s300_shuff100 / evalonlyhindi_indicwav2vec_MUCS_warmup500_s300shuff100_2142421.out
Priyanship's picture
End of training
c75a43d verified
wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_151726-alv0f5i7
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run eval_pd2000_s300_shuff100_hindi
wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
wandb: πŸš€ View run at https://wandb.ai/priyanshipal/huggingface/runs/alv0f5i7
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of πŸ€— Transformers. Use `eval_strategy` instead
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.0, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.0, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
check the eval set length 572
08/22/2024 15:17:37 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/36 [00:00<?, ?it/s] 6%|β–Œ | 2/36 [00:01<00:31, 1.07it/s] 8%|β–Š | 3/36 [00:03<00:42, 1.28s/it] 11%|β–ˆ | 4/36 [00:05<00:52, 1.65s/it] 14%|β–ˆβ– | 5/36 [00:07<00:53, 1.72s/it] 17%|β–ˆβ–‹ | 6/36 [00:09<00:51, 1.72s/it] 19%|β–ˆβ–‰ | 7/36 [00:10<00:42, 1.48s/it] 22%|β–ˆβ–ˆβ– | 8/36 [00:11<00:33, 1.20s/it] 25%|β–ˆβ–ˆβ–Œ | 9/36 [00:11<00:28, 1.06s/it] 28%|β–ˆβ–ˆβ–Š | 10/36 [00:12<00:27, 1.04s/it] 31%|β–ˆβ–ˆβ–ˆ | 11/36 [00:13<00:26, 1.06s/it] 33%|β–ˆβ–ˆβ–ˆβ–Ž | 12/36 [00:14<00:25, 1.05s/it] 36%|β–ˆβ–ˆβ–ˆβ–Œ | 13/36 [00:15<00:23, 1.00s/it] 39%|β–ˆβ–ˆβ–ˆβ–‰ | 14/36 [00:16<00:19, 1.15it/s] 42%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 15/36 [00:16<00:16, 1.28it/s] 44%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 16/36 [00:17<00:14, 1.36it/s] 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 17/36 [00:18<00:13, 1.41it/s] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 18/36 [00:19<00:13, 1.35it/s] 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 19/36 [00:19<00:13, 1.30it/s] 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 20/36 [00:20<00:11, 1.35it/s] 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 21/36 [00:21<00:10, 1.45it/s] 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 22/36 [00:21<00:09, 1.43it/s] 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 23/36 [00:22<00:09, 1.40it/s] 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 24/36 [00:23<00:08, 1.38it/s] 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 25/36 [00:24<00:08, 1.31it/s] 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 26/36 [00:24<00:07, 1.35it/s] 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 27/36 [00:25<00:06, 1.45it/s] 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 28/36 [00:26<00:06, 1.18it/s] 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 29/36 [00:28<00:08, 1.22s/it] 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 30/36 [00:30<00:08, 1.37s/it]Traceback (most recent call last):
File "/scratch/elec/puhe/p/palp3/MUCS/eval_script_indicwav2vec.py", line 790, in <module>
main()
File "/scratch/elec/puhe/p/palp3/MUCS/eval_script_indicwav2vec.py", line 759, in main
metrics = trainer.evaluate()
^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3666, in evaluate
output = eval_loop(
^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3857, in evaluation_loop
losses, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 4075, in prediction_step
loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/trainer.py", line 3363, in compute_loss
outputs = model(**inputs)
^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/utils/operations.py", line 819, in forward
return model_forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/utils/operations.py", line 807, in __call__
return convert_to_fp32(self.model_forward(*args, **kwargs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/amp/autocast_mode.py", line 43, in decorate_autocast
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 2228, in forward
outputs = self.wav2vec2(
^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1809, in forward
extract_features = self.feature_extractor(input_values)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 463, in forward
hidden_states = conv_layer(hidden_states)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 335, in forward
hidden_states = self.layer_norm(hidden_states)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/modules/normalization.py", line 202, in forward
return F.layer_norm(
^^^^^^^^^^^^^
File "/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/nn/functional.py", line 2576, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 4.00 GiB. GPU 0 has a total capacity of 15.77 GiB of which 1.55 GiB is free. Including non-PyTorch memory, this process has 14.21 GiB memory in use. Of the allocated memory 11.68 GiB is allocated by PyTorch, and 2.17 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
wandb: - 0.011 MB of 0.011 MB uploaded wandb: \ 0.033 MB of 0.033 MB uploaded wandb: πŸš€ View run eval_pd2000_s300_shuff100_hindi at: https://wandb.ai/priyanshipal/huggingface/runs/alv0f5i7
wandb: ⭐️ View project at: https://wandb.ai/priyanshipal/huggingface
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240822_151726-alv0f5i7/logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.