Priyanship commited on
Commit
9bd6d06
·
verified ·
1 Parent(s): 320ec80

End of training

Browse files
README.md CHANGED
@@ -9,18 +9,18 @@ model-index:
9
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
  should probably proofread and complete it, then remove this comment. -->
11
 
12
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll)
13
  # s300_shuff100
14
 
15
  This model was trained from scratch on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
  - eval_loss: nan
18
- - eval_model_preparation_time: 0.0044
19
  - eval_cer: 1.0
20
  - eval_wer: 1.0
21
- - eval_runtime: 40.6214
22
- - eval_samples_per_second: 14.081
23
- - eval_steps_per_second: 0.886
24
  - step: 0
25
 
26
  ## Model description
 
9
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
  should probably proofread and complete it, then remove this comment. -->
11
 
12
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/priyanshipal/huggingface/runs/1kodfy70)
13
  # s300_shuff100
14
 
15
  This model was trained from scratch on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
  - eval_loss: nan
18
+ - eval_model_preparation_time: 0.0046
19
  - eval_cer: 1.0
20
  - eval_wer: 1.0
21
+ - eval_runtime: 39.8895
22
+ - eval_samples_per_second: 14.34
23
+ - eval_steps_per_second: 0.902
24
  - step: 0
25
 
26
  ## Model description
all_results.json CHANGED
@@ -2,11 +2,11 @@
2
  "epoch": 1.6,
3
  "eval_cer": 1.0,
4
  "eval_loss": NaN,
5
- "eval_model_preparation_time": 0.0044,
6
- "eval_runtime": 40.6214,
7
  "eval_samples": 572,
8
- "eval_samples_per_second": 14.081,
9
- "eval_steps_per_second": 0.886,
10
  "eval_wer": 1.0,
11
  "total_flos": 6.212261523683712e+18,
12
  "train_loss": 3.21392811447382,
 
2
  "epoch": 1.6,
3
  "eval_cer": 1.0,
4
  "eval_loss": NaN,
5
+ "eval_model_preparation_time": 0.0046,
6
+ "eval_runtime": 39.8895,
7
  "eval_samples": 572,
8
+ "eval_samples_per_second": 14.34,
9
+ "eval_steps_per_second": 0.902,
10
  "eval_wer": 1.0,
11
  "total_flos": 6.212261523683712e+18,
12
  "train_loss": 3.21392811447382,
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi",
3
  "activation_dropout": 0.0,
4
  "adapter_attn_dim": null,
5
  "adapter_kernel_size": 3,
 
1
  {
2
+ "_name_or_path": "/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec_outputs/pd_warmup_500/s300_shuff100",
3
  "activation_dropout": 0.0,
4
  "adapter_attn_dim": null,
5
  "adapter_kernel_size": 3,
eval_results.json CHANGED
@@ -1,10 +1,10 @@
1
  {
2
  "eval_cer": 1.0,
3
  "eval_loss": NaN,
4
- "eval_model_preparation_time": 0.0044,
5
- "eval_runtime": 40.6214,
6
  "eval_samples": 572,
7
- "eval_samples_per_second": 14.081,
8
- "eval_steps_per_second": 0.886,
9
  "eval_wer": 1.0
10
  }
 
1
  {
2
  "eval_cer": 1.0,
3
  "eval_loss": NaN,
4
+ "eval_model_preparation_time": 0.0046,
5
+ "eval_runtime": 39.8895,
6
  "eval_samples": 572,
7
+ "eval_samples_per_second": 14.34,
8
+ "eval_steps_per_second": 0.902,
9
  "eval_wer": 1.0
10
  }
evalonlyhindi_indicwav2vec_MUCS_warmup500_s300shuff100_2142336.out CHANGED
@@ -461,3 +461,43 @@ last prediction string
461
 
462
 
463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
 
462
 
463
 
464
+ wandb: - 0.007 MB of 0.007 MB uploaded
465
+ wandb: Run history:
466
+ wandb: eval/cer ▁
467
+ wandb: eval/model_preparation_time ▁
468
+ wandb: eval/runtime ▁
469
+ wandb: eval/samples_per_second ▁
470
+ wandb: eval/steps_per_second ▁
471
+ wandb: eval/wer ▁
472
+ wandb: eval_cer ▁
473
+ wandb: eval_model_preparation_time ▁
474
+ wandb: eval_runtime ▁
475
+ wandb: eval_samples ▁
476
+ wandb: eval_samples_per_second ▁
477
+ wandb: eval_steps_per_second ▁
478
+ wandb: eval_wer ▁
479
+ wandb: train/global_step ▁▁
480
+ wandb:
481
+ wandb: Run summary:
482
+ wandb: eval/cer 1.0
483
+ wandb: eval/loss nan
484
+ wandb: eval/model_preparation_time 0.0044
485
+ wandb: eval/runtime 40.6214
486
+ wandb: eval/samples_per_second 14.081
487
+ wandb: eval/steps_per_second 0.886
488
+ wandb: eval/wer 1.0
489
+ wandb: eval_cer 1.0
490
+ wandb: eval_loss nan
491
+ wandb: eval_model_preparation_time 0.0044
492
+ wandb: eval_runtime 40.6214
493
+ wandb: eval_samples 572
494
+ wandb: eval_samples_per_second 14.081
495
+ wandb: eval_steps_per_second 0.886
496
+ wandb: eval_wer 1.0
497
+ wandb: train/global_step 0
498
+ wandb:
499
+ wandb: 🚀 View run eval_pd2000_s300_shuff100_hindi at: https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll
500
+ wandb: ⭐️ View project at: https://wandb.ai/priyanshipal/huggingface
501
+ wandb: Synced 6 W&B file(s), 0 media file(s), 1 artifact file(s) and 0 other file(s)
502
+ wandb: Find logs at: ./wandb/run-20240822_145052-jw39kyll/logs
503
+ wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.
evalonlyhindi_indicwav2vec_MUCS_warmup500_s300shuff100_2142383.out ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/36 [00:00<?, ?it/s]
1
  6%|▌ | 2/36 [00:01<00:26, 1.27it/s]
2
  8%|▊ | 3/36 [00:02<00:33, 1.02s/it]
3
  11%|█ | 4/36 [00:04<00:41, 1.30s/it]
4
  14%|█▍ | 5/36 [00:06<00:43, 1.40s/it]
5
  17%|█▋ | 6/36 [00:07<00:41, 1.39s/it]
6
  19%|█▉ | 7/36 [00:08<00:35, 1.22s/it]
7
  22%|██▏ | 8/36 [00:09<00:27, 1.01it/s]
8
  25%|██▌ | 9/36 [00:09<00:23, 1.17it/s]
9
  28%|██▊ | 10/36 [00:10<00:21, 1.22it/s]
10
  31%|███ | 11/36 [00:11<00:20, 1.20it/s]
11
  33%|███▎ | 12/36 [00:11<00:19, 1.21it/s]
12
  36%|███▌ | 13/36 [00:12<00:18, 1.23it/s]
13
  39%|███▉ | 14/36 [00:13<00:15, 1.43it/s]
14
  42%|████▏ | 15/36 [00:13<00:12, 1.63it/s]
15
  44%|████▍ | 16/36 [00:14<00:11, 1.79it/s]
16
  47%|████▋ | 17/36 [00:14<00:10, 1.89it/s]
17
  50%|█████ | 18/36 [00:15<00:10, 1.79it/s]
18
  53%|█████▎ | 19/36 [00:15<00:09, 1.74it/s]
19
  56%|█████▌ | 20/36 [00:16<00:08, 1.79it/s]
20
  58%|█████▊ | 21/36 [00:16<00:07, 1.94it/s]
21
  61%|██████ | 22/36 [00:17<00:07, 1.94it/s]
22
  64%|██████▍ | 23/36 [00:17<00:06, 1.91it/s]
23
  67%|██████▋ | 24/36 [00:18<00:06, 1.88it/s]
24
  69%|██████▉ | 25/36 [00:18<00:06, 1.81it/s]
25
  72%|███████▏ | 26/36 [00:19<00:05, 1.84it/s]
26
  75%|███████▌ | 27/36 [00:19<00:04, 1.94it/s]
27
  78%|███████▊ | 28/36 [00:20<00:05, 1.59it/s]
28
  81%|████████ | 29/36 [00:22<00:06, 1.08it/s]
29
  83%|████████▎ | 30/36 [00:23<00:06, 1.08s/it]
30
  86%|████████▌ | 31/36 [00:25<00:06, 1.35s/it]
31
  89%|████████▉ | 32/36 [00:26<00:04, 1.13s/it]
32
  92%|█████████▏| 33/36 [00:27<00:02, 1.03it/s]
33
  94%|█████████▍| 34/36 [00:27<00:01, 1.20it/s]
34
  97%|█████████▋| 35/36 [00:28<00:00, 1.35it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
2
+ wandb: wandb version 0.17.7 is available! To upgrade, please run:
3
+ wandb: $ pip install wandb --upgrade
4
+ wandb: Tracking run with wandb version 0.17.6
5
+ wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_150154-1kodfy70
6
+ wandb: Run `wandb offline` to turn off syncing.
7
+ wandb: Syncing run eval_pd2000_s300_shuff100_hindi
8
+ wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
9
+ wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/1kodfy70
10
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
11
+ warnings.warn(
12
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
13
+ warnings.warn(
14
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
15
+ warnings.warn(
16
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
17
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
18
+ max_steps is given, it will override any value given in num_train_epochs
19
+ Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
20
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
21
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
22
+ 149: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
23
+ 150: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
24
+ }
25
+ CHECK MODEL PARAMS Wav2Vec2ForCTC(
26
+ (wav2vec2): Wav2Vec2Model(
27
+ (feature_extractor): Wav2Vec2FeatureEncoder(
28
+ (conv_layers): ModuleList(
29
+ (0): Wav2Vec2LayerNormConvLayer(
30
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
31
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
32
+ (activation): GELUActivation()
33
+ )
34
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
35
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (activation): GELUActivation()
38
+ )
39
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
40
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
41
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
42
+ (activation): GELUActivation()
43
+ )
44
+ )
45
+ )
46
+ (feature_projection): Wav2Vec2FeatureProjection(
47
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
48
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
49
+ (dropout): Dropout(p=0.0, inplace=False)
50
+ )
51
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
52
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
53
+ (conv): ParametrizedConv1d(
54
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
55
+ (parametrizations): ModuleDict(
56
+ (weight): ParametrizationList(
57
+ (0): _WeightNorm()
58
+ )
59
+ )
60
+ )
61
+ (padding): Wav2Vec2SamePadLayer()
62
+ (activation): GELUActivation()
63
+ )
64
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
65
+ (dropout): Dropout(p=0.0, inplace=False)
66
+ (layers): ModuleList(
67
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
68
+ (attention): Wav2Vec2SdpaAttention(
69
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
70
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
71
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
72
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
73
+ )
74
+ (dropout): Dropout(p=0.0, inplace=False)
75
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
76
+ (feed_forward): Wav2Vec2FeedForward(
77
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
78
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
79
+ (intermediate_act_fn): GELUActivation()
80
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
81
+ (output_dropout): Dropout(p=0.0, inplace=False)
82
+ )
83
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
84
+ )
85
+ )
86
+ )
87
+ )
88
+ (dropout): Dropout(p=0.0, inplace=False)
89
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
90
+ )
91
+ 08/22/2024 15:02:06 - INFO - __main__ - *** Evaluate ***
92
+ /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
93
+ warnings.warn(
94
+
95
  0%| | 0/36 [00:00<?, ?it/s]
96
  6%|▌ | 2/36 [00:01<00:26, 1.27it/s]
97
  8%|▊ | 3/36 [00:02<00:33, 1.02s/it]
98
  11%|█ | 4/36 [00:04<00:41, 1.30s/it]
99
  14%|█▍ | 5/36 [00:06<00:43, 1.40s/it]
100
  17%|█▋ | 6/36 [00:07<00:41, 1.39s/it]
101
  19%|█▉ | 7/36 [00:08<00:35, 1.22s/it]
102
  22%|██▏ | 8/36 [00:09<00:27, 1.01it/s]
103
  25%|██▌ | 9/36 [00:09<00:23, 1.17it/s]
104
  28%|██▊ | 10/36 [00:10<00:21, 1.22it/s]
105
  31%|███ | 11/36 [00:11<00:20, 1.20it/s]
106
  33%|███▎ | 12/36 [00:11<00:19, 1.21it/s]
107
  36%|███▌ | 13/36 [00:12<00:18, 1.23it/s]
108
  39%|███▉ | 14/36 [00:13<00:15, 1.43it/s]
109
  42%|████▏ | 15/36 [00:13<00:12, 1.63it/s]
110
  44%|████▍ | 16/36 [00:14<00:11, 1.79it/s]
111
  47%|████▋ | 17/36 [00:14<00:10, 1.89it/s]
112
  50%|█████ | 18/36 [00:15<00:10, 1.79it/s]
113
  53%|█████▎ | 19/36 [00:15<00:09, 1.74it/s]
114
  56%|█████▌ | 20/36 [00:16<00:08, 1.79it/s]
115
  58%|█████▊ | 21/36 [00:16<00:07, 1.94it/s]
116
  61%|██████ | 22/36 [00:17<00:07, 1.94it/s]
117
  64%|██████▍ | 23/36 [00:17<00:06, 1.91it/s]
118
  67%|██████▋ | 24/36 [00:18<00:06, 1.88it/s]
119
  69%|██████▉ | 25/36 [00:18<00:06, 1.81it/s]
120
  72%|███████▏ | 26/36 [00:19<00:05, 1.84it/s]
121
  75%|███████▌ | 27/36 [00:19<00:04, 1.94it/s]
122
  78%|███████▊ | 28/36 [00:20<00:05, 1.59it/s]
123
  81%|████████ | 29/36 [00:22<00:06, 1.08it/s]
124
  83%|████████▎ | 30/36 [00:23<00:06, 1.08s/it]
125
  86%|████████▌ | 31/36 [00:25<00:06, 1.35s/it]
126
  89%|████████▉ | 32/36 [00:26<00:04, 1.13s/it]
127
  92%|█████████▏| 33/36 [00:27<00:02, 1.03it/s]
128
  94%|█████████▍| 34/36 [00:27<00:01, 1.20it/s]
129
  97%|█████████▋| 35/36 [00:28<00:00, 1.35it/s]
130
+ Printing predictions for a few samples:
131
+ Sample 1:
132
+ Reference: हम उनका उपयोग ऐसे ही कर सकते हैं या आवश्यकता अनुसार कुछ बदलाव करके उपयोग कर सकते हैं
133
+ ######
134
+
135
+
136
+ Prediction:
137
+
138
+
139
+
140
+ Sample 2:
141
+ Reference: अतः शीर्षक इस तरह से जोड़ सकते हैं
142
+ ######
143
+
144
+
145
+ Prediction:
146
+
147
+
148
+
149
+ Sample 3:
150
+ Reference: प्रेसेंटेशन के अंत में आपने स्लाइड की एक कॉपी बना ली है
151
+ ######
152
+
153
+
154
+ Prediction:
155
+
156
+
157
+
158
+ Sample 4:
159
+ Reference: चलिए अब फोंट्स और फोंट्स को फॉर्मेट करने के कुछ तरीके देखते हैं
160
+ ######
161
+
162
+
163
+ Prediction:
164
+
165
+
166
+
167
+ Sample 5:
168
+ Reference: यह एक डायलॉग बॉक्स खोलेगा जिसमें हम अपनी आवश्यकतानुसार फॉन्ट स्टाइल और साइज़ सेट कर सकते हैं
169
+ ######
170
+
171
+
172
+ Prediction:
173
+
174
+
175
+
176
+ last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
177
+
178
+
179
+ last prediction string
180
+ ***** eval metrics *****
181
+ eval_cer = 1.0
182
+ eval_loss = nan
183
+ eval_model_preparation_time = 0.0046
184
+ eval_runtime = 0:00:39.88
185
+ eval_samples = 572
186
+ eval_samples_per_second = 14.34
187
+ eval_steps_per_second = 0.902
188
+ eval_wer = 1.0
189
+
language_segregated_prediction_texts/evalpredictions_hindi_indicw2v_ad0_3_hd_02_featd_0_2_lr6e-4_warmup500_s300_shuf100.txt CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb6b542d4c167a87206ca85c8c0bf1f22fdbd339b4288aa2bc0c42cdd80202f8
3
  size 5432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ac994ec93d9297038ccd8f0941bd5189ab98d5a22407edafc2b896159805ce1
3
  size 5432