00:29, 1.60it/s][A
76%|โโโโโโโโ | 149/196 [02:04<00:28, 1.66it/s][A
77%|โโโโโโโโ | 150/196 [02:05<00:29, 1.56it/s][A
77%|โโโโโโโโ | 151/196 [02:06<00:30, 1.48it/s][A
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.50it/s][A
78%|โโโโโโโโ | 153/196 [02:07<00:28, 1.50it/s][A
79%|โโโโโโโโ | 154/196 [02:08<00:28, 1.49it/s][A
79%|โโโโโโโโ | 155/196 [02:09<00:29, 1.39it/s][A
80%|โโโโโโโโ | 156/196 [02:10<00:33, 1.20it/s][A
80%|โโโโโโโโ | 157/196 [02:11<00:36, 1.08it/s][A
81%|โโโโโโโโ | 158/196 [02:11<00:31, 1.21it/s][A
81%|โโโโโโโโ | 159/196 [02:12<00:27, 1.33it/s][A
82%|โโโโโโโโโ | 160/196 [02:13<00:25, 1.40it/s][A
82%|โโโโโโโโโ | 161/196 [02:13<00:25, 1.39it/s][A
83%|โโโโโโโโโ | 162/196 [02:14<00:24, 1.41it/s][A
83%|โโโโโโโโโ | 163/196 [02:15<00:23, 1.43it/s][A
84%|โโโโโโโโโ | 164/196 [02:15<00:21, 1.46it/s][A
84%|โโโโโโโโโ | 165/196 [02:16<00:21, 1.41it/s][A
85%|โโโโโโโโโ | 166/196 [02:17<00:20, 1.45it/s][A
85%|โโโโโโโโโ | 167/196 [02:17<00:19, 1.49it/s][A
86%|โโโโโโโโโ | 168/196 [02:18<00:17, 1.56it/s][A
86%|โโโโโโโโโ | 169/196 [02:19<00:17, 1.52it/s][A
87%|โโโโโโโโโ | 170/196 [02:19<00:18, 1.39it/s][A
87%|โโโโโโโโโ | 171/196 [02:20<00:17, 1.43it/s][A
88%|โโโโโโโโโ | 172/196 [02:21<00:17, 1.40it/s][A
88%|โโโโโโโโโ | 173/196 [02:22<00:16, 1.41it/s][A
89%|โโโโโโโโโ | 174/196 [02:22<00:16, 1.34it/s][A
89%|โโโโโโโโโ | 175/196 [02:24<00:19, 1.10it/s][A
90%|โโโโโโโโโ | 176/196 [02:26<00:27, 1.39s/it][A
90%|โโโโโโโโโ | 177/196 [02:28<00:30, 1.59s/it][A
91%|โโโโโโโโโ | 178/196 [02:30<00:31, 1.74s/it][A
91%|โโโโโโโโโโ| 179/196 [02:32<00:31, 1.85s/it][A
92%|โโโโโโโโโโ| 180/196 [02:33<00:24, 1.50s/it][A
92%|โโโโโโโโโโ| 181/196 [02:34<00:19, 1.28s/it][A
93%|โโโโโโโโโโ| 182/196 [02:35<00:15, 1.10s/it][A
93%|โโโโโโโโโโ| 183/196 [02:36<00:14, 1.12s/it][A
94%|โโโโโโโโโโ| 184/196 [02:36<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:37<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:38<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:39<00:08, 1.11it/s][A
96%|โโโโโโโโโโ| 188/196 [02:40<00:06, 1.20it/s][A
96%|โโโโโโโโโโ| 189/196 [02:41<00:05, 1.21it/s][A
97%|โโโโโโโโโโ| 190/196 [02:41<00:04, 1.29it/s][A
97%|โโโโโโโโโโ| 191/196 [02:42<00:03, 1.38it/s][A
98%|โโโโโโโโโโ| 192/196 [02:43<00:02, 1.38it/s][A
98%|โโโโโโโโโโ| 193/196 [02:43<00:02, 1.38it/s][A
99%|โโโโโโโโโโ| 194/196 [02:44<00:01, 1.40it/s][A
99%|โโโโโโโโโโ| 195/196 [02:45<00:00, 1.44it/s][A
100%|โโโโโโโโโโ| 196/196 [02:45<00:00, 1.65it/s][A
[A
2%|โ | 300/15000 [15:27<3:34:14, 1.14it/s]
100%|โโโโโโโโโโ| 196/196 [02:50<00:00, 1.65it/s][A
[A/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
2%|โ | 301/15000 [15:42<231:30:53, 56.70s/it]
2%|โ | 301/15000 [15:42<231:30:53, 56.70s/it]
2%|โ | 302/15000 [15:45<166:04:28, 40.68s/it]
2%|โ | 302/15000 [15:45<166:04:28, 40.68s/it]
2%|โ | 303/15000 [15:48<119:31:38, 29.28s/it]
2%|โ | 303/15000 [15:48<119:31:38, 29.28s/it]
2%|โ | 304/15000 [15:50<86:39:22, 21.23s/it]
2%|โ | 304/15000 [15:50<86:39:22, 21.23s/it]
2%|โ | 305/15000 [15:53<63:35:19, 15.58s/it]
2%|โ | 305/15000 [15:53<63:35:19, 15.58s/it]
2%|โ | 306/15000 [15:55<47:09:10, 11.55s/it]
2%|โ | 306/15000 [15:55<47:09:10, 11.55s/it]
2%|โ | 307/15000 [15:57<35:25:44, 8.68s/it]
2%|โ | 307/15000 [15:57<35:25:44, 8.68s/it]
2%|โ | 308/15000 [15:59<27:10:53, 6.66s/it]
2%|โ | 308/15000 [15:59<27:10:53, 6.66s/it]
2%|โ | 309/15000 [16:01<21:15:09, 5.21s/it]
2%|โ | 309/15000 [16:01<21:15:09, 5.21s/it]
2%|โ | 310/15000 [16:02<17:02:18, 4.18s/it]
2%|โ | 310/15000 [16:02<17:02:18, 4.18s/it]
2%|โ | 311/15000 [16:04<14:03:31, 3.45s/it]
2%|โ | 311/15000 [16:04<14:03:31, 3.45s/it]
2%|โ | 312/15000 [16:06<11:48:00, 2.89s/it]
2%|โ | 312/15000 [16:06<11:48:00, 2.89s/it]
2%|โ | 313/15000 [16:07<10:08:02, 2.48s/it]
2%|โ | 313/15000 [16:07<10:08:02, 2.48s/it]
2%|โ | 314/15000 [16:09<8:50:12, 2.17s/it]
2%|โ | 314/15000 [16:09<8:50:12, 2.17s/it]
2%|โ | 315/15000 [16:10<7:56:28, 1.95s/it]
2%|โ | 315/15000 [16:10<7:56:28, 1.95s/it]
2%|โ | 316/15000 [16:11<7:18:17, 1.79s/it]
2%|โ | 316/15000 [16:11<7:18:17, 1.79s/it]
2%|โ | 317/15000 [16:13<6:52:01, 1.68s/it]
2%|โ | 317/15000 [16:13<6:52:01, 1.68s/it]
2%|โ | 318/15000 [16:14<6:29:54, 1.59s/it]
2%|โ | 318/15000 [16:14<6:29:54, 1.59s/it]
2%|โ | 319/15000 [16:16<6:12:13, 1.52s/it]
2%|โ | 319/15000 [16:16<6:12:13, 1.52s/it]
2%|โ | 320/15000 [16:17<5:48:28, 1.42s/it]
2%|โ | 320/15000 [16:17<5:48:28, 1.42s/it]
2%|โ | 321/15000 [16:18<5:38:51, 1.39s/it]
2%|โ | 321/15000 [16:18<5:38:51, 1.39s/it]
2%|โ | 322/15000 [16:19<5:25:33, 1.33s/it]
2%|โ | 322/15000 [16:19<5:25:33, 1.33s/it]
2%|โ | 323/15000 [16:21<5:16:08, 1.29s/it]
2%|โ | 323/15000 [16:21<5:16:08, 1.29s/it]
2%|โ | 324/15000 [16:22<5:07:30, 1.26s/it]
2%|โ | 324/15000 [16:22<5:07:30, 1.26s/it]
2%|โ | 325/15000 [16:23<4:58:35, 1.22s/it]
2%|โ | 325/15000 [16:23<4:58:35, 1.22s/it]
2%|โ | 326/15000 [16:24<4:43:14, 1.16s/it]
2%|โ | 326/15000 [16:24<4:43:14, 1.16s/it]
2%|โ | 327/15000 [16:25<4:32:01, 1.11s/it]
2%|โ | 327/15000 [16:25<4:32:01, 1.11s/it]
2%|โ | 328/15000 [16:26<4:24:49, 1.08s/it]
2%|โ | 328/15000 [16:26<4:24:49, 1.08s/it]
2%|โ | 329/15000 [16:27<4:19:52, 1.06s/it]
2%|โ | 329/15000 [16:27<4:19:52, 1.06s/it]
2%|โ | 330/15000 [16:28<4:16:57, 1.05s/it]
2%|โ | 330/15000 [16:28<4:16:57, 1.05s/it]
2%|โ | 331/15000 [16:29<4:10:10, 1.02s/it]
2%|โ | 331/15000 [16:29<4:10:10, 1.02s/it]
2%|โ | 332/15000 [16:30<4:04:45, 1.00s/it]
2%|โ | 332/15000 [16:30<4:04:45, 1.00s/it]
2%|โ | 333/15000 [16:31<3:50:35, 1.06it/s]
2%|โ | 333/15000 [16:31<3:50:35, 1.06it/s]
2%|โ | 334/15000 [16:31<3:40:50, 1.11it/s]
2%|โ | 334/15000 [16:31<3:40:50, 1.11it/s]
2%|โ | 335/15000 [16:32<3:34:23, 1.14it/s]
2%|โ | 335/15000 [16:32<3:34:23, 1.14it/s]
2%|โ | 336/15000 [16:33<3:30:14, 1.16it/s]
2%|โ | 336/15000 [16:33<3:30:14, 1.16it/s]
2%|โ | 337/15000 [16:34<3:27:28, 1.18it/s]
2%|โ | 337/15000 [16:34<3:27:28, 1.18it/s]
2%|โ | 338/15000 [16:35<3:25:10, 1.19it/s]
2%|โ | 338/15000 [16:35<3:25:10, 1.19it/s]
2%|โ | 339/15000 [16:35<3:19:17, 1.23it/s]
2%|โ | 339/15000 [16:35<3:19:17, 1.23it/s]
2%|โ | 340/15000 [16:36<3:14:32, 1.26it/s]
2%|โ | 340/15000 [16:36<3:14:32, 1.26it/s]
2%|โ | 341/15000 [16:37<3:02:45, 1.34it/s]
2%|โ | 341/15000 [16:37<3:02:45, 1.34it/s]
2%|โ | 342/15000 [16:37<2:53:45, 1.41it/s]
2%|โ | 342/15000 [16:37<2:53:45, 1.41it/s]
2%|โ | 343/15000 [16:38<2:48:14, 1.45it/s]
2%|โ | 343/15000 [16:38<2:48:14, 1.45it/s]
2%|โ | 344/15000 [16:39<2:43:59, 1.49it/s]
2%|โ | 344/15000 [16:39<2:43:59, 1.49it/s]
2%|โ | 345/15000 [16:39<2:40:59, 1.52it/s]
2%|โ | 345/15000 [16:39<2:40:59, 1.52it/s]
2%|โ | 346/15000 [16:40<2:37:29, 1.55it/s]
2%|โ | 346/15000 [16:40<2:37:29, 1.55it/s]
2%|โ | 347/15000 [16:41<2:31:16, 1.61it/s]
2%|โ | 347/15000 [16:41<2:31:16, 1.61it/s]
2%|โ | 348/15000 [16:41<2:17:42, 1.77it/s]
2%|โ | 348/15000 [16:41<2:17:42, 1.77it/s]
2%|โ | 349/15000 [16:41<2:07:31, 1.91it/s]
2%|โ | 349/15000 [16:41<2:07:31, 1.91it/s]
2%|โ | 350/15000 [16:43<3:32:26, 1.15it/s]
2%|โ | 350/15000 [16:43<3:32:26, 1.15it/s]
2%|โ | 351/15000 [16:49<9:43:22, 2.39s/it]
2%|โ | 351/15000 [16:49<9:43:22, 2.39s/it]
2%|โ | 352/15000 [16:52<10:22:48, 2.55s/it]
2%|โ | 352/15000 [16:52<10:22:48, 2.55s/it]
2%|โ | 353/15000 [16:55<10:31:49, 2.59s/it]
2%|โ | 353/15000 [16:55<10:31:49, 2.59s/it]
2%|โ | 354/15000 [16:57<10:16:47, 2.53s/it]
2%|โ | 354/15000 [16:57<10:16:47, 2.53s/it]
2%|โ | 355/15000 [16:59<9:51:00, 2.42s/it]
2%|โ | 355/15000 [16:59<9:51:00, 2.42s/it]
2%|โ | 356/15000 [17:01<9:16:10, 2.28s/it]
2%|โ | 356/15000 [17:01<9:16:10, 2.28s/it]
2%|โ | 357/15000 [17:03<8:42:45, 2.14s/it]
2%|โ | 357/15000 [17:03<8:42:45, 2.14s/it]
2%|โ | 358/15000 [17:05<8:14:49, 2.03s/it]
2%|โ | 358/15000 [17:05<8:14:49, 2.03s/it]
2%|โ | 359/15000 [17:06<7:54:22, 1.94s/it]
2%|โ | 359/15000 [17:06<7:54:22, 1.94s/it]
2%|โ | 360/15000 [17:08<7:29:29, 1.84s/it]
2%|โ | 360/15000 [17:08<7:29:29, 1.84s/it]
2%|โ | 361/15000 [17:10<7:11:43, 1.77s/it]
2%|โ | 361/15000 [17:10<7:11:43, 1.77s/it]
2%|โ | 362/15000 [17:11<6:54:13, 1.70s/it]
2%|โ | 362/15000 [17:11<6:54:13, 1.70s/it]
2%|โ | 363/15000 [17:13<6:33:42, 1.61s/it]
2%|โ | 363/15000 [17:13<6:33:42, 1.61s/it]
2%|โ | 364/15000 [17:14<6:19:09, 1.55s/it]
2%|โ | 364/15000 [17:14<6:19:09, 1.55s/it]
2%|โ | 365/15000 [17:15<6:10:41, 1.52s/it]
2%|โ | 365/15000 [17:15<6:10:41, 1.52s/it]
2%|โ | 366/15000 [17:17<6:04:07, 1.49s/it]
2%|โ | 366/15000 [17:17<6:04:07, 1.49s/it]
2%|โ | 367/15000 [17:18<6:03:08, 1.49s/it]
2%|โ | 367/15000 [17:18<6:03:08, 1.49s/it]
2%|โ | 368/15000 [17:20<5:53:34, 1.45s/it]
2%|โ | 368/15000 [17:20<5:53:34, 1.45s/it]
2%|โ | 369/15000 [17:21<5:36:19, 1.38s/it]
2%|โ | 369/15000 [17:21<5:36:19, 1.38s/it]
2%|โ | 370/15000 [17:22<5:23:22, 1.33s/it]
2%|โ | 370/15000 [17:22<5:23:22, 1.33s/it]
2%|โ | 371/15000 [17:23<5:14:12, 1.29s/it]
2%|โ | 371/15000 [17:23<5:14:12, 1.29s/it]
2%|โ | 372/15000 [17:25<5:08:03, 1.26s/it]
2%|โ | 372/15000 [17:25<5:08:03, 1.26s/it]
2%|โ | 373/15000 [17:26<5:03:44, 1.25s/it]
2%|โ | 373/15000 [17:26<5:03:44, 1.25s/it]
2%|โ | 374/15000 [17:27<4:56:27, 1.22s/it]
2%|โ | 374/15000 [17:27<4:56:27, 1.22s/it]
2%|โ | 375/15000 [17:28<4:51:47, 1.20s/it]
2%|โ | 375/15000 [17:28<4:51:47, 1.20s/it]
3%|โ | 376/15000 [17:29<4:37:29, 1.14s/it]
3%|โ | 376/15000 [17:29<4:37:29, 1.14s/it]
3%|โ | 377/15000 [17:30<4:27:59, 1.10s/it]
3%|โ | 377/15000 [17:30<4:27:59, 1.10s/it]
3%|โ | 378/15000 [17:31<4:20:46, 1.07s/it]
3%|โ | 378/15000 [17:31<4:20:46, 1.07s/it]
3%|โ | 379/15000 [17:32<4:17:21, 1.06s/it]
3%|โ | 379/15000 [17:32<4:17:21, 1.06s/it]
3%|โ | 380/15000 [17:33<4:13:59, 1.04s/it]
3%|โ | 380/15000 [17:33<4:13:59, 1.04s/it]
3%|โ | 381/15000 [17:34<4:11:54, 1.03s/it]
3%|โ | 381/15000 [17:34<4:11:54, 1.03s/it]
3%|โ | 382/15000 [17:35<4:05:45, 1.01s/it]
3%|โ | 382/15000 [17:35<4:05:45, 1.01s/it]
3%|โ | 383/15000 [17:36<4:01:02, 1.01it/s]
3%|โ | 383/15000 [17:36<4:01:02, 1.01it/s]
3%|โ | 384/15000 [17:37<3:47:46, 1.07it/s]
3%|โ | 384/15000 [17:37<3:47:46, 1.07it/s]
3%|โ | 385/15000 [17:38<3:38:26, 1.12it/s]
3%|โ | 385/15000 [17:38<3:38:26, 1.12it/s]
3%|โ | 386/15000 [17:38<3:32:21, 1.15it/s]
3%|โ | 386/15000 [17:38<3:32:21, 1.15it/s]
3%|โ | 387/15000 [17:39<3:27:43, 1.17it/s]
3%|โ | 387/15000 [17:39<3:27:43, 1.17it/s]
3%|โ | 388/15000 [17:40<3:24:56, 1.19it/s]
3%|โ | 388/15000 [17:40<3:24:56, 1.19it/s]
3%|โ | 389/15000 [17:41<3:21:43, 1.21it/s]
3%|โ | 389/15000 [17:41<3:21:43, 1.21it/s]
3%|โ | 390/15000 [17:42<3:15:47, 1.24it/s]
3%|โ | 390/15000 [17:42<3:15:47, 1.24it/s]
3%|โ | 391/15000 [17:42<3:02:37, 1.33it/s]
3%|โ | 391/15000 [17:42<3:02:37, 1.33it/s]
3%|โ | 392/15000 [17:43<2:53:31, 1.40it/s]
3%|โ | 392/15000 [17:43<2:53:31, 1.40it/s]
3%|โ | 393/15000 [17:43<2:47:02, 1.46it/s]
3%|โ | 393/15000 [17:44<2:47:02, 1.46it/s]
3%|โ | 394/15000 [17:44<2:42:27, 1.50it/s]
3%|โ | 394/15000 [17:44<2:42:27, 1.50it/s]
3%|โ | 395/15000 [17:45<2:39:23, 1.53it/s]
3%|โ | 395/15000 [17:45<2:39:23, 1.53it/s]
3%|โ | 396/15000 [17:45<2:32:56, 1.59it/s]
3%|โ | 396/15000 [17:45<2:32:56, 1.59it/s]
3%|โ | 397/15000 [17:46<2:27:46, 1.65it/s]
3%|โ | 397/15000 [17:46<2:27:46, 1.65it/s]
3%|โ | 398/15000 [17:46<2:14:29, 1.81it/s]
3%|โ | 398/15000 [17:46<2:14:29, 1.81it/s]
3%|โ | 399/15000 [17:47<2:03:43, 1.97it/s]
3%|โ | 399/15000 [17:47<2:03:43, 1.97it/s]
3%|โ | 400/15000 [17:49<3:40:27, 1.10it/s]
3%|โ | 400/15000 [17:49<3:40:27, 1.10it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction: libr ofis imprs เคฎเฅเค เคเค เคชเฅเคฐเคธเคคเฅเคคเคฟ documnt เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ เคซoเคฐmtiเคเค เคเฅ เคเคธ spเฅcn ttorl เคฎเฅเค เคเคชเคเคพ เคธเคตเคพเคเคเค
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction: เคฌเคพเคค เคนเฅเคเคธ titorl เคฎเฅเค เคนเคฎ imps เคตindo เคเฅ เคฌเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ slid เคnsrt เคเคฐเฅเคเคเคฐ copเฅ เคเคฐเฅเคfon เคคเคคเคพ font เคเฅ เคซoเคฐเคฎmt เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ oเคชเคฐเฅtin เคธเคฟstเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค เคnเฅ lins เคเคฐ libr ofis เคตrเคn n เคเคพ เคเคชเคฏเฅเค เคเคฐเคฐเฅเคเฅเค
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเคฐเคธเคคเฅเคคเคฟ smpl imps opn เคเคฐเคคเฅ เคนเฅเคเคเคฟเคธเฅ เคชเคฟเคฒเฅ tutoเคฐเค
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction: เคฎเค เคฌเคจเคพเคฏเคพ เคพเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ เคธcrin เคชเคฐ เคเคฏเคพ เคเคฏเคพ เคนเฅ
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string lเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเคตเคพเคฆเคฟเคค เคนเฅเคtเฅ เคฎเฅเคฎเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เค
เคชเคธเฅ เคตเคฟเคฆเฅเคฏเคพ เคฒเฅเคคเคพ เคนเฅเค เคนเคฎเคธเฅ เคเฅเคจเฅ เคเฅ เคฒเคฟเค เคฆเคจเฅเคฏเคตเคพเคฆ
{'eval_loss': 2.306525945663452, 'eval_cer': 0.44920180957828504, 'eval_wer': 0.6911010076839222, 'eval_runtime': 171.6759, 'eval_samples_per_second': 18.267, 'eval_steps_per_second': 1.142, 'epoch': 0.24}
{'loss': 5.4943, 'grad_norm': 33.80393600463867, 'learning_rate': 0.00036119999999999994, 'epoch': 0.24}
{'loss': 2.1086, 'grad_norm': 2.2088849544525146, 'learning_rate': 0.00036239999999999997, 'epoch': 0.24}
{'loss': 2.5105, 'grad_norm': 2.624211072921753, 'learning_rate': 0.00036359999999999995, 'epoch': 0.24}
{'loss': 2.5438, 'grad_norm': 2.6284704208374023, 'learning_rate': 0.0003648, 'epoch': 0.24}
{'loss': 1.977, 'grad_norm': 2.8358795642852783, 'learning_rate': 0.00036599999999999995, 'epoch': 0.24}
{'loss': 2.8151, 'grad_norm': 6.961390018463135, 'learning_rate': 0.0003672, 'epoch': 0.24}
{'loss': 2.2258, 'grad_norm': 5.479166507720947, 'learning_rate': 0.00036839999999999996, 'epoch': 0.25}
{'loss': 2.1456, 'grad_norm': 3.3608686923980713, 'learning_rate': 0.0003696, 'epoch': 0.25}
{'loss': 2.0554, 'grad_norm': 2.9593496322631836, 'learning_rate': 0.00037079999999999996, 'epoch': 0.25}
{'loss': 1.9447, 'grad_norm': 3.4552764892578125, 'learning_rate': 0.000372, 'epoch': 0.25}
{'loss': 1.8793, 'grad_norm': 2.1626479625701904, 'learning_rate': 0.00037319999999999996, 'epoch': 0.25}
{'loss': 1.6678, 'grad_norm': 2.7381513118743896, 'learning_rate': 0.0003744, 'epoch': 0.25}
{'loss': 1.7935, 'grad_norm': 10.519975662231445, 'learning_rate': 0.00037559999999999997, 'epoch': 0.25}
{'loss': 1.9618, 'grad_norm': 1.2680588960647583, 'learning_rate': 0.00037679999999999994, 'epoch': 0.25}
{'loss': 1.8192, 'grad_norm': 1.3070068359375, 'learning_rate': 0.00037799999999999997, 'epoch': 0.25}
{'loss': 1.7291, 'grad_norm': 0.9613282680511475, 'learning_rate': 0.00037919999999999995, 'epoch': 0.25}
{'loss': 1.8889, 'grad_norm': 1.7995085716247559, 'learning_rate': 0.0003804, 'epoch': 0.25}
{'loss': 2.1829, 'grad_norm': 3.8567888736724854, 'learning_rate': 0.00038159999999999995, 'epoch': 0.25}
{'loss': 1.5899, 'grad_norm': 1.959777593612671, 'learning_rate': 0.0003828, 'epoch': 0.26}
{'loss': 2.4253, 'grad_norm': 4.765621185302734, 'learning_rate': 0.00038399999999999996, 'epoch': 0.26}
{'loss': 1.647, 'grad_norm': 1.9533027410507202, 'learning_rate': 0.0003852, 'epoch': 0.26}
{'loss': 1.8127, 'grad_norm': 1.9352667331695557, 'learning_rate': 0.00038639999999999996, 'epoch': 0.26}
{'loss': 1.7068, 'grad_norm': 1.2279629707336426, 'learning_rate': 0.0003876, 'epoch': 0.26}
{'loss': 2.1464, 'grad_norm': 2.758436679840088, 'learning_rate': 0.00038879999999999996, 'epoch': 0.26}
{'loss': 2.1878, 'grad_norm': 2.4254565238952637, 'learning_rate': 0.00039, 'epoch': 0.26}
{'loss': 1.7689, 'grad_norm': 1.2196272611618042, 'learning_rate': 0.00039119999999999997, 'epoch': 0.26}
{'loss': 1.8351, 'grad_norm': 1.798702359199524, 'learning_rate': 0.0003924, 'epoch': 0.26}
{'loss': 1.3882, 'grad_norm': 1.317832589149475, 'learning_rate': 0.00039359999999999997, 'epoch': 0.26}
{'loss': 1.52, 'grad_norm': 2.014120578765869, 'learning_rate': 0.0003948, 'epoch': 0.26}
{'loss': 2.0427, 'grad_norm': 1.9730117321014404, 'learning_rate': 0.000396, 'epoch': 0.26}
{'loss': 1.4458, 'grad_norm': 1.4141724109649658, 'learning_rate': 0.0003972, 'epoch': 0.26}
{'loss': 2.0482, 'grad_norm': 2.001217842102051, 'learning_rate': 0.0003984, 'epoch': 0.27}
{'loss': 1.8113, 'grad_norm': 3.92620849609375, 'learning_rate': 0.0003996, 'epoch': 0.27}
{'loss': 1.8821, 'grad_norm': 1.4856631755828857, 'learning_rate': 0.0004008, 'epoch': 0.27}
{'loss': 1.6752, 'grad_norm': 1.1827623844146729, 'learning_rate': 0.000402, 'epoch': 0.27}
{'loss': 2.071, 'grad_norm': 3.3898911476135254, 'learning_rate': 0.0004032, 'epoch': 0.27}
{'loss': 1.1623, 'grad_norm': 1.311228632926941, 'learning_rate': 0.0004044, 'epoch': 0.27}
{'loss': 2.1199, 'grad_norm': 4.379424571990967, 'learning_rate': 0.0004056, 'epoch': 0.27}
{'loss': 1.5396, 'grad_norm': 1.3787212371826172, 'learning_rate': 0.00040679999999999997, 'epoch': 0.27}
{'loss': 1.8436, 'grad_norm': 1.8470242023468018, 'learning_rate': 0.000408, 'epoch': 0.27}
{'loss': 2.0173, 'grad_norm': 1.7225465774536133, 'learning_rate': 0.00040919999999999997, 'epoch': 0.27}
{'loss': 1.942, 'grad_norm': 1.7588067054748535, 'learning_rate': 0.0004104, 'epoch': 0.27}
{'loss': 2.2485, 'grad_norm': 2.164616346359253, 'learning_rate': 0.0004116, 'epoch': 0.27}
{'loss': 1.8472, 'grad_norm': 1.4458445310592651, 'learning_rate': 0.00041279999999999995, 'epoch': 0.28}
{'loss': 2.3777, 'grad_norm': 2.438554525375366, 'learning_rate': 0.0004139999999999999, 'epoch': 0.28}
{'loss': 2.1314, 'grad_norm': 3.288480281829834, 'learning_rate': 0.00041519999999999995, 'epoch': 0.28}
{'loss': 1.9123, 'grad_norm': 2.9282050132751465, 'learning_rate': 0.00041639999999999993, 'epoch': 0.28}
{'loss': 1.4371, 'grad_norm': 2.568086624145508, 'learning_rate': 0.00041759999999999996, 'epoch': 0.28}
{'loss': 2.1378, 'grad_norm': 2.4539318084716797, 'learning_rate': 0.00041879999999999993, 'epoch': 0.28}
{'loss': 1.9223, 'grad_norm': 2.8486111164093018, 'learning_rate': 0.00041999999999999996, 'epoch': 0.28}
{'loss': 1.9652, 'grad_norm': 2.19918155670166, 'learning_rate': 0.00042119999999999994, 'epoch': 0.28}
{'loss': 2.4033, 'grad_norm': 5.144114971160889, 'learning_rate': 0.0004223999999999999, 'epoch': 0.28}
{'loss': 1.9124, 'grad_norm': 1.9829061031341553, 'learning_rate': 0.00042359999999999994, 'epoch': 0.28}
{'loss': 1.7292, 'grad_norm': 1.8637439012527466, 'learning_rate': 0.0004247999999999999, 'epoch': 0.28}
{'loss': 2.2906, 'grad_norm': 3.182199239730835, 'learning_rate': 0.00042599999999999995, 'epoch': 0.28}
{'loss': 1.5979, 'grad_norm': 1.5626695156097412, 'learning_rate': 0.0004271999999999999, 'epoch': 0.28}
{'loss': 1.7385, 'grad_norm': 1.9768790006637573, 'learning_rate': 0.00042839999999999995, 'epoch': 0.29}
{'loss': 1.9876, 'grad_norm': 2.7644338607788086, 'learning_rate': 0.0004295999999999999, 'epoch': 0.29}
{'loss': 1.8671, 'grad_norm': 1.8713502883911133, 'learning_rate': 0.00043079999999999995, 'epoch': 0.29}
{'loss': 1.5444, 'grad_norm': 2.209606170654297, 'learning_rate': 0.00043199999999999993, 'epoch': 0.29}
{'loss': 1.5143, 'grad_norm': 1.2067548036575317, 'learning_rate': 0.00043319999999999996, 'epoch': 0.29}
{'loss': 1.3349, 'grad_norm': 1.8082737922668457, 'learning_rate': 0.00043439999999999993, 'epoch': 0.29}
{'loss': 1.9303, 'grad_norm': 4.802314758300781, 'learning_rate': 0.00043559999999999996, 'epoch': 0.29}
{'loss': 1.4996, 'grad_norm': 1.5947158336639404, 'learning_rate': 0.00043679999999999994, 'epoch': 0.29}
{'loss': 1.5336, 'grad_norm': 1.356413722038269, 'learning_rate': 0.00043799999999999997, 'epoch': 0.29}
{'loss': 1.2928, 'grad_norm': 1.1065775156021118, 'learning_rate': 0.00043919999999999994, 'epoch': 0.29}
{'loss': 1.5775, 'grad_norm': 1.5548232793807983, 'learning_rate': 0.00044039999999999997, 'epoch': 0.29}
{'loss': 2.0953, 'grad_norm': 1.7559490203857422, 'learning_rate': 0.00044159999999999995, 'epoch': 0.29}
{'loss': 2.2416, 'grad_norm': 2.356037139892578, 'learning_rate': 0.0004428, 'epoch': 0.3}
{'loss': 1.4882, 'grad_norm': 1.3615736961364746, 'learning_rate': 0.00044399999999999995, 'epoch': 0.3}
{'loss': 1.5128, 'grad_norm': 2.1059510707855225, 'learning_rate': 0.0004452, 'epoch': 0.3}
{'loss': 1.5913, 'grad_norm': 2.69826340675354, 'learning_rate': 0.00044639999999999995, 'epoch': 0.3}
{'loss': 2.0969, 'grad_norm': 1.9993566274642944, 'learning_rate': 0.0004476, 'epoch': 0.3}
{'loss': 1.3479, 'grad_norm': 1.510923147201538, 'learning_rate': 0.00044879999999999996, 'epoch': 0.3}
{'loss': 1.4308, 'grad_norm': 1.3841928243637085, 'learning_rate': 0.00045, 'epoch': 0.3}
{'loss': 1.9226, 'grad_norm': 2.4486305713653564, 'learning_rate': 0.00045119999999999996, 'epoch': 0.3}
{'loss': 1.5415, 'grad_norm': 1.458791732788086, 'learning_rate': 0.00045239999999999994, 'epoch': 0.3}
{'loss': 1.7361, 'grad_norm': 2.1064951419830322, 'learning_rate': 0.00045359999999999997, 'epoch': 0.3}
{'loss': 1.431, 'grad_norm': 1.6818236112594604, 'learning_rate': 0.00045479999999999994, 'epoch': 0.3}
{'loss': 1.2666, 'grad_norm': 1.5280344486236572, 'learning_rate': 0.00045599999999999997, 'epoch': 0.3}
{'loss': 1.7074, 'grad_norm': 2.3697853088378906, 'learning_rate': 0.00045719999999999995, 'epoch': 0.3}
{'loss': 1.2586, 'grad_norm': 1.1884067058563232, 'learning_rate': 0.0004584, 'epoch': 0.31}
{'loss': 1.691, 'grad_norm': 2.0162477493286133, 'learning_rate': 0.00045959999999999995, 'epoch': 0.31}
{'loss': 2.1423, 'grad_norm': 2.008227586746216, 'learning_rate': 0.0004608, 'epoch': 0.31}
{'loss': 1.9376, 'grad_norm': 1.877863883972168, 'learning_rate': 0.00046199999999999995, 'epoch': 0.31}
{'loss': 1.4346, 'grad_norm': 1.6912509202957153, 'learning_rate': 0.0004632, 'epoch': 0.31}
{'loss': 2.2862, 'grad_norm': 1.7503206729888916, 'learning_rate': 0.00046439999999999996, 'epoch': 0.31}
{'loss': 1.7443, 'grad_norm': 1.4433410167694092, 'learning_rate': 0.0004656, 'epoch': 0.31}
{'loss': 1.8514, 'grad_norm': 3.090024709701538, 'learning_rate': 0.00046679999999999996, 'epoch': 0.31}
{'loss': 1.883, 'grad_norm': 2.7054193019866943, 'learning_rate': 0.000468, 'epoch': 0.31}
{'loss': 1.999, 'grad_norm': 3.3618342876434326, 'learning_rate': 0.00046919999999999997, 'epoch': 0.31}
{'loss': 1.8265, 'grad_norm': 1.6611311435699463, 'learning_rate': 0.0004704, 'epoch': 0.31}
{'loss': 2.1129, 'grad_norm': 3.265284538269043, 'learning_rate': 0.00047159999999999997, 'epoch': 0.31}
{'loss': 1.295, 'grad_norm': 1.7825956344604492, 'learning_rate': 0.0004728, 'epoch': 0.32}
{'loss': 2.1154, 'grad_norm': 1.913347601890564, 'learning_rate': 0.000474, 'epoch': 0.32}
{'loss': 1.3584, 'grad_norm': 1.7700278759002686, 'learning_rate': 0.0004752, 'epoch': 0.32}
{'loss': 2.3804, 'grad_norm': 2.426985025405884, 'learning_rate': 0.0004764, 'epoch': 0.32}
{'loss': 1.7472, 'grad_norm': 1.9232878684997559, 'learning_rate': 0.0004776, 'epoch': 0.32}
{'loss': 2.0287, 'grad_norm': 3.930084228515625, 'learning_rate': 0.0004788, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.00047999999999999996, 'epoch': 0.32}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:05, 2.97it/s][A
2%|โ | 3/196 [00:01<01:42, 1.88it/s][A
2%|โ | 4/196 [00:02<02:07, 1.50it/s][A
3%|โ | 5/196 [00:03<02:21, 1.35it/s][A
3%|โ | 6/196 [00:04<02:40, 1.19it/s][A
4%|โ | 7/196 [00:05<02:46, 1.13it/s][A
4%|โ | 8/196 [00:06<02:49, 1.11it/s][A
5%|โ | 9/196 [00:08<03:40, 1.18s/it][A
5%|โ | 10/196 [00:09<04:21, 1.41s/it][A
6%|โ | 11/196 [00:12<05:00, 1.62s/it][A
6%|โ | 12/196 [00:14<05:17, 1.73s/it][A
7%|โ | 13/196 [00:15<04:37, 1.51s/it][A
7%|โ | 14/196 [00:15<03:52, 1.28s/it][A
8%|โ | 15/196 [00:16<03:15, 1.08s/it][A
8%|โ | 16/196 [00:17<03:04, 1.02s/it][A
9%|โ | 17/196 [00:18<02:58, 1.01it/s][A
9%|โ | 18/196 [00:19<03:16, 1.10s/it][A
10%|โ | 19/196 [00:21<04:08, 1.41s/it][A
10%|โ | 20/196 [00:23<04:27, 1.52s/it][A
11%|โ | 21/196 [00:25<04:35, 1.57s/it][A
11%|โ | 22/196 [00:26<04:23, 1.52s/it][A
12%|โโ | 23/196 [00:27<04:01, 1.40s/it][A
12%|โโ | 24/196 [00:28<03:17, 1.15s/it][A
13%|โโ | 25/196 [00:28<02:47, 1.02it/s][A
13%|โโ | 26/196 [00:29<02:26, 1.16it/s][A
14%|โโ | 27/196 [00:30<02:14, 1.25it/s][A
14%|โโ | 28/196 [00:30<02:08, 1.31it/s][A
15%|โโ | 29/196 [00:31<02:07, 1.31it/s][A
15%|โโ | 30/196 [00:32<02:08, 1.30it/s][A
16%|โโ | 31/196 [00:32<01:56, 1.41it/s][A
16%|โโ | 32/196 [00:33<01:52, 1.46it/s][A
17%|โโ | 33/196 [00:34<02:09, 1.26it/s][A
17%|โโ | 34/196 [00:36<02:46, 1.03s/it][A
18%|โโ | 35/196 [00:37<02:52, 1.07s/it][A
18%|โโ | 36/196 [00:38<03:15, 1.22s/it][A
19%|โโ | 37/196 [00:40<03:12, 1.21s/it][A
19%|โโ | 38/196 [00:40<02:56, 1.12s/it][A
20%|โโ | 39/196 [00:41<02:42, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:30, 1.04it/s][A
21%|โโ | 41/196 [00:43<02:18, 1.12it/s][A
21%|โโโ | 42/196 [00:44<02:09, 1.19it/s][A
22%|โโโ | 43/196 [00:44<02:07, 1.20it/s][A
22%|โโโ | 44/196 [00:45<02:04, 1.22it/s][A
23%|โโโ | 45/196 [00:46<01:55, 1.31it/s][A
23%|โโโ | 46/196 [00:46<01:47, 1.39it/s][A
24%|โโโ | 47/196 [00:47<01:47, 1.39it/s][A
24%|โโโ | 48/196 [00:48<01:42, 1.45it/s][A
25%|โโโ | 49/196 [00:48<01:39, 1.47it/s][A
26%|โโโ | 50/196 [00:49<01:38, 1.49it/s][A
26%|โโโ | 51/196 [00:50<01:34, 1.53it/s][A
27%|โโโ | 52/196 [00:50<01:34, 1.53it/s][A
27%|โโโ | 53/196 [00:51<01:39, 1.44it/s][A
28%|โโโ | 54/196 [00:52<01:38, 1.45it/s][A
28%|โโโ | 55/196 [00:53<01:48, 1.30it/s][A
29%|โโโ | 56/196 [00:54<01:56, 1.20it/s][A
29%|โโโ | 57/196 [00:55<02:04, 1.12it/s][A
30%|โโโ | 58/196 [00:56<02:07, 1.08it/s][A
30%|โโโ | 59/196 [00:57<02:05, 1.09it/s][A
31%|โโโ | 60/196 [00:57<01:54, 1.18it/s][A
31%|โโโ | 61/196 [00:58<01:48, 1.24it/s][A
32%|โโโโ | 62/196 [00:59<01:45, 1.27it/s][A
32%|โโโโ | 63/196 [01:00<01:44, 1.27it/s][A
33%|โโโโ | 64/196 [01:00<01:44, 1.26it/s][A
33%|โโโโ | 65/196 [01:01<01:41, 1.29it/s][A
34%|โโโโ | 66/196 [01:02<01:44, 1.24it/s][A
34%|โโโโ | 67/196 [01:03<01:48, 1.19it/s][A
35%|โโโโ | 68/196 [01:04<02:02, 1.05it/s][A
35%|โโโโ | 69/196 [01:05<02:03, 1.03it/s][A
36%|โโโโ | 70/196 [01:06<01:54, 1.10it/s][A
36%|โโโโ | 71/196 [01:07<01:46, 1.17it/s][A
37%|โโโโ | 72/196 [01:07<01:38, 1.26it/s][A
37%|โโโโ | 73/196 [01:08<01:29, 1.37it/s][A
38%|โโโโ | 74/196 [01:08<01:23, 1.46it/s][A
38%|โโโโ | 75/196 [01:09<01:21, 1.49it/s][A
39%|โโโโ | 76/196 [01:10<01:18, 1.53it/s][A
39%|โโโโ | 77/196 [01:10<01:21, 1.46it/s][A
40%|โโโโ | 78/196 [01:11<01:26, 1.37it/s][A
40%|โโโโ | 79/196 [01:12<01:23, 1.41it/s][A
41%|โโโโ | 80/196 [01:13<01:29, 1.30it/s][A
41%|โโโโโ | 81/196 [01:14<01:31, 1.26it/s][A
42%|โโโโโ | 82/196 [01:14<01:27, 1.30it/s][A
42%|โโโโโ | 83/196 [01:15<01:29, 1.27it/s][A
43%|โโโโโ | 84/196 [01:16<01:30, 1.24it/s][A
43%|โโโโโ | 85/196 [01:17<01:29, 1.24it/s][A
44%|โโโโโ | 86/196 [01:18<01:31, 1.20it/s][A
44%|โโโโโ | 87/196 [01:19<01:29, 1.22it/s][A
45%|โโโโโ | 88/196 [01:20<01:32, 1.17it/s][A
45%|โโโโโ | 89/196 [01:20<01:34, 1.14it/s][A
46%|โโโโโ | 90/196 [01:21<01:30, 1.17it/s][A
46%|โโโโโ | 91/196 [01:22<01:27, 1.21it/s][A
47%|โโโโโ | 92/196 [01:23<01:23, 1.25it/s][A
47%|โโโโโ | 93/196 [01:24<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:25<01:27, 1.16it/s][A
48%|โโโโโ | 95/196 [01:25<01:23, 1.21it/s][A
49%|โโโโโ | 96/196 [01:26<01:27, 1.15it/s][A
49%|โโโโโ | 97/196 [01:27<01:24, 1.17it/s][A
50%|โโโโโ | 98/196 [01:28<01:26, 1.13it/s][A
51%|โโโโโ | 99/196 [01:29<01:18, 1.23it/s][A
51%|โโโโโ | 100/196 [01:29<01:09, 1.38it/s][A
52%|โโโโโโ | 101/196 [01:30<01:04, 1.46it/s][A
52%|โโโโโโ | 102/196 [01:31<01:08, 1.38it/s][A
53%|โโโโโโ | 103/196 [01:32<01:12, 1.28it/s][A
53%|โโโโโโ | 104/196 [01:33<01:22, 1.11it/s][A
54%|โโโโโโ | 105/196 [01:34<01:24, 1.08it/s][A
54%|โโโโโโ | 106/196 [01:35<01:23, 1.08it/s][A
55%|โโโโโโ | 107/196 [01:35<01:18, 1.14it/s][A
55%|โโโโโโ | 108/196 [01:36<01:09, 1.27it/s][A
56%|โโโโโโ | 109/196 [01:37<01:03, 1.36it/s][A
56%|โโโโโโ | 110/196 [01:37<01:01, 1.40it/s][A
57%|โโโโโโ | 111/196 [01:38<01:00, 1.40it/s][A
57%|โโโโโโ | 112/196 [01:39<01:02, 1.35it/s][A
58%|โโโโโโ | 113/196 [01:40<01:03, 1.32it/s][A
58%|โโโโโโ | 114/196 [01:40<00:57, 1.42it/s][A
59%|โโโโโโ | 115/196 [01:41<00:55, 1.46it/s][A
59%|โโโโโโ | 116/196 [01:41<00:53, 1.49it/s][A
60%|โโโโโโ | 117/196 [01:42<00:50, 1.56it/s][A
60%|โโโโโโ | 118/196 [01:42<00:45, 1.71it/s][A
61%|โโโโโโ | 119/196 [01:43<00:47, 1.63it/s][A
61%|โโโโโโ | 120/196 [01:44<00:49, 1.54it/s][A
62%|โโโโโโโ | 121/196 [01:45<00:49, 1.50it/s][A
62%|โโโโโโโ | 122/196 [01:45<00:50, 1.46it/s][A
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.48it/s][A
63%|โโโโโโโ | 124/196 [01:47<00:48, 1.47it/s][A
64%|โโโโโโโ | 125/196 [01:47<00:48, 1.46it/s][A
64%|โโโโโโโ | 126/196 [01:48<00:54, 1.29it/s][A
65%|โโโโโโโ | 127/196 [01:49<00:53, 1.29it/s][A
65%|โโโโโโโ | 128/196 [01:50<00:49, 1.36it/s][A
66%|โโโโโโโ | 129/196 [01:50<00:48, 1.38it/s][A
66%|โโโโโโโ | 130/196 [01:51<00:47, 1.38it/s][A
67%|โโโโโโโ | 131/196 [01:52<00:47, 1.38it/s][A
67%|โโโโโโโ | 132/196 [01:53<00:43, 1.47it/s][A
68%|โโโโโโโ | 133/196 [01:53<00:42, 1.48it/s][A
68%|โโโโโโโ | 134/196 [01:54<00:44, 1.39it/s][A
69%|โโโโโโโ | 135/196 [01:55<00:43, 1.41it/s][A
69%|โโโโโโโ | 136/196 [01:55<00:41, 1.44it/s][A
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.45it/s][A
70%|โโโโโโโ | 138/196 [01:57<00:40, 1.44it/s][A
71%|โโโโโโโ | 139/196 [01:57<00:39, 1.43it/s][A
71%|โโโโโโโโ | 140/196 [01:58<00:38, 1.46it/s][A
72%|โโโโโโโโ | 141/196 [01:59<00:37, 1.46it/s][A
72%|โโโโโโโโ | 142/196 [02:00<00:37, 1.42it/s][A
73%|โโโโโโโโ | 143/196 [02:00<00:39, 1.33it/s][A
73%|โโโโโโโโ | 144/196 [02:01<00:36, 1.41it/s][A
74%|โโโโโโโโ | 145/196 [02:02<00:33, 1.52it/s][A
74%|โโโโโโโโ | 146/196 [02:02<00:30, 1.62it/s][A
75%|โโโโโโโโ | 147/196 [02:03<00:30, 1.59it/s][A
76%|โโโโโโโโ | 148/196 [02:03<00:30, 1.58it/s][A
76%|โโโโโโโโ | 149/196 [02:04<00:28, 1.65it/s][A
77%|โโโโโโโโ | 150/196 [02:05<00:29, 1.56it/s][A
77%|โโโโโโโโ | 151/196 [02:05<00:30, 1.48it/s][A
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.49it/s][A
78%|โโโโโโโโ | 153/196 [02:07<00:28, 1.50it/s][A
79%|โโโโโโโโ | 154/196 [02:07<00:28, 1.49it/s][A
79%|โโโโโโโโ | 155/196 [02:08<00:29, 1.39it/s][A
80%|โโโโโโโโ | 156/196 [02:09<00:33, 1.19it/s][A
80%|โโโโโโโโ | 157/196 [02:10<00:34, 1.11it/s][A
81%|โโโโโโโโ | 158/196 [02:11<00:30, 1.23it/s][A
81%|โโโโโโโโ | 159/196 [02:12<00:27, 1.34it/s][A
82%|โโโโโโโโโ | 160/196 [02:12<00:25, 1.40it/s][A
82%|โโโโโโโโโ | 161/196 [02:13<00:25, 1.39it/s][A
83%|โโโโโโโโโ | 162/196 [02:14<00:24, 1.41it/s][A
83%|โโโโโโโโโ | 163/196 [02:14<00:23, 1.42it/s][A
84%|โโโโโโโโโ | 164/196 [02:15<00:22, 1.45it/s][A
84%|โโโโโโโโโ | 165/196 [02:16<00:22, 1.39it/s][A
85%|โโโโโโโโโ | 166/196 [02:16<00:20, 1.43it/s][A
85%|โโโโโโโโโ | 167/196 [02:17<00:19, 1.48it/s][A
86%|โโโโโโโโโ | 168/196 [02:18<00:18, 1.55it/s][A
86%|โโโโโโโโโ | 169/196 [02:18<00:17, 1.52it/s][A
87%|โโโโโโโโโ | 170/196 [02:19<00:18, 1.39it/s][A
87%|โโโโโโโโโ | 171/196 [02:20<00:17, 1.43it/s][A
88%|โโโโโโโโโ | 172/196 [02:21<00:17, 1.40it/s][A
88%|โโโโโโโโโ | 173/196 [02:21<00:16, 1.40it/s][A
89%|โโโโโโโโโ | 174/196 [02:22<00:16, 1.31it/s][A
89%|โโโโโโโโโ | 175/196 [02:23<00:19, 1.08it/s][A
90%|โโโโโโโโโ | 176/196 [02:26<00:27, 1.39s/it][A
90%|โโโโโโโโโ | 177/196 [02:28<00:30, 1.59s/it][A
91%|โโโโโโโโโ | 178/196 [02:30<00:31, 1.76s/it][A
91%|โโโโโโโโโโ| 179/196 [02:32<00:31, 1.87s/it][A
92%|โโโโโโโโโโ| 180/196 [02:33<00:24, 1.51s/it][A
92%|โโโโโโโโโโ| 181/196 [02:34<00:19, 1.29s/it][A
93%|โโโโโโโโโโ| 182/196 [02:34<00:15, 1.11s/it][A
93%|โโโโโโโโโโ| 183/196 [02:36<00:14, 1.12s/it][A
94%|โโโโโโโโโโ| 184/196 [02:36<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:37<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:38<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:39<00:08, 1.10it/s][A
96%|โโโโโโโโโโ| 188/196 [02:40<00:06, 1.20it/s][A
96%|โโโโโโโโโโ| 189/196 [02:40<00:05, 1.24it/s][A
97%|โโโโโโโโโโ| 190/196 [02:41<00:04, 1.32it/s][A
97%|โโโโโโโโโโ| 191/196 [02:42<00:03, 1.42it/s][A
98%|โโโโโโโโโโ| 192/196 [02:42<00:02, 1.41it/s][A
98%|โโโโโโโโโโ| 193/196 [02:43<00:02, 1.40it/s][A
99%|โโโโโโโโโโ| 194/196 [02:44<00:01, 1.42it/s][A
99%|โโโโโโโโโโ| 195/196 [02:44<00:00, 1.45it/s][A
100%|โโโโโโโโโโ| 196/196 [02:45<00:00, 1.66it/s][A
[A
3%|โ | 400/15000 [20:40<3:40:27, 1.10it/s]
100%|โโโโโโโโโโ| 196/196 [02:49<00:00, 1.66it/s][A
[A
3%|โ | 401/15000 [20:46<218:24:01, 53.86s/it]
3%|โ | 401/15000 [20:46<218:24:01, 53.86s/it]
3%|โ | 402/15000 [20:49<156:22:36, 38.56s/it]
3%|โ | 402/15000 [20:49<156:22:36, 38.56s/it]
3%|โ | 403/15000 [20:51<112:37:52, 27.78s/it]
3%|โ | 403/15000 [20:51<112:37:52, 27.78s/it]
3%|โ | 404/15000 [20:54<81:45:09, 20.16s/it]
3%|โ | 404/15000 [20:54<81:45:09, 20.16s/it]
3%|โ | 405/15000 [20:56<59:52:24, 14.77s/it]
3%|โ | 405/15000 [20:56<59:52:24, 14.77s/it]
3%|โ | 406/15000 [20:58<44:31:44, 10.98s/it]
3%|โ | 406/15000 [20:58<44:31:44, 10.98s/it]
3%|โ | 407/15000 [21:00<33:35:11, 8.29s/it]
3%|โ | 407/15000 [21:00<33:35:11, 8.29s/it]
3%|โ | 408/15000 [21:02<25:52:00, 6.38s/it]
3%|โ | 408/15000 [21:02<25:52:00, 6.38s/it]
3%|โ | 409/15000 [21:04<20:18:18, 5.01s/it]
3%|โ | 409/15000 [21:04<20:18:18, 5.01s/it]
3%|โ | 410/15000 [21:06<16:22:00, 4.04s/it]
3%|โ | 410/15000 [21:06<16:22:00, 4.04s/it]
3%|โ | 411/15000 [21:07<13:23:52, 3.31s/it]
3%|โ | 411/15000 [21:07<13:23:52, 3.31s/it]
3%|โ | 412/15000 [21:09<11:18:55, 2.79s/it]
3%|โ | 412/15000 [21:09<11:18:55, 2.79s/it]
3%|โ | 413/15000 [21:10<9:47:40, 2.42s/it]
3%|โ | 413/15000 [21:10<9:47:40, 2.42s/it]
3%|โ | 414/15000 [21:12<8:34:38, 2.12s/it]
3%|โ | 414/15000 [21:12<8:34:38, 2.12s/it]
3%|โ | 415/15000 [21:13<7:44:02, 1.91s/it]
3%|โ | 415/15000 [21:13<7:44:02, 1.91s/it]
3%|โ | 416/15000 [21:15<7:08:31, 1.76s/it]
3%|โ | 416/15000 [21:15<7:08:31, 1.76s/it]
3%|โ | 417/15000 [21:16<6:39:42, 1.64s/it]
3%|โ | 417/15000 [21:16<6:39:42, 1.64s/it]
3%|โ | 418/15000 [21:17<6:17:34, 1.55s/it]
3%|โ | 418/15000 [21:17<6:17:34, 1.55s/it]
3%|โ | 419/15000 [21:19<5:52:00, 1.45s/it]
3%|โ | 419/15000 [21:19<5:52:00, 1.45s/it]
3%|โ | 420/15000 [21:20<5:40:46, 1.40s/it]
3%|โ | 420/15000 [21:20<5:40:46, 1.40s/it]
3%|โ | 421/15000 [21:21<5:25:58, 1.34s/it]
3%|โ | 421/15000 [21:21<5:25:58, 1.34s/it]
3%|โ | 422/15000 [21:22<5:15:45, 1.30s/it]
3%|โ | 422/15000 [21:22<5:15:45, 1.30s/it]
3%|โ | 423/15000 [21:23<5:08:43, 1.27s/it]
3%|โ | 423/15000 [21:23<5:08:43, 1.27s/it]
3%|โ | 424/15000 [21:25<5:02:15, 1.24s/it]
3%|โ | 424/15000 [21:25<5:02:15, 1.24s/it]
3%|โ | 425/15000 [21:26<4:54:09, 1.21s/it]
3%|โ | 425/15000 [21:26<4:54:09, 1.21s/it]
3%|โ | 426/15000 [21:27<4:39:10, 1.15s/it]
3%|โ | 426/15000 [21:27<4:39:10, 1.15s/it]
3%|โ | 427/15000 [21:28<4:29:19, 1.11s/it]
3%|โ | 427/15000 [21:28<4:29:19, 1.11s/it]
3%|โ | 428/15000 [21:29<4:22:01, 1.08s/it]
3%|โ | 428/15000 [21:29<4:22:01, 1.08s/it]
3%|โ | 429/15000 [21:30<4:16:48, 1.06s/it]
3%|โ | 429/15000 [21:30<4:16:48, 1.06s/it]
3%|โ | 430/15000 [21:31<4:13:39, 1.04s/it]
3%|โ | 430/15000 [21:31<4:13:39, 1.04s/it]
3%|โ | 431/15000 [21:32<4:10:42, 1.03s/it]
3%|โ | 431/15000 [21:32<4:10:42, 1.03s/it]
3%|โ | 432/15000 [21:33<4:08:26, 1.02s/it]
3%|โ | 432/15000 [21:33<4:08:26, 1.02s/it]
3%|โ | 433/15000 [21:34<4:02:15, 1.00it/s]
3%|โ | 433/15000 [21:34<4:02:15, 1.00it/s]
3%|โ | 434/15000 [21:35<3:48:46, 1.06it/s]
3%|โ | 434/15000 [21:35<3:48:46, 1.06it/s]
3%|โ | 435/15000 [21:35<3:39:08, 1.11it/s]
3%|โ | 435/15000 [21:35<3:39:08, 1.11it/s]
3%|โ | 436/15000 [21:36<3:32:34, 1.14it/s]
3%|โ | 436/15000 [21:36<3:32:34, 1.14it/s]
3%|โ | 437/15000 [21:37<3:28:00, 1.17it/s]
3%|โ | 437/15000 [21:37<3:28:00, 1.17it/s]
3%|โ | 438/15000 [21:38<3:24:39, 1.19it/s]
3%|โ | 438/15000 [21:38<3:24:39, 1.19it/s]
3%|โ | 439/15000 [21:39<3:22:22, 1.20it/s]
3%|โ | 439/15000 [21:39<3:22:22, 1.20it/s]
3%|โ | 440/15000 [21:39<3:20:18, 1.21it/s]
3%|โ | 440/15000 [21:39<3:20:18, 1.21it/s]
3%|โ | 441/15000 [21:40<3:14:20, 1.25it/s]
3%|โ | 441/15000 [21:40<3:14:20, 1.25it/s]
3%|โ | 442/15000 [21:41<3:01:39, 1.34it/s]
3%|โ | 442/15000 [21:41<3:01:39, 1.34it/s]
3%|โ | 443/15000 [21:41<2:52:55, 1.40it/s]
3%|โ | 443/15000 [21:41<2:52:55, 1.40it/s]
3%|โ | 444/15000 [21:42<2:46:34, 1.46it/s]
3%|โ | 444/15000 [21:42<2:46:34, 1.46it/s]
3%|โ | 445/15000 [21:43<2:42:17, 1.49it/s]
3%|โ | 445/15000 [21:43<2:42:17, 1.49it/s]
3%|โ | 446/15000 [21:43<2:39:26, 1.52it/s]
3%|โ | 446/15000 [21:43<2:39:26, 1.52it/s]
3%|โ | 447/15000 [21:44<2:32:26, 1.59it/s]
3%|โ | 447/15000 [21:44<2:32:26, 1.59it/s]
3%|โ | 448/15000 [21:44<2:17:57, 1.76it/s]
3%|โ | 448/15000 [21:44<2:17:57, 1.76it/s]
3%|โ | 449/15000 [21:45<2:05:46, 1.93it/s]
3%|โ | 449/15000 [21:45<2:05:46, 1.93it/s]
3%|โ | 450/15000 [21:46<3:32:57, 1.14it/s]
3%|โ | 450/15000 [21:46<3:32:57, 1.14it/s]
3%|โ | 451/15000 [21:52<8:41:57, 2.15s/it]
3%|โ | 451/15000 [21:52<8:41:57, 2.15s/it]
3%|โ | 452/15000 [21:55<9:47:22, 2.42s/it]
3%|โ | 452/15000 [21:55<9:47:22, 2.42s/it]
3%|โ | 453/15000 [21:57<10:02:20, 2.48s/it]
3%|โ | 453/15000 [21:57<10:02:20, 2.48s/it]
3%|โ | 454/15000 [22:00<9:52:55, 2.45s/it]
3%|โ | 454/15000 [22:00<9:52:55, 2.45s/it]
3%|โ | 455/15000 [22:02<9:33:19, 2.37s/it]
3%|โ | 455/15000 [22:02<9:33:19, 2.37s/it]
3%|โ | 456/15000 [22:04<9:03:56, 2.24s/it]
3%|โ | 456/15000 [22:04<9:03:56, 2.24s/it]
3%|โ | 457/15000 [22:06<8:42:10, 2.15s/it]
3%|โ | 457/15000 [22:06<8:42:10, 2.15s/it]
3%|โ | 458/15000 [22:08<8:16:27, 2.05s/it]
3%|โ | 458/15000 [22:08<8:16:27, 2.05s/it]
3%|โ | 459/15000 [22:09<7:54:01, 1.96s/it]
3%|โ | 459/15000 [22:09<7:54:01, 1.96s/it]
3%|โ | 460/15000 [22:11<7:28:49, 1.85s/it]
3%|โ | 460/15000 [22:11<7:28:49, 1.85s/it]
3%|โ | 461/15000 [22:12<7:10:19, 1.78s/it]
3%|โ | 461/15000 [22:12<7:10:19, 1.78s/it]
3%|โ | 462/15000 [22:14<6:53:44, 1.71s/it]
3%|โ | 462/15000 [22:14<6:53:44, 1.71s/it]
3%|โ | 463/15000 [22:16<6:40:30, 1.65s/it]
3%|โ | 463/15000 [22:16<6:40:30, 1.65s/it]
3%|โ | 464/15000 [22:17<6:23:27, 1.58s/it]
3%|โ | 464/15000 [22:17<6:23:27, 1.58s/it]
3%|โ | 465/15000 [22:18<6:11:02, 1.53s/it]
3%|โ | 465/15000 [22:18<6:11:02, 1.53s/it]
3%|โ | 466/15000 [22:20<6:03:21, 1.50s/it]
3%|โ | 466/15000 [22:20<6:03:21, 1.50s/it]
3%|โ | 467/15000 [22:21<5:53:35, 1.46s/it]
3%|โ | 467/15000 [22:21<5:53:35, 1.46s/it]
3%|โ | 468/15000 [22:23<5:45:41, 1.43s/it]
3%|โ | 468/15000 [22:23<5:45:41, 1.43s/it]
3%|โ | 469/15000 [22:24<5:28:56, 1.36s/it]
3%|โ | 469/15000 [22:24<5:28:56, 1.36s/it]
3%|โ | 470/15000 [22:25<5:19:04, 1.32s/it]
3%|โ | 470/15000 [22:25<5:19:04, 1.32s/it]
3%|โ | 471/15000 [22:26<5:11:02, 1.28s/it]
3%|โ | 471/15000 [22:26<5:11:02, 1.28s/it]
3%|โ | 472/15000 [22:27<5:04:52, 1.26s/it]
3%|โ | 472/15000 [22:27<5:04:52, 1.26s/it]
3%|โ | 473/15000 [22:29<5:00:42, 1.24s/it]
3%|โ | 473/15000 [22:29<5:00:42, 1.24s/it]
3%|โ | 474/15000 [22:30<4:55:05, 1.22s/it]
3%|โ | 474/15000 [22:30<4:55:05, 1.22s/it]
3%|โ | 475/15000 [22:31<4:48:42, 1.19s/it]
3%|โ | 475/15000 [22:31<4:48:42, 1.19s/it]
3%|โ | 476/15000 [22:32<4:35:29, 1.14s/it]
3%|โ | 476/15000 [22:32<4:35:29, 1.14s/it]
3%|โ | 477/15000 [22:33<4:25:33, 1.10s/it]
3%|โ | 477/15000 [22:33<4:25:33, 1.10s/it]
3%|โ | 478/15000 [22:34<4:19:24, 1.07s/it]
3%|โ | 478/15000 [22:34<4:19:24, 1.07s/it]
3%|โ | 479/15000 [22:35<4:14:35, 1.05s/it]
3%|โ | 479/15000 [22:35<4:14:35, 1.05s/it]
3%|โ | 480/15000 [22:36<4:12:02, 1.04s/it]
3%|โ | 480/15000 [22:36<4:12:02, 1.04s/it]
3%|โ | 481/15000 [22:37<4:09:38, 1.03s/it]
3%|โ | 481/15000 [22:37<4:09:38, 1.03s/it]
3%|โ | 482/15000 [22:38<4:08:17, 1.03s/it]
3%|โ | 482/15000 [22:38<4:08:17, 1.03s/it]
3%|โ | 483/15000 [22:39<4:04:10, 1.01s/it]
3%|โ | 483/15000 [22:39<4:04:10, 1.01s/it]
3%|โ | 484/15000 [22:40<4:00:27, 1.01it/s]
3%|โ | 484/15000 [22:40<4:00:27, 1.01it/s]
3%|โ | 485/15000 [22:41<3:46:49, 1.07it/s]
3%|โ | 485/15000 [22:41<3:46:49, 1.07it/s]
3%|โ | 486/15000 [22:41<3:37:24, 1.11it/s]
3%|โ | 486/15000 [22:41<3:37:24, 1.11it/s]
3%|โ | 487/15000 [22:42<3:31:03, 1.15it/s]
3%|โ | 487/15000 [22:42<3:31:03, 1.15it/s]
3%|โ | 488/15000 [22:43<3:27:24, 1.17it/s]
3%|โ | 488/15000 [22:43<3:27:24, 1.17it/s]
3%|โ | 489/15000 [22:44<3:24:24, 1.18it/s]
3%|โ | 489/15000 [22:44<3:24:24, 1.18it/s]
3%|โ | 490/15000 [22:45<3:17:27, 1.22it/s]
3%|โ | 490/15000 [22:45<3:17:27, 1.22it/s]
3%|โ | 491/15000 [22:45<3:12:14, 1.26it/s]
3%|โ | 491/15000 [22:45<3:12:14, 1.26it/s]
3%|โ | 492/15000 [22:46<3:00:08, 1.34it/s]
3%|โ | 492/15000 [22:46<3:00:08, 1.34it/s]
3%|โ | 493/15000 [22:47<2:51:21, 1.41it/s]
3%|โ | 493/15000 [22:47<2:51:21, 1.41it/s]
3%|โ | 494/15000 [22:47<2:45:12, 1.46it/s]
3%|โ | 494/15000 [22:47<2:45:12, 1.46it/s]
3%|โ | 495/15000 [22:48<2:41:03, 1.50it/s]
3%|โ | 495/15000 [22:48<2:41:03, 1.50it/s]
3%|โ | 496/15000 [22:48<2:35:47, 1.55it/s]
3%|โ | 496/15000 [22:48<2:35:47, 1.55it/s]
3%|โ | 497/15000 [22:49<2:29:33, 1.62it/s]
3%|โ | 497/15000 [22:49<2:29:33, 1.62it/s]
3%|โ | 498/15000 [22:50<2:22:15, 1.70it/s]
3%|โ | 498/15000 [22:50<2:22:15, 1.70it/s]
3%|โ | 499/15000 [22:50<2:09:45, 1.86it/s]
3%|โ | 499/15000 [22:50<2:09:45, 1.86it/s]
3%|โ | 500/15000 [22:52<3:22:28, 1.19it/s]
3%|โ | 500/15000 [22:52<3:22:28, 1.19it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction:
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction:
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction:
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
{'eval_loss': nan, 'eval_cer': 1.0, 'eval_wer': 1.0, 'eval_runtime': 171.1157, 'eval_samples_per_second': 18.327, 'eval_steps_per_second': 1.145, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004812, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.00048239999999999996, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004836, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.00048479999999999997, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000486, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.00048719999999999997, 'epoch': 0.32}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004883999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004896, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004907999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004919999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004932, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004944, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004955999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004967999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000498, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0004991999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005003999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005015999999999999, 'epoch': 0.33}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005028, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005039999999999999, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005051999999999999, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005064, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005076, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005087999999999999, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005099999999999999, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005112, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005124, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005135999999999999, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005147999999999999, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000516, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005172, 'epoch': 0.34}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005183999999999999, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005195999999999999, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005208, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000522, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005231999999999999, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005244, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005256, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005267999999999999, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005279999999999999, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005292, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005304, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005315999999999999, 'epoch': 0.35}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005327999999999999, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000534, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005352, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005363999999999999, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005376, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005388, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.00054, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005411999999999999, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005424, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005436, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005448, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005459999999999999, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005472, 'epoch': 0.36}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005484, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005496, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005507999999999999, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000552, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005532, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005544, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005556, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005568, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000558, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005591999999999999, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005604, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005616, 'epoch': 0.37}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005627999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005639999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005652, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005663999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005675999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005688, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.00057, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005711999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005723999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005736, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005747999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005759999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005771999999999999, 'epoch': 0.38}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005784, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005795999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005807999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005819999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005832, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005843999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005855999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005868, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000588, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005891999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005903999999999999, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005916, 'epoch': 0.39}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005928, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005939999999999999, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005951999999999999, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005964, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005976, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005987999999999999, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0006, 'epoch': 0.4}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:04, 3.02it/s][A
2%|โ | 3/196 [00:01<01:42, 1.89it/s][A
2%|โ | 4/196 [00:02<02:07, 1.50it/s][A
3%|โ | 5/196 [00:03<02:22, 1.34it/s][A
3%|โ | 6/196 [00:04<02:40, 1.18it/s][A
4%|โ | 7/196 [00:05<02:47, 1.13it/s][A
4%|โ | 8/196 [00:06<02:50, 1.10it/s][A
5%|โ | 9/196 [00:08<03:41, 1.19s/it][A
5%|โ | 10/196 [00:09<04:23, 1.42s/it][A
6%|โ | 11/196 [00:12<05:01, 1.63s/it][A
6%|โ | 12/196 [00:14<05:18, 1.73s/it][A
7%|โ | 13/196 [00:15<04:37, 1.52s/it][A
7%|โ | 14/196 [00:15<03:52, 1.28s/it][A
8%|โ | 15/196 [00:16<03:15, 1.08s/it][A
8%|โ | 16/196 [00:17<03:04, 1.03s/it][A
9%|โ | 17/196 [00:18<02:58, 1.00it/s][A
9%|โ | 18/196 [00:19<03:16, 1.11s/it][A
10%|โ | 19/196 [00:21<04:09, 1.41s/it][A
10%|โ | 20/196 [00:23<04:27, 1.52s/it][A
11%|โ | 21/196 [00:25<04:34, 1.57s/it][A
11%|โ | 22/196 [00:26<04:23, 1.51s/it][A
12%|โโ | 23/196 [00:27<04:01, 1.39s/it][A
12%|โโ | 24/196 [00:28<03:12, 1.12s/it][A
13%|โโ | 25/196 [00:28<02:44, 1.04it/s][A
13%|โโ | 26/196 [00:29<02:24, 1.18it/s][A
14%|โโ | 27/196 [00:30<02:13, 1.27it/s][A
14%|โโ | 28/196 [00:30<02:07, 1.32it/s][A
15%|โโ | 29/196 [00:31<02:07, 1.31it/s][A
15%|โโ | 30/196 [00:32<02:07, 1.30it/s][A
16%|โโ | 31/196 [00:32<01:57, 1.40it/s][A
16%|โโ | 32/196 [00:33<01:52, 1.46it/s][A
17%|โโ | 33/196 [00:34<02:09, 1.25it/s][A
17%|โโ | 34/196 [00:36<02:46, 1.03s/it][A
18%|โโ | 35/196 [00:37<02:53, 1.08s/it][A
18%|โโ | 36/196 [00:38<03:15, 1.22s/it][A
19%|โโ | 37/196 [00:40<03:12, 1.21s/it][A
19%|โโ | 38/196 [00:40<02:57, 1.12s/it][A
20%|โโ | 39/196 [00:41<02:43, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:31, 1.03it/s][A
21%|โโ | 41/196 [00:43<02:18, 1.12it/s][A
21%|โโโ | 42/196 [00:44<02:09, 1.18it/s][A
22%|โโโ | 43/196 [00:44<02:08, 1.19it/s][A
22%|โโโ | 44/196 [00:45<02:04, 1.22it/s][A
23%|โโโ | 45/196 [00:46<01:55, 1.30it/s][A
23%|โโโ | 46/196 [00:46<01:48, 1.39it/s][A
24%|โโโ | 47/196 [00:47<01:47, 1.38it/s][A
24%|โโโ | 48/196 [00:48<01:43, 1.44it/s][A
25%|โโโ | 49/196 [00:48<01:40, 1.46it/s][A
26%|โโโ | 50/196 [00:49<01:39, 1.47it/s][A
26%|โโโ | 51/196 [00:50<01:37, 1.49it/s][A
27%|โโโ | 52/196 [00:50<01:35, 1.50it/s][A
27%|โโโ | 53/196 [00:51<01:40, 1.42it/s][A
28%|โโโ | 54/196 [00:52<01:38, 1.44it/s][A
28%|โโโ | 55/196 [00:53<01:49, 1.29it/s][A
29%|โโโ | 56/196 [00:54<01:59, 1.17it/s][A
29%|โโโ | 57/196 [00:55<02:06, 1.10it/s][A
30%|โโโ | 58/196 [00:56<02:09, 1.07it/s][A
30%|โโโ | 59/196 [00:57<02:09, 1.06it/s][A
31%|โโโ | 60/196 [00:58<01:57, 1.16it/s][A
31%|โโโ | 61/196 [00:58<01:46, 1.27it/s][A
32%|โโโโ | 62/196 [00:59<01:44, 1.28it/s][A
32%|โโโโ | 63/196 [01:00<01:43, 1.28it/s][A
33%|โโโโ | 64/196 [01:00<01:43, 1.28it/s][A
33%|โโโโ | 65/196 [01:01<01:40, 1.31it/s][A
34%|โโโโ | 66/196 [01:02<01:43, 1.25it/s][A
34%|โโโโ | 67/196 [01:03<01:47, 1.20it/s][A
35%|โโโโ | 68/196 [01:04<02:01, 1.05it/s][A
35%|โโโโ | 69/196 [01:05<02:02, 1.03it/s][A
36%|โโโโ | 70/196 [01:06<01:53, 1.11it/s][A
36%|โโโโ | 71/196 [01:07<01:45, 1.18it/s][A
37%|โโโโ | 72/196 [01:07<01:37, 1.27it/s][A
37%|โโโโ | 73/196 [01:08<01:29, 1.38it/s][A
38%|โโโโ | 74/196 [01:09<01:23, 1.46it/s][A
38%|โโโโ | 75/196 [01:09<01:20, 1.49it/s][A
39%|โโโโ | 76/196 [01:10<01:18, 1.52it/s][A
39%|โโโโ | 77/196 [01:11<01:21, 1.46it/s][A
40%|โโโโ | 78/196 [01:11<01:26, 1.36it/s][A
40%|โโโโ | 79/196 [01:12<01:23, 1.41it/s][A
41%|โโโโ | 80/196 [01:13<01:28, 1.31it/s][A
41%|โโโโโ | 81/196 [01:14<01:30, 1.27it/s][A
42%|โโโโโ | 82/196 [01:14<01:27, 1.30it/s][A
42%|โโโโโ | 83/196 [01:15<01:28, 1.27it/s][A
43%|โโโโโ | 84/196 [01:16<01:30, 1.24it/s][A
43%|โโโโโ | 85/196 [01:17<01:29, 1.24it/s][A
44%|โโโโโ | 86/196 [01:18<01:31, 1.20it/s][A
44%|โโโโโ | 87/196 [01:19<01:28, 1.22it/s][A
45%|โโโโโ | 88/196 [01:20<01:31, 1.18it/s][A
45%|โโโโโ | 89/196 [01:21<01:33, 1.15it/s][A
46%|โโโโโ | 90/196 [01:21<01:30, 1.17it/s][A
46%|โโโโโ | 91/196 [01:22<01:26, 1.21it/s][A
47%|โโโโโ | 92/196 [01:23<01:23, 1.25it/s][A
47%|โโโโโ | 93/196 [01:24<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:25<01:27, 1.16it/s][A
48%|โโโโโ | 95/196 [01:25<01:24, 1.20it/s][A
49%|โโโโโ | 96/196 [01:26<01:27, 1.14it/s][A
49%|โโโโโ | 97/196 [01:27<01:25, 1.16it/s][A
50%|โโโโโ | 98/196 [01:28<01:26, 1.13it/s][A
51%|โโโโโ | 99/196 [01:29<01:18, 1.23it/s][A
51%|โโโโโ | 100/196 [01:29<01:09, 1.38it/s][A
52%|โโโโโโ | 101/196 [01:30<01:04, 1.46it/s][A
52%|โโโโโโ | 102/196 [01:31<01:08, 1.38it/s][A
53%|โโโโโโ | 103/196 [01:32<01:12, 1.28it/s][A
53%|โโโโโโ | 104/196 [01:33<01:22, 1.11it/s][A
54%|โโโโโโ | 105/196 [01:34<01:24, 1.08it/s][A
54%|โโโโโโ | 106/196 [01:35<01:23, 1.08it/s][A
55%|โโโโโโ | 107/196 [01:36<01:18, 1.13it/s][A
55%|โโโโโโ | 108/196 [01:36<01:09, 1.27it/s][A
56%|โโโโโโ | 109/196 [01:37<01:04, 1.35it/s][A
56%|โโโโโโ | 110/196 [01:37<01:01, 1.40it/s][A
57%|โโโโโโ | 111/196 [01:38<01:00, 1.40it/s][A
57%|โโโโโโ | 112/196 [01:39<01:02, 1.35it/s][A
58%|โโโโโโ | 113/196 [01:40<01:02, 1.32it/s][A
58%|โโโโโโ | 114/196 [01:40<00:57, 1.42it/s][A
59%|โโโโโโ | 115/196 [01:41<00:55, 1.46it/s][A
59%|โโโโโโ | 116/196 [01:42<00:53, 1.49it/s][A
60%|โโโโโโ | 117/196 [01:42<00:50, 1.56it/s][A
60%|โโโโโโ | 118/196 [01:43<00:45, 1.71it/s][A
61%|โโโโโโ | 119/196 [01:43<00:47, 1.63it/s][A
61%|โโโโโโ | 120/196 [01:44<00:49, 1.54it/s][A
62%|โโโโโโโ | 121/196 [01:45<00:50, 1.49it/s][A
62%|โโโโโโโ | 122/196 [01:45<00:50, 1.45it/s][A
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.47it/s][A
63%|โโโโโโโ | 124/196 [01:47<00:48, 1.47it/s][A
64%|โโโโโโโ | 125/196 [01:47<00:48, 1.47it/s][A
64%|โโโโโโโ | 126/196 [01:48<00:54, 1.29it/s][A
65%|โโโโโโโ | 127/196 [01:49<00:53, 1.29it/s][A
65%|โโโโโโโ | 128/196 [01:50<00:49, 1.36it/s][A
66%|โโโโโโโ | 129/196 [01:51<00:48, 1.38it/s][A
66%|โโโโโโโ | 130/196 [01:51<00:47, 1.38it/s][A
67%|โโโโโโโ | 131/196 [01:52<00:46, 1.39it/s][A
67%|โโโโโโโ | 132/196 [01:53<00:43, 1.47it/s][A
68%|โโโโโโโ | 133/196 [01:53<00:42, 1.48it/s][A
68%|โโโโโโโ | 134/196 [01:54<00:44, 1.39it/s][A
69%|โโโโโโโ | 135/196 [01:55<00:42, 1.42it/s][A
69%|โโโโโโโ | 136/196 [01:55<00:41, 1.46it/s][A
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.45it/s][A
70%|โโโโโโโ | 138/196 [01:57<00:40, 1.44it/s][A
71%|โโโโโโโ | 139/196 [01:58<00:39, 1.43it/s][A
71%|โโโโโโโโ | 140/196 [01:58<00:38, 1.46it/s][A
72%|โโโโโโโโ | 141/196 [01:59<00:37, 1.46it/s][A
72%|โโโโโโโโ | 142/196 [02:00<00:37, 1.42it/s][A
73%|โโโโโโโโ | 143/196 [02:00<00:39, 1.33it/s][A
73%|โโโโโโโโ | 144/196 [02:01<00:36, 1.41it/s][A
74%|โโโโโโโโ | 145/196 [02:02<00:33, 1.52it/s][A
74%|โโโโโโโโ | 146/196 [02:02<00:31, 1.61it/s][A
75%|โโโโโโโโ | 147/196 [02:03<00:30, 1.60it/s][A
76%|โโโโโโโโ | 148/196 [02:03<00:29, 1.60it/s][A
76%|โโโโโโโโ | 149/196 [02:04<00:28, 1.67it/s][A
77%|โโโโโโโโ | 150/196 [02:05<00:29, 1.58it/s][A
77%|โโโโโโโโ | 151/196 [02:05<00:30, 1.49it/s][A
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.51it/s][A
78%|โโโโโโโโ | 153/196 [02:07<00:28, 1.51it/s][A
79%|โโโโโโโโ | 154/196 [02:07<00:28, 1.50it/s][A
79%|โโโโโโโโ | 155/196 [02:08<00:29, 1.39it/s][A
80%|โโโโโโโโ | 156/196 [02:09<00:33, 1.21it/s][A
80%|โโโโโโโโ | 157/196 [02:10<00:34, 1.12it/s][A
81%|โโโโโโโโ | 158/196 [02:11<00:30, 1.24it/s][A
81%|โโโโโโโโ | 159/196 [02:12<00:27, 1.35it/s][A
82%|โโโโโโโโโ | 160/196 [02:12<00:25, 1.40it/s][A
82%|โโโโโโโโโ | 161/196 [02:13<00:24, 1.40it/s][A
83%|โโโโโโโโโ | 162/196 [02:14<00:23, 1.42it/s][A
83%|โโโโโโโโโ | 163/196 [02:14<00:22, 1.45it/s][A
84%|โโโโโโโโโ | 164/196 [02:15<00:21, 1.47it/s][A
84%|โโโโโโโโโ | 165/196 [02:16<00:21, 1.42it/s][A
85%|โโโโโโโโโ | 166/196 [02:16<00:20, 1.45it/s][A
85%|โโโโโโโโโ | 167/196 [02:17<00:19, 1.50it/s][A
86%|โโโโโโโโโ | 168/196 [02:18<00:17, 1.56it/s][A
86%|โโโโโโโโโ | 169/196 [02:18<00:17, 1.52it/s][A
87%|โโโโโโโโโ | 170/196 [02:19<00:18, 1.39it/s][A
87%|โโโโโโโโโ | 171/196 [02:20<00:17, 1.43it/s][A
88%|โโโโโโโโโ | 172/196 [02:21<00:17, 1.39it/s][A
88%|โโโโโโโโโ | 173/196 [02:21<00:16, 1.40it/s][A
89%|โโโโโโโโโ | 174/196 [02:22<00:16, 1.33it/s][A
89%|โโโโโโโโโ | 175/196 [02:23<00:19, 1.10it/s][A
90%|โโโโโโโโโ | 176/196 [02:26<00:27, 1.38s/it][A
90%|โโโโโโโโโ | 177/196 [02:28<00:30, 1.61s/it][A
91%|โโโโโโโโโ | 178/196 [02:30<00:31, 1.76s/it][A
91%|โโโโโโโโโโ| 179/196 [02:32<00:31, 1.87s/it][A
92%|โโโโโโโโโโ| 180/196 [02:33<00:24, 1.52s/it][A
92%|โโโโโโโโโโ| 181/196 [02:34<00:19, 1.29s/it][A
93%|โโโโโโโโโโ| 182/196 [02:34<00:15, 1.11s/it][A
93%|โโโโโโโโโโ| 183/196 [02:35<00:14, 1.12s/it][A
94%|โโโโโโโโโโ| 184/196 [02:36<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:37<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:38<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:39<00:08, 1.11it/s][A
96%|โโโโโโโโโโ| 188/196 [02:39<00:06, 1.21it/s][A
96%|โโโโโโโโโโ| 189/196 [02:40<00:05, 1.25it/s][A
97%|โโโโโโโโโโ| 190/196 [02:41<00:04, 1.32it/s][A
97%|โโโโโโโโโโ| 191/196 [02:41<00:03, 1.41it/s][A
98%|โโโโโโโโโโ| 192/196 [02:42<00:02, 1.41it/s][A
98%|โโโโโโโโโโ| 193/196 [02:43<00:02, 1.40it/s][A
99%|โโโโโโโโโโ| 194/196 [02:44<00:01, 1.42it/s][A
99%|โโโโโโโโโโ| 195/196 [02:44<00:00, 1.46it/s][A
100%|โโโโโโโโโโ| 196/196 [02:45<00:00, 1.67it/s][A
[A
3%|โ | 500/15000 [25:43<3:22:28, 1.19it/s]
100%|โโโโโโโโโโ| 196/196 [02:49<00:00, 1.67it/s][A
[A
3%|โ | 501/15000 [25:48<215:40:53, 53.55s/it]
3%|โ | 501/15000 [25:48<215:40:53, 53.55s/it]
3%|โ | 502/15000 [25:51<154:13:39, 38.30s/it]
3%|โ | 502/15000 [25:51<154:13:39, 38.30s/it]
3%|โ | 503/15000 [25:53<111:04:47, 27.58s/it]
3%|โ | 503/15000 [25:53<111:04:47, 27.58s/it]
3%|โ | 504/15000 [25:56<80:37:25, 20.02s/it]
3%|โ | 504/15000 [25:56<80:37:25, 20.02s/it]
3%|โ | 505/15000 [25:58<59:03:20, 14.67s/it]
3%|โ | 505/15000 [25:58<59:03:20, 14.67s/it]
3%|โ | 506/15000 [26:00<43:55:11, 10.91s/it]
3%|โ | 506/15000 [26:00<43:55:11, 10.91s/it]
3%|โ | 507/15000 [26:02<33:04:55, 8.22s/it]
3%|โ | 507/15000 [26:02<33:04:55, 8.22s/it]
3%|โ | 508/15000 [26:04<25:20:40, 6.30s/it]
3%|โ | 508/15000 [26:04<25:20:40, 6.30s/it]
3%|โ | 509/15000 [26:06<19:54:07, 4.94s/it]
3%|โ | 509/15000 [26:06<19:54:07, 4.94s/it]
3%|โ | 510/15000 [26:07<16:01:51, 3.98s/it]
3%|โ | 510/15000 [26:07<16:01:51, 3.98s/it]
3%|โ | 511/15000 [26:09<13:08:43, 3.27s/it]
3%|โ | 511/15000 [26:09<13:08:43, 3.27s/it]
3%|โ | 512/15000 [26:11<11:07:42, 2.77s/it]
3%|โ | 512/15000 [26:11<11:07:42, 2.77s/it]
3%|โ | 513/15000 [26:12<9:43:16, 2.42s/it]
3%|โ | 513/15000 [26:12<9:43:16, 2.42s/it]
3%|โ | 514/15000 [26:14<8:41:26, 2.16s/it]
3%|โ | 514/15000 [26:14<8:41:26, 2.16s/it]
3%|โ | 515/15000 [26:15<7:56:33, 1.97s/it]
3%|โ | 515/15000 [26:15<7:56:33, 1.97s/it]
3%|โ | 516/15000 [26:17<7:16:11, 1.81s/it]
3%|โ | 516/15000 [26:17<7:16:11, 1.81s/it]
3%|โ | 517/15000 [26:18<6:47:36, 1.69s/it]
3%|โ | 517/15000 [26:18<6:47:36, 1.69s/it]
3%|โ | 518/15000 [26:19<6:27:15, 1.60s/it]
3%|โ | 518/15000 [26:19<6:27:15, 1.60s/it]
3%|โ | 519/15000 [26:21<6:08:38, 1.53s/it]
3%|โ | 519/15000 [26:21<6:08:38, 1.53s/it]
3%|โ | 520/15000 [26:22<5:45:03, 1.43s/it]
3%|โ | 520/15000 [26:22<5:45:03, 1.43s/it]
3%|โ | 521/15000 [26:23<5:28:19, 1.36s/it]
3%|โ | 521/15000 [26:23<5:28:19, 1.36s/it]
3%|โ | 522/15000 [26:24<5:17:03, 1.31s/it]
3%|โ | 522/15000 [26:24<5:17:03, 1.31s/it]
3%|โ | 523/15000 [26:26<5:09:08, 1.28s/it]
3%|โ | 523/15000 [26:26<5:09:08, 1.28s/it]
3%|โ | 524/15000 [26:27<5:03:33, 1.26s/it]
3%|โ | 524/15000 [26:27<5:03:33, 1.26s/it]
4%|โ | 525/15000 [26:28<4:58:12, 1.24s/it]
4%|โ | 525/15000 [26:28<4:58:12, 1.24s/it]
4%|โ | 526/15000 [26:29<4:51:05, 1.21s/it]
4%|โ | 526/15000 [26:29<4:51:05, 1.21s/it]
4%|โ | 527/15000 [26:30<4:37:08, 1.15s/it]
4%|โ | 527/15000 [26:30<4:37:08, 1.15s/it]
4%|โ | 528/15000 [26:31<4:27:17, 1.11s/it]
4%|โ | 528/15000 [26:31<4:27:17, 1.11s/it]
4%|โ | 529/15000 [26:32<4:20:58, 1.08s/it]
4%|โ | 529/15000 [26:32<4:20:58, 1.08s/it]
4%|โ | 530/15000 [26:33<4:15:22, 1.06s/it]
4%|โ | 530/15000 [26:33<4:15:22, 1.06s/it]
4%|โ | 531/15000 [26:34<4:11:29, 1.04s/it]
4%|โ | 531/15000 [26:34<4:11:29, 1.04s/it]
4%|โ | 532/15000 [26:35<4:07:54, 1.03s/it]
4%|โ | 532/15000 [26:35<4:07:54, 1.03s/it]
4%|โ | 533/15000 [26:36<4:01:26, 1.00s/it]
4%|โ | 533/15000 [26:36<4:01:26, 1.00s/it]
4%|โ | 534/15000 [26:37<3:48:08, 1.06it/s]
4%|โ | 534/15000 [26:37<3:48:08, 1.06it/s]
4%|โ | 535/15000 [26:38<3:38:15, 1.10it/s]
4%|โ | 535/15000 [26:38<3:38:15, 1.10it/s]
4%|โ | 536/15000 [26:39<3:31:25, 1.14it/s]
4%|โ | 536/15000 [26:39<3:31:25, 1.14it/s]
4%|โ | 537/15000 [26:39<3:26:49, 1.17it/s]
4%|โ | 537/15000 [26:39<3:26:49, 1.17it/s]
4%|โ | 538/15000 [26:40<3:23:53, 1.18it/s]
4%|โ | 538/15000 [26:40<3:23:53, 1.18it/s]
4%|โ | 539/15000 [26:41<3:21:33, 1.20it/s]
4%|โ | 539/15000 [26:41<3:21:33, 1.20it/s]
4%|โ | 540/15000 [26:42<3:18:30, 1.21it/s]
4%|โ | 540/15000 [26:42<3:18:30, 1.21it/s]
4%|โ | 541/15000 [26:43<3:12:43, 1.25it/s]
4%|โ | 541/15000 [26:43<3:12:43, 1.25it/s]
4%|โ | 542/15000 [26:43<3:00:21, 1.34it/s]
4%|โ | 542/15000 [26:43<3:00:21, 1.34it/s]
4%|โ | 543/15000 [26:44<2:51:51, 1.40it/s]
4%|โ | 543/15000 [26:44<2:51:51, 1.40it/s]
4%|โ | 544/15000 [26:44<2:45:30, 1.46it/s]
4%|โ | 544/15000 [26:44<2:45:30, 1.46it/s]
4%|โ | 545/15000 [26:45<2:41:02, 1.50it/s]
4%|โ | 545/15000 [26:45<2:41:02, 1.50it/s]
4%|โ | 546/15000 [26:46<2:37:32, 1.53it/s]
4%|โ | 546/15000 [26:46<2:37:32, 1.53it/s]
4%|โ | 547/15000 [26:46<2:30:52, 1.60it/s]
4%|โ | 547/15000 [26:46<2:30:52, 1.60it/s]
4%|โ | 548/15000 [26:47<2:16:47, 1.76it/s]
4%|โ | 548/15000 [26:47<2:16:47, 1.76it/s]
4%|โ | 549/15000 [26:47<2:05:40, 1.92it/s]
4%|โ | 549/15000 [26:47<2:05:40, 1.92it/s]
4%|โ | 550/15000 [26:49<3:32:18, 1.13it/s]
4%|โ | 550/15000 [26:49<3:32:18, 1.13it/s]
4%|โ | 551/15000 [26:56<10:39:11, 2.65s/it]
4%|โ | 551/15000 [26:56<10:39:11, 2.65s/it]
4%|โ | 552/15000 [26:58<10:51:51, 2.71s/it]
4%|โ | 552/15000 [26:58<10:51:51, 2.71s/it]
4%|โ | 553/15000 [27:01<10:31:56, 2.62s/it]
4%|โ | 553/15000 [27:01<10:31:56, 2.62s/it]
4%|โ | 554/15000 [27:03<10:16:46, 2.56s/it]
4%|โ | 554/15000 [27:03<10:16:46, 2.56s/it]
4%|โ | 555/15000 [27:05<9:47:15, 2.44s/it]
4%|โ | 555/15000 [27:05<9:47:15, 2.44s/it]
4%|โ | 556/15000 [27:07<9:15:40, 2.31s/it]
4%|โ | 556/15000 [27:07<9:15:40, 2.31s/it]
4%|โ | 557/15000 [27:09<8:49:14, 2.20s/it]
4%|โ | 557/15000 [27:09<8:49:14, 2.20s/it]
4%|โ | 558/15000 [27:11<8:21:23, 2.08s/it]
4%|โ | 558/15000 [27:11<8:21:23, 2.08s/it]
4%|โ | 559/15000 [27:13<7:57:16, 1.98s/it]
4%|โ | 559/15000 [27:13<7:57:16, 1.98s/it]
4%|โ | 560/15000 [27:15<7:40:10, 1.91s/it]
4%|โ | 560/15000 [27:15<7:40:10, 1.91s/it]
4%|โ | 561/15000 [27:16<7:18:15, 1.82s/it]
4%|โ | 561/15000 [27:16<7:18:15, 1.82s/it]
4%|โ | 562/15000 [27:18<7:02:59, 1.76s/it]
4%|โ | 562/15000 [27:18<7:02:59, 1.76s/it]
4%|โ | 563/15000 [27:19<6:47:19, 1.69s/it]
4%|โ | 563/15000 [27:19<6:47:19, 1.69s/it]
4%|โ | 564/15000 [27:21<6:28:39, 1.62s/it]
4%|โ | 564/15000 [27:21<6:28:39, 1.62s/it]
4%|โ | 565/15000 [27:22<6:16:24, 1.56s/it]
4%|โ | 565/15000 [27:22<6:16:24, 1.56s/it]
4%|โ | 566/15000 [27:24<6:06:05, 1.52s/it]
4%|โ | 566/15000 [27:24<6:06:05, 1.52s/it]
4%|โ | 567/15000 [27:25<5:58:42, 1.49s/it]
4%|โ | 567/15000 [27:25<5:58:42, 1.49s/it]
4%|โ | 568/15000 [27:27<5:48:03, 1.45s/it]
4%|โ | 568/15000 [27:27<5:48:03, 1.45s/it]
4%|โ | 569/15000 [27:28<5:30:45, 1.38s/it]
4%|โ | 569/15000 [27:28<5:30:45, 1.38s/it]
4%|โ | 570/15000 [27:29<5:18:13, 1.32s/it]
4%|โ | 570/15000 [27:29<5:18:13, 1.32s/it]
4%|โ | 571/15000 [27:30<5:09:36, 1.29s/it]
4%|โ | 571/15000 [27:30<5:09:36, 1.29s/it]
4%|โ | 572/15000 [27:31<5:03:26, 1.26s/it]
4%|โ | 572/15000 [27:31<5:03:26, 1.26s/it]
4%|โ | 573/15000 [27:33<4:59:20, 1.24s/it]
4%|โ | 573/15000 [27:33<4:59:20, 1.24s/it]
4%|โ | 574/15000 [27:34<4:56:41, 1.23s/it]
4%|โ | 574/15000 [27:34<4:56:41, 1.23s/it]
4%|โ | 575/15000 [27:35<4:50:45, 1.21s/it]
4%|โ | 575/15000 [27:35<4:50:45, 1.21s/it]
4%|โ | 576/15000 [27:36<4:46:41, 1.19s/it]
4%|โ | 576/15000 [27:36<4:46:41, 1.19s/it]
4%|โ | 577/15000 [27:37<4:33:30, 1.14s/it]
4%|โ | 577/15000 [27:37<4:33:30, 1.14s/it]
4%|โ | 578/15000 [27:38<4:24:15, 1.10s/it]
4%|โ | 578/15000 [27:38<4:24:15, 1.10s/it]
4%|โ | 579/15000 [27:39<4:18:37, 1.08s/it]
4%|โ | 579/15000 [27:39<4:18:37, 1.08s/it]
4%|โ | 580/15000 [27:40<4:13:35, 1.06s/it]
4%|โ | 580/15000 [27:40<4:13:35, 1.06s/it]
4%|โ | 581/15000 [27:41<4:09:57, 1.04s/it]
4%|โ | 581/15000 [27:41<4:09:57, 1.04s/it]
4%|โ | 582/15000 [27:42<4:07:43, 1.03s/it]
4%|โ | 582/15000 [27:42<4:07:43, 1.03s/it]
4%|โ | 583/15000 [27:43<4:02:29, 1.01s/it]
4%|โ | 583/15000 [27:43<4:02:29, 1.01s/it]
4%|โ | 584/15000 [27:44<3:57:36, 1.01it/s]
4%|โ | 584/15000 [27:44<3:57:36, 1.01it/s]
4%|โ | 585/15000 [27:45<3:44:55, 1.07it/s]
4%|โ | 585/15000 [27:45<3:44:55, 1.07it/s]
4%|โ | 586/15000 [27:46<3:35:46, 1.11it/s]
4%|โ | 586/15000 [27:46<3:35:46, 1.11it/s]
4%|โ | 587/15000 [27:46<3:29:37, 1.15it/s]
4%|โ | 587/15000 [27:46<3:29:37, 1.15it/s]
4%|โ | 588/15000 [27:47<3:27:13, 1.16it/s]
4%|โ | 588/15000 [27:47<3:27:13, 1.16it/s]
4%|โ | 589/15000 [27:48<3:23:44, 1.18it/s]
4%|โ | 589/15000 [27:48<3:23:44, 1.18it/s]
4%|โ | 590/15000 [27:49<3:18:23, 1.21it/s]
4%|โ | 590/15000 [27:49<3:18:23, 1.21it/s]
4%|โ | 591/15000 [27:50<3:12:46, 1.25it/s]
4%|โ | 591/15000 [27:50<3:12:46, 1.25it/s]
4%|โ | 592/15000 [27:50<3:00:25, 1.33it/s]
4%|โ | 592/15000 [27:50<3:00:25, 1.33it/s]
4%|โ | 593/15000 [27:51<2:52:16, 1.39it/s]
4%|โ | 593/15000 [27:51<2:52:16, 1.39it/s]
4%|โ | 594/15000 [27:52<2:50:07, 1.41it/s]
4%|โ | 594/15000 [27:52<2:50:07, 1.41it/s]
4%|โ | 595/15000 [27:52<2:44:32, 1.46it/s]
4%|โ | 595/15000 [27:52<2:44:32, 1.46it/s]
4%|โ | 596/15000 [27:53<2:37:02, 1.53it/s]
4%|โ | 596/15000 [27:53<2:37:02, 1.53it/s]
4%|โ | 597/15000 [27:53<2:30:28, 1.60it/s]
4%|โ | 597/15000 [27:53<2:30:28, 1.60it/s]
4%|โ | 598/15000 [27:54<2:16:13, 1.76it/s]
4%|โ | 598/15000 [27:54<2:16:13, 1.76it/s]
4%|โ | 599/15000 [27:54<2:04:23, 1.93it/s]
4%|โ | 599/15000 [27:54<2:04:23, 1.93it/s]
4%|โ | 600/15000 [27:56<3:20:27, 1.20it/s]
4%|โ | 600/15000 [27:56<3:20:27, 1.20it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction:
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction:
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction:
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
{'eval_loss': nan, 'eval_cer': 1.0, 'eval_wer': 1.0, 'eval_runtime': 171.0375, 'eval_samples_per_second': 18.335, 'eval_steps_per_second': 1.146, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005999586206896551, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005999172413793103, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005998758620689655, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005998344827586206, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005997931034482758, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000599751724137931, 'epoch': 0.4}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005997103448275861, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005996689655172413, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005996275862068965, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005995862068965517, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005995448275862068, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000599503448275862, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005994620689655171, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005994206896551724, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005993793103448276, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005993379310344827, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005992965517241379, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000599255172413793, 'epoch': 0.41}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005992137931034483, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005991724137931033, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005991310344827586, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005990896551724137, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005990482758620689, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000599006896551724, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005989655172413793, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005989241379310345, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005988827586206896, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005988413793103448, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005987999999999999, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005987586206896552, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005987172413793102, 'epoch': 0.42}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005986758620689655, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005986344827586206, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005985931034482758, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000598551724137931, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005985103448275861, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005984689655172414, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005984275862068965, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005983862068965517, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005983448275862068, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000598303448275862, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005982620689655172, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005982206896551724, 'epoch': 0.43}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005981793103448275, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005981379310344827, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000598096551724138, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000598055172413793, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005980137931034483, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005979724137931034, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005979310344827586, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005978896551724137, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005978482758620689, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005978068965517241, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005977655172413793, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005977241379310344, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005976827586206896, 'epoch': 0.44}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005976413793103447, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005976, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005975586206896552, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005975172413793103, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005974758620689655, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005974344827586207, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005973931034482758, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000597351724137931, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005973103448275862, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005972689655172413, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005972275862068965, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005971862068965516, 'epoch': 0.45}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005971448275862069, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005971034482758619, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005970620689655172, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005970206896551724, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005969793103448275, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005969379310344827, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005968965517241379, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005968551724137931, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005968137931034482, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005967724137931034, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005967310344827585, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005966896551724138, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005966482758620689, 'epoch': 0.46}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005966068965517241, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005965655172413792, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005965241379310344, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005964827586206897, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005964413793103447, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005964, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005963586206896551, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005963172413793103, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005962758620689654, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005962344827586207, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005961931034482758, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000596151724137931, 'epoch': 0.47}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005961103448275861, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005960689655172413, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005960275862068966, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005959862068965516, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005959448275862069, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000595903448275862, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005958620689655172, 'epoch': 0.48}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:04, 3.02it/s][A
2%|โ | 3/196 [00:01<01:42, 1.89it/s][A
2%|โ | 4/196 [00:02<02:07, 1.51it/s][A
3%|โ | 5/196 [00:03<02:21, 1.35it/s][A
3%|โ | 6/196 [00:04<02:39, 1.19it/s][A
4%|โ | 7/196 [00:05<02:46, 1.13it/s][A
4%|โ | 8/196 [00:06<02:50, 1.10it/s][A
5%|โ | 9/196 [00:08<03:42, 1.19s/it][A
5%|โ | 10/196 [00:09<04:22, 1.41s/it][A
6%|โ | 11/196 [00:12<05:00, 1.62s/it][A
6%|โ | 12/196 [00:14<05:17, 1.73s/it][A
7%|โ | 13/196 [00:15<04:38, 1.52s/it][A
7%|โ | 14/196 [00:15<03:53, 1.28s/it][A
8%|โ | 15/196 [00:16<03:16, 1.08s/it][A
8%|โ | 16/196 [00:17<03:04, 1.03s/it][A
9%|โ | 17/196 [00:18<02:57, 1.01it/s][A
9%|โ | 18/196 [00:19<03:16, 1.10s/it][A
10%|โ | 19/196 [00:21<04:09, 1.41s/it][A
10%|โ | 20/196 [00:23<04:29, 1.53s/it][A
11%|โ | 21/196 [00:25<04:40, 1.60s/it][A
11%|โ | 22/196 [00:26<04:26, 1.53s/it][A
12%|โโ | 23/196 [00:27<04:03, 1.41s/it][A
12%|โโ | 24/196 [00:28<03:13, 1.13s/it][A
13%|โโ | 25/196 [00:28<02:45, 1.03it/s][A
13%|โโ | 26/196 [00:29<02:25, 1.17it/s][A
14%|โโ | 27/196 [00:30<02:14, 1.26it/s][A
14%|โโ | 28/196 [00:30<02:09, 1.30it/s][A
15%|โโ | 29/196 [00:31<02:08, 1.30it/s][A
15%|โโ | 30/196 [00:32<02:08, 1.29it/s][A
16%|โโ | 31/196 [00:32<01:57, 1.40it/s][A
16%|โโ | 32/196 [00:33<01:52, 1.46it/s][A
17%|โโ | 33/196 [00:34<02:09, 1.26it/s][A
17%|โโ | 34/196 [00:36<02:45, 1.02s/it][A
18%|โโ | 35/196 [00:37<02:51, 1.07s/it][A
18%|โโ | 36/196 [00:38<03:14, 1.22s/it][A
19%|โโ | 37/196 [00:40<03:11, 1.21s/it][A
19%|โโ | 38/196 [00:40<02:56, 1.12s/it][A
20%|โโ | 39/196 [00:41<02:43, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:30, 1.03it/s][A
21%|โโ | 41/196 [00:43<02:18, 1.12it/s][A
21%|โโโ | 42/196 [00:44<02:10, 1.18it/s][A
22%|โโโ | 43/196 [00:44<02:08, 1.19it/s][A
22%|โโโ | 44/196 [00:45<02:04, 1.22it/s][A
23%|โโโ | 45/196 [00:46<01:55, 1.31it/s][A
23%|โโโ | 46/196 [00:46<01:47, 1.39it/s][A
24%|โโโ | 47/196 [00:47<01:47, 1.39it/s][A
24%|โโโ | 48/196 [00:48<01:42, 1.45it/s][A
25%|โโโ | 49/196 [00:48<01:40, 1.46it/s][A
26%|โโโ | 50/196 [00:49<01:39, 1.47it/s][A
26%|โโโ | 51/196 [00:50<01:36, 1.50it/s][A
27%|โโโ | 52/196 [00:50<01:36, 1.49it/s][A
27%|โโโ | 53/196 [00:51<01:40, 1.42it/s][A
28%|โโโ | 54/196 [00:52<01:38, 1.44it/s][A
28%|โโโ | 55/196 [00:53<01:48, 1.29it/s][A
29%|โโโ | 56/196 [00:54<01:57, 1.19it/s][A
29%|โโโ | 57/196 [00:55<02:04, 1.11it/s][A
30%|โโโ | 58/196 [00:56<02:08, 1.07it/s][A
30%|โโโ | 59/196 [00:57<02:06, 1.09it/s][A
31%|โโโ | 60/196 [00:57<01:55, 1.18it/s][A
31%|โโโ | 61/196 [00:58<01:46, 1.27it/s][A
32%|โโโโ | 62/196 [00:59<01:43, 1.29it/s][A
32%|โโโโ | 63/196 [01:00<01:44, 1.27it/s][A
33%|โโโโ | 64/196 [01:00<01:44, 1.27it/s][A
33%|โโโโ | 65/196 [01:01<01:41, 1.29it/s][A
34%|โโโโ | 66/196 [01:02<01:45, 1.23it/s][A
34%|โโโโ | 67/196 [01:03<01:48, 1.19it/s][A
35%|โโโโ | 68/196 [01:04<02:02, 1.05it/s][A
35%|โโโโ | 69/196 [01:05<02:03, 1.03it/s][A
36%|โโโโ | 70/196 [01:06<01:54, 1.10it/s][A
36%|โโโโ | 71/196 [01:07<01:46, 1.18it/s][A
37%|โโโโ | 72/196 [01:07<01:38, 1.26it/s][A
37%|โโโโ | 73/196 [01:08<01:30, 1.36it/s][A
38%|โโโโ | 74/196 [01:09<01:24, 1.44it/s][A
38%|โโโโ | 75/196 [01:09<01:21, 1.48it/s][A
39%|โโโโ | 76/196 [01:10<01:19, 1.50it/s][A
39%|โโโโ | 77/196 [01:11<01:22, 1.44it/s][A
40%|โโโโ | 78/196 [01:11<01:27, 1.35it/s][A
40%|โโโโ | 79/196 [01:12<01:24, 1.38it/s][A
41%|โโโโ | 80/196 [01:13<01:29, 1.29it/s][A
41%|โโโโโ | 81/196 [01:14<01:31, 1.26it/s][A
42%|โโโโโ | 82/196 [01:15<01:28, 1.29it/s][A
42%|โโโโโ | 83/196 [01:15<01:29, 1.26it/s][A
43%|โโโโโ | 84/196 [01:16<01:30, 1.23it/s][A
43%|โโโโโ | 85/196 [01:17<01:29, 1.24it/s][A
44%|โโโโโ | 86/196 [01:18<01:32, 1.19it/s][A
44%|โโโโโ | 87/196 [01:19<01:29, 1.22it/s][A
45%|โโโโโ | 88/196 [01:20<01:31, 1.18it/s][A
45%|โโโโโ | 89/196 [01:21<01:34, 1.14it/s][A
46%|โโโโโ | 90/196 [01:21<01:31, 1.16it/s][A
46%|โโโโโ | 91/196 [01:22<01:27, 1.20it/s][A
47%|โโโโโ | 92/196 [01:23<01:23, 1.24it/s][A
47%|โโโโโ | 93/196 [01:24<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:25<01:28, 1.15it/s][A
48%|โโโโโ | 95/196 [01:26<01:24, 1.20it/s][A
49%|โโโโโ | 96/196 [01:27<01:27, 1.14it/s][A
49%|โโโโโ | 97/196 [01:27<01:25, 1.16it/s][A
50%|โโโโโ | 98/196 [01:28<01:26, 1.13it/s][A
51%|โโโโโ | 99/196 [01:29<01:18, 1.23it/s][A
51%|โโโโโ | 100/196 [01:29<01:09, 1.38it/s][A
52%|โโโโโโ | 101/196 [01:30<01:04, 1.46it/s][A
52%|โโโโโโ | 102/196 [01:31<01:08, 1.38it/s][A
53%|โโโโโโ | 103/196 [01:32<01:12, 1.28it/s][A
53%|โโโโโโ | 104/196 [01:33<01:22, 1.11it/s][A
54%|โโโโโโ | 105/196 [01:34<01:24, 1.07it/s][A
54%|โโโโโโ | 106/196 [01:35<01:24, 1.07it/s][A
55%|โโโโโโ | 107/196 [01:36<01:18, 1.14it/s][A
55%|โโโโโโ | 108/196 [01:36<01:08, 1.28it/s][A
56%|โโโโโโ | 109/196 [01:37<01:03, 1.36it/s][A
56%|โโโโโโ | 110/196 [01:38<01:00, 1.41it/s][A
57%|โโโโโโ | 111/196 [01:38<01:00, 1.41it/s][A
57%|โโโโโโ | 112/196 [01:39<01:01, 1.36it/s][A
58%|โโโโโโ | 113/196 [01:40<01:02, 1.32it/s][A
58%|โโโโโโ | 114/196 [01:40<00:57, 1.42it/s][A
59%|โโโโโโ | 115/196 [01:41<00:55, 1.46it/s][A
59%|โโโโโโ | 116/196 [01:42<00:54, 1.48it/s][A
60%|โโโโโโ | 117/196 [01:42<00:50, 1.55it/s][A
60%|โโโโโโ | 118/196 [01:43<00:45, 1.71it/s][A
61%|โโโโโโ | 119/196 [01:43<00:47, 1.62it/s][A
61%|โโโโโโ | 120/196 [01:44<00:49, 1.53it/s][A
62%|โโโโโโโ | 121/196 [01:45<00:50, 1.50it/s][A
62%|โโโโโโโ | 122/196 [01:46<00:50, 1.46it/s][A
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.48it/s][A
63%|โโโโโโโ | 124/196 [01:47<00:48, 1.48it/s][A
64%|โโโโโโโ | 125/196 [01:48<00:48, 1.47it/s][A
64%|โโโโโโโ | 126/196 [01:49<00:54, 1.29it/s][A
65%|โโโโโโโ | 127/196 [01:49<00:53, 1.29it/s][A
65%|โโโโโโโ | 128/196 [01:50<00:50, 1.36it/s][A
66%|โโโโโโโ | 129/196 [01:51<00:48, 1.37it/s][A
66%|โโโโโโโ | 130/196 [01:51<00:48, 1.37it/s][A
67%|โโโโโโโ | 131/196 [01:52<00:47, 1.38it/s][A
67%|โโโโโโโ | 132/196 [01:53<00:43, 1.46it/s][A
68%|โโโโโโโ | 133/196 [01:53<00:42, 1.48it/s][A
68%|โโโโโโโ | 134/196 [01:54<00:44, 1.39it/s][A
69%|โโโโโโโ | 135/196 [01:55<00:42, 1.43it/s][A
69%|โโโโโโโ | 136/196 [01:56<00:41, 1.46it/s][A
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.46it/s][A
70%|โโโโโโโ | 138/196 [01:57<00:39, 1.46it/s][A
71%|โโโโโโโ | 139/196 [01:58<00:39, 1.44it/s][A
71%|โโโโโโโโ | 140/196 [01:58<00:38, 1.47it/s][A
72%|โโโโโโโโ | 141/196 [01:59<00:37, 1.46it/s][A
72%|โโโโโโโโ | 142/196 [02:00<00:37, 1.43it/s][A
73%|โโโโโโโโ | 143/196 [02:01<00:40, 1.32it/s][A
73%|โโโโโโโโ | 144/196 [02:01<00:37, 1.39it/s][A
74%|โโโโโโโโ | 145/196 [02:02<00:33, 1.51it/s][A
74%|โโโโโโโโ | 146/196 [02:02<00:31, 1.61it/s][A
75%|โโโโโโโโ | 147/196 [02:03<00:30, 1.61it/s][A
76%|โโโโโโโโ | 148/196 [02:04<00:29, 1.60it/s][A
76%|โโโโโโโโ | 149/196 [02:04<00:28, 1.67it/s][A
77%|โโโโโโโโ | 150/196 [02:05<00:29, 1.58it/s][A
77%|โโโโโโโโ | 151/196 [02:06<00:30, 1.49it/s][A
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.51it/s][A
78%|โโโโโโโโ | 153/196 [02:07<00:28, 1.52it/s][A
79%|โโโโโโโโ | 154/196 [02:08<00:28, 1.50it/s][A
79%|โโโโโโโโ | 155/196 [02:08<00:29, 1.39it/s][A
80%|โโโโโโโโ | 156/196 [02:09<00:33, 1.21it/s][A
80%|โโโโโโโโ | 157/196 [02:11<00:34, 1.12it/s][A
81%|โโโโโโโโ | 158/196 [02:11<00:30, 1.24it/s][A
81%|โโโโโโโโ | 159/196 [02:12<00:27, 1.35it/s][A
82%|โโโโโโโโโ | 160/196 [02:12<00:25, 1.42it/s][A
82%|โโโโโโโโโ | 161/196 [02:13<00:24, 1.42it/s][A
83%|โโโโโโโโโ | 162/196 [02:14<00:23, 1.43it/s][A
83%|โโโโโโโโโ | 163/196 [02:14<00:22, 1.46it/s][A
84%|โโโโโโโโโ | 164/196 [02:15<00:21, 1.48it/s][A
84%|โโโโโโโโโ | 165/196 [02:16<00:21, 1.42it/s][A
85%|โโโโโโโโโ | 166/196 [02:16<00:20, 1.45it/s][A
85%|โโโโโโโโโ | 167/196 [02:17<00:19, 1.50it/s][A
86%|โโโโโโโโโ | 168/196 [02:18<00:17, 1.56it/s][A
86%|โโโโโโโโโ | 169/196 [02:18<00:17, 1.52it/s][A
87%|โโโโโโโโโ | 170/196 [02:19<00:18, 1.39it/s][A
87%|โโโโโโโโโ | 171/196 [02:20<00:17, 1.43it/s][A
88%|โโโโโโโโโ | 172/196 [02:21<00:17, 1.40it/s][A
88%|โโโโโโโโโ | 173/196 [02:21<00:16, 1.41it/s][A
89%|โโโโโโโโโ | 174/196 [02:22<00:16, 1.34it/s][A
89%|โโโโโโโโโ | 175/196 [02:23<00:18, 1.11it/s][A
90%|โโโโโโโโโ | 176/196 [02:26<00:28, 1.41s/it][A
90%|โโโโโโโโโ | 177/196 [02:28<00:30, 1.61s/it][A
91%|โโโโโโโโโ | 178/196 [02:30<00:31, 1.75s/it][A
91%|โโโโโโโโโโ| 179/196 [02:32<00:31, 1.86s/it][A
92%|โโโโโโโโโโ| 180/196 [02:33<00:24, 1.50s/it][A
92%|โโโโโโโโโโ| 181/196 [02:34<00:19, 1.28s/it][A
93%|โโโโโโโโโโ| 182/196 [02:34<00:15, 1.10s/it][A
93%|โโโโโโโโโโ| 183/196 [02:36<00:14, 1.13s/it][A
94%|โโโโโโโโโโ| 184/196 [02:36<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:37<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:38<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:39<00:08, 1.11it/s][A
96%|โโโโโโโโโโ| 188/196 [02:39<00:06, 1.22it/s][A
96%|โโโโโโโโโโ| 189/196 [02:40<00:05, 1.26it/s][A
97%|โโโโโโโโโโ| 190/196 [02:41<00:04, 1.33it/s][A
97%|โโโโโโโโโโ| 191/196 [02:41<00:03, 1.42it/s][A
98%|โโโโโโโโโโ| 192/196 [02:42<00:02, 1.41it/s][A
98%|โโโโโโโโโโ| 193/196 [02:43<00:02, 1.40it/s][A
99%|โโโโโโโโโโ| 194/196 [02:44<00:01, 1.42it/s][A
99%|โโโโโโโโโโ| 195/196 [02:44<00:00, 1.45it/s][A
100%|โโโโโโโโโโ| 196/196 [02:45<00:00, 1.66it/s][A
[A
4%|โ | 600/15000 [30:47<3:20:27, 1.20it/s]
100%|โโโโโโโโโโ| 196/196 [02:49<00:00, 1.66it/s][A
[A/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
4%|โ | 601/15000 [30:59<222:25:43, 55.61s/it]
4%|โ | 601/15000 [30:59<222:25:43, 55.61s/it]
4%|โ | 602/15000 [31:02<158:56:50, 39.74s/it]
4%|โ | 602/15000 [31:02<158:56:50, 39.74s/it]
4%|โ | 603/15000 [31:04<114:18:39, 28.58s/it]
4%|โ | 603/15000 [31:04<114:18:39, 28.58s/it]
4%|โ | 604/15000 [31:07<82:37:46, 20.66s/it]
4%|โ | 604/15000 [31:07<82:37:46, 20.66s/it]
4%|โ | 605/15000 [31:09<60:25:15, 15.11s/it]
4%|โ | 605/15000 [31:09<60:25:15, 15.11s/it]
4%|โ | 606/15000 [31:11<44:39:54, 11.17s/it]
4%|โ | 606/15000 [31:11<44:39:54, 11.17s/it]
4%|โ | 607/15000 [31:13<33:34:26, 8.40s/it]
4%|โ | 607/15000 [31:13<33:34:26, 8.40s/it]
4%|โ | 608/15000 [31:15<25:39:43, 6.42s/it]
4%|โ | 608/15000 [31:15<25:39:43, 6.42s/it]
4%|โ | 609/15000 [31:16<20:02:31, 5.01s/it]
4%|โ | 609/15000 [31:16<20:02:31, 5.01s/it]
4%|โ | 610/15000 [31:18<15:56:41, 3.99s/it]
4%|โ | 610/15000 [31:18<15:56:41, 3.99s/it]
4%|โ | 611/15000 [31:19<13:03:56, 3.27s/it]
4%|โ | 611/15000 [31:19<13:03:56, 3.27s/it]
4%|โ | 612/15000 [31:21<10:58:19, 2.75s/it]
4%|โ | 612/15000 [31:21<10:58:19, 2.75s/it]
4%|โ | 613/15000 [31:22<9:22:53, 2.35s/it]
4%|โ | 613/15000 [31:22<9:22:53, 2.35s/it]
4%|โ | 614/15000 [31:24<8:14:57, 2.06s/it]
4%|โ | 614/15000 [31:24<8:14:57, 2.06s/it]
4%|โ | 615/15000 [31:25<7:28:16, 1.87s/it]
4%|โ | 615/15000 [31:25<7:28:16, 1.87s/it]
4%|โ | 616/15000 [31:27<6:56:26, 1.74s/it]
4%|โ | 616/15000 [31:27<6:56:26, 1.74s/it]
4%|โ | 617/15000 [31:28<6:28:05, 1.62s/it]
4%|โ | 617/15000 [31:28<6:28:05, 1.62s/it]
4%|โ | 618/15000 [31:29<5:57:27, 1.49s/it]
4%|โ | 618/15000 [31:29<5:57:27, 1.49s/it]
4%|โ | 619/15000 [31:30<5:37:11, 1.41s/it]
4%|โ | 619/15000 [31:30<5:37:11, 1.41s/it]
4%|โ | 620/15000 [31:32<5:22:15, 1.34s/it]
4%|โ | 620/15000 [31:32<5:22:15, 1.34s/it]
4%|โ | 621/15000 [31:33<5:11:46, 1.30s/it]
4%|โ | 621/15000 [31:33<5:11:46, 1.30s/it]
4%|โ | 622/15000 [31:34<5:03:55, 1.27s/it]
4%|โ | 622/15000 [31:34<5:03:55, 1.27s/it]
4%|โ | 623/15000 [31:35<4:57:58, 1.24s/it]
4%|โ | 623/15000 [31:35<4:57:58, 1.24s/it]
4%|โ | 624/15000 [31:36<4:50:23, 1.21s/it]
4%|โ | 624/15000 [31:36<4:50:23, 1.21s/it]
4%|โ | 625/15000 [31:37<4:35:35, 1.15s/it]
4%|โ | 625/15000 [31:37<4:35:35, 1.15s/it]
4%|โ | 626/15000 [31:38<4:25:19, 1.11s/it]
4%|โ | 626/15000 [31:38<4:25:19, 1.11s/it]
4%|โ | 627/15000 [31:39<4:18:21, 1.08s/it]
4%|โ | 627/15000 [31:39<4:18:21, 1.08s/it]
4%|โ | 628/15000 [31:40<4:13:19, 1.06s/it]
4%|โ | 628/15000 [31:40<4:13:19, 1.06s/it]
4%|โ | 629/15000 [31:41<4:09:18, 1.04s/it]
4%|โ | 629/15000 [31:41<4:09:18, 1.04s/it]
4%|โ | 630/15000 [31:42<4:06:42, 1.03s/it]
4%|โ | 630/15000 [31:42<4:06:42, 1.03s/it]
4%|โ | 631/15000 [31:43<4:03:35, 1.02s/it]
4%|โ | 631/15000 [31:43<4:03:35, 1.02s/it]
4%|โ | 632/15000 [31:44<3:58:02, 1.01it/s]
4%|โ | 632/15000 [31:44<3:58:02, 1.01it/s]
4%|โ | 633/15000 [31:45<3:44:45, 1.07it/s]
4%|โ | 633/15000 [31:45<3:44:45, 1.07it/s]
4%|โ | 634/15000 [31:46<3:35:39, 1.11it/s]
4%|โ | 634/15000 [31:46<3:35:39, 1.11it/s]
4%|โ | 635/15000 [31:47<3:28:50, 1.15it/s]
4%|โ | 635/15000 [31:47<3:28:50, 1.15it/s]
4%|โ | 636/15000 [31:47<3:23:52, 1.17it/s]
4%|โ | 636/15000 [31:47<3:23:52, 1.17it/s]
4%|โ | 637/15000 [31:48<3:20:53, 1.19it/s]
4%|โ | 637/15000 [31:48<3:20:53, 1.19it/s]
4%|โ | 638/15000 [31:49<3:18:47, 1.20it/s]
4%|โ | 638/15000 [31:49<3:18:47, 1.20it/s]
4%|โ | 639/15000 [31:50<3:16:56, 1.22it/s]
4%|โ | 639/15000 [31:50<3:16:56, 1.22it/s]
4%|โ | 640/15000 [31:51<3:12:15, 1.24it/s]
4%|โ | 640/15000 [31:51<3:12:15, 1.24it/s]
4%|โ | 641/15000 [31:51<3:07:49, 1.27it/s]
4%|โ | 641/15000 [31:51<3:07:49, 1.27it/s]
4%|โ | 642/15000 [31:52<2:56:19, 1.36it/s]
4%|โ | 642/15000 [31:52<2:56:19, 1.36it/s]
4%|โ | 643/15000 [31:53<2:49:16, 1.41it/s]
4%|โ | 643/15000 [31:53<2:49:16, 1.41it/s]
4%|โ | 644/15000 [31:53<2:43:23, 1.46it/s]
4%|โ | 644/15000 [31:53<2:43:23, 1.46it/s]
4%|โ | 645/15000 [31:54<2:37:46, 1.52it/s]
4%|โ | 645/15000 [31:54<2:37:46, 1.52it/s]
4%|โ | 646/15000 [31:54<2:30:36, 1.59it/s]
4%|โ | 646/15000 [31:54<2:30:36, 1.59it/s]
4%|โ | 647/15000 [31:55<2:16:08, 1.76it/s]
4%|โ | 647/15000 [31:55<2:16:08, 1.76it/s]
4%|โ | 648/15000 [31:55<2:06:00, 1.90it/s]
4%|โ | 648/15000 [31:55<2:06:00, 1.90it/s]
4%|โ | 649/15000 [31:56<1:57:33, 2.03it/s]
4%|โ | 649/15000 [31:56<1:57:33, 2.03it/s]
4%|โ | 650/15000 [31:57<3:24:48, 1.17it/s]
4%|โ | 650/15000 [31:57<3:24:48, 1.17it/s]
4%|โ | 651/15000 [32:04<10:31:06, 2.64s/it]
4%|โ | 651/15000 [32:04<10:31:06, 2.64s/it]
4%|โ | 652/15000 [32:07<10:47:05, 2.71s/it]
4%|โ | 652/15000 [32:07<10:47:05, 2.71s/it]
4%|โ | 653/15000 [32:10<10:37:40, 2.67s/it]
4%|โ | 653/15000 [32:10<10:37:40, 2.67s/it]
4%|โ | 654/15000 [32:12<10:15:25, 2.57s/it]
4%|โ | 654/15000 [32:12<10:15:25, 2.57s/it]
4%|โ | 655/15000 [32:14<9:43:23, 2.44s/it]
4%|โ | 655/15000 [32:14<9:43:23, 2.44s/it]
4%|โ | 656/15000 [32:16<9:07:17, 2.29s/it]
4%|โ | 656/15000 [32:16<9:07:17, 2.29s/it]
4%|โ | 657/15000 [32:18<8:32:24, 2.14s/it]
4%|โ | 657/15000 [32:18<8:32:24, 2.14s/it]
4%|โ | 658/15000 [32:20<8:03:28, 2.02s/it]
4%|โ | 658/15000 [32:20<8:03:28, 2.02s/it]
4%|โ | 659/15000 [32:21<7:34:02, 1.90s/it]
4%|โ | 659/15000 [32:21<7:34:02, 1.90s/it]
4%|โ | 660/15000 [32:23<7:12:07, 1.81s/it]
4%|โ | 660/15000 [32:23<7:12:07, 1.81s/it]
4%|โ | 661/15000 [32:24<6:54:04, 1.73s/it]
4%|โ | 661/15000 [32:24<6:54:04, 1.73s/it]
4%|โ | 662/15000 [32:26<6:40:07, 1.67s/it]
4%|โ | 662/15000 [32:26<6:40:07, 1.67s/it]
4%|โ | 663/15000 [32:27<6:21:23, 1.60s/it]
4%|โ | 663/15000 [32:27<6:21:23, 1.60s/it]
4%|โ | 664/15000 [32:29<6:07:49, 1.54s/it]
4%|โ | 664/15000 [32:29<6:07:49, 1.54s/it]
4%|โ | 665/15000 [32:30<5:58:40, 1.50s/it]
4%|โ | 665/15000 [32:30<5:58:40, 1.50s/it]
4%|โ | 666/15000 [32:32<5:51:49, 1.47s/it]
4%|โ | 666/15000 [32:32<5:51:49, 1.47s/it]
4%|โ | 667/15000 [32:33<5:42:54, 1.44s/it]
4%|โ | 667/15000 [32:33<5:42:54, 1.44s/it]
4%|โ | 668/15000 [32:34<5:36:01, 1.41s/it]
4%|โ | 668/15000 [32:34<5:36:01, 1.41s/it]
4%|โ | 669/15000 [32:35<5:21:25, 1.35s/it]
4%|โ | 669/15000 [32:35<5:21:25, 1.35s/it]
4%|โ | 670/15000 [32:37<5:11:03, 1.30s/it]
4%|โ | 670/15000 [32:37<5:11:03, 1.30s/it]
4%|โ | 671/15000 [32:38<5:03:21, 1.27s/it]
4%|โ | 671/15000 [32:38<5:03:21, 1.27s/it]
4%|โ | 672/15000 [32:39<4:58:06, 1.25s/it]
4%|โ | 672/15000 [32:39<4:58:06, 1.25s/it]
4%|โ | 673/15000 [32:40<4:54:25, 1.23s/it]
4%|โ | 673/15000 [32:40<4:54:25, 1.23s/it]
4%|โ | 674/15000 [32:41<4:47:23, 1.20s/it]
4%|โ | 674/15000 [32:41<4:47:23, 1.20s/it]
4%|โ | 675/15000 [32:42<4:33:19, 1.14s/it]
4%|โ | 675/15000 [32:42<4:33:19, 1.14s/it]
5%|โ | 676/15000 [32:43<4:23:16, 1.10s/it]
5%|โ | 676/15000 [32:43<4:23:16, 1.10s/it]
5%|โ | 677/15000 [32:44<4:16:07, 1.07s/it]
5%|โ | 677/15000 [32:44<4:16:07, 1.07s/it]
5%|โ | 678/15000 [32:45<4:11:04, 1.05s/it]
5%|โ | 678/15000 [32:45<4:11:04, 1.05s/it]
5%|โ | 679/15000 [32:46<4:07:30, 1.04s/it]
5%|โ | 679/15000 [32:46<4:07:30, 1.04s/it]
5%|โ | 680/15000 [32:47<4:06:16, 1.03s/it]
5%|โ | 680/15000 [32:47<4:06:16, 1.03s/it]
5%|โ | 681/15000 [32:48<4:02:17, 1.02s/it]
5%|โ | 681/15000 [32:48<4:02:17, 1.02s/it]
5%|โ | 682/15000 [32:49<3:56:38, 1.01it/s]
5%|โ | 682/15000 [32:49<3:56:38, 1.01it/s]
5%|โ | 683/15000 [32:50<3:43:21, 1.07it/s]
5%|โ | 683/15000 [32:50<3:43:21, 1.07it/s]
5%|โ | 684/15000 [32:51<3:34:16, 1.11it/s]
5%|โ | 684/15000 [32:51<3:34:16, 1.11it/s]
5%|โ | 685/15000 [32:52<3:27:43, 1.15it/s]
5%|โ | 685/15000 [32:52<3:27:43, 1.15it/s]
5%|โ | 686/15000 [32:53<3:23:16, 1.17it/s]
5%|โ | 686/15000 [32:53<3:23:16, 1.17it/s]
5%|โ | 687/15000 [32:53<3:26:33, 1.15it/s]
5%|โ | 687/15000 [32:53<3:26:33, 1.15it/s]
5%|โ | 688/15000 [32:54<3:22:45, 1.18it/s]
5%|โ | 688/15000 [32:54<3:22:45, 1.18it/s]
5%|โ | 689/15000 [32:55<3:18:44, 1.20it/s]
5%|โ | 689/15000 [32:55<3:18:44, 1.20it/s]
5%|โ | 690/15000 [32:56<3:12:37, 1.24it/s]
5%|โ | 690/15000 [32:56<3:12:37, 1.24it/s]
5%|โ | 691/15000 [32:56<2:59:30, 1.33it/s]
5%|โ | 691/15000 [32:56<2:59:30, 1.33it/s]
5%|โ | 692/15000 [32:57<2:50:21, 1.40it/s]
5%|โ | 692/15000 [32:57<2:50:21, 1.40it/s]
5%|โ | 693/15000 [32:58<2:43:53, 1.45it/s]
5%|โ | 693/15000 [32:58<2:43:53, 1.45it/s]
5%|โ | 694/15000 [32:58<2:39:43, 1.49it/s]
5%|โ | 694/15000 [32:58<2:39:43, 1.49it/s]
5%|โ | 695/15000 [32:59<2:36:21, 1.52it/s]
5%|โ | 695/15000 [32:59<2:36:21, 1.52it/s]
5%|โ | 696/15000 [33:00<2:30:29, 1.58it/s]
5%|โ | 696/15000 [33:00<2:30:29, 1.58it/s]
5%|โ | 697/15000 [33:00<2:25:21, 1.64it/s]
5%|โ | 697/15000 [33:00<2:25:21, 1.64it/s]
5%|โ | 698/15000 [33:01<2:12:16, 1.80it/s]
5%|โ | 698/15000 [33:01<2:12:16, 1.80it/s]
5%|โ | 699/15000 [33:01<2:00:31, 1.98it/s]
5%|โ | 699/15000 [33:01<2:00:31, 1.98it/s]
5%|โ | 700/15000 [33:02<3:07:47, 1.27it/s]
5%|โ | 700/15000 [33:02<3:07:47, 1.27it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction:
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction:
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction:
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
{'eval_loss': nan, 'eval_cer': 1.0, 'eval_wer': 1.0, 'eval_runtime': 171.0716, 'eval_samples_per_second': 18.332, 'eval_steps_per_second': 1.146, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005958206896551724, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005957793103448275, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005957379310344827, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005956965517241379, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000595655172413793, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005956137931034482, 'epoch': 0.48}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005955724137931033, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005955310344827586, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005954896551724138, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005954482758620689, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005954068965517241, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005953655172413793, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005953241379310344, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005952827586206896, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005952413793103448, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005951999999999999, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005951586206896551, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005951172413793102, 'epoch': 0.49}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005950758620689655, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005950344827586207, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005949931034482758, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000594951724137931, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005949103448275861, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005948689655172414, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005948275862068965, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005947862068965517, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005947448275862068, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005947034482758621, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005946620689655171, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005946206896551724, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005945793103448276, 'epoch': 0.5}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005945379310344827, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005944965517241379, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000594455172413793, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005944137931034483, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005943724137931033, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005943310344827586, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005942896551724137, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005942482758620689, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000594206896551724, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005941655172413793, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005941241379310345, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005940827586206896, 'epoch': 0.51}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005940413793103448, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005939999999999999, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005939586206896552, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005939172413793103, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005938758620689655, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005938344827586206, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005937931034482758, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000593751724137931, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005937103448275861, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005936689655172413, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005936275862068965, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005935862068965517, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005935448275862068, 'epoch': 0.52}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005935034482758621, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005934620689655172, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005934206896551724, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005933793103448275, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005933379310344827, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005932965517241379, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000593255172413793, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005932137931034482, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005931724137931034, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005931310344827586, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005930896551724138, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005930482758620689, 'epoch': 0.53}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005930068965517241, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005929655172413793, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005929241379310344, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005928827586206896, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005928413793103447, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005928, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005927586206896551, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005927172413793103, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005926758620689654, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005926344827586207, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005925931034482758, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000592551724137931, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005925103448275862, 'epoch': 0.54}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005924689655172413, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005924275862068965, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005923862068965516, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005923448275862069, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000592303448275862, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005922620689655172, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005922206896551723, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005921793103448275, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005921379310344828, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005920965517241379, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005920551724137931, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005920137931034482, 'epoch': 0.55}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005919724137931035, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005919310344827585, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005918896551724138, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005918482758620689, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005918068965517241, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005917655172413792, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005917241379310344, 'epoch': 0.56}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:03, 3.03it/s][A
2%|โ | 3/196 [00:01<01:42, 1.89it/s][A
2%|โ | 4/196 [00:02<02:07, 1.51it/s][A
3%|โ | 5/196 [00:03<02:21, 1.35it/s][A
3%|โ | 6/196 [00:04<02:39, 1.19it/s][A
4%|โ | 7/196 [00:05<02:47, 1.13it/s][A
4%|โ | 8/196 [00:06<02:49, 1.11it/s][A
5%|โ | 9/196 [00:07<03:39, 1.18s/it][A
5%|โ | 10/196 [00:09<04:19, 1.40s/it][A
6%|โ | 11/196 [00:12<04:59, 1.62s/it][A
6%|โ | 12/196 [00:13<05:18, 1.73s/it][A
7%|โ | 13/196 [00:15<04:37, 1.52s/it][A
7%|โ | 14/196 [00:15<03:52, 1.28s/it][A
8%|โ | 15/196 [00:16<03:15, 1.08s/it][A
8%|โ | 16/196 [00:17<03:03, 1.02s/it][A
9%|โ | 17/196 [00:18<02:57, 1.01it/s][A
9%|โ | 18/196 [00:19<03:15, 1.10s/it][A
10%|โ | 19/196 [00:21<04:08, 1.41s/it][A
10%|โ | 20/196 [00:23<04:27, 1.52s/it][A
11%|โ | 21/196 [00:25<04:34, 1.57s/it][A
11%|โ | 22/196 [00:26<04:22, 1.51s/it][A
12%|โโ | 23/196 [00:27<03:59, 1.39s/it][A
12%|โโ | 24/196 [00:28<03:12, 1.12s/it][A
13%|โโ | 25/196 [00:28<02:44, 1.04it/s][A
13%|โโ | 26/196 [00:29<02:24, 1.18it/s][A
14%|โโ | 27/196 [00:29<02:13, 1.27it/s][A
14%|โโ | 28/196 [00:30<02:07, 1.32it/s][A
15%|โโ | 29/196 [00:31<02:06, 1.32it/s][A
15%|โโ | 30/196 [00:32<02:07, 1.30it/s][A
16%|โโ | 31/196 [00:32<01:56, 1.42it/s][A
16%|โโ | 32/196 [00:33<01:51, 1.47it/s][A
17%|โโ | 33/196 [00:34<02:08, 1.27it/s][A
17%|โโ | 34/196 [00:35<02:45, 1.02s/it][A
18%|โโ | 35/196 [00:37<02:52, 1.07s/it][A
18%|โโ | 36/196 [00:38<03:15, 1.22s/it][A
19%|โโ | 37/196 [00:39<03:12, 1.21s/it][A
19%|โโ | 38/196 [00:40<02:56, 1.12s/it][A
20%|โโ | 39/196 [00:41<02:42, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:30, 1.04it/s][A
21%|โโ | 41/196 [00:43<02:17, 1.13it/s][A
21%|โโโ | 42/196 [00:43<02:09, 1.19it/s][A
22%|โโโ | 43/196 [00:44<02:07, 1.20it/s][A
22%|โโโ | 44/196 [00:45<02:04, 1.22it/s][A
23%|โโโ | 45/196 [00:46<01:55, 1.31it/s][A
23%|โโโ | 46/196 [00:46<01:48, 1.38it/s][A
24%|โโโ | 47/196 [00:47<01:48, 1.37it/s][A
24%|โโโ | 48/196 [00:48<01:43, 1.44it/s][A
25%|โโโ | 49/196 [00:48<01:40, 1.46it/s][A
26%|โโโ | 50/196 [00:49<01:39, 1.46it/s][A
26%|โโโ | 51/196 [00:50<01:37, 1.49it/s][A
27%|โโโ | 52/196 [00:50<01:35, 1.50it/s][A
27%|โโโ | 53/196 [00:51<01:39, 1.43it/s][A
28%|โโโ | 54/196 [00:52<01:37, 1.45it/s][A
28%|โโโ | 55/196 [00:53<01:48, 1.30it/s][A
29%|โโโ | 56/196 [00:54<01:56, 1.20it/s][A
29%|โโโ | 57/196 [00:55<02:04, 1.12it/s][A
30%|โโโ | 58/196 [00:56<02:07, 1.08it/s][A
30%|โโโ | 59/196 [00:57<02:05, 1.09it/s][A
31%|โโโ | 60/196 [00:57<01:54, 1.19it/s][A
31%|โโโ | 61/196 [00:58<01:44, 1.29it/s][A
32%|โโโโ | 62/196 [00:59<01:42, 1.31it/s][A
32%|โโโโ | 63/196 [00:59<01:42, 1.30it/s][A
33%|โโโโ | 64/196 [01:00<01:41, 1.30it/s][A
33%|โโโโ | 65/196 [01:01<01:39, 1.32it/s][A
34%|โโโโ | 66/196 [01:02<01:43, 1.26it/s][A
34%|โโโโ | 67/196 [01:03<01:47, 1.20it/s][A
35%|โโโโ | 68/196 [01:04<02:02, 1.04it/s][A
35%|โโโโ | 69/196 [01:05<02:03, 1.03it/s][A
36%|โโโโ | 70/196 [01:06<01:54, 1.10it/s][A
36%|โโโโ | 71/196 [01:06<01:46, 1.17it/s][A
37%|โโโโ | 72/196 [01:07<01:38, 1.26it/s][A
37%|โโโโ | 73/196 [01:08<01:30, 1.36it/s][A
38%|โโโโ | 74/196 [01:08<01:23, 1.46it/s][A
38%|โโโโ | 75/196 [01:09<01:20, 1.50it/s][A
39%|โโโโ | 76/196 [01:09<01:18, 1.53it/s][A
39%|โโโโ | 77/196 [01:10<01:21, 1.46it/s][A
40%|โโโโ | 78/196 [01:11<01:26, 1.36it/s][A
40%|โโโโ | 79/196 [01:12<01:23, 1.40it/s][A
41%|โโโโ | 80/196 [01:13<01:28, 1.31it/s][A
41%|โโโโโ | 81/196 [01:13<01:30, 1.27it/s][A
42%|โโโโโ | 82/196 [01:14<01:27, 1.30it/s][A
42%|โโโโโ | 83/196 [01:15<01:29, 1.27it/s][A
43%|โโโโโ | 84/196 [01:16<01:30, 1.23it/s][A
43%|โโโโโ | 85/196 [01:17<01:29, 1.24it/s][A
44%|โโโโโ | 86/196 [01:18<01:31, 1.20it/s][A
44%|โโโโโ | 87/196 [01:18<01:28, 1.23it/s][A
45%|โโโโโ | 88/196 [01:19<01:31, 1.18it/s][A
45%|โโโโโ | 89/196 [01:20<01:33, 1.14it/s][A
46%|โโโโโ | 90/196 [01:21<01:30, 1.17it/s][A
46%|โโโโโ | 91/196 [01:22<01:26, 1.21it/s][A
47%|โโโโโ | 92/196 [01:22<01:23, 1.25it/s][A
47%|โโโโโ | 93/196 [01:23<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:24<01:27, 1.16it/s][A
48%|โโโโโ | 95/196 [01:25<01:23, 1.21it/s][A
49%|โโโโโ | 96/196 [01:26<01:27, 1.15it/s][A
49%|โโโโโ | 97/196 [01:27<01:24, 1.17it/s][A
50%|โโโโโ | 98/196 [01:28<01:26, 1.13it/s][A
51%|โโโโโ | 99/196 [01:28<01:18, 1.23it/s][A
51%|โโโโโ | 100/196 [01:29<01:09, 1.38it/s][A
52%|โโโโโโ | 101/196 [01:30<01:04, 1.46it/s][A
52%|โโโโโโ | 102/196 [01:30<01:08, 1.38it/s][A
53%|โโโโโโ | 103/196 [01:31<01:13, 1.27it/s][A
53%|โโโโโโ | 104/196 [01:32<01:22, 1.11it/s][A
54%|โโโโโโ | 105/196 [01:33<01:24, 1.08it/s][A
54%|โโโโโโ | 106/196 [01:34<01:23, 1.08it/s][A
55%|โโโโโโ | 107/196 [01:35<01:18, 1.13it/s][A
55%|โโโโโโ | 108/196 [01:36<01:09, 1.27it/s][A
56%|โโโโโโ | 109/196 [01:36<01:04, 1.36it/s][A
56%|โโโโโโ | 110/196 [01:37<01:01, 1.41it/s][A
57%|โโโโโโ | 111/196 [01:38<01:00, 1.41it/s][A
57%|โโโโโโ | 112/196 [01:39<01:02, 1.35it/s][A
58%|โโโโโโ | 113/196 [01:39<01:02, 1.32it/s][A
58%|โโโโโโ | 114/196 [01:40<00:57, 1.42it/s][A
59%|โโโโโโ | 115/196 [01:41<00:55, 1.46it/s][A
59%|โโโโโโ | 116/196 [01:41<00:53, 1.49it/s][A
60%|โโโโโโ | 117/196 [01:42<00:50, 1.56it/s][A
60%|โโโโโโ | 118/196 [01:42<00:45, 1.72it/s][A
61%|โโโโโโ | 119/196 [01:43<00:47, 1.61it/s][A
61%|โโโโโโ | 120/196 [01:44<00:49, 1.53it/s][A
62%|โโโโโโโ | 121/196 [01:44<00:50, 1.49it/s][A
62%|โโโโโโโ | 122/196 [01:45<00:50, 1.46it/s][A
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.48it/s][A
63%|โโโโโโโ | 124/196 [01:46<00:48, 1.48it/s][A
64%|โโโโโโโ | 125/196 [01:47<00:48, 1.47it/s][A
64%|โโโโโโโ | 126/196 [01:48<00:54, 1.29it/s][A
65%|โโโโโโโ | 127/196 [01:49<00:53, 1.28it/s][A
65%|โโโโโโโ | 128/196 [01:50<00:52, 1.31it/s][A
66%|โโโโโโโ | 129/196 [01:50<00:50, 1.34it/s][A
66%|โโโโโโโ | 130/196 [01:51<00:48, 1.35it/s][A
67%|โโโโโโโ | 131/196 [01:52<00:47, 1.37it/s][A
67%|โโโโโโโ | 132/196 [01:52<00:44, 1.45it/s][A
68%|โโโโโโโ | 133/196 [01:53<00:42, 1.47it/s][A
68%|โโโโโโโ | 134/196 [01:54<00:45, 1.37it/s][A
69%|โโโโโโโ | 135/196 [01:55<00:43, 1.41it/s][A
69%|โโโโโโโ | 136/196 [01:55<00:41, 1.44it/s][A
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.45it/s][A
70%|โโโโโโโ | 138/196 [01:57<00:40, 1.45it/s][A
71%|โโโโโโโ | 139/196 [01:57<00:39, 1.43it/s][A
71%|โโโโโโโโ | 140/196 [01:58<00:38, 1.46it/s][A
72%|โโโโโโโโ | 141/196 [01:59<00:37, 1.46it/s][A
72%|โโโโโโโโ | 142/196 [01:59<00:37, 1.42it/s][A
73%|โโโโโโโโ | 143/196 [02:00<00:39, 1.33it/s][A
73%|โโโโโโโโ | 144/196 [02:01<00:36, 1.41it/s][A
74%|โโโโโโโโ | 145/196 [02:01<00:33, 1.53it/s][A
74%|โโโโโโโโ | 146/196 [02:02<00:31, 1.61it/s][A
75%|โโโโโโโโ | 147/196 [02:03<00:30, 1.61it/s][A
76%|โโโโโโโโ | 148/196 [02:03<00:29, 1.60it/s][A
76%|โโโโโโโโ | 149/196 [02:04<00:28, 1.67it/s][A
77%|โโโโโโโโ | 150/196 [02:04<00:29, 1.58it/s][A
77%|โโโโโโโโ | 151/196 [02:05<00:30, 1.49it/s][A
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.51it/s][A
78%|โโโโโโโโ | 153/196 [02:06<00:28, 1.52it/s][A
79%|โโโโโโโโ | 154/196 [02:07<00:28, 1.50it/s][A
79%|โโโโโโโโ | 155/196 [02:08<00:29, 1.39it/s][A
80%|โโโโโโโโ | 156/196 [02:09<00:33, 1.21it/s][A
80%|โโโโโโโโ | 157/196 [02:10<00:34, 1.12it/s][A
81%|โโโโโโโโ | 158/196 [02:11<00:30, 1.25it/s][A
81%|โโโโโโโโ | 159/196 [02:11<00:27, 1.35it/s][A
82%|โโโโโโโโโ | 160/196 [02:12<00:25, 1.42it/s][A
82%|โโโโโโโโโ | 161/196 [02:13<00:24, 1.42it/s][A
83%|โโโโโโโโโ | 162/196 [02:13<00:23, 1.43it/s][A
83%|โโโโโโโโโ | 163/196 [02:14<00:22, 1.45it/s][A
84%|โโโโโโโโโ | 164/196 [02:15<00:21, 1.48it/s][A
84%|โโโโโโโโโ | 165/196 [02:15<00:21, 1.42it/s][A
85%|โโโโโโโโโ | 166/196 [02:16<00:20, 1.45it/s][A
85%|โโโโโโโโโ | 167/196 [02:17<00:19, 1.50it/s][A
86%|โโโโโโโโโ | 168/196 [02:17<00:17, 1.57it/s][A
86%|โโโโโโโโโ | 169/196 [02:18<00:17, 1.53it/s][A
87%|โโโโโโโโโ | 170/196 [02:19<00:18, 1.40it/s][A
87%|โโโโโโโโโ | 171/196 [02:19<00:17, 1.43it/s][A
88%|โโโโโโโโโ | 172/196 [02:20<00:17, 1.40it/s][A
88%|โโโโโโโโโ | 173/196 [02:21<00:16, 1.41it/s][A
89%|โโโโโโโโโ | 174/196 [02:22<00:16, 1.34it/s][A
89%|โโโโโโโโโ | 175/196 [02:23<00:18, 1.11it/s][A
90%|โโโโโโโโโ | 176/196 [02:25<00:27, 1.38s/it][A
90%|โโโโโโโโโ | 177/196 [02:28<00:29, 1.58s/it][A
91%|โโโโโโโโโ | 178/196 [02:30<00:31, 1.73s/it][A
91%|โโโโโโโโโโ| 179/196 [02:32<00:31, 1.84s/it][A
92%|โโโโโโโโโโ| 180/196 [02:32<00:24, 1.50s/it][A
92%|โโโโโโโโโโ| 181/196 [02:33<00:19, 1.28s/it][A
93%|โโโโโโโโโโ| 182/196 [02:34<00:15, 1.10s/it][A
93%|โโโโโโโโโโ| 183/196 [02:35<00:14, 1.12s/it][A
94%|โโโโโโโโโโ| 184/196 [02:36<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:37<00:10, 1.05it/s][A
95%|โโโโโโโโโโ| 186/196 [02:38<00:09, 1.02it/s][A
95%|โโโโโโโโโโ| 187/196 [02:38<00:08, 1.11it/s][A
96%|โโโโโโโโโโ| 188/196 [02:39<00:06, 1.22it/s][A
96%|โโโโโโโโโโ| 189/196 [02:40<00:05, 1.26it/s][A
97%|โโโโโโโโโโ| 190/196 [02:40<00:04, 1.33it/s][A
97%|โโโโโโโโโโ| 191/196 [02:41<00:03, 1.42it/s][A
98%|โโโโโโโโโโ| 192/196 [02:42<00:02, 1.41it/s][A
98%|โโโโโโโโโโ| 193/196 [02:42<00:02, 1.40it/s][A
99%|โโโโโโโโโโ| 194/196 [02:43<00:01, 1.41it/s][A
99%|โโโโโโโโโโ| 195/196 [02:44<00:00, 1.44it/s][A
100%|โโโโโโโโโโ| 196/196 [02:44<00:00, 1.65it/s][A
[A
5%|โ | 700/15000 [35:53<3:07:47, 1.27it/s]
100%|โโโโโโโโโโ| 196/196 [02:49<00:00, 1.65it/s][A
[A
5%|โ | 701/15000 [35:58<211:33:56, 53.27s/it]
5%|โ | 701/15000 [35:58<211:33:56, 53.27s/it]
5%|โ | 702/15000 [36:01<151:16:49, 38.09s/it]
5%|โ | 702/15000 [36:01<151:16:49, 38.09s/it]
5%|โ | 703/15000 [36:03<108:43:59, 27.38s/it]
5%|โ | 703/15000 [36:03<108:43:59, 27.38s/it]
5%|โ | 704/15000 [36:05<78:41:09, 19.81s/it]
5%|โ | 704/15000 [36:05<78:41:09, 19.81s/it]
5%|โ | 705/15000 [36:07<57:37:46, 14.51s/it]
5%|โ | 705/15000 [36:07<57:37:46, 14.51s/it]
5%|โ | 706/15000 [36:09<42:41:41, 10.75s/it]
5%|โ | 706/15000 [36:09<42:41:41, 10.75s/it]
5%|โ | 707/15000 [36:11<32:12:22, 8.11s/it]
5%|โ | 707/15000 [36:11<32:12:22, 8.11s/it]
5%|โ | 708/15000 [36:13<24:42:35, 6.22s/it]
5%|โ | 708/15000 [36:13<24:42:35, 6.22s/it]
5%|โ | 709/15000 [36:15<19:23:52, 4.89s/it]
5%|โ | 709/15000 [36:15<19:23:52, 4.89s/it]
5%|โ | 710/15000 [36:17<15:38:55, 3.94s/it]
5%|โ | 710/15000 [36:17<15:38:55, 3.94s/it]
5%|โ | 711/15000 [36:18<12:51:25, 3.24s/it]
5%|โ | 711/15000 [36:18<12:51:25, 3.24s/it]
5%|โ | 712/15000 [36:20<10:51:51, 2.74s/it]
5%|โ | 712/15000 [36:20<10:51:51, 2.74s/it]
5%|โ | 713/15000 [36:21<9:25:19, 2.37s/it]
5%|โ | 713/15000 [36:21<9:25:19, 2.37s/it]
5%|โ | 714/15000 [36:23<8:16:03, 2.08s/it]
5%|โ | 714/15000 [36:23<8:16:03, 2.08s/it]
5%|โ | 715/15000 [36:24<7:28:03, 1.88s/it]
5%|โ | 715/15000 [36:24<7:28:03, 1.88s/it]
5%|โ | 716/15000 [36:26<6:54:02, 1.74s/it]
5%|โ | 716/15000 [36:26<6:54:02, 1.74s/it]
5%|โ | 717/15000 [36:27<6:30:51, 1.64s/it]
5%|โ | 717/15000 [36:27<6:30:51, 1.64s/it]
5%|โ | 718/15000 [36:28<6:10:05, 1.55s/it]
5%|โ | 718/15000 [36:28<6:10:05, 1.55s/it]
5%|โ | 719/15000 [36:30<5:45:05, 1.45s/it]
5%|โ | 719/15000 [36:30<5:45:05, 1.45s/it]
5%|โ | 720/15000 [36:31<5:30:09, 1.39s/it]
5%|โ | 720/15000 [36:31<5:30:09, 1.39s/it]
5%|โ | 721/15000 [36:32<5:16:35, 1.33s/it]
5%|โ | 721/15000 [36:32<5:16:35, 1.33s/it]
5%|โ | 722/15000 [36:33<5:07:19, 1.29s/it]
5%|โ | 722/15000 [36:33<5:07:19, 1.29s/it]
5%|โ | 723/15000 [36:34<5:00:54, 1.26s/it]
5%|โ | 723/15000 [36:34<5:00:54, 1.26s/it]
5%|โ | 724/15000 [36:36<4:53:48, 1.23s/it]
5%|โ | 724/15000 [36:36<4:53:48, 1.23s/it]
5%|โ | 725/15000 [36:37<4:46:37, 1.20s/it]
5%|โ | 725/15000 [36:37<4:46:37, 1.20s/it]
5%|โ | 726/15000 [36:38<4:32:38, 1.15s/it]
5%|โ | 726/15000 [36:38<4:32:38, 1.15s/it]
5%|โ | 727/15000 [36:39<4:22:55, 1.11s/it]
5%|โ | 727/15000 [36:39<4:22:55, 1.11s/it]
5%|โ | 728/15000 [36:40<4:15:53, 1.08s/it]
5%|โ | 728/15000 [36:40<4:15:53, 1.08s/it]
5%|โ | 729/15000 [36:41<4:10:51, 1.05s/it]
5%|โ | 729/15000 [36:41<4:10:51, 1.05s/it]
5%|โ | 730/15000 [36:42<4:07:24, 1.04s/it]
5%|โ | 730/15000 [36:42<4:07:24, 1.04s/it]
5%|โ | 731/15000 [36:43<4:05:25, 1.03s/it]
5%|โ | 731/15000 [36:43<4:05:25, 1.03s/it]
5%|โ | 732/15000 [36:44<4:02:10, 1.02s/it]
5%|โ | 732/15000 [36:44<4:02:10, 1.02s/it]
5%|โ | 733/15000 [36:45<3:57:13, 1.00it/s]
5%|โ | 733/15000 [36:45<3:57:13, 1.00it/s]
5%|โ | 734/15000 [36:46<3:43:42, 1.06it/s]
5%|โ | 734/15000 [36:46<3:43:42, 1.06it/s]
5%|โ | 735/15000 [36:46<3:34:38, 1.11it/s]
5%|โ | 735/15000 [36:46<3:34:38, 1.11it/s]
5%|โ | 736/15000 [36:47<3:30:30, 1.13it/s]
5%|โ | 736/15000 [36:47<3:30:30, 1.13it/s]
5%|โ | 737/15000 [36:48<3:25:14, 1.16it/s]
5%|โ | 737/15000 [36:48<3:25:14, 1.16it/s]
5%|โ | 738/15000 [36:49<3:21:27, 1.18it/s]
5%|โ | 738/15000 [36:49<3:21:27, 1.18it/s]
5%|โ | 739/15000 [36:50<3:18:29, 1.20it/s]
5%|โ | 739/15000 [36:50<3:18:29, 1.20it/s]
5%|โ | 740/15000 [36:50<3:12:08, 1.24it/s]
5%|โ | 740/15000 [36:50<3:12:08, 1.24it/s]
5%|โ | 741/15000 [36:51<2:59:05, 1.33it/s]
5%|โ | 741/15000 [36:51<2:59:05, 1.33it/s]
5%|โ | 742/15000 [36:52<2:50:10, 1.40it/s]
5%|โ | 742/15000 [36:52<2:50:10, 1.40it/s]
5%|โ | 743/15000 [36:52<2:43:55, 1.45it/s]
5%|โ | 743/15000 [36:52<2:43:55, 1.45it/s]
5%|โ | 744/15000 [36:53<2:39:39, 1.49it/s]
5%|โ | 744/15000 [36:53<2:39:39, 1.49it/s]
5%|โ | 745/15000 [36:53<2:36:22, 1.52it/s]
5%|โ | 745/15000 [36:53<2:36:22, 1.52it/s]
5%|โ | 746/15000 [36:54<2:31:20, 1.57it/s]
5%|โ | 746/15000 [36:54<2:31:20, 1.57it/s]
5%|โ | 747/15000 [36:55<2:26:04, 1.63it/s]
5%|โ | 747/15000 [36:55<2:26:04, 1.63it/s]
5%|โ | 748/15000 [36:55<2:12:48, 1.79it/s]
5%|โ | 748/15000 [36:55<2:12:48, 1.79it/s]
5%|โ | 749/15000 [36:55<2:02:06, 1.95it/s]
5%|โ | 749/15000 [36:55<2:02:06, 1.95it/s]
5%|โ | 750/15000 [36:57<3:37:45, 1.09it/s]
5%|โ | 750/15000 [36:57<3:37:45, 1.09it/s]
5%|โ | 751/15000 [37:03<9:01:52, 2.28s/it]
5%|โ | 751/15000 [37:03<9:01:52, 2.28s/it]
5%|โ | 752/15000 [37:06<10:26:10, 2.64s/it]
5%|โ | 752/15000 [37:06<10:26:10, 2.64s/it]
5%|โ | 753/15000 [37:09<10:27:45, 2.64s/it]
5%|โ | 753/15000 [37:09<10:27:45, 2.64s/it]
5%|โ | 754/15000 [37:11<10:09:37, 2.57s/it]
5%|โ | 754/15000 [37:11<10:09:37, 2.57s/it]
5%|โ | 755/15000 [37:13<9:40:58, 2.45s/it]
5%|โ | 755/15000 [37:13<9:40:58, 2.45s/it]
5%|โ | 756/15000 [37:15<9:09:09, 2.31s/it]
5%|โ | 756/15000 [37:15<9:09:09, 2.31s/it]
5%|โ | 757/15000 [37:17<8:44:49, 2.21s/it]
5%|โ | 757/15000 [37:17<8:44:49, 2.21s/it]
5%|โ | 758/15000 [37:19<8:26:02, 2.13s/it]
5%|โ | 758/15000 [37:19<8:26:02, 2.13s/it]
5%|โ | 759/15000 [37:21<8:04:02, 2.04s/it]
5%|โ | 759/15000 [37:21<8:04:02, 2.04s/it]
5%|โ | 760/15000 [37:23<7:45:51, 1.96s/it]
5%|โ | 760/15000 [37:23<7:45:51, 1.96s/it]
5%|โ | 761/15000 [37:25<7:29:51, 1.90s/it]
5%|โ | 761/15000 [37:25<7:29:51, 1.90s/it]
5%|โ | 762/15000 [37:26<7:08:43, 1.81s/it]
5%|โ | 762/15000 [37:26<7:08:43, 1.81s/it]
5%|โ | 763/15000 [37:28<6:52:29, 1.74s/it]
5%|โ | 763/15000 [37:28<6:52:29, 1.74s/it]
5%|โ | 764/15000 [37:29<6:37:10, 1.67s/it]
5%|โ | 764/15000 [37:29<6:37:10, 1.67s/it]
5%|โ | 765/15000 [37:31<6:18:48, 1.60s/it]
5%|โ | 765/15000 [37:31<6:18:48, 1.60s/it]
5%|โ | 766/15000 [37:32<6:05:45, 1.54s/it]
5%|โ | 766/15000 [37:32<6:05:45, 1.54s/it]
5%|โ | 767/15000 [37:34<5:56:33, 1.50s/it]
5%|โ | 767/15000 [37:34<5:56:33, 1.50s/it]
5%|โ | 768/15000 [37:35<5:47:22, 1.46s/it]
5%|โ | 768/15000 [37:35<5:47:22, 1.46s/it]
5%|โ | 769/15000 [37:36<5:39:04, 1.43s/it]
5%|โ | 769/15000 [37:36<5:39:04, 1.43s/it]
5%|โ | 770/15000 [37:38<5:22:20, 1.36s/it]
5%|โ | 770/15000 [37:38<5:22:20, 1.36s/it]
5%|โ | 771/15000 [37:39<5:11:00, 1.31s/it]
5%|โ | 771/15000 [37:39<5:11:00, 1.31s/it]
5%|โ | 772/15000 [37:40<5:02:32, 1.28s/it]
5%|โ | 772/15000 [37:40<5:02:32, 1.28s/it]
5%|โ | 773/15000 [37:41<4:57:13, 1.25s/it]
5%|โ | 773/15000 [37:41<4:57:13, 1.25s/it]
5%|โ | 774/15000 [37:42<4:50:56, 1.23s/it]
5%|โ | 774/15000 [37:42<4:50:56, 1.23s/it]
5%|โ | 775/15000 [37:43<4:44:20, 1.20s/it]
5%|โ | 775/15000 [37:44<4:44:20, 1.20s/it]
5%|โ | 776/15000 [37:45<4:30:28, 1.14s/it]
5%|โ | 776/15000 [37:45<4:30:28, 1.14s/it]
5%|โ | 777/15000 [37:46<4:21:05, 1.10s/it]
5%|โ | 777/15000 [37:46<4:21:05, 1.10s/it]
5%|โ | 778/15000 [37:47<4:14:21, 1.07s/it]
5%|โ | 778/15000 [37:47<4:14:21, 1.07s/it]
5%|โ | 779/15000 [37:48<4:10:29, 1.06s/it]
5%|โ | 779/15000 [37:48<4:10:29, 1.06s/it]
5%|โ | 780/15000 [37:49<4:06:36, 1.04s/it]
5%|โ | 780/15000 [37:49<4:06:36, 1.04s/it]
5%|โ | 781/15000 [37:50<4:04:21, 1.03s/it]
5%|โ | 781/15000 [37:50<4:04:21, 1.03s/it]
5%|โ | 782/15000 [37:51<3:59:42, 1.01s/it]
5%|โ | 782/15000 [37:51<3:59:42, 1.01s/it]
5%|โ | 783/15000 [37:51<3:54:48, 1.01it/s]
5%|โ | 783/15000 [37:51<3:54:48, 1.01it/s]
5%|โ | 784/15000 [37:52<3:42:02, 1.07it/s]
5%|โ | 784/15000 [37:52<3:42:02, 1.07it/s]
5%|โ | 785/15000 [37:53<3:33:09, 1.11it/s]
5%|โ | 785/15000 [37:53<3:33:09, 1.11it/s]
5%|โ | 786/15000 [37:54<3:26:53, 1.15it/s]
5%|โ | 786/15000 [37:54<3:26:53, 1.15it/s]
5%|โ | 787/15000 [37:55<3:23:09, 1.17it/s]
5%|โ | 787/15000 [37:55<3:23:09, 1.17it/s]
5%|โ | 788/15000 [37:56<3:20:01, 1.18it/s]
5%|โ | 788/15000 [37:56<3:20:01, 1.18it/s]
5%|โ | 789/15000 [37:56<3:17:25, 1.20it/s]
5%|โ | 789/15000 [37:56<3:17:25, 1.20it/s]
5%|โ | 790/15000 [37:57<3:14:23, 1.22it/s]
5%|โ | 790/15000 [37:57<3:14:23, 1.22it/s]
5%|โ | 791/15000 [37:58<3:09:00, 1.25it/s]
5%|โ | 791/15000 [37:58<3:09:00, 1.25it/s]
5%|โ | 792/15000 [37:59<2:56:51, 1.34it/s]
5%|โ | 792/15000 [37:59<2:56:51, 1.34it/s]
5%|โ | 793/15000 [37:59<2:48:16, 1.41it/s]
5%|โ | 793/15000 [37:59<2:48:16, 1.41it/s]
5%|โ | 794/15000 [38:00<2:42:19, 1.46it/s]
5%|โ | 794/15000 [38:00<2:42:19, 1.46it/s]
5%|โ | 795/15000 [38:00<2:38:03, 1.50it/s]
5%|โ | 795/15000 [38:00<2:38:03, 1.50it/s]
5%|โ | 796/15000 [38:01<2:32:15, 1.55it/s]
5%|โ | 796/15000 [38:01<2:32:15, 1.55it/s]
5%|โ | 797/15000 [38:02<2:26:17, 1.62it/s]
5%|โ | 797/15000 [38:02<2:26:17, 1.62it/s]
5%|โ | 798/15000 [38:02<2:13:03, 1.78it/s]
5%|โ | 798/15000 [38:02<2:13:03, 1.78it/s]
5%|โ | 799/15000 [38:02<2:00:05, 1.97it/s]
5%|โ | 799/15000 [38:02<2:00:05, 1.97it/s]
5%|โ | 800/15000 [38:04<3:30:12, 1.13it/s]
5%|โ | 800/15000 [38:04<3:30:12, 1.13it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction:
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction:
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction:
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
{'eval_loss': nan, 'eval_cer': 1.0, 'eval_wer': 1.0, 'eval_runtime': 170.5786, 'eval_samples_per_second': 18.384, 'eval_steps_per_second': 1.149, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005916827586206897, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005916413793103447, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005916, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005915586206896551, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005915172413793103, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005914758620689654, 'epoch': 0.56}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005914344827586207, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005913931034482758, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000591351724137931, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005913103448275861, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005912689655172413, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005912275862068966, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005911862068965517, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005911448275862069, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000591103448275862, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005910620689655172, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005910206896551724, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005909793103448275, 'epoch': 0.57}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005909379310344827, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005908965517241379, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000590855172413793, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005908137931034482, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005907724137931034, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005907310344827586, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005906896551724138, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005906482758620689, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005906068965517241, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005905655172413793, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005905241379310344, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005904827586206896, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005904413793103448, 'epoch': 0.58}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005903999999999999, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005903586206896551, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005903172413793102, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005902758620689655, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005902344827586207, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005901931034482758, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000590151724137931, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005901103448275861, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005900689655172414, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005900275862068965, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005899862068965517, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005899448275862068, 'epoch': 0.59}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005899034482758621, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005898620689655171, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005898206896551724, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005897793103448275, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005897379310344827, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005896965517241379, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000589655172413793, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005896137931034483, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005895724137931034, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005895310344827586, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005894896551724137, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005894482758620689, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000589406896551724, 'epoch': 0.6}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005893655172413793, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005893241379310344, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005892827586206896, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005892413793103449, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005891999999999999, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005891586206896552, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005891172413793103, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005890758620689655, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005890344827586206, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005889931034482758, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000588951724137931, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005889103448275861, 'epoch': 0.61}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005888689655172413, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005888275862068965, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005887862068965516, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005887448275862068, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005887034482758621, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005886620689655172, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005886206896551724, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005885793103448275, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005885379310344827, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005884965517241379, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005884551724137931, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005884137931034482, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005883724137931034, 'epoch': 0.62}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005883310344827585, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005882896551724138, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005882482758620688, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005882068965517241, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005881655172413793, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005881241379310344, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005880827586206896, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005880413793103448, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000588, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005879586206896551, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005879172413793103, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005878758620689654, 'epoch': 0.63}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005878344827586207, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005877931034482757, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000587751724137931, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005877103448275862, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005876689655172413, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005876275862068965, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005875862068965516, 'epoch': 0.64}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:04, 2.99it/s][A
2%|โ | 3/196 [00:01<01:42, 1.87it/s][A
2%|โ | 4/196 [00:02<02:07, 1.50it/s][A
3%|โ | 5/196 [00:03<02:21, 1.35it/s][A
3%|โ | 6/196 [00:04<02:39, 1.19it/s][A
4%|โ | 7/196 [00:05<02:47, 1.13it/s][A
4%|โ | 8/196 [00:06<02:50, 1.10it/s][A
5%|โ | 9/196 [00:08<03:41, 1.19s/it][A
5%|โ | 10/196 [00:09<04:21, 1.41s/it][A
6%|โ | 11/196 [00:12<05:01, 1.63s/it][A
6%|โ | 12/196 [00:14<05:18, 1.73s/it][A
7%|โ | 13/196 [00:15<04:37, 1.52s/it][A
7%|โ | 14/196 [00:15<03:52, 1.28s/it][A
8%|โ | 15/196 [00:16<03:15, 1.08s/it][A
8%|โ | 16/196 [00:17<03:03, 1.02s/it][A
9%|โ | 17/196 [00:18<02:56, 1.01it/s][A
9%|โ | 18/196 [00:19<03:16, 1.10s/it][A
10%|โ | 19/196 [00:21<04:09, 1.41s/it][A
10%|โ | 20/196 [00:23<04:27, 1.52s/it][A
11%|โ | 21/196 [00:25<04:34, 1.57s/it][A
11%|โ | 22/196 [00:26<04:22, 1.51s/it][A
12%|โโ | 23/196 [00:27<04:00, 1.39s/it][A
12%|โโ | 24/196 [00:28<03:12, 1.12s/it][A
13%|โโ | 25/196 [00:28<02:44, 1.04it/s][A
13%|โโ | 26/196 [00:29<02:24, 1.17it/s][A
14%|โโ | 27/196 [00:29<02:13, 1.26it/s][A
14%|โโ | 28/196 [00:30<02:07, 1.32it/s][A
15%|โโ | 29/196 [00:31<02:06, 1.32it/s][A
15%|โโ | 30/196 [00:32<02:07, 1.30it/s][A
16%|โโ | 31/196 [00:32<01:56, 1.41it/s][A
16%|โโ | 32/196 [00:33<01:51, 1.47it/s][A
17%|โโ | 33/196 [00:34<02:08, 1.27it/s][A
17%|โโ | 34/196 [00:35<02:45, 1.02s/it][A
18%|โโ | 35/196 [00:37<02:52, 1.07s/it][A
18%|โโ | 36/196 [00:38<03:14, 1.22s/it][A
19%|โโ | 37/196 [00:39<03:11, 1.21s/it][A
19%|โโ | 38/196 [00:40<02:56, 1.11s/it][A
20%|โโ | 39/196 [00:41<02:43, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:30, 1.04it/s][A
21%|โโ | 41/196 [00:43<02:17, 1.12it/s][A
21%|โโโ | 42/196 [00:43<02:08, 1.19it/s][A
22%|โโโ | 43/196 [00:44<02:07, 1.20it/s][A
22%|โโโ | 44/196 [00:45<02:04, 1.22it/s][A
23%|โโโ | 45/196 [00:46<01:55, 1.31it/s][A
23%|โโโ | 46/196 [00:46<01:47, 1.40it/s][A
24%|โโโ | 47/196 [00:47<01:47, 1.39it/s][A
24%|โโโ | 48/196 [00:48<01:41, 1.45it/s][A
25%|โโโ | 49/196 [00:48<01:39, 1.48it/s][A
26%|โโโ | 50/196 [00:49<01:37, 1.49it/s][A
26%|โโโ | 51/196 [00:50<01:34, 1.53it/s][A
27%|โโโ | 52/196 [00:50<01:34, 1.53it/s][A
27%|โโโ | 53/196 [00:51<01:39, 1.44it/s][A
28%|โโโ | 54/196 [00:52<01:37, 1.46it/s][A
28%|โโโ | 55/196 [00:53<01:47, 1.31it/s][A
29%|โโโ | 56/196 [00:54<01:56, 1.20it/s][A
29%|โโโ | 57/196 [00:55<02:04, 1.12it/s][A
30%|โโโ | 58/196 [00:56<02:07, 1.08it/s][A
30%|โโโ | 59/196 [00:56<02:05, 1.09it/s][A
31%|โโโ | 60/196 [00:57<01:54, 1.19it/s][A
31%|โโโ | 61/196 [00:58<01:44, 1.29it/s][A
32%|โโโโ | 62/196 [00:58<01:42, 1.31it/s][A
32%|โโโโ | 63/196 [00:59<01:42, 1.30it/s][A
33%|โโโโ | 64/196 [01:00<01:41, 1.30it/s][A
33%|โโโโ | 65/196 [01:01<01:39, 1.32it/s][A
34%|โโโโ | 66/196 [01:02<01:43, 1.26it/s][A
34%|โโโโ | 67/196 [01:03<01:47, 1.20it/s][A
35%|โโโโ | 68/196 [01:04<02:01, 1.05it/s][A
35%|โโโโ | 69/196 [01:05<02:02, 1.03it/s][A
36%|โโโโ | 70/196 [01:06<01:53, 1.11it/s][A
36%|โโโโ | 71/196 [01:06<01:45, 1.18it/s][A
37%|โโโโ | 72/196 [01:07<01:37, 1.27it/s][A
37%|โโโโ | 73/196 [01:08<01:29, 1.38it/s][A
38%|โโโโ | 74/196 [01:08<01:22, 1.48it/s][A
38%|โโโโ | 75/196 [01:09<01:20, 1.51it/s][A
39%|โโโโ | 76/196 [01:09<01:18, 1.54it/s][A
39%|โโโโ | 77/196 [01:10<01:21, 1.47it/s][A
40%|โโโโ | 78/196 [01:11<01:26, 1.37it/s][A
40%|โโโโ | 79/196 [01:12<01:23, 1.41it/s][A
41%|โโโโ | 80/196 [01:13<01:28, 1.31it/s][A
41%|โโโโโ | 81/196 [01:13<01:30, 1.27it/s][A
42%|โโโโโ | 82/196 [01:14<01:27, 1.30it/s][A
42%|โโโโโ | 83/196 [01:15<01:29, 1.27it/s][A
43%|โโโโโ | 84/196 [01:16<01:30, 1.24it/s][A
43%|โโโโโ | 85/196 [01:17<01:29, 1.24it/s][A
44%|โโโโโ | 86/196 [01:17<01:31, 1.20it/s][A
44%|โโโโโ | 87/196 [01:18<01:28, 1.23it/s][A
45%|โโโโโ | 88/196 [01:19<01:31, 1.18it/s][A
45%|โโโโโ | 89/196 [01:20<01:33, 1.14it/s][A
46%|โโโโโ | 90/196 [01:21<01:30, 1.17it/s][A
46%|โโโโโ | 91/196 [01:22<01:26, 1.21it/s][A
47%|โโโโโ | 92/196 [01:22<01:23, 1.25it/s][A
47%|โโโโโ | 93/196 [01:23<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:24<01:27, 1.16it/s][A
48%|โโโโโ | 95/196 [01:25<01:23, 1.21it/s][A
49%|โโโโโ | 96/196 [01:26<01:26, 1.15it/s][A
49%|โโโโโ | 97/196 [01:27<01:24, 1.17it/s][A
50%|โโโโโ | 98/196 [01:28<01:26, 1.13it/s][A
51%|โโโโโ | 99/196 [01:28<01:18, 1.24it/s][A
51%|โโโโโ | 100/196 [01:29<01:09, 1.39it/s][A
52%|โโโโโโ | 101/196 [01:29<01:04, 1.47it/s][A
52%|โโโโโโ | 102/196 [01:30<01:07, 1.38it/s][A
53%|โโโโโโ | 103/196 [01:31<01:12, 1.28it/s][A
53%|โโโโโโ | 104/196 [01:32<01:22, 1.11it/s][A
54%|โโโโโโ | 105/196 [01:33<01:24, 1.08it/s][A
54%|โโโโโโ | 106/196 [01:34<01:23, 1.07it/s][A
55%|โโโโโโ | 107/196 [01:35<01:18, 1.13it/s][A
55%|โโโโโโ | 108/196 [01:36<01:09, 1.27it/s][A
56%|โโโโโโ | 109/196 [01:36<01:04, 1.35it/s][A
56%|โโโโโโ | 110/196 [01:37<01:01, 1.40it/s][A
57%|โโโโโโ | 111/196 [01:38<01:00, 1.40it/s][A
57%|โโโโโโ | 112/196 [01:38<01:02, 1.35it/s][A
58%|โโโโโโ | 113/196 [01:39<01:03, 1.32it/s][A
58%|โโโโโโ | 114/196 [01:40<00:57, 1.42it/s][A
59%|โโโโโโ | 115/196 [01:40<00:55, 1.46it/s][A
59%|โโโโโโ | 116/196 [01:41<00:54, 1.48it/s][A
60%|โโโโโโ | 117/196 [01:42<00:50, 1.55it/s][A
60%|โโโโโโ | 118/196 [01:42<00:45, 1.71it/s][A
61%|โโโโโโ | 119/196 [01:43<00:47, 1.63it/s][A
61%|โโโโโโ | 120/196 [01:44<00:49, 1.54it/s][A
62%|โโโโโโโ | 121/196 [01:44<00:50, 1.50it/s][A
62%|โโโโโโโ | 122/196 [01:45<00:50, 1.46it/s][A
63%|โโโโโโโ | 123/196 [01:46<00:49, 1.47it/s][A
63%|โโโโโโโ | 124/196 [01:46<00:48, 1.48it/s][A
64%|โโโโโโโ | 125/196 [01:47<00:48, 1.46it/s][A
64%|โโโโโโโ | 126/196 [01:48<00:54, 1.29it/s][A
65%|โโโโโโโ | 127/196 [01:49<00:53, 1.29it/s][A
65%|โโโโโโโ | 128/196 [01:49<00:51, 1.32it/s][A
66%|โโโโโโโ | 129/196 [01:50<00:49, 1.35it/s][A
66%|โโโโโโโ | 130/196 [01:51<00:48, 1.36it/s][A
67%|โโโโโโโ | 131/196 [01:52<00:47, 1.37it/s][A
67%|โโโโโโโ | 132/196 [01:52<00:43, 1.46it/s][A
68%|โโโโโโโ | 133/196 [01:53<00:42, 1.48it/s][A
68%|โโโโโโโ | 134/196 [01:54<00:44, 1.40it/s][A
69%|โโโโโโโ | 135/196 [01:54<00:42, 1.43it/s][A
69%|โโโโโโโ | 136/196 [01:55<00:41, 1.46it/s][A
70%|โโโโโโโ | 137/196 [01:56<00:40, 1.47it/s][A
70%|โโโโโโโ | 138/196 [01:56<00:39, 1.47it/s][A
71%|โโโโโโโ | 139/196 [01:57<00:39, 1.45it/s][A
71%|โโโโโโโโ | 140/196 [01:58<00:37, 1.47it/s][A
72%|โโโโโโโโ | 141/196 [01:58<00:37, 1.47it/s][A
72%|โโโโโโโโ | 142/196 [01:59<00:37, 1.43it/s][A
73%|โโโโโโโโ | 143/196 [02:00<00:39, 1.33it/s][A
73%|โโโโโโโโ | 144/196 [02:01<00:36, 1.42it/s][A
74%|โโโโโโโโ | 145/196 [02:01<00:33, 1.54it/s][A
74%|โโโโโโโโ | 146/196 [02:02<00:30, 1.63it/s][A
75%|โโโโโโโโ | 147/196 [02:02<00:30, 1.62it/s][A
76%|โโโโโโโโ | 148/196 [02:03<00:29, 1.60it/s][A
76%|โโโโโโโโ | 149/196 [02:03<00:28, 1.67it/s][A
77%|โโโโโโโโ | 150/196 [02:04<00:29, 1.57it/s][A
77%|โโโโโโโโ | 151/196 [02:05<00:30, 1.49it/s][A
78%|โโโโโโโโ | 152/196 [02:06<00:29, 1.51it/s][A
78%|โโโโโโโโ | 153/196 [02:06<00:28, 1.52it/s][A
79%|โโโโโโโโ | 154/196 [02:07<00:28, 1.50it/s][A
79%|โโโโโโโโ | 155/196 [02:08<00:29, 1.40it/s][A
80%|โโโโโโโโ | 156/196 [02:09<00:32, 1.22it/s][A
80%|โโโโโโโโ | 157/196 [02:10<00:34, 1.13it/s][A
81%|โโโโโโโโ | 158/196 [02:10<00:30, 1.26it/s][A
81%|โโโโโโโโ | 159/196 [02:11<00:27, 1.37it/s][A
82%|โโโโโโโโโ | 160/196 [02:12<00:25, 1.43it/s][A
82%|โโโโโโโโโ | 161/196 [02:12<00:24, 1.42it/s][A
83%|โโโโโโโโโ | 162/196 [02:13<00:23, 1.43it/s][A
83%|โโโโโโโโโ | 163/196 [02:14<00:22, 1.46it/s][A
84%|โโโโโโโโโ | 164/196 [02:14<00:21, 1.48it/s][A
84%|โโโโโโโโโ | 165/196 [02:15<00:21, 1.42it/s][A
85%|โโโโโโโโโ | 166/196 [02:16<00:20, 1.46it/s][A
85%|โโโโโโโโโ | 167/196 [02:16<00:19, 1.51it/s][A
86%|โโโโโโโโโ | 168/196 [02:17<00:17, 1.58it/s][A
86%|โโโโโโโโโ | 169/196 [02:18<00:17, 1.54it/s][A
87%|โโโโโโโโโ | 170/196 [02:18<00:18, 1.40it/s][A
87%|โโโโโโโโโ | 171/196 [02:19<00:17, 1.44it/s][A
88%|โโโโโโโโโ | 172/196 [02:20<00:17, 1.36it/s][A
88%|โโโโโโโโโ | 173/196 [02:21<00:16, 1.38it/s][A
89%|โโโโโโโโโ | 174/196 [02:21<00:16, 1.33it/s][A
89%|โโโโโโโโโ | 175/196 [02:23<00:19, 1.10it/s][A
90%|โโโโโโโโโ | 176/196 [02:25<00:27, 1.38s/it][A
90%|โโโโโโโโโ | 177/196 [02:27<00:30, 1.58s/it][A
91%|โโโโโโโโโ | 178/196 [02:29<00:31, 1.73s/it][A
91%|โโโโโโโโโโ| 179/196 [02:31<00:31, 1.85s/it][A
92%|โโโโโโโโโโ| 180/196 [02:32<00:23, 1.50s/it][A
92%|โโโโโโโโโโ| 181/196 [02:33<00:19, 1.28s/it][A
93%|โโโโโโโโโโ| 182/196 [02:34<00:15, 1.10s/it][A
93%|โโโโโโโโโโ| 183/196 [02:35<00:14, 1.12s/it][A
94%|โโโโโโโโโโ| 184/196 [02:35<00:11, 1.03it/s][A
94%|โโโโโโโโโโ| 185/196 [02:36<00:10, 1.06it/s][A
95%|โโโโโโโโโโ| 186/196 [02:37<00:09, 1.03it/s][A
95%|โโโโโโโโโโ| 187/196 [02:38<00:08, 1.11it/s][A
96%|โโโโโโโโโโ| 188/196 [02:39<00:06, 1.21it/s][A
96%|โโโโโโโโโโ| 189/196 [02:39<00:05, 1.26it/s][A
97%|โโโโโโโโโโ| 190/196 [02:40<00:04, 1.33it/s][A
97%|โโโโโโโโโโ| 191/196 [02:41<00:03, 1.43it/s][A
98%|โโโโโโโโโโ| 192/196 [02:41<00:02, 1.41it/s][A
98%|โโโโโโโโโโ| 193/196 [02:42<00:02, 1.41it/s][A
99%|โโโโโโโโโโ| 194/196 [02:43<00:01, 1.42it/s][A
99%|โโโโโโโโโโ| 195/196 [02:43<00:00, 1.46it/s][A
100%|โโโโโโโโโโ| 196/196 [02:44<00:00, 1.67it/s][A
[A
5%|โ | 800/15000 [40:54<3:30:12, 1.13it/s]
100%|โโโโโโโโโโ| 196/196 [02:48<00:00, 1.67it/s][A
[A
5%|โ | 801/15000 [41:00<210:46:14, 53.44s/it]
5%|โ | 801/15000 [41:00<210:46:14, 53.44s/it]
5%|โ | 802/15000 [41:03<150:54:08, 38.26s/it]
5%|โ | 802/15000 [41:03<150:54:08, 38.26s/it]
5%|โ | 803/15000 [41:06<108:36:41, 27.54s/it]
5%|โ | 803/15000 [41:06<108:36:41, 27.54s/it]
5%|โ | 804/15000 [41:08<78:35:24, 19.93s/it]
5%|โ | 804/15000 [41:08<78:35:24, 19.93s/it]
5%|โ | 805/15000 [41:10<57:19:36, 14.54s/it]
5%|โ | 805/15000 [41:10<57:19:36, 14.54s/it]
5%|โ | 806/15000 [41:12<42:24:23, 10.76s/it]
5%|โ | 806/15000 [41:12<42:24:23, 10.76s/it]
5%|โ | 807/15000 [41:13<31:48:54, 8.07s/it]
5%|โ | 807/15000 [41:13<31:48:54, 8.07s/it]
5%|โ | 808/15000 [41:15<24:19:31, 6.17s/it]
5%|โ | 808/15000 [41:15<24:19:31, 6.17s/it]
5%|โ | 809/15000 [41:17<18:54:55, 4.80s/it]
5%|โ | 809/15000 [41:17<18:54:55, 4.80s/it]
5%|โ | 810/15000 [41:18<15:07:28, 3.84s/it]
5%|โ | 810/15000 [41:18<15:07:28, 3.84s/it]
5%|โ | 811/15000 [41:20<12:27:29, 3.16s/it]
5%|โ | 811/15000 [41:20<12:27:29, 3.16s/it]
5%|โ | 812/15000 [41:21<10:31:00, 2.67s/it]
5%|โ | 812/15000 [41:21<10:31:00, 2.67s/it]
5%|โ | 813/15000 [41:23<9:02:27, 2.29s/it]
5%|โ | 813/15000 [41:23<9:02:27, 2.29s/it]
5%|โ | 814/15000 [41:24<7:59:34, 2.03s/it]
5%|โ | 814/15000 [41:24<7:59:34, 2.03s/it]
5%|โ | 815/15000 [41:26<7:15:57, 1.84s/it]
5%|โ | 815/15000 [41:26<7:15:57, 1.84s/it]
5%|โ | 816/15000 [41:27<6:44:12, 1.71s/it]
5%|โ | 816/15000 [41:27<6:44:12, 1.71s/it]
5%|โ | 817/15000 [41:28<6:18:13, 1.60s/it]
5%|โ | 817/15000 [41:28<6:18:13, 1.60s/it]
5%|โ | 818/15000 [41:30<5:49:52, 1.48s/it]
5%|โ | 818/15000 [41:30<5:49:52, 1.48s/it]
5%|โ | 819/15000 [41:31<5:29:41, 1.39s/it]
5%|โ | 819/15000 [41:31<5:29:41, 1.39s/it]
5%|โ | 820/15000 [41:32<5:15:54, 1.34s/it]
5%|โ | 820/15000 [41:32<5:15:54, 1.34s/it]
5%|โ | 821/15000 [41:33<5:05:33, 1.29s/it]
5%|โ | 821/15000 [41:33<5:05:33, 1.29s/it]
5%|โ | 822/15000 [41:34<4:58:49, 1.26s/it]
5%|โ | 822/15000 [41:34<4:58:49, 1.26s/it]
5%|โ | 823/15000 [41:36<4:53:50, 1.24s/it]
5%|โ | 823/15000 [41:36<4:53:50, 1.24s/it]
5%|โ | 824/15000 [41:37<4:47:44, 1.22s/it]
5%|โ | 824/15000 [41:37<4:47:44, 1.22s/it]
6%|โ | 825/15000 [41:38<4:41:40, 1.19s/it]
6%|โ | 825/15000 [41:38<4:41:40, 1.19s/it]
6%|โ | 826/15000 [41:39<4:28:42, 1.14s/it]
6%|โ | 826/15000 [41:39<4:28:42, 1.14s/it]
6%|โ | 827/15000 [41:40<4:19:42, 1.10s/it]
6%|โ | 827/15000 [41:40<4:19:42, 1.10s/it]
6%|โ | 828/15000 [41:41<4:12:47, 1.07s/it]
6%|โ | 828/15000 [41:41<4:12:47, 1.07s/it]
6%|โ | 829/15000 [41:42<4:08:10, 1.05s/it]
6%|โ | 829/15000 [41:42<4:08:10, 1.05s/it]
6%|โ | 830/15000 [41:43<4:05:32, 1.04s/it]
6%|โ | 830/15000 [41:43<4:05:32, 1.04s/it]
6%|โ | 831/15000 [41:44<4:03:09, 1.03s/it]
6%|โ | 831/15000 [41:44<4:03:09, 1.03s/it]
6%|โ | 832/15000 [41:45<3:59:54, 1.02s/it]
6%|โ | 832/15000 [41:45<3:59:54, 1.02s/it]
6%|โ | 833/15000 [41:46<3:54:17, 1.01it/s]
6%|โ | 833/15000 [41:46<3:54:17, 1.01it/s]
6%|โ | 834/15000 [41:47<3:41:09, 1.07it/s]
6%|โ | 834/15000 [41:47<3:41:09, 1.07it/s]
6%|โ | 835/15000 [41:47<3:31:56, 1.11it/s]
6%|โ | 835/15000 [41:47<3:31:56, 1.11it/s]
6%|โ | 836/15000 [41:48<3:25:14, 1.15it/s]
6%|โ | 836/15000 [41:48<3:25:14, 1.15it/s]
6%|โ | 837/15000 [41:49<3:20:42, 1.18it/s]
6%|โ | 837/15000 [41:49<3:20:42, 1.18it/s]
6%|โ | 838/15000 [41:50<3:17:47, 1.19it/s]
6%|โ | 838/15000 [41:50<3:17:47, 1.19it/s]
6%|โ | 839/15000 [41:51<3:15:21, 1.21it/s]
6%|โ | 839/15000 [41:51<3:15:21, 1.21it/s]
6%|โ | 840/15000 [41:52<3:13:37, 1.22it/s]
6%|โ | 840/15000 [41:52<3:13:37, 1.22it/s]
6%|โ | 841/15000 [41:52<3:07:48, 1.26it/s]
6%|โ | 841/15000 [41:52<3:07:48, 1.26it/s]
6%|โ | 842/15000 [41:53<2:55:45, 1.34it/s]
6%|โ | 842/15000 [41:53<2:55:45, 1.34it/s]
6%|โ | 843/15000 [41:53<2:47:07, 1.41it/s]
6%|โ | 843/15000 [41:54<2:47:07, 1.41it/s]
6%|โ | 844/15000 [41:54<2:41:23, 1.46it/s]
6%|โ | 844/15000 [41:54<2:41:23, 1.46it/s]
6%|โ | 845/15000 [41:55<2:36:44, 1.51it/s]
6%|โ | 845/15000 [41:55<2:36:44, 1.51it/s]
6%|โ | 846/15000 [41:55<2:32:21, 1.55it/s]
6%|โ | 846/15000 [41:55<2:32:21, 1.55it/s]
6%|โ | 847/15000 [41:56<2:26:01, 1.62it/s]
6%|โ | 847/15000 [41:56<2:26:01, 1.62it/s]
6%|โ | 848/15000 [41:56<2:12:12, 1.78it/s]
6%|โ | 848/15000 [41:56<2:12:12, 1.78it/s]
6%|โ | 849/15000 [41:57<2:01:21, 1.94it/s]
6%|โ | 849/15000 [41:57<2:01:21, 1.94it/s]
6%|โ | 850/15000 [41:59<3:33:01, 1.11it/s]
6%|โ | 850/15000 [41:59<3:33:01, 1.11it/s]
6%|โ | 851/15000 [42:06<11:47:26, 3.00s/it]
6%|โ | 851/15000 [42:06<11:47:26, 3.00s/it]
6%|โ | 852/15000 [42:09<11:35:56, 2.95s/it]
6%|โ | 852/15000 [42:09<11:35:56, 2.95s/it]
6%|โ | 853/15000 [42:12<11:07:05, 2.83s/it]
6%|โ | 853/15000 [42:12<11:07:05, 2.83s/it]
6%|โ | 854/15000 [42:14<10:18:09, 2.62s/it]
6%|โ | 854/15000 [42:14<10:18:09, 2.62s/it]
6%|โ | 855/15000 [42:16<9:43:36, 2.48s/it]
6%|โ | 855/15000 [42:16<9:43:36, 2.48s/it]
6%|โ | 856/15000 [42:18<9:04:20, 2.31s/it]
6%|โ | 856/15000 [42:18<9:04:20, 2.31s/it]
6%|โ | 857/15000 [42:20<8:28:44, 2.16s/it]
6%|โ | 857/15000 [42:20<8:28:44, 2.16s/it]
6%|โ | 858/15000 [42:22<8:00:07, 2.04s/it]
6%|โ | 858/15000 [42:22<8:00:07, 2.04s/it]
6%|โ | 859/15000 [42:23<7:38:14, 1.94s/it]
6%|โ | 859/15000 [42:23<7:38:14, 1.94s/it]
6%|โ | 860/15000 [42:25<7:12:23, 1.83s/it]
6%|โ | 860/15000 [42:25<7:12:23, 1.83s/it]
6%|โ | 861/15000 [42:26<6:54:11, 1.76s/it]
6%|โ | 861/15000 [42:26<6:54:11, 1.76s/it]
6%|โ | 862/15000 [42:28<6:37:49, 1.69s/it]
6%|โ | 862/15000 [42:28<6:37:49, 1.69s/it]
6%|โ | 863/15000 [42:29<6:17:28, 1.60s/it]
6%|โ | 863/15000 [42:29<6:17:28, 1.60s/it]
6%|โ | 864/15000 [42:31<6:03:09, 1.54s/it]
6%|โ | 864/15000 [42:31<6:03:09, 1.54s/it]
6%|โ | 865/15000 [42:32<5:53:07, 1.50s/it]
6%|โ | 865/15000 [42:32<5:53:07, 1.50s/it]
6%|โ | 866/15000 [42:34<5:45:09, 1.47s/it]
6%|โ | 866/15000 [42:34<5:45:09, 1.47s/it]
6%|โ | 867/15000 [42:35<5:35:27, 1.42s/it]
6%|โ | 867/15000 [42:35<5:35:27, 1.42s/it]
6%|โ | 868/15000 [42:36<5:18:21, 1.35s/it]
6%|โ | 868/15000 [42:36<5:18:21, 1.35s/it]
6%|โ | 869/15000 [42:37<5:06:46, 1.30s/it]
6%|โ | 869/15000 [42:37<5:06:46, 1.30s/it]
6%|โ | 870/15000 [42:38<4:58:42, 1.27s/it]
6%|โ | 870/15000 [42:38<4:58:42, 1.27s/it]
6%|โ | 871/15000 [42:40<4:53:05, 1.24s/it]
6%|โ | 871/15000 [42:40<4:53:05, 1.24s/it]
6%|โ | 872/15000 [42:41<4:48:52, 1.23s/it]
6%|โ | 872/15000 [42:41<4:48:52, 1.23s/it]
6%|โ | 873/15000 [42:42<4:44:58, 1.21s/it]
6%|โ | 873/15000 [42:42<4:44:58, 1.21s/it]
6%|โ | 874/15000 [42:43<4:38:47, 1.18s/it]
6%|โ | 874/15000 [42:43<4:38:47, 1.18s/it]
6%|โ | 875/15000 [42:44<4:25:20, 1.13s/it]
6%|โ | 875/15000 [42:44<4:25:20, 1.13s/it]
6%|โ | 876/15000 [42:45<4:16:21, 1.09s/it]
6%|โ | 876/15000 [42:45<4:16:21, 1.09s/it]
6%|โ | 877/15000 [42:46<4:09:44, 1.06s/it]
6%|โ | 877/15000 [42:46<4:09:44, 1.06s/it]
6%|โ | 878/15000 [42:47<4:05:07, 1.04s/it]
6%|โ | 878/15000 [42:47<4:05:07, 1.04s/it]
6%|โ | 879/15000 [42:48<4:02:12, 1.03s/it]
6%|โ | 879/15000 [42:48<4:02:12, 1.03s/it]
6%|โ | 880/15000 [42:49<4:00:22, 1.02s/it]
6%|โ | 880/15000 [42:49<4:00:22, 1.02s/it]
6%|โ | 881/15000 [42:50<3:58:48, 1.01s/it]
6%|โ | 881/15000 [42:50<3:58:48, 1.01s/it]
6%|โ | 882/15000 [42:51<3:53:52, 1.01it/s]
6%|โ | 882/15000 [42:51<3:53:52, 1.01it/s]
6%|โ | 883/15000 [42:52<3:49:28, 1.03it/s]
6%|โ | 883/15000 [42:52<3:49:28, 1.03it/s]
6%|โ | 884/15000 [42:53<3:37:20, 1.08it/s]
6%|โ | 884/15000 [42:53<3:37:20, 1.08it/s]
6%|โ | 885/15000 [42:54<3:29:08, 1.12it/s]
6%|โ | 885/15000 [42:54<3:29:08, 1.12it/s]
6%|โ | 886/15000 [42:54<3:23:03, 1.16it/s]
6%|โ | 886/15000 [42:54<3:23:03, 1.16it/s]
6%|โ | 887/15000 [42:55<3:18:43, 1.18it/s]
6%|โ | 887/15000 [42:55<3:18:43, 1.18it/s]
6%|โ | 888/15000 [42:56<3:15:47, 1.20it/s]
6%|โ | 888/15000 [42:56<3:15:47, 1.20it/s]
6%|โ | 889/15000 [42:57<3:17:38, 1.19it/s]
6%|โ | 889/15000 [42:57<3:17:38, 1.19it/s]
6%|โ | 890/15000 [42:58<3:10:19, 1.24it/s]
6%|โ | 890/15000 [42:58<3:10:19, 1.24it/s]
6%|โ | 891/15000 [42:58<2:56:53, 1.33it/s]
6%|โ | 891/15000 [42:58<2:56:53, 1.33it/s]
6%|โ | 892/15000 [42:59<2:47:23, 1.40it/s]
6%|โ | 892/15000 [42:59<2:47:23, 1.40it/s]
6%|โ | 893/15000 [42:59<2:40:50, 1.46it/s]
6%|โ | 893/15000 [42:59<2:40:50, 1.46it/s]
6%|โ | 894/15000 [43:00<2:36:11, 1.51it/s]
6%|โ | 894/15000 [43:00<2:36:11, 1.51it/s]
6%|โ | 895/15000 [43:01<2:33:14, 1.53it/s]
6%|โ | 895/15000 [43:01<2:33:14, 1.53it/s]
6%|โ | 896/15000 [43:01<2:27:42, 1.59it/s]
6%|โ | 896/15000 [43:01<2:27:42, 1.59it/s]
6%|โ | 897/15000 [43:02<2:22:23, 1.65it/s]
6%|โ | 897/15000 [43:02<2:22:23, 1.65it/s]
6%|โ | 898/15000 [43:02<2:09:45, 1.81it/s]
6%|โ | 898/15000 [43:02<2:09:45, 1.81it/s]
6%|โ | 899/15000 [43:03<1:58:35, 1.98it/s]
6%|โ | 899/15000 [43:03<1:58:35, 1.98it/s]
6%|โ | 900/15000 [43:05<3:35:00, 1.09it/s]
6%|โ | 900/15000 [43:05<3:35:00, 1.09it/s]Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction:
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction:
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction:
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
{'eval_loss': nan, 'eval_cer': 1.0, 'eval_wer': 1.0, 'eval_runtime': 170.2328, 'eval_samples_per_second': 18.422, 'eval_steps_per_second': 1.151, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005875448275862069, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000587503448275862, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005874620689655172, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005874206896551723, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005873793103448275, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005873379310344827, 'epoch': 0.64}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005872965517241379, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005872551724137931, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005872137931034482, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005871724137931035, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005871310344827585, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005870896551724138, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005870482758620689, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005870068965517241, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005869655172413792, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005869241379310344, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005868827586206896, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005868413793103448, 'epoch': 0.65}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005868, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005867586206896551, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005867172413793103, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005866758620689654, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005866344827586207, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005865931034482758, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000586551724137931, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005865103448275862, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005864689655172413, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005864275862068965, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005863862068965517, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005863448275862068, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000586303448275862, 'epoch': 0.66}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005862620689655172, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005862206896551724, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005861793103448275, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005861379310344827, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005860965517241379, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000586055172413793, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005860137931034482, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005859724137931034, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005859310344827586, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005858896551724137, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005858482758620689, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000585806896551724, 'epoch': 0.67}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005857655172413793, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005857241379310344, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005856827586206896, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005856413793103448, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005855999999999999, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005855586206896552, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005855172413793102, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005854758620689655, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005854344827586206, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005853931034482758, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000585351724137931, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005853103448275862, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005852689655172414, 'epoch': 0.68}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005852275862068965, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005851862068965517, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005851448275862068, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005851034482758621, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005850620689655171, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005850206896551724, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005849793103448275, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005849379310344827, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005848965517241378, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000584855172413793, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005848137931034483, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005847724137931034, 'epoch': 0.69}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005847310344827586, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005846896551724137, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005846482758620689, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005846068965517241, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005845655172413793, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005845241379310344, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005844827586206896, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005844413793103448, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005843999999999999, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005843586206896552, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005843172413793103, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005842758620689655, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005842344827586206, 'epoch': 0.7}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005841931034482758, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000584151724137931, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005841103448275862, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005840689655172413, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005840275862068965, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005839862068965516, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005839448275862068, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000583903448275862, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005838620689655172, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005838206896551724, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005837793103448276, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005837379310344827, 'epoch': 0.71}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005836965517241379, 'epoch': 0.72}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005836551724137931, 'epoch': 0.72}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005836137931034482, 'epoch': 0.72}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005835724137931034, 'epoch': 0.72}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005835310344827585, 'epoch': 0.72}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005834896551724138, 'epoch': 0.72}
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0005834482758620688, 'epoch': 0.72}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:03, 3.05it/s][A
2%|โ | 3/196 [00:01<01:41, 1.90it/s][A
2%|โ | 4/196 [00:02<02:06, 1.52it/s][A
3%|โ | 5/196 [00:03<02:19, 1.36it/s][A
3%|โ | 6/196 [00:04<02:38, 1.20it/s][A
4%|โ | 7/196 [00:05<02:45, 1.14it/s][A
4%|โ | 8/196 [00:06<02:48, 1.12it/s][A
5%|โ | 9/196 [00:07<03:39, 1.18s/it][A
5%|โ | 10/196 [00:09<04:19, 1.39s/it][A
6%|โ | 11/196 [00:11<04:57, 1.61s/it][A
6%|โ | 12/196 [00:13<05:14, 1.71s/it][A
7%|โ | 13/196 [00:14<04:35, 1.51s/it][A
7%|โ | 14/196 [00:15<03:50, 1.27s/it][A
8%|โ | 15/196 [00:16<03:13, 1.07s/it][A
8%|โ | 16/196 [00:17<03:02, 1.01s/it][A
9%|โ | 17/196 [00:18<02:55, 1.02it/s][A
9%|โ | 18/196 [00:19<03:13, 1.09s/it][A
10%|โ | 19/196 [00:21<04:05, 1.39s/it][A
10%|โ | 20/196 [00:23<04:25, 1.51s/it][A
11%|โ | 21/196 [00:24<04:31, 1.55s/it][A
11%|โ | 22/196 [00:26<04:20, 1.49s/it][A
12%|โโ | 23/196 [00:27<03:58, 1.38s/it][A
12%|โโ | 24/196 [00:27<03:10, 1.11s/it][A
13%|โโ | 25/196 [00:28<02:42, 1.05it/s][A
13%|โโ | 26/196 [00:28<02:22, 1.19it/s][A
14%|โโ | 27/196 [00:29<02:11, 1.29it/s][A
14%|โโ | 28/196 [00:30<02:05, 1.34it/s][A
15%|โโ | 29/196 [00:31<02:05, 1.33it/s][A
15%|โโ | 30/196 [00:31<02:06, 1.31it/s][A
16%|โโ | 31/196 [00:32<01:55, 1.43it/s][A
16%|โโ | 32/196 [00:33<01:50, 1.49it/s][A
17%|โโ | 33/196 [00:34<02:06, 1.28it/s][A
17%|โโ | 34/196 [00:35<02:44, 1.01s/it][A
18%|โโ | 35/196 [00:36<02:49, 1.05s/it][A
18%|โโ | 36/196 [00:38<03:12, 1.21s/it][A
19%|โโ | 37/196 [00:39<03:10, 1.20s/it][A
19%|โโ | 38/196 [00:40<02:56, 1.11s/it][A
20%|โโ | 39/196 [00:41<02:43, 1.04s/it][A
20%|โโ | 40/196 [00:42<02:30, 1.04it/s][A
21%|โโ | 41/196 [00:42<02:17, 1.13it/s][A
21%|โโโ | 42/196 [00:43<02:07, 1.21it/s][A
22%|โโโ | 43/196 [00:44<02:06, 1.21it/s][A
22%|โโโ | 44/196 [00:45<02:03, 1.24it/s][A
23%|โโโ | 45/196 [00:45<01:53, 1.32it/s][A
23%|โโโ | 46/196 [00:46<01:46, 1.41it/s][A
24%|โโโ | 47/196 [00:46<01:46, 1.41it/s][A
24%|โโโ | 48/196 [00:47<01:41, 1.46it/s][A
25%|โโโ | 49/196 [00:48<01:38, 1.49it/s][A
26%|โโโ | 50/196 [00:48<01:37, 1.50it/s][A
26%|โโโ | 51/196 [00:49<01:34, 1.54it/s][A
27%|โโโ | 52/196 [00:50<01:33, 1.54it/s][A
27%|โโโ | 53/196 [00:50<01:38, 1.46it/s][A
28%|โโโ | 54/196 [00:51<01:36, 1.47it/s][A
28%|โโโ | 55/196 [00:52<01:46, 1.32it/s][A
29%|โโโ | 56/196 [00:53<01:54, 1.22it/s][A
29%|โโโ | 57/196 [00:54<02:02, 1.13it/s][A
30%|โโโ | 58/196 [00:55<02:06, 1.09it/s][A
30%|โโโ | 59/196 [00:56<02:03, 1.11it/s][A
31%|โโโ | 60/196 [00:57<01:53, 1.20it/s][A
31%|โโโ | 61/196 [00:57<01:43, 1.31it/s][A
32%|โโโโ | 62/196 [00:58<01:41, 1.32it/s][A
32%|โโโโ | 63/196 [00:59<01:41, 1.31it/s][A
33%|โโโโ | 64/196 [00:59<01:41, 1.31it/s][A
33%|โโโโ | 65/196 [01:00<01:38, 1.33it/s][A
34%|โโโโ | 66/196 [01:01<01:42, 1.27it/s][A
34%|โโโโ | 67/196 [01:02<01:46, 1.21it/s][A
35%|โโโโ | 68/196 [01:03<02:00, 1.07it/s][A
35%|โโโโ | 69/196 [01:04<02:01, 1.04it/s][A
36%|โโโโ | 70/196 [01:05<01:53, 1.11it/s][A
36%|โโโโ | 71/196 [01:06<01:45, 1.18it/s][A
37%|โโโโ | 72/196 [01:06<01:37, 1.28it/s][A
37%|โโโโ | 73/196 [01:07<01:28, 1.39it/s][A
38%|โโโโ | 74/196 [01:07<01:22, 1.49it/s][A
38%|โโโโ | 75/196 [01:08<01:19, 1.52it/s][A
39%|โโโโ | 76/196 [01:09<01:17, 1.55it/s][A
39%|โโโโ | 77/196 [01:09<01:20, 1.48it/s][A
40%|โโโโ | 78/196 [01:10<01:25, 1.38it/s][A
40%|โโโโ | 79/196 [01:11<01:22, 1.42it/s][A
41%|โโโโ | 80/196 [01:12<01:27, 1.32it/s][A
41%|โโโโโ | 81/196 [01:13<01:29, 1.28it/s][A
42%|โโโโโ | 82/196 [01:13<01:27, 1.31it/s][A
42%|โโโโโ | 83/196 [01:14<01:28, 1.27it/s][A
43%|โโโโโ | 84/196 [01:15<01:30, 1.24it/s][A
43%|โโโโโ | 85/196 [01:16<01:28, 1.25it/s][A
44%|โโโโโ | 86/196 [01:17<01:30, 1.21it/s][A
44%|โโโโโ | 87/196 [01:17<01:27, 1.24it/s][A
45%|โโโโโ | 88/196 [01:18<01:30, 1.19it/s][A
45%|โโโโโ | 89/196 [01:19<01:32, 1.16it/s][A
46%|โโโโโ | 90/196 [01:20<01:29, 1.19it/s][A
46%|โโโโโ | 91/196 [01:21<01:28, 1.18it/s][A
47%|โโโโโ | 92/196 [01:22<01:24, 1.23it/s][A
47%|โโโโโ | 93/196 [01:23<01:27, 1.18it/s][A
48%|โโโโโ | 94/196 [01:24<01:28, 1.16it/s][A
48%|โโโโโ | 95/196 [01:24<01:23, 1.20it/s][A
49%|โโโโโ | 96/196 [01:25<01:27, 1.15it/s][A
49%|โโโโโ | 97/196 [01:26<01:24, 1.18it/s][A
50%|โโโโโ | 98/196 [01:27<01:26, 1.14it/s][A
51%|โโโโโ | 99/196 [01:28<01:18, 1.23it/s][A
51%|โโโโโ | 100/196 [01:28<01:09, 1.39it/s][A
52%|โโโโโโ | 101/196 [01:29<01:04, 1.48it/s][A
52%|โโโโโโ | 102/196 [01:30<01:07, 1.39it/s][A
53%|โโโโโโ | 103/196 [01:30<01:12, 1.29it/s][A
53%|โโโโโโ | 104/196 [01:32<01:22, 1.12it/s][A
54%|โโโโโโ | 105/196 [01:33<01:23, 1.09it/s][A
54%|โโโโโโ | 106/196 [01:34<01:22, 1.08it/s][A
55%|โโโโโโ | 107/196 [01:34<01:17, 1.14it/s][A
55%|โโโโโโ | 108/196 [01:35<01:08, 1.29it/s][A
56%|โโโโโโ | 109/196 [01:35<01:03, 1.37it/s][A
56%|โโโโโโ | 110/196 [01:36<01:00, 1.42it/s][A
57%|โโโโโโ | 111/196 [01:37<00:59, 1.42it/s][A
57%|โโโโโโ | 112/196 [01:38<01:01, 1.37it/s][A
58%|โโโโโโ | 113/196 [01:38<01:02, 1.33it/s][A
58%|โโโโโโ | 114/196 [01:39<00:57, 1.43it/s][A
59%|โโโโโโ | 115/196 [01:40<00:55, 1.47it/s][A
59%|โโโโโโ | 116/196 [01:40<00:53, 1.50it/s][A
60%|โโโโโโ | 117/196 [01:41<00:50, 1.56it/s][A
60%|โโโโโโ | 118/196 [01:41<00:45, 1.72it/s][A
61%|โโโโโโ | 119/196 [01:42<00:47, 1.64it/s][A
61%|โโโโโโ | 120/196 [01:43<00:49, 1.55it/s][A
62%|โโโโโโโ | 121/196 [01:43<00:49, 1.51it/s][A
62%|โโโโโโโ | 122/196 [01:44<00:50, 1.47it/s][A
63%|โโโโโโโ | 123/196 [01:45<00:48, 1.49it/s][A
63%|โโโโโโโ | 124/196 [01:45<00:48, 1.50it/s][A
64%|โโโโโโโ | 125/196 [01:46<00:47, 1.49it/s][A
64%|โโโโโโโ | 126/196 [01:47<00:53, 1.30it/s][A
65%|โโโโโโโ | 127/196 [01:48<00:53, 1.30it/s][A
65%|โโโโโโโ | 128/196 [01:48<00:49, 1.37it/s][A
66%|โโโโโโโ | 129/196 [01:49<00:48, 1.38it/s][A
66%|โโโโโโโ | 130/196 [01:50<00:47, 1.39it/s][A
67%|โโโโโโโ | 131/196 [01:51<00:46, 1.40it/s][A
67%|โโโโโโโ | 132/196 [01:51<00:43, 1.48it/s][A
68%|โโโโโโโ | 133/196 [01:52<00:41, 1.50it/s][A
68%|โโโโโโโ | 134/196 [01:53<00:44, 1.41it/s][A
69%|โโโโโโโ | 135/196 [01:53<00:42, 1.44it/s][A
69%|โโโโโโโ | 136/196 [01:54<00:40, 1.47it/s][A
70%|โโโโโโโ | 137/196 [01:55<00:40, 1.47it/s][A
70%|โโโโโโโ | 138/196 [01:55<00:39, 1.47it/s][A
71%|โโโโโโโ | 139/196 [01:56<00:39, 1.46it/s][A
71%|โโโโโโโโ | 140/196 [01:57<00:37, 1.48it/s][A
72%|โโโโโโโโ | 141/196 [01:57<00:37, 1.47it/s][A
72%|โโโโโโโโ | 142/196 [01:58<00:37, 1.43it/s][A
73%|โโโโโโโโ | 143/196 [01:59<00:39, 1.33it/s][A
73%|โโโโโโโโ | 144/196 [02:00<00:36, 1.42it/s][A
74%|โโโโโโโโ | 145/196 [02:00<00:33, 1.54it/s][A
74%|โโโโโโโโ | 146/196 [02:01<00:30, 1.63it/s][A
75%|โโโโโโโโ | 147/196 [02:01<00:30, 1.62it/s][A
76%|โโโโโโโโ | 148/196 [02:02<00:29, 1.62it/s][A
76%|โโโโโโโโ | 149/196 [02:02<00:27, 1.68it/s][A
77%|โโโโโโโโ | 150/196 [02:03<00:28, 1.59it/s][A
77%|โโโโโโโโ | 151/196 [02:04<00:29, 1.50it/s][A
78%|โโโโโโโโ | 152/196 [02:05<00:28, 1.52it/s][A
78%|โโโโโโโโ | 153/196 [02:05<00:28, 1.53it/s][A
79%|โโโโโโโโ | 154/196 [02:06<00:27, 1.51it/s][A
79%|โโโโโโโโ | 155/196 [02:07<00:29, 1.40it/s][A
80%|โโโโโโโโ | 156/196 [02:08<00:32, 1.21it/s][A
80%|โโโโโโโโ | 157/196 [02:09<00:34, 1.13it/s][A
81%|โโโโโโโโ | 158/196 [02:09<00:30, 1.25it/s][A
81%|โโโโโโโโ | 159/196 [02:10<00:27, 1.36it/s][A
82%|โโโโโโโโโ | 160/196 [02:11<00:25, 1.43it/s][A
82%|โโโโโโโโโ | 161/196 [02:11<00:24, 1.43it/s][A
83%|โโโโโโโโโ | 162/196 [02:12<00:23, 1.45it/s][A
83%|โโโโโโโโโ | 163/196 [02:13<00:22, 1.47it/s][A
84%|โโโโโโโโโ | 164/196 [02:13<00:21, 1.50it/s][A
84%|โโโโโโโโโ | 165/196 [02:14<00:21, 1.44it/s][A
85%|โโโโโโโโโ | 166/196 [02:15<00:20, 1.47it/s][A
85%|โโโโโโโโโ | 167/196 [02:15<00:19, 1.51it/s][A
86%|โโโโโโโโโ | 168/196 [02:16<00:17, 1.57it/s][A
86%|โโโโโโโโโ | 169/196 [02:17<00:17, 1.54it/s][A
87%|โโโโโโโโโ | 170/196 [02:17<00:18, 1.40it/s][A
87%|โโโโโโโโโ | 171/196 [02:18<00:17, 1.44it/s][A
88%|โโโโโโโโโ | 172/196 [02:19<00:17, 1.41it/s][A
88%|โโโโโโโโโ | 173/196 [02:19<00:16, 1.42it/s][A
89%|โโโโโโโโโ | 174/196 [02:20<00:16, 1.35it/s][A
89%|โโโโโโโโโ | 175/196 [02:22<00:19, 1.09it/s][A
90%|โโโโโโโโโ | 176/196 [02:24<00:27, 1.38s/it][A
90%|โโโโโโโโโ | 177/196 [02:26<00:30, 1.58s/it][A
91%|โโโโโโโโโ | 178/196 [02:28<00:31, 1.73s/it][A
91%|โโโโโโโโโโ| 179/196 [02:30<00:31, 1.84s/it][A
92%|โโโโโโโโโโ| 180/196 [02:31<00:23, 1.49s/it][A
92%|โโโโโโโโโโ| 181/196 [02:32<00:19, 1.27s/it][A
93%|โโโโโโโโโโ| 182/196 [02:32<00:15, 1.09s/it][A
93%|โโโโโโโโโโ| 183/196 [02:34<00:14, 1.12s/it][A
94%|โโโโโโโโโโ| 184/196 [02:34<00:11, 1.02it/s][A
94%|โโโโโโโโโโ| 185/196 [02:35<00:10, 1.06it/s][A
95%|โโโโโโโโโโ| 186/196 [02:36<00:09, 1.03it/s][A
95%|โโโโโโโโโโ| 187/196 [02:37<00:08, 1.12it/s][A
96%|โโโโโโโโโโ| 188/196 [02:38<00:06, 1.22it/s][A
96%|โโโโโโโโโโ| 189/196 [02:38<00:05, 1.27it/s][A
97%|โโโโโโโโโโ| 190/196 [02:39<00:04, 1.34it/s][A
97%|โโโโโโโโโโ| 191/196 [02:39<00:03, 1.43it/s][A
98%|โโโโโโโโโโ| 192/196 [02:40<00:02, 1.42it/s][A
98%|โโโโโโโโโโ| 193/196 [02:41<00:02, 1.40it/s][A
99%|โโโโโโโโโโ| 194/196 [02:42<00:01, 1.41it/s][A
99%|โโโโโโโโโโ| 195/196 [02:42<00:00, 1.45it/s][A
100%|โโโโโโโโโโ| 196/196 [02:43<00:00, 1.66it/s][A
[A
6%|โ | 900/15000 [45:54<3:35:00, 1.09it/s]
100%|โโโโโโโโโโ| 196/196 [02:47<00:00, 1.66it/s][A
[A/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]