diff --git "a/indicwav2vec_MUCS_warmup500_s300shuff100_2130813.out" "b/indicwav2vec_MUCS_warmup500_s300shuff100_2130813.out"
new file mode 100644--- /dev/null
+++ "b/indicwav2vec_MUCS_warmup500_s300shuff100_2130813.out"
@@ -0,0 +1,1306 @@
+wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
+wandb: wandb version 0.17.7 is available! To upgrade, please run:
+wandb: $ pip install wandb --upgrade
+wandb: Tracking run with wandb version 0.17.6
+wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240821_155449-0evkescz
+wandb: Run `wandb offline` to turn off syncing.
+wandb: Syncing run elated-pine-27
+wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
+wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/0evkescz
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
+ warnings.warn(
+08/21/2024 15:54:52 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:508: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
+Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
+- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
+- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
+Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
+max_steps is given, it will override any value given in num_train_epochs
+Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+ 150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+}
+CHECK MODEL PARAMS Wav2Vec2ForCTC(
+ (wav2vec2): Wav2Vec2Model(
+ (feature_extractor): Wav2Vec2FeatureEncoder(
+ (conv_layers): ModuleList(
+ (0): Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ )
+ )
+ (feature_projection): Wav2Vec2FeatureProjection(
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
+ (dropout): Dropout(p=0.3, inplace=False)
+ )
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
+ (conv): ParametrizedConv1d(
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
+ (parametrizations): ModuleDict(
+ (weight): ParametrizationList(
+ (0): _WeightNorm()
+ )
+ )
+ )
+ (padding): Wav2Vec2SamePadLayer()
+ (activation): GELUActivation()
+ )
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layers): ModuleList(
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
+ (attention): Wav2Vec2SdpaAttention(
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ )
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (feed_forward): Wav2Vec2FeedForward(
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
+ (intermediate_act_fn): GELUActivation()
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
+ (output_dropout): Dropout(p=0.2, inplace=False)
+ )
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ )
+ )
+ )
+ )
+ (dropout): Dropout(p=0.0, inplace=False)
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
+)
+
0%| | 0/1000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
+ return fn(*args, **kwargs)
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
0%| | 1/1000 [00:17<4:43:30, 17.03s/it]
0%| | 1/1000 [00:17<4:43:30, 17.03s/it]
0%| | 2/1000 [00:21<2:35:47, 9.37s/it]
0%| | 2/1000 [00:21<2:35:47, 9.37s/it]
0%| | 3/1000 [00:24<1:51:58, 6.74s/it]
0%| | 3/1000 [00:24<1:51:58, 6.74s/it]
0%| | 4/1000 [00:28<1:29:49, 5.41s/it]
0%| | 4/1000 [00:28<1:29:49, 5.41s/it]
0%| | 5/1000 [00:31<1:15:47, 4.57s/it]
0%| | 5/1000 [00:31<1:15:47, 4.57s/it]
1%| | 6/1000 [00:34<1:06:25, 4.01s/it]
1%| | 6/1000 [00:34<1:06:25, 4.01s/it]
1%| | 7/1000 [00:36<59:46, 3.61s/it]
1%| | 7/1000 [00:36<59:46, 3.61s/it]
1%| | 8/1000 [00:39<55:34, 3.36s/it]
1%| | 8/1000 [00:39<55:34, 3.36s/it]
1%| | 9/1000 [00:42<51:14, 3.10s/it]
1%| | 9/1000 [00:42<51:14, 3.10s/it]
1%| | 10/1000 [00:44<47:56, 2.91s/it]
1%| | 10/1000 [00:44<47:56, 2.91s/it]
1%| | 11/1000 [00:47<45:32, 2.76s/it]
1%| | 11/1000 [00:47<45:32, 2.76s/it]
1%| | 12/1000 [00:49<43:20, 2.63s/it]
1%| | 12/1000 [00:49<43:20, 2.63s/it]
1%|▏ | 13/1000 [00:51<40:54, 2.49s/it]
1%|▏ | 13/1000 [00:51<40:54, 2.49s/it]
1%|▏ | 14/1000 [00:53<39:16, 2.39s/it]
1%|▏ | 14/1000 [00:53<39:16, 2.39s/it]
2%|▏ | 15/1000 [00:55<38:05, 2.32s/it]
2%|▏ | 15/1000 [00:55<38:05, 2.32s/it]
2%|▏ | 16/1000 [00:58<37:12, 2.27s/it]
2%|▏ | 16/1000 [00:58<37:12, 2.27s/it]
2%|▏ | 17/1000 [01:00<36:32, 2.23s/it]
2%|▏ | 17/1000 [01:00<36:32, 2.23s/it]
2%|▏ | 18/1000 [01:02<35:28, 2.17s/it]
2%|▏ | 18/1000 [01:02<35:28, 2.17s/it]
2%|▏ | 19/1000 [01:03<33:38, 2.06s/it]
2%|▏ | 19/1000 [01:04<33:38, 2.06s/it]
2%|▏ | 20/1000 [01:05<32:19, 1.98s/it]
2%|▏ | 20/1000 [01:05<32:19, 1.98s/it]
2%|▏ | 21/1000 [01:07<31:29, 1.93s/it]
2%|▏ | 21/1000 [01:07<31:29, 1.93s/it]
2%|▏ | 22/1000 [01:09<30:43, 1.89s/it]
2%|▏ | 22/1000 [01:09<30:43, 1.89s/it]
2%|▏ | 23/1000 [01:11<30:13, 1.86s/it]
2%|▏ | 23/1000 [01:11<30:13, 1.86s/it]
2%|▏ | 24/1000 [01:12<29:20, 1.80s/it]
2%|▏ | 24/1000 [01:12<29:20, 1.80s/it]
2%|▎ | 25/1000 [01:14<27:52, 1.72s/it]
2%|▎ | 25/1000 [01:14<27:52, 1.72s/it]
3%|▎ | 26/1000 [01:15<26:46, 1.65s/it]
3%|▎ | 26/1000 [01:15<26:46, 1.65s/it]
3%|▎ | 27/1000 [01:17<26:02, 1.61s/it]
3%|▎ | 27/1000 [01:17<26:02, 1.61s/it]
3%|▎ | 28/1000 [01:18<25:30, 1.57s/it]
3%|▎ | 28/1000 [01:18<25:30, 1.57s/it]
3%|▎ | 29/1000 [01:20<25:13, 1.56s/it]
3%|▎ | 29/1000 [01:20<25:13, 1.56s/it]
3%|▎ | 30/1000 [01:21<24:58, 1.54s/it]
3%|▎ | 30/1000 [01:21<24:58, 1.54s/it]
3%|▎ | 31/1000 [01:23<24:45, 1.53s/it]
3%|▎ | 31/1000 [01:23<24:45, 1.53s/it]
3%|▎ | 32/1000 [01:24<24:21, 1.51s/it]
3%|▎ | 32/1000 [01:24<24:21, 1.51s/it]
3%|▎ | 33/1000 [01:26<23:27, 1.46s/it]
3%|▎ | 33/1000 [01:26<23:27, 1.46s/it]
3%|▎ | 34/1000 [01:27<22:21, 1.39s/it]
3%|▎ | 34/1000 [01:27<22:21, 1.39s/it]
4%|▎ | 35/1000 [01:28<21:31, 1.34s/it]
4%|▎ | 35/1000 [01:28<21:31, 1.34s/it]
4%|▎ | 36/1000 [01:29<20:57, 1.30s/it]
4%|▎ | 36/1000 [01:29<20:57, 1.30s/it]
4%|▎ | 37/1000 [01:31<20:35, 1.28s/it]
4%|▎ | 37/1000 [01:31<20:35, 1.28s/it]
4%|▍ | 38/1000 [01:32<20:20, 1.27s/it]
4%|▍ | 38/1000 [01:32<20:20, 1.27s/it]
4%|▍ | 39/1000 [01:33<20:10, 1.26s/it]
4%|▍ | 39/1000 [01:33<20:10, 1.26s/it]
4%|▍ | 40/1000 [01:34<19:53, 1.24s/it]
4%|▍ | 40/1000 [01:34<19:53, 1.24s/it]
4%|▍ | 41/1000 [01:35<18:45, 1.17s/it]
4%|▍ | 41/1000 [01:35<18:45, 1.17s/it]
4%|▍ | 42/1000 [01:36<17:36, 1.10s/it]
4%|▍ | 42/1000 [01:36<17:36, 1.10s/it]
4%|▍ | 43/1000 [01:37<16:49, 1.06s/it]
4%|▍ | 43/1000 [01:37<16:49, 1.06s/it]
4%|▍ | 44/1000 [01:38<16:15, 1.02s/it]
4%|▍ | 44/1000 [01:38<16:15, 1.02s/it]
4%|▍ | 45/1000 [01:39<15:49, 1.01it/s]
4%|▍ | 45/1000 [01:39<15:49, 1.01it/s]
5%|▍ | 46/1000 [01:40<15:31, 1.02it/s]
5%|▍ | 46/1000 [01:40<15:31, 1.02it/s]
5%|▍ | 47/1000 [01:41<14:41, 1.08it/s]
5%|▍ | 47/1000 [01:41<14:41, 1.08it/s]
5%|▍ | 48/1000 [01:42<13:50, 1.15it/s]
5%|▍ | 48/1000 [01:42<13:50, 1.15it/s]
5%|▍ | 49/1000 [01:42<12:52, 1.23it/s]
5%|▍ | 49/1000 [01:42<12:52, 1.23it/s]
5%|▌ | 50/1000 [01:45<21:55, 1.38s/it]
5%|▌ | 50/1000 [01:45<21:55, 1.38s/it]
5%|▌ | 51/1000 [01:52<49:42, 3.14s/it]
5%|▌ | 51/1000 [01:52<49:42, 3.14s/it]
5%|▌ | 52/1000 [01:57<56:07, 3.55s/it]
5%|▌ | 52/1000 [01:57<56:07, 3.55s/it]
5%|▌ | 53/1000 [02:01<57:28, 3.64s/it]
5%|▌ | 53/1000 [02:01<57:28, 3.64s/it]
5%|▌ | 54/1000 [02:04<56:36, 3.59s/it]
5%|▌ | 54/1000 [02:04<56:36, 3.59s/it]
6%|▌ | 55/1000 [02:07<54:54, 3.49s/it]
6%|▌ | 55/1000 [02:07<54:54, 3.49s/it]
6%|▌ | 56/1000 [02:10<52:14, 3.32s/it]
6%|▌ | 56/1000 [02:10<52:14, 3.32s/it]
6%|▌ | 57/1000 [02:13<49:40, 3.16s/it]
6%|▌ | 57/1000 [02:13<49:40, 3.16s/it]
6%|▌ | 58/1000 [02:16<47:36, 3.03s/it]
6%|▌ | 58/1000 [02:16<47:36, 3.03s/it]
6%|▌ | 59/1000 [02:18<45:03, 2.87s/it]
6%|▌ | 59/1000 [02:18<45:03, 2.87s/it]
6%|▌ | 60/1000 [02:21<43:00, 2.75s/it]
6%|▌ | 60/1000 [02:21<43:00, 2.75s/it]
6%|▌ | 61/1000 [02:23<41:31, 2.65s/it]
6%|▌ | 61/1000 [02:23<41:31, 2.65s/it]
6%|▌ | 62/1000 [02:25<39:18, 2.51s/it]
6%|▌ | 62/1000 [02:25<39:18, 2.51s/it]
6%|▋ | 63/1000 [02:27<37:39, 2.41s/it]
6%|▋ | 63/1000 [02:27<37:39, 2.41s/it]
6%|▋ | 64/1000 [02:30<36:17, 2.33s/it]
6%|▋ | 64/1000 [02:30<36:17, 2.33s/it]
6%|▋ | 65/1000 [02:32<35:20, 2.27s/it]
6%|▋ | 65/1000 [02:32<35:20, 2.27s/it]
7%|▋ | 66/1000 [02:34<34:40, 2.23s/it]
7%|▋ | 66/1000 [02:34<34:40, 2.23s/it]
7%|▋ | 67/1000 [02:36<33:53, 2.18s/it]
7%|▋ | 67/1000 [02:36<33:53, 2.18s/it]
7%|▋ | 68/1000 [02:38<32:20, 2.08s/it]
7%|▋ | 68/1000 [02:38<32:20, 2.08s/it]
7%|▋ | 69/1000 [02:40<30:53, 1.99s/it]
7%|▋ | 69/1000 [02:40<30:53, 1.99s/it]
7%|▋ | 70/1000 [02:41<29:52, 1.93s/it]
7%|▋ | 70/1000 [02:41<29:52, 1.93s/it]
7%|▋ | 71/1000 [02:43<29:10, 1.88s/it]
7%|▋ | 71/1000 [02:43<29:10, 1.88s/it]
7%|▋ | 72/1000 [02:45<28:41, 1.86s/it]
7%|▋ | 72/1000 [02:45<28:41, 1.86s/it]
7%|▋ | 73/1000 [02:47<28:22, 1.84s/it]
7%|▋ | 73/1000 [02:47<28:22, 1.84s/it]
7%|▋ | 74/1000 [02:48<27:26, 1.78s/it]
7%|▋ | 74/1000 [02:48<27:26, 1.78s/it]
8%|▊ | 75/1000 [02:50<26:13, 1.70s/it]
8%|▊ | 75/1000 [02:50<26:13, 1.70s/it]
8%|▊ | 76/1000 [02:51<25:15, 1.64s/it]
8%|▊ | 76/1000 [02:51<25:15, 1.64s/it]
8%|▊ | 77/1000 [02:53<24:36, 1.60s/it]
8%|▊ | 77/1000 [02:53<24:36, 1.60s/it]
8%|▊ | 78/1000 [02:54<24:08, 1.57s/it]
8%|▊ | 78/1000 [02:54<24:08, 1.57s/it]
8%|▊ | 79/1000 [02:56<23:47, 1.55s/it]
8%|▊ | 79/1000 [02:56<23:47, 1.55s/it]
8%|▊ | 80/1000 [02:57<23:29, 1.53s/it]
8%|▊ | 80/1000 [02:57<23:29, 1.53s/it]
8%|▊ | 81/1000 [02:59<23:23, 1.53s/it]
8%|▊ | 81/1000 [02:59<23:23, 1.53s/it]
8%|▊ | 82/1000 [03:00<23:07, 1.51s/it]
8%|▊ | 82/1000 [03:00<23:07, 1.51s/it]
8%|▊ | 83/1000 [03:02<22:05, 1.45s/it]
8%|▊ | 83/1000 [03:02<22:05, 1.45s/it]
8%|▊ | 84/1000 [03:03<21:10, 1.39s/it]
8%|▊ | 84/1000 [03:03<21:10, 1.39s/it]
8%|▊ | 85/1000 [03:04<20:24, 1.34s/it]
8%|▊ | 85/1000 [03:04<20:24, 1.34s/it]
9%|▊ | 86/1000 [03:05<19:52, 1.30s/it]
9%|▊ | 86/1000 [03:05<19:52, 1.30s/it]
9%|▊ | 87/1000 [03:07<19:29, 1.28s/it]
9%|▊ | 87/1000 [03:07<19:29, 1.28s/it]
9%|▉ | 88/1000 [03:08<19:10, 1.26s/it]
9%|▉ | 88/1000 [03:08<19:10, 1.26s/it]
9%|▉ | 89/1000 [03:09<19:02, 1.25s/it]
9%|▉ | 89/1000 [03:09<19:02, 1.25s/it]
9%|▉ | 90/1000 [03:10<18:48, 1.24s/it]
9%|▉ | 90/1000 [03:10<18:48, 1.24s/it]
9%|▉ | 91/1000 [03:11<17:39, 1.17s/it]
9%|▉ | 91/1000 [03:11<17:39, 1.17s/it]
9%|▉ | 92/1000 [03:12<16:35, 1.10s/it]
9%|▉ | 92/1000 [03:12<16:35, 1.10s/it]
9%|▉ | 93/1000 [03:13<15:51, 1.05s/it]
9%|▉ | 93/1000 [03:13<15:51, 1.05s/it]
9%|▉ | 94/1000 [03:14<15:19, 1.01s/it]
9%|▉ | 94/1000 [03:14<15:19, 1.01s/it]
10%|▉ | 95/1000 [03:15<14:58, 1.01it/s]
10%|▉ | 95/1000 [03:15<14:58, 1.01it/s]
10%|▉ | 96/1000 [03:16<14:43, 1.02it/s]
10%|▉ | 96/1000 [03:16<14:43, 1.02it/s]
10%|▉ | 97/1000 [03:17<13:56, 1.08it/s]
10%|▉ | 97/1000 [03:17<13:56, 1.08it/s]
10%|▉ | 98/1000 [03:17<12:47, 1.18it/s]
10%|▉ | 98/1000 [03:17<12:47, 1.18it/s]
10%|▉ | 99/1000 [03:18<11:59, 1.25it/s]
10%|▉ | 99/1000 [03:18<11:59, 1.25it/s]
10%|█ | 100/1000 [03:21<20:46, 1.39s/it]
10%|█ | 100/1000 [03:21<20:46, 1.39s/it]
10%|█ | 101/1000 [03:28<46:41, 3.12s/it]
10%|█ | 101/1000 [03:28<46:41, 3.12s/it]
10%|█ | 102/1000 [03:32<51:46, 3.46s/it]
10%|█ | 102/1000 [03:32<51:46, 3.46s/it]
10%|█ | 103/1000 [03:36<52:45, 3.53s/it]
10%|█ | 103/1000 [03:36<52:45, 3.53s/it]
10%|█ | 104/1000 [03:39<51:53, 3.48s/it]
10%|█ | 104/1000 [03:39<51:53, 3.48s/it]
10%|█ | 105/1000 [03:42<50:17, 3.37s/it]
10%|█ | 105/1000 [03:42<50:17, 3.37s/it]
11%|█ | 106/1000 [03:45<48:20, 3.24s/it]
11%|█ | 106/1000 [03:45<48:20, 3.24s/it]
11%|█ | 107/1000 [03:48<46:04, 3.10s/it]
11%|█ | 107/1000 [03:48<46:04, 3.10s/it]
11%|█ | 108/1000 [03:51<44:09, 2.97s/it]
11%|█ | 108/1000 [03:51<44:09, 2.97s/it]
11%|█ | 109/1000 [03:53<41:59, 2.83s/it]
11%|█ | 109/1000 [03:53<41:59, 2.83s/it]
11%|█ | 110/1000 [03:56<40:02, 2.70s/it]
11%|█ | 110/1000 [03:56<40:02, 2.70s/it]
11%|█ | 111/1000 [03:58<38:54, 2.63s/it]
11%|█ | 111/1000 [03:58<38:54, 2.63s/it]
11%|█ | 112/1000 [04:01<37:47, 2.55s/it]
11%|█ | 112/1000 [04:01<37:47, 2.55s/it]
11%|█▏ | 113/1000 [04:03<36:00, 2.44s/it]
11%|█▏ | 113/1000 [04:03<36:00, 2.44s/it]
11%|█▏ | 114/1000 [04:05<34:26, 2.33s/it]
11%|█▏ | 114/1000 [04:05<34:26, 2.33s/it]
12%|█▏ | 115/1000 [04:07<33:21, 2.26s/it]
12%|█▏ | 115/1000 [04:07<33:21, 2.26s/it]
12%|█▏ | 116/1000 [04:09<32:35, 2.21s/it]
12%|█▏ | 116/1000 [04:09<32:35, 2.21s/it]
12%|█▏ | 117/1000 [04:11<31:37, 2.15s/it]
12%|█▏ | 117/1000 [04:11<31:37, 2.15s/it]
12%|█▏ | 118/1000 [04:13<30:00, 2.04s/it]
12%|█▏ | 118/1000 [04:13<30:00, 2.04s/it]
12%|█▏ | 119/1000 [04:15<28:50, 1.96s/it]
12%|█▏ | 119/1000 [04:15<28:50, 1.96s/it]
12%|█▏ | 120/1000 [04:16<27:57, 1.91s/it]
12%|█▏ | 120/1000 [04:16<27:57, 1.91s/it]
12%|█▏ | 121/1000 [04:18<27:21, 1.87s/it]
12%|█▏ | 121/1000 [04:18<27:21, 1.87s/it]
12%|█▏ | 122/1000 [04:20<26:54, 1.84s/it]
12%|█▏ | 122/1000 [04:20<26:54, 1.84s/it]
12%|█▏ | 123/1000 [04:22<26:37, 1.82s/it]
12%|█▏ | 123/1000 [04:22<26:37, 1.82s/it]
12%|█▏ | 124/1000 [04:23<25:59, 1.78s/it]
12%|█▏ | 124/1000 [04:23<25:59, 1.78s/it]
12%|█▎ | 125/1000 [04:25<24:50, 1.70s/it]
12%|█▎ | 125/1000 [04:25<24:50, 1.70s/it]
13%|█▎ | 126/1000 [04:26<24:04, 1.65s/it]
13%|█▎ | 126/1000 [04:26<24:04, 1.65s/it]
13%|█▎ | 127/1000 [04:28<23:25, 1.61s/it]
13%|█▎ | 127/1000 [04:28<23:25, 1.61s/it]
13%|█▎ | 128/1000 [04:29<22:58, 1.58s/it]
13%|█▎ | 128/1000 [04:29<22:58, 1.58s/it]
13%|█▎ | 129/1000 [04:31<22:38, 1.56s/it]
13%|█▎ | 129/1000 [04:31<22:38, 1.56s/it]
13%|█▎ | 130/1000 [04:32<22:20, 1.54s/it]
13%|█▎ | 130/1000 [04:32<22:20, 1.54s/it]
13%|█▎ | 131/1000 [04:34<22:09, 1.53s/it]
13%|█▎ | 131/1000 [04:34<22:09, 1.53s/it]
13%|█▎ | 132/1000 [04:35<21:25, 1.48s/it]
13%|█▎ | 132/1000 [04:35<21:25, 1.48s/it]
13%|█▎ | 133/1000 [04:37<20:18, 1.41s/it]
13%|█▎ | 133/1000 [04:37<20:18, 1.41s/it]
13%|█▎ | 134/1000 [04:38<19:31, 1.35s/it]
13%|█▎ | 134/1000 [04:38<19:31, 1.35s/it]
14%|█▎ | 135/1000 [04:39<18:58, 1.32s/it]
14%|█▎ | 135/1000 [04:39<18:58, 1.32s/it]
14%|█▎ | 136/1000 [04:40<18:34, 1.29s/it]
14%|█▎ | 136/1000 [04:40<18:34, 1.29s/it]
14%|█▎ | 137/1000 [04:41<18:23, 1.28s/it]
14%|█▎ | 137/1000 [04:41<18:23, 1.28s/it]
14%|█▍ | 138/1000 [04:43<18:11, 1.27s/it]
14%|█▍ | 138/1000 [04:43<18:11, 1.27s/it]
14%|█▍ | 139/1000 [04:44<18:01, 1.26s/it]
14%|█▍ | 139/1000 [04:44<18:01, 1.26s/it]
14%|█▍ | 140/1000 [04:45<17:22, 1.21s/it]
14%|█▍ | 140/1000 [04:45<17:22, 1.21s/it]
14%|█▍ | 141/1000 [04:46<16:10, 1.13s/it]
14%|█▍ | 141/1000 [04:46<16:10, 1.13s/it]
14%|█▍ | 142/1000 [04:47<15:18, 1.07s/it]
14%|█▍ | 142/1000 [04:47<15:18, 1.07s/it]
14%|█▍ | 143/1000 [04:48<14:43, 1.03s/it]
14%|█▍ | 143/1000 [04:48<14:43, 1.03s/it]
14%|█▍ | 144/1000 [04:49<14:17, 1.00s/it]
14%|█▍ | 144/1000 [04:49<14:17, 1.00s/it]
14%|█▍ | 145/1000 [04:50<13:59, 1.02it/s]
14%|█▍ | 145/1000 [04:50<13:59, 1.02it/s]
15%|█▍ | 146/1000 [04:51<13:34, 1.05it/s]
15%|█▍ | 146/1000 [04:51<13:34, 1.05it/s]
15%|█▍ | 147/1000 [04:51<12:35, 1.13it/s]
15%|█▍ | 147/1000 [04:51<12:35, 1.13it/s]
15%|█▍ | 148/1000 [04:52<11:41, 1.21it/s]
15%|█▍ | 148/1000 [04:52<11:41, 1.21it/s]
15%|█▍ | 149/1000 [04:53<11:06, 1.28it/s]
15%|█▍ | 149/1000 [04:53<11:06, 1.28it/s]
15%|█▌ | 150/1000 [04:55<19:03, 1.35s/it]
15%|█▌ | 150/1000 [04:55<19:03, 1.35s/it]
15%|█▌ | 151/1000 [05:03<46:44, 3.30s/it]
15%|█▌ | 151/1000 [05:03<46:44, 3.30s/it]
15%|█▌ | 152/1000 [05:08<52:14, 3.70s/it]
15%|█▌ | 152/1000 [05:08<52:14, 3.70s/it]
15%|█▌ | 153/1000 [05:12<53:48, 3.81s/it]
15%|█▌ | 153/1000 [05:12<53:48, 3.81s/it]
15%|█▌ | 154/1000 [05:16<53:02, 3.76s/it]
15%|█▌ | 154/1000 [05:16<53:02, 3.76s/it]
16%|█▌ | 155/1000 [05:19<51:32, 3.66s/it]
16%|█▌ | 155/1000 [05:19<51:32, 3.66s/it]
16%|█▌ | 156/1000 [05:22<49:16, 3.50s/it]
16%|█▌ | 156/1000 [05:22<49:16, 3.50s/it]
16%|█▌ | 157/1000 [05:25<46:55, 3.34s/it]
16%|█▌ | 157/1000 [05:25<46:55, 3.34s/it]
16%|█▌ | 158/1000 [05:28<44:34, 3.18s/it]
16%|█▌ | 158/1000 [05:28<44:34, 3.18s/it]
16%|█▌ | 159/1000 [05:31<42:32, 3.04s/it]
16%|█▌ | 159/1000 [05:31<42:32, 3.04s/it]
16%|█▌ | 160/1000 [05:33<40:12, 2.87s/it]
16%|█▌ | 160/1000 [05:33<40:12, 2.87s/it]
16%|█▌ | 161/1000 [05:35<38:08, 2.73s/it]
16%|█▌ | 161/1000 [05:35<38:08, 2.73s/it]
16%|█▌ | 162/1000 [05:38<36:44, 2.63s/it]
16%|█▌ | 162/1000 [05:38<36:44, 2.63s/it]
16%|█▋ | 163/1000 [05:40<34:45, 2.49s/it]
16%|█▋ | 163/1000 [05:40<34:45, 2.49s/it]
16%|█▋ | 164/1000 [05:42<33:03, 2.37s/it]
16%|█▋ | 164/1000 [05:42<33:03, 2.37s/it]
16%|█▋ | 165/1000 [05:44<31:49, 2.29s/it]
16%|█▋ | 165/1000 [05:44<31:49, 2.29s/it]
17%|█▋ | 166/1000 [05:46<31:01, 2.23s/it]
17%|█▋ | 166/1000 [05:46<31:01, 2.23s/it]
17%|█▋ | 167/1000 [05:48<30:26, 2.19s/it]
17%|█▋ | 167/1000 [05:48<30:26, 2.19s/it]
17%|█▋ | 168/1000 [05:50<29:38, 2.14s/it]
17%|█▋ | 168/1000 [05:50<29:38, 2.14s/it]
17%|█▋ | 169/1000 [05:52<28:10, 2.03s/it]
17%|█▋ | 169/1000 [05:52<28:10, 2.03s/it]
17%|█▋ | 170/1000 [05:54<27:08, 1.96s/it]
17%|█▋ | 170/1000 [05:54<27:08, 1.96s/it]
17%|█▋ | 171/1000 [05:56<26:20, 1.91s/it]
17%|█▋ | 171/1000 [05:56<26:20, 1.91s/it]
17%|█▋ | 172/1000 [05:58<25:46, 1.87s/it]
17%|█▋ | 172/1000 [05:58<25:46, 1.87s/it]
17%|█▋ | 173/1000 [05:59<25:22, 1.84s/it]
17%|█▋ | 173/1000 [05:59<25:22, 1.84s/it]
17%|█▋ | 174/1000 [06:01<24:58, 1.81s/it]
17%|█▋ | 174/1000 [06:01<24:58, 1.81s/it]
18%|█▊ | 175/1000 [06:03<23:48, 1.73s/it]
18%|█▊ | 175/1000 [06:03<23:48, 1.73s/it]
18%|█▊ | 176/1000 [06:04<22:53, 1.67s/it]
18%|█▊ | 176/1000 [06:04<22:53, 1.67s/it]
18%|█▊ | 177/1000 [06:06<22:10, 1.62s/it]
18%|█▊ | 177/1000 [06:06<22:10, 1.62s/it]
18%|█▊ | 178/1000 [06:07<21:48, 1.59s/it]
18%|█▊ | 178/1000 [06:07<21:48, 1.59s/it]
18%|█▊ | 179/1000 [06:09<21:24, 1.56s/it]
18%|█▊ | 179/1000 [06:09<21:24, 1.56s/it]
18%|█▊ | 180/1000 [06:10<21:07, 1.55s/it]
18%|█▊ | 180/1000 [06:10<21:07, 1.55s/it]
18%|█▊ | 181/1000 [06:12<20:56, 1.53s/it]
18%|█▊ | 181/1000 [06:12<20:56, 1.53s/it]
18%|█▊ | 182/1000 [06:13<20:16, 1.49s/it]
18%|█▊ | 182/1000 [06:13<20:16, 1.49s/it]
18%|█▊ | 183/1000 [06:14<19:10, 1.41s/it]
18%|█▊ | 183/1000 [06:14<19:10, 1.41s/it]
18%|█▊ | 184/1000 [06:16<18:25, 1.35s/it]
18%|█▊ | 184/1000 [06:16<18:25, 1.35s/it]
18%|█▊ | 185/1000 [06:17<17:55, 1.32s/it]
18%|█▊ | 185/1000 [06:17<17:55, 1.32s/it]
19%|█▊ | 186/1000 [06:18<17:33, 1.29s/it]
19%|█▊ | 186/1000 [06:18<17:33, 1.29s/it]
19%|█▊ | 187/1000 [06:19<17:18, 1.28s/it]
19%|█▊ | 187/1000 [06:19<17:18, 1.28s/it]
19%|█▉ | 188/1000 [06:20<17:10, 1.27s/it]
19%|█▉ | 188/1000 [06:21<17:10, 1.27s/it]
19%|█▉ | 189/1000 [06:22<17:00, 1.26s/it]
19%|█▉ | 189/1000 [06:22<17:00, 1.26s/it]
19%|█▉ | 190/1000 [06:23<15:59, 1.18s/it]
19%|█▉ | 190/1000 [06:23<15:59, 1.18s/it]
19%|█▉ | 191/1000 [06:24<14:58, 1.11s/it]
19%|█▉ | 191/1000 [06:24<14:58, 1.11s/it]
19%|█▉ | 192/1000 [06:25<14:14, 1.06s/it]
19%|█▉ | 192/1000 [06:25<14:14, 1.06s/it]
19%|█▉ | 193/1000 [06:26<13:44, 1.02s/it]
19%|█▉ | 193/1000 [06:26<13:44, 1.02s/it]
19%|█▉ | 194/1000 [06:26<13:22, 1.00it/s]
19%|█▉ | 194/1000 [06:26<13:22, 1.00it/s]
20%|█▉ | 195/1000 [06:27<13:17, 1.01it/s]
20%|█▉ | 195/1000 [06:27<13:17, 1.01it/s]
20%|█▉ | 196/1000 [06:28<13:01, 1.03it/s]
20%|█▉ | 196/1000 [06:28<13:01, 1.03it/s]
20%|█▉ | 197/1000 [06:29<12:01, 1.11it/s]
20%|█▉ | 197/1000 [06:29<12:01, 1.11it/s]
20%|█▉ | 198/1000 [06:30<11:07, 1.20it/s]
20%|█▉ | 198/1000 [06:30<11:07, 1.20it/s]
20%|█▉ | 199/1000 [06:30<10:29, 1.27it/s]
20%|█▉ | 199/1000 [06:30<10:29, 1.27it/s]
20%|██ | 200/1000 [06:33<17:49, 1.34s/it]
20%|██ | 200/1000 [06:33<17:49, 1.34s/it]
20%|██ | 201/1000 [06:40<41:53, 3.15s/it]
20%|██ | 201/1000 [06:40<41:53, 3.15s/it]
20%|██ | 202/1000 [06:45<46:38, 3.51s/it]
20%|██ | 202/1000 [06:45<46:38, 3.51s/it]
20%|██ | 203/1000 [06:49<47:48, 3.60s/it]
20%|██ | 203/1000 [06:49<47:48, 3.60s/it]
20%|██ | 204/1000 [06:52<47:39, 3.59s/it]
20%|██ | 204/1000 [06:52<47:39, 3.59s/it]
20%|██ | 205/1000 [06:55<46:26, 3.50s/it]
20%|██ | 205/1000 [06:56<46:26, 3.50s/it]
21%|██ | 206/1000 [06:59<44:31, 3.36s/it]
21%|██ | 206/1000 [06:59<44:31, 3.36s/it]
21%|██ | 207/1000 [07:01<42:40, 3.23s/it]
21%|██ | 207/1000 [07:01<42:40, 3.23s/it]
21%|██ | 208/1000 [07:04<40:48, 3.09s/it]
21%|██ | 208/1000 [07:04<40:48, 3.09s/it]
21%|██ | 209/1000 [07:07<39:11, 2.97s/it]
21%|██ | 209/1000 [07:07<39:11, 2.97s/it]
21%|██ | 210/1000 [07:09<37:14, 2.83s/it]
21%|██ | 210/1000 [07:09<37:14, 2.83s/it]
21%|██ | 211/1000 [07:12<35:34, 2.71s/it]
21%|██ | 211/1000 [07:12<35:34, 2.71s/it]
21%|██ | 212/1000 [07:14<34:19, 2.61s/it]
21%|██ | 212/1000 [07:14<34:19, 2.61s/it]
21%|██▏ | 213/1000 [07:16<32:50, 2.50s/it]
21%|██▏ | 213/1000 [07:16<32:50, 2.50s/it]
21%|██▏ | 214/1000 [07:19<31:16, 2.39s/it]
21%|██▏ | 214/1000 [07:19<31:16, 2.39s/it]
22%|██▏ | 215/1000 [07:21<30:03, 2.30s/it]
22%|██▏ | 215/1000 [07:21<30:03, 2.30s/it]
22%|██▏ | 216/1000 [07:23<29:13, 2.24s/it]
22%|██▏ | 216/1000 [07:23<29:13, 2.24s/it]
22%|██▏ | 217/1000 [07:25<28:35, 2.19s/it]
22%|██▏ | 217/1000 [07:25<28:35, 2.19s/it]
22%|██▏ | 218/1000 [07:27<27:14, 2.09s/it]
22%|██▏ | 218/1000 [07:27<27:14, 2.09s/it]
22%|██▏ | 219/1000 [07:29<26:13, 2.01s/it]
22%|██▏ | 219/1000 [07:29<26:13, 2.01s/it]
22%|██▏ | 220/1000 [07:30<25:19, 1.95s/it]
22%|██▏ | 220/1000 [07:30<25:19, 1.95s/it]
22%|██▏ | 221/1000 [07:32<24:37, 1.90s/it]
22%|██▏ | 221/1000 [07:32<24:37, 1.90s/it]
22%|██▏ | 222/1000 [07:34<24:14, 1.87s/it]
22%|██▏ | 222/1000 [07:34<24:14, 1.87s/it]
22%|██▏ | 223/1000 [07:36<23:51, 1.84s/it]
22%|██▏ | 223/1000 [07:36<23:51, 1.84s/it]
22%|██▏ | 224/1000 [07:37<23:36, 1.83s/it]
22%|██▏ | 224/1000 [07:38<23:36, 1.83s/it]
22%|██▎ | 225/1000 [07:39<22:46, 1.76s/it]
22%|██▎ | 225/1000 [07:39<22:46, 1.76s/it]
23%|██▎ | 226/1000 [07:41<21:44, 1.69s/it]
23%|██▎ | 226/1000 [07:41<21:44, 1.69s/it]
23%|██▎ | 227/1000 [07:42<21:00, 1.63s/it]
23%|██▎ | 227/1000 [07:42<21:00, 1.63s/it]
23%|██▎ | 228/1000 [07:44<20:30, 1.59s/it]
23%|██▎ | 228/1000 [07:44<20:30, 1.59s/it]
23%|██▎ | 229/1000 [07:45<20:10, 1.57s/it]
23%|██▎ | 229/1000 [07:45<20:10, 1.57s/it]
23%|██▎ | 230/1000 [07:47<19:56, 1.55s/it]
23%|██▎ | 230/1000 [07:47<19:56, 1.55s/it]
23%|██▎ | 231/1000 [07:48<19:43, 1.54s/it]
23%|██▎ | 231/1000 [07:48<19:43, 1.54s/it]
23%|██▎ | 232/1000 [07:50<19:36, 1.53s/it]
23%|██▎ | 232/1000 [07:50<19:36, 1.53s/it]
23%|██▎ | 233/1000 [07:51<19:15, 1.51s/it]
23%|██▎ | 233/1000 [07:51<19:15, 1.51s/it]
23%|██▎ | 234/1000 [07:52<18:24, 1.44s/it]
23%|██▎ | 234/1000 [07:52<18:24, 1.44s/it]
24%|██▎ | 235/1000 [07:54<17:35, 1.38s/it]
24%|██▎ | 235/1000 [07:54<17:35, 1.38s/it]
24%|██▎ | 236/1000 [07:55<16:59, 1.33s/it]
24%|██▎ | 236/1000 [07:55<16:59, 1.33s/it]
24%|██▎ | 237/1000 [07:56<16:35, 1.30s/it]
24%|██▎ | 237/1000 [07:56<16:35, 1.30s/it]
24%|██▍ | 238/1000 [07:57<16:16, 1.28s/it]
24%|██▍ | 238/1000 [07:57<16:16, 1.28s/it]
24%|██▍ | 239/1000 [07:59<16:06, 1.27s/it]
24%|██▍ | 239/1000 [07:59<16:06, 1.27s/it]
24%|██▍ | 240/1000 [08:00<16:03, 1.27s/it]
24%|██▍ | 240/1000 [08:00<16:03, 1.27s/it]
24%|██▍ | 241/1000 [08:01<15:03, 1.19s/it]
24%|██▍ | 241/1000 [08:01<15:03, 1.19s/it]
24%|██▍ | 242/1000 [08:02<14:05, 1.12s/it]
24%|██▍ | 242/1000 [08:02<14:05, 1.12s/it]
24%|██▍ | 243/1000 [08:03<13:26, 1.06s/it]
24%|██▍ | 243/1000 [08:03<13:26, 1.06s/it]
24%|██▍ | 244/1000 [08:04<12:58, 1.03s/it]
24%|██▍ | 244/1000 [08:04<12:58, 1.03s/it]
24%|██▍ | 245/1000 [08:05<12:38, 1.00s/it]
24%|██▍ | 245/1000 [08:05<12:38, 1.00s/it]
25%|██▍ | 246/1000 [08:06<12:24, 1.01it/s]
25%|██▍ | 246/1000 [08:06<12:24, 1.01it/s]
25%|██▍ | 247/1000 [08:06<11:45, 1.07it/s]
25%|██▍ | 247/1000 [08:06<11:45, 1.07it/s]
25%|██▍ | 248/1000 [08:07<10:49, 1.16it/s]
25%|██▍ | 248/1000 [08:07<10:49, 1.16it/s]
25%|██▍ | 249/1000 [08:08<10:08, 1.23it/s]
25%|██▍ | 249/1000 [08:08<10:08, 1.23it/s]
25%|██▌ | 250/1000 [08:10<16:35, 1.33s/it]
25%|██▌ | 250/1000 [08:10<16:35, 1.33s/it]
25%|██▌ | 251/1000 [08:18<39:22, 3.15s/it]
25%|██▌ | 251/1000 [08:18<39:22, 3.15s/it]
25%|██▌ | 252/1000 [08:22<43:21, 3.48s/it]
25%|██▌ | 252/1000 [08:22<43:21, 3.48s/it]
25%|██▌ | 253/1000 [08:26<44:37, 3.58s/it]
25%|██▌ | 253/1000 [08:26<44:37, 3.58s/it]
25%|██▌ | 254/1000 [08:29<44:06, 3.55s/it]
25%|██▌ | 254/1000 [08:29<44:06, 3.55s/it]
26%|██▌ | 255/1000 [08:33<43:11, 3.48s/it]
26%|██▌ | 255/1000 [08:33<43:11, 3.48s/it]
26%|██▌ | 256/1000 [08:36<41:34, 3.35s/it]
26%|██▌ | 256/1000 [08:36<41:34, 3.35s/it]
26%|██▌ | 257/1000 [08:39<39:57, 3.23s/it]
26%|██▌ | 257/1000 [08:39<39:57, 3.23s/it]
26%|██▌ | 258/1000 [08:41<38:03, 3.08s/it]
26%|██▌ | 258/1000 [08:41<38:03, 3.08s/it]
26%|██▌ | 259/1000 [08:44<36:49, 2.98s/it]
26%|██▌ | 259/1000 [08:44<36:49, 2.98s/it]
26%|██▌ | 260/1000 [08:47<34:58, 2.84s/it]
26%|██▌ | 260/1000 [08:47<34:58, 2.84s/it]
26%|██▌ | 261/1000 [08:49<33:17, 2.70s/it]
26%|██▌ | 261/1000 [08:49<33:17, 2.70s/it]
26%|██▌ | 262/1000 [08:51<32:05, 2.61s/it]
26%|██▌ | 262/1000 [08:51<32:05, 2.61s/it]
26%|██▋ | 263/1000 [08:54<31:16, 2.55s/it]
26%|██▋ | 263/1000 [08:54<31:16, 2.55s/it]
26%|██▋ | 264/1000 [08:56<30:13, 2.46s/it]
26%|██▋ | 264/1000 [08:56<30:13, 2.46s/it]
26%|██▋ | 265/1000 [08:58<29:07, 2.38s/it]
26%|██▋ | 265/1000 [08:58<29:07, 2.38s/it]
27%|██▋ | 266/1000 [09:00<28:05, 2.30s/it]
27%|██▋ | 266/1000 [09:00<28:05, 2.30s/it]
27%|██▋ | 267/1000 [09:02<27:19, 2.24s/it]
27%|██▋ | 267/1000 [09:02<27:19, 2.24s/it]
27%|██▋ | 268/1000 [09:04<26:43, 2.19s/it]
27%|██▋ | 268/1000 [09:04<26:43, 2.19s/it]
27%|██▋ | 269/1000 [09:06<25:25, 2.09s/it]
27%|██▋ | 269/1000 [09:06<25:25, 2.09s/it]
27%|██▋ | 270/1000 [09:08<24:15, 1.99s/it]
27%|██▋ | 270/1000 [09:08<24:15, 1.99s/it]
27%|██▋ | 271/1000 [09:10<23:26, 1.93s/it]
27%|██▋ | 271/1000 [09:10<23:26, 1.93s/it]
27%|██▋ | 272/1000 [09:12<22:49, 1.88s/it]
27%|██▋ | 272/1000 [09:12<22:49, 1.88s/it]
27%|██▋ | 273/1000 [09:13<22:26, 1.85s/it]
27%|██▋ | 273/1000 [09:13<22:26, 1.85s/it]
27%|██▋ | 274/1000 [09:15<22:09, 1.83s/it]
27%|██▋ | 274/1000 [09:15<22:09, 1.83s/it]
28%|██▊ | 275/1000 [09:17<21:53, 1.81s/it]
28%|██▊ | 275/1000 [09:17<21:53, 1.81s/it]
28%|██▊ | 276/1000 [09:19<20:56, 1.74s/it]
28%|██▊ | 276/1000 [09:19<20:56, 1.74s/it]
28%|██▊ | 277/1000 [09:20<20:04, 1.67s/it]
28%|██▊ | 277/1000 [09:20<20:04, 1.67s/it]
28%|██▊ | 278/1000 [09:22<19:25, 1.61s/it]
28%|██▊ | 278/1000 [09:22<19:25, 1.61s/it]
28%|██▊ | 279/1000 [09:23<18:59, 1.58s/it]
28%|██▊ | 279/1000 [09:23<18:59, 1.58s/it]
28%|██▊ | 280/1000 [09:25<18:43, 1.56s/it]
28%|██▊ | 280/1000 [09:25<18:43, 1.56s/it]
28%|██▊ | 281/1000 [09:26<18:34, 1.55s/it]
28%|██▊ | 281/1000 [09:26<18:34, 1.55s/it]
28%|██▊ | 282/1000 [09:28<18:22, 1.54s/it]
28%|██▊ | 282/1000 [09:28<18:22, 1.54s/it]
28%|██▊ | 283/1000 [09:29<18:09, 1.52s/it]
28%|██▊ | 283/1000 [09:29<18:09, 1.52s/it]
28%|██▊ | 284/1000 [09:30<17:17, 1.45s/it]
28%|██▊ | 284/1000 [09:30<17:17, 1.45s/it]
28%|██▊ | 285/1000 [09:32<16:28, 1.38s/it]
28%|██▊ | 285/1000 [09:32<16:28, 1.38s/it]
29%|██▊ | 286/1000 [09:33<15:55, 1.34s/it]
29%|██▊ | 286/1000 [09:33<15:55, 1.34s/it]
29%|██▊ | 287/1000 [09:34<15:31, 1.31s/it]
29%|██▊ | 287/1000 [09:34<15:31, 1.31s/it]
29%|██▉ | 288/1000 [09:35<15:12, 1.28s/it]
29%|██▉ | 288/1000 [09:35<15:12, 1.28s/it]
29%|██▉ | 289/1000 [09:36<15:00, 1.27s/it]
29%|██▉ | 289/1000 [09:37<15:00, 1.27s/it]
29%|██▉ | 290/1000 [09:38<14:42, 1.24s/it]
29%|██▉ | 290/1000 [09:38<14:42, 1.24s/it]
29%|██▉ | 291/1000 [09:39<13:50, 1.17s/it]
29%|██▉ | 291/1000 [09:39<13:50, 1.17s/it]
29%|██▉ | 292/1000 [09:40<13:00, 1.10s/it]
29%|██▉ | 292/1000 [09:40<13:00, 1.10s/it]
29%|██▉ | 293/1000 [09:41<12:28, 1.06s/it]
29%|██▉ | 293/1000 [09:41<12:28, 1.06s/it]
29%|██▉ | 294/1000 [09:42<12:00, 1.02s/it]
29%|██▉ | 294/1000 [09:42<12:00, 1.02s/it]
30%|██▉ | 295/1000 [09:42<11:42, 1.00it/s]
30%|██▉ | 295/1000 [09:42<11:42, 1.00it/s]
30%|██▉ | 296/1000 [09:43<11:28, 1.02it/s]
30%|██▉ | 296/1000 [09:43<11:28, 1.02it/s]
30%|██▉ | 297/1000 [09:44<10:47, 1.09it/s]
30%|██▉ | 297/1000 [09:44<10:47, 1.09it/s]
30%|██▉ | 298/1000 [09:45<09:55, 1.18it/s]
30%|██▉ | 298/1000 [09:45<09:55, 1.18it/s]
30%|██▉ | 299/1000 [09:46<09:18, 1.26it/s]
30%|██▉ | 299/1000 [09:46<09:18, 1.26it/s]
30%|███ | 300/1000 [09:48<15:25, 1.32s/it]
30%|███ | 300/1000 [09:48<15:25, 1.32s/it]
30%|███ | 301/1000 [09:56<36:46, 3.16s/it]
30%|███ | 301/1000 [09:56<36:46, 3.16s/it]
30%|███ | 302/1000 [10:00<40:48, 3.51s/it]
30%|███ | 302/1000 [10:00<40:48, 3.51s/it]
30%|███ | 303/1000 [10:04<41:33, 3.58s/it]
30%|███ | 303/1000 [10:04<41:33, 3.58s/it]
30%|███ | 304/1000 [10:07<41:05, 3.54s/it]
30%|███ | 304/1000 [10:07<41:05, 3.54s/it]
30%|███ | 305/1000 [10:10<40:06, 3.46s/it]
30%|███ | 305/1000 [10:10<40:06, 3.46s/it]
31%|███ | 306/1000 [10:13<38:25, 3.32s/it]
31%|███ | 306/1000 [10:13<38:25, 3.32s/it]
31%|███ | 307/1000 [10:16<36:30, 3.16s/it]
31%|███ | 307/1000 [10:16<36:30, 3.16s/it]
31%|███ | 308/1000 [10:19<34:58, 3.03s/it]
31%|███ | 308/1000 [10:19<34:58, 3.03s/it]
31%|███ | 309/1000 [10:21<33:01, 2.87s/it]
31%|███ | 309/1000 [10:21<33:01, 2.87s/it]
31%|███ | 310/1000 [10:24<31:21, 2.73s/it]
31%|███ | 310/1000 [10:24<31:21, 2.73s/it]
31%|███ | 311/1000 [10:26<30:16, 2.64s/it]
31%|███ | 311/1000 [10:26<30:16, 2.64s/it]
31%|███ | 312/1000 [10:28<28:42, 2.50s/it]
31%|███ | 312/1000 [10:28<28:42, 2.50s/it]
31%|███▏ | 313/1000 [10:30<27:12, 2.38s/it]
31%|███▏ | 313/1000 [10:30<27:12, 2.38s/it]
31%|███▏ | 314/1000 [10:32<26:12, 2.29s/it]
31%|███▏ | 314/1000 [10:33<26:12, 2.29s/it]
32%|███▏ | 315/1000 [10:35<25:32, 2.24s/it]
32%|███▏ | 315/1000 [10:35<25:32, 2.24s/it]
32%|███▏ | 316/1000 [10:37<25:02, 2.20s/it]
32%|███▏ | 316/1000 [10:37<25:02, 2.20s/it]
32%|███▏ | 317/1000 [10:39<24:29, 2.15s/it]
32%|███▏ | 317/1000 [10:39<24:29, 2.15s/it]
32%|███▏ | 318/1000 [10:41<23:24, 2.06s/it]
32%|███▏ | 318/1000 [10:41<23:24, 2.06s/it]
32%|███▏ | 319/1000 [10:42<22:24, 1.97s/it]
32%|███▏ | 319/1000 [10:42<22:24, 1.97s/it]
32%|███▏ | 320/1000 [10:44<21:40, 1.91s/it]
32%|███▏ | 320/1000 [10:44<21:40, 1.91s/it]
32%|███▏ | 321/1000 [10:46<21:15, 1.88s/it]
32%|███▏ | 321/1000 [10:46<21:15, 1.88s/it]
32%|███▏ | 322/1000 [10:48<20:51, 1.85s/it]
32%|███▏ | 322/1000 [10:48<20:51, 1.85s/it]
32%|███▏ | 323/1000 [10:49<20:35, 1.83s/it]
32%|███▏ | 323/1000 [10:50<20:35, 1.83s/it]
32%|███▏ | 324/1000 [10:51<20:03, 1.78s/it]
32%|███▏ | 324/1000 [10:51<20:03, 1.78s/it]
32%|███▎ | 325/1000 [10:53<19:08, 1.70s/it]
32%|███▎ | 325/1000 [10:53<19:08, 1.70s/it]
33%|███▎ | 326/1000 [10:54<18:26, 1.64s/it]
33%|███▎ | 326/1000 [10:54<18:26, 1.64s/it]
33%|███▎ | 327/1000 [10:56<17:55, 1.60s/it]
33%|███▎ | 327/1000 [10:56<17:55, 1.60s/it]
33%|███▎ | 328/1000 [10:57<17:38, 1.57s/it]
33%|███▎ | 328/1000 [10:57<17:38, 1.57s/it]
33%|███▎ | 329/1000 [10:59<17:31, 1.57s/it]
33%|███▎ | 329/1000 [10:59<17:31, 1.57s/it]
33%|███▎ | 330/1000 [11:00<17:18, 1.55s/it]
33%|███▎ | 330/1000 [11:00<17:18, 1.55s/it]
33%|███▎ | 331/1000 [11:02<17:06, 1.53s/it]
33%|███▎ | 331/1000 [11:02<17:06, 1.53s/it]
33%|███▎ | 332/1000 [11:03<16:30, 1.48s/it]
33%|███▎ | 332/1000 [11:03<16:30, 1.48s/it]
33%|███▎ | 333/1000 [11:04<15:38, 1.41s/it]
33%|███▎ | 333/1000 [11:04<15:38, 1.41s/it]
33%|███▎ | 334/1000 [11:06<15:03, 1.36s/it]
33%|███▎ | 334/1000 [11:06<15:03, 1.36s/it]
34%|███▎ | 335/1000 [11:07<14:38, 1.32s/it]
34%|███▎ | 335/1000 [11:07<14:38, 1.32s/it]
34%|███▎ | 336/1000 [11:08<14:17, 1.29s/it]
34%|███▎ | 336/1000 [11:08<14:17, 1.29s/it]
34%|███▎ | 337/1000 [11:09<14:04, 1.27s/it]
34%|███▎ | 337/1000 [11:09<14:04, 1.27s/it]
34%|███▍ | 338/1000 [11:11<13:56, 1.26s/it]
34%|███▍ | 338/1000 [11:11<13:56, 1.26s/it]
34%|███▍ | 339/1000 [11:12<13:47, 1.25s/it]
34%|███▍ | 339/1000 [11:12<13:47, 1.25s/it]
34%|███▍ | 340/1000 [11:13<13:26, 1.22s/it]
34%|███▍ | 340/1000 [11:13<13:26, 1.22s/it]
34%|███▍ | 341/1000 [11:14<12:28, 1.14s/it]
34%|███▍ | 341/1000 [11:14<12:28, 1.14s/it]
34%|███▍ | 342/1000 [11:15<11:47, 1.08s/it]
34%|███▍ | 342/1000 [11:15<11:47, 1.08s/it]
34%|███▍ | 343/1000 [11:16<11:18, 1.03s/it]
34%|███▍ | 343/1000 [11:16<11:18, 1.03s/it]
34%|███▍ | 344/1000 [11:17<10:59, 1.00s/it]
34%|███▍ | 344/1000 [11:17<10:59, 1.00s/it]
34%|███▍ | 345/1000 [11:18<10:44, 1.02it/s]
34%|███▍ | 345/1000 [11:18<10:44, 1.02it/s]
35%|███▍ | 346/1000 [11:18<10:17, 1.06it/s]
35%|███▍ | 346/1000 [11:18<10:17, 1.06it/s]
35%|███▍ | 347/1000 [11:19<09:25, 1.15it/s]
35%|███▍ | 347/1000 [11:19<09:25, 1.15it/s]
35%|███▍ | 348/1000 [11:20<08:48, 1.23it/s]
35%|███▍ | 348/1000 [11:20<08:48, 1.23it/s]
35%|███▍ | 349/1000 [11:20<08:21, 1.30it/s]
35%|███▍ | 349/1000 [11:20<08:21, 1.30it/s]
35%|███▌ | 350/1000 [11:23<14:18, 1.32s/it]
35%|███▌ | 350/1000 [11:23<14:18, 1.32s/it]
35%|███▌ | 351/1000 [11:30<31:53, 2.95s/it]
35%|███▌ | 351/1000 [11:30<31:53, 2.95s/it]
35%|███▌ | 352/1000 [11:34<36:23, 3.37s/it]
35%|███▌ | 352/1000 [11:34<36:23, 3.37s/it]
35%|███▌ | 353/1000 [11:38<37:50, 3.51s/it]
35%|███▌ | 353/1000 [11:38<37:50, 3.51s/it]
35%|███▌ | 354/1000 [11:41<37:36, 3.49s/it]
35%|███▌ | 354/1000 [11:41<37:36, 3.49s/it]
36%|███▌ | 355/1000 [11:45<36:49, 3.43s/it]
36%|███▌ | 355/1000 [11:45<36:49, 3.43s/it]
36%|███▌ | 356/1000 [11:48<35:33, 3.31s/it]
36%|███▌ | 356/1000 [11:48<35:33, 3.31s/it]
36%|███▌ | 357/1000 [11:51<34:20, 3.20s/it]
36%|███▌ | 357/1000 [11:51<34:20, 3.20s/it]
36%|███▌ | 358/1000 [11:53<32:48, 3.07s/it]
36%|███▌ | 358/1000 [11:54<32:48, 3.07s/it]
36%|███▌ | 359/1000 [11:56<31:48, 2.98s/it]
36%|███▌ | 359/1000 [11:56<31:48, 2.98s/it]
36%|███▌ | 360/1000 [11:59<30:36, 2.87s/it]
36%|███▌ | 360/1000 [11:59<30:36, 2.87s/it]
36%|███▌ | 361/1000 [12:01<29:02, 2.73s/it]
36%|███▌ | 361/1000 [12:01<29:02, 2.73s/it]
36%|███▌ | 362/1000 [12:04<28:00, 2.63s/it]
36%|███▌ | 362/1000 [12:04<28:00, 2.63s/it]
36%|███▋ | 363/1000 [12:06<26:59, 2.54s/it]
36%|███▋ | 363/1000 [12:06<26:59, 2.54s/it]
36%|███▋ | 364/1000 [12:08<25:40, 2.42s/it]
36%|███▋ | 364/1000 [12:08<25:40, 2.42s/it]
36%|███▋ | 365/1000 [12:10<24:35, 2.32s/it]
36%|███▋ | 365/1000 [12:10<24:35, 2.32s/it]
37%|███▋ | 366/1000 [12:12<23:50, 2.26s/it]
37%|███▋ | 366/1000 [12:12<23:50, 2.26s/it]
37%|███▋ | 367/1000 [12:14<23:17, 2.21s/it]
37%|███▋ | 367/1000 [12:14<23:17, 2.21s/it]
37%|███▋ | 368/1000 [12:16<22:46, 2.16s/it]
37%|███▋ | 368/1000 [12:17<22:46, 2.16s/it]
37%|███▋ | 369/1000 [12:18<21:48, 2.07s/it]
37%|███▋ | 369/1000 [12:18<21:48, 2.07s/it]
37%|███▋ | 370/1000 [12:20<20:50, 1.98s/it]
37%|███▋ | 370/1000 [12:20<20:50, 1.98s/it]
37%|███▋ | 371/1000 [12:22<20:09, 1.92s/it]
37%|███▋ | 371/1000 [12:22<20:09, 1.92s/it]
37%|███▋ | 372/1000 [12:24<19:38, 1.88s/it]
37%|███▋ | 372/1000 [12:24<19:38, 1.88s/it]
37%|███▋ | 373/1000 [12:25<19:14, 1.84s/it]
37%|███▋ | 373/1000 [12:25<19:14, 1.84s/it]
37%|███▋ | 374/1000 [12:27<19:00, 1.82s/it]
37%|███▋ | 374/1000 [12:27<19:00, 1.82s/it]
38%|███▊ | 375/1000 [12:29<18:10, 1.75s/it]
38%|███▊ | 375/1000 [12:29<18:10, 1.75s/it]
38%|███▊ | 376/1000 [12:30<17:25, 1.68s/it]
38%|███▊ | 376/1000 [12:30<17:25, 1.68s/it]
38%|███▊ | 377/1000 [12:32<16:52, 1.63s/it]
38%|███▊ | 377/1000 [12:32<16:52, 1.63s/it]
38%|███▊ | 378/1000 [12:33<16:31, 1.59s/it]
38%|███▊ | 378/1000 [12:33<16:31, 1.59s/it]
38%|███▊ | 379/1000 [12:35<16:14, 1.57s/it]
38%|███▊ | 379/1000 [12:35<16:14, 1.57s/it]
38%|███▊ | 380/1000 [12:36<16:01, 1.55s/it]
38%|███▊ | 380/1000 [12:36<16:01, 1.55s/it]
38%|███▊ | 381/1000 [12:38<15:50, 1.54s/it]
38%|███▊ | 381/1000 [12:38<15:50, 1.54s/it]
38%|███▊ | 382/1000 [12:39<15:45, 1.53s/it]
38%|███▊ | 382/1000 [12:39<15:45, 1.53s/it]
38%|███▊ | 383/1000 [12:41<15:05, 1.47s/it]
38%|███▊ | 383/1000 [12:41<15:05, 1.47s/it]
38%|█���█▊ | 384/1000 [12:42<14:19, 1.40s/it]
38%|███▊ | 384/1000 [12:42<14:19, 1.40s/it]
38%|███▊ | 385/1000 [12:43<13:48, 1.35s/it]
38%|███▊ | 385/1000 [12:43<13:48, 1.35s/it]
39%|███▊ | 386/1000 [12:44<13:26, 1.31s/it]
39%|███▊ | 386/1000 [12:44<13:26, 1.31s/it]
39%|███▊ | 387/1000 [12:46<13:10, 1.29s/it]
39%|███▊ | 387/1000 [12:46<13:10, 1.29s/it]
39%|███▉ | 388/1000 [12:47<13:00, 1.28s/it]
39%|███▉ | 388/1000 [12:47<13:00, 1.28s/it]
39%|███▉ | 389/1000 [12:48<12:51, 1.26s/it]
39%|███▉ | 389/1000 [12:48<12:51, 1.26s/it]
39%|███▉ | 390/1000 [12:49<12:39, 1.24s/it]
39%|███▉ | 390/1000 [12:49<12:39, 1.24s/it]
39%|███▉ | 391/1000 [12:50<11:53, 1.17s/it]
39%|███▉ | 391/1000 [12:50<11:53, 1.17s/it]
39%|███▉ | 392/1000 [12:51<11:10, 1.10s/it]
39%|███▉ | 392/1000 [12:51<11:10, 1.10s/it]
39%|███▉ | 393/1000 [12:52<10:39, 1.05s/it]
39%|███▉ | 393/1000 [12:52<10:39, 1.05s/it]
39%|███▉ | 394/1000 [12:53<10:18, 1.02s/it]
39%|███▉ | 394/1000 [12:53<10:18, 1.02s/it]
40%|███▉ | 395/1000 [12:54<10:02, 1.00it/s]
40%|███▉ | 395/1000 [12:54<10:02, 1.00it/s]
40%|███▉ | 396/1000 [12:55<09:47, 1.03it/s]
40%|███▉ | 396/1000 [12:55<09:47, 1.03it/s]
40%|███▉ | 397/1000 [12:56<09:01, 1.11it/s]
40%|███▉ | 397/1000 [12:56<09:01, 1.11it/s]
40%|███▉ | 398/1000 [12:56<08:21, 1.20it/s]
40%|███▉ | 398/1000 [12:56<08:21, 1.20it/s]
40%|███▉ | 399/1000 [12:57<07:52, 1.27it/s]
40%|███▉ | 399/1000 [12:57<07:52, 1.27it/s]
40%|████ | 400/1000 [13:00<13:53, 1.39s/it]
40%|████ | 400/1000 [13:00<13:53, 1.39s/it]
40%|████ | 401/1000 [13:09<35:47, 3.58s/it]
40%|████ | 401/1000 [13:09<35:47, 3.58s/it]
40%|████ | 402/1000 [13:13<37:44, 3.79s/it]
40%|████ | 402/1000 [13:13<37:44, 3.79s/it]
40%|████ | 403/1000 [13:17<37:25, 3.76s/it]
40%|████ | 403/1000 [13:17<37:25, 3.76s/it]
40%|████ | 404/1000 [13:20<36:01, 3.63s/it]
40%|████ | 404/1000 [13:20<36:01, 3.63s/it]
40%|████ | 405/1000 [13:23<34:17, 3.46s/it]
40%|████ | 405/1000 [13:23<34:17, 3.46s/it]
41%|████ | 406/1000 [13:26<32:33, 3.29s/it]
41%|████ | 406/1000 [13:26<32:33, 3.29s/it]
41%|████ | 407/1000 [13:29<30:59, 3.14s/it]
41%|████ | 407/1000 [13:29<30:59, 3.14s/it]
41%|████ | 408/1000 [13:31<29:50, 3.02s/it]
41%|████ | 408/1000 [13:31<29:50, 3.02s/it]
41%|████ | 409/1000 [13:34<28:12, 2.86s/it]
41%|████ | 409/1000 [13:34<28:12, 2.86s/it]
41%|████ | 410/1000 [13:36<26:49, 2.73s/it]
41%|████ | 410/1000 [13:36<26:49, 2.73s/it]
41%|████ | 411/1000 [13:39<25:51, 2.63s/it]
41%|████ | 411/1000 [13:39<25:51, 2.63s/it]
41%|████ | 412/1000 [13:41<24:46, 2.53s/it]
41%|████ | 412/1000 [13:41<24:46, 2.53s/it]
41%|████▏ | 413/1000 [13:43<23:30, 2.40s/it]
41%|████▏ | 413/1000 [13:43<23:30, 2.40s/it]
41%|████▏ | 414/1000 [13:45<22:38, 2.32s/it]
41%|████▏ | 414/1000 [13:45<22:38, 2.32s/it]
42%|████▏ | 415/1000 [13:47<21:58, 2.25s/it]
42%|████▏ | 415/1000 [13:47<21:58, 2.25s/it]
42%|████▏ | 416/1000 [13:49<21:28, 2.21s/it]
42%|████▏ | 416/1000 [13:49<21:28, 2.21s/it]
42%|████▏ | 417/1000 [13:51<20:47, 2.14s/it]
42%|████▏ | 417/1000 [13:51<20:47, 2.14s/it]
42%|████▏ | 418/1000 [13:53<19:42, 2.03s/it]
42%|████▏ | 418/1000 [13:53<19:42, 2.03s/it]
42%|████▏ | 419/1000 [13:55<18:54, 1.95s/it]
42%|████▏ | 419/1000 [13:55<18:54, 1.95s/it]
42%|████▏ | 420/1000 [13:57<18:23, 1.90s/it]
42%|████▏ | 420/1000 [13:57<18:23, 1.90s/it]
42%|████▏ | 421/1000 [13:58<18:04, 1.87s/it]
42%|████▏ | 421/1000 [13:59<18:04, 1.87s/it]
42%|████▏ | 422/1000 [14:00<17:51, 1.85s/it]
42%|████▏ | 422/1000 [14:00<17:51, 1.85s/it]
42%|████▏ | 423/1000 [14:02<17:36, 1.83s/it]
42%|████▏ | 423/1000 [14:02<17:36, 1.83s/it]
42%|████▏ | 424/1000 [14:04<17:13, 1.79s/it]
42%|████▏ | 424/1000 [14:04<17:13, 1.79s/it]
42%|████▎ | 425/1000 [14:05<16:27, 1.72s/it]
42%|████▎ | 425/1000 [14:05<16:27, 1.72s/it]
43%|████▎ | 426/1000 [14:07<15:47, 1.65s/it]
43%|████▎ | 426/1000 [14:07<15:47, 1.65s/it]
43%|████▎ | 427/1000 [14:08<15:22, 1.61s/it]
43%|████▎ | 427/1000 [14:08<15:22, 1.61s/it]
43%|████▎ | 428/1000 [14:10<15:05, 1.58s/it]
43%|████▎ | 428/1000 [14:10<15:05, 1.58s/it]
43%|████▎ | 429/1000 [14:11<14:54, 1.57s/it]
43%|████▎ | 429/1000 [14:11<14:54, 1.57s/it]
43%|████▎ | 430/1000 [14:13<14:46, 1.56s/it]
43%|████▎ | 430/1000 [14:13<14:46, 1.56s/it]
43%|████▎ | 431/1000 [14:14<14:38, 1.54s/it]
43%|████▎ | 431/1000 [14:14<14:38, 1.54s/it]
43%|████▎ | 432/1000 [14:16<14:27, 1.53s/it]
43%|████▎ | 432/1000 [14:16<14:27, 1.53s/it]
43%|████▎ | 433/1000 [14:17<13:45, 1.46s/it]
43%|████▎ | 433/1000 [14:17<13:45, 1.46s/it]
43%|████▎ | 434/1000 [14:18<13:06, 1.39s/it]
43%|████▎ | 434/1000 [14:18<13:06, 1.39s/it]
44%|████▎ | 435/1000 [14:20<12:38, 1.34s/it]
44%|████▎ | 435/1000 [14:20<12:38, 1.34s/it]
44%|████▎ | 436/1000 [14:21<12:26, 1.32s/it]
44%|████▎ | 436/1000 [14:21<12:26, 1.32s/it]
44%|████▎ | 437/1000 [14:22<12:09, 1.30s/it]
44%|████▎ | 437/1000 [14:22<12:09, 1.30s/it]
44%|████▍ | 438/1000 [14:23<11:58, 1.28s/it]
44%|████▍ | 438/1000 [14:23<11:58, 1.28s/it]
44%|████▍ | 439/1000 [14:25<11:50, 1.27s/it]
44%|████▍ | 439/1000 [14:25<11:50, 1.27s/it]
44%|████▍ | 440/1000 [14:26<11:40, 1.25s/it]
44%|████▍ | 440/1000 [14:26<11:40, 1.25s/it]
44%|████▍ | 441/1000 [14:27<11:00, 1.18s/it]
44%|████▍ | 441/1000 [14:27<11:00, 1.18s/it]
44%|████▍ | 442/1000 [14:28<10:19, 1.11s/it]
44%|████▍ | 442/1000 [14:28<10:19, 1.11s/it]
44%|████▍ | 443/1000 [14:29<09:52, 1.06s/it]
44%|████▍ | 443/1000 [14:29<09:52, 1.06s/it]
44%|████▍ | 444/1000 [14:30<09:29, 1.03s/it]
44%|████▍ | 444/1000 [14:30<09:29, 1.03s/it]
44%|████▍ | 445/1000 [14:31<09:14, 1.00it/s]
44%|████▍ | 445/1000 [14:31<09:14, 1.00it/s]
45%|████▍ | 446/1000 [14:32<09:02, 1.02it/s]
45%|████▍ | 446/1000 [14:32<09:02, 1.02it/s]
45%|████▍ | 447/1000 [14:32<08:19, 1.11it/s]
45%|████▍ | 447/1000 [14:32<08:19, 1.11it/s]
45%|████▍ | 448/1000 [14:33<07:41, 1.20it/s]
45%|████▍ | 448/1000 [14:33<07:41, 1.20it/s]
45%|████▍ | 449/1000 [14:34<07:15, 1.26it/s]
45%|████▍ | 449/1000 [14:34<07:15, 1.26it/s]
45%|████▌ | 450/1000 [14:36<12:36, 1.38s/it]
45%|████▌ | 450/1000 [14:36<12:36, 1.38s/it]
45%|████▌ | 451/1000 [14:44<28:52, 3.16s/it]
45%|████▌ | 451/1000 [14:44<28:52, 3.16s/it]
45%|████▌ | 452/1000 [14:48<32:13, 3.53s/it]
45%|████▌ | 452/1000 [14:48<32:13, 3.53s/it]
45%|████▌ | 453/1000 [14:52<32:43, 3.59s/it]
45%|████▌ | 453/1000 [14:52<32:43, 3.59s/it]
45%|████▌ | 454/1000 [14:55<32:23, 3.56s/it]
45%|████▌ | 454/1000 [14:55<32:23, 3.56s/it]
46%|████▌ | 455/1000 [14:59<31:34, 3.48s/it]
46%|████▌ | 455/1000 [14:59<31:34, 3.48s/it]
46%|████▌ | 456/1000 [15:02<30:33, 3.37s/it]
46%|████▌ | 456/1000 [15:02<30:33, 3.37s/it]
46%|████▌ | 457/1000 [15:05<29:00, 3.21s/it]
46%|████▌ | 457/1000 [15:05<29:00, 3.21s/it]
46%|████▌ | 458/1000 [15:07<27:46, 3.07s/it]
46%|████▌ | 458/1000 [15:07<27:46, 3.07s/it]
46%|████▌ | 459/1000 [15:10<26:37, 2.95s/it]
46%|████▌ | 459/1000 [15:10<26:37, 2.95s/it]
46%|████▌ | 460/1000 [15:12<25:07, 2.79s/it]
46%|████▌ | 460/1000 [15:12<25:07, 2.79s/it]
46%|████▌ | 461/1000 [15:15<24:02, 2.68s/it]
46%|████▌ | 461/1000 [15:15<24:02, 2.68s/it]
46%|████▌ | 462/1000 [15:17<23:14, 2.59s/it]
46%|████▌ | 462/1000 [15:17<23:14, 2.59s/it]
46%|████▋ | 463/1000 [15:19<22:00, 2.46s/it]
46%|████▋ | 463/1000 [15:19<22:00, 2.46s/it]
46%|████▋ | 464/1000 [15:21<20:56, 2.34s/it]
46%|████▋ | 464/1000 [15:21<20:56, 2.34s/it]
46%|████▋ | 465/1000 [15:24<20:15, 2.27s/it]
46%|████▋ | 465/1000 [15:24<20:15, 2.27s/it]
47%|████▋ | 466/1000 [15:26<19:47, 2.22s/it]
47%|████▋ | 466/1000 [15:26<19:47, 2.22s/it]
47%|████▋ | 467/1000 [15:28<19:07, 2.15s/it]
47%|████▋ | 467/1000 [15:28<19:07, 2.15s/it]
47%|████▋ | 468/1000 [15:29<18:05, 2.04s/it]
47%|████▋ | 468/1000 [15:29<18:05, 2.04s/it]
47%|████▋ | 469/1000 [15:31<17:27, 1.97s/it]
47%|████▋ | 469/1000 [15:31<17:27, 1.97s/it]
47%|████▋ | 470/1000 [15:33<16:53, 1.91s/it]
47%|████▋ | 470/1000 [15:33<16:53, 1.91s/it]
47%|████▋ | 471/1000 [15:35<16:28, 1.87s/it]
47%|████▋ | 471/1000 [15:35<16:28, 1.87s/it]
47%|████▋ | 472/1000 [15:37<16:10, 1.84s/it]
47%|████▋ | 472/1000 [15:37<16:10, 1.84s/it]
47%|████▋ | 473/1000 [15:38<16:03, 1.83s/it]
47%|████▋ | 473/1000 [15:38<16:03, 1.83s/it]
47%|████▋ | 474/1000 [15:40<15:38, 1.79s/it]
47%|████▋ | 474/1000 [15:40<15:38, 1.79s/it]
48%|████▊ | 475/1000 [15:42<14:54, 1.70s/it]
48%|████▊ | 475/1000 [15:42<14:54, 1.70s/it]
48%|████▊ | 476/1000 [15:43<14:20, 1.64s/it]
48%|████▊ | 476/1000 [15:43<14:20, 1.64s/it]
48%|████▊ | 477/1000 [15:45<13:58, 1.60s/it]
48%|████▊ | 477/1000 [15:45<13:58, 1.60s/it]
48%|████▊ | 478/1000 [15:46<13:41, 1.57s/it]
48%|████▊ | 478/1000 [15:46<13:41, 1.57s/it]
48%|████▊ | 479/1000 [15:48<13:28, 1.55s/it]
48%|████▊ | 479/1000 [15:48<13:28, 1.55s/it]
48%|████▊ | 480/1000 [15:49<13:20, 1.54s/it]
48%|████▊ | 480/1000 [15:49<13:20, 1.54s/it]
48%|████▊ | 481/1000 [15:51<13:15, 1.53s/it]
48%|████▊ | 481/1000 [15:51<13:15, 1.53s/it]
48%|████▊ | 482/1000 [15:52<13:08, 1.52s/it]
48%|████▊ | 482/1000 [15:52<13:08, 1.52s/it]
48%|████▊ | 483/1000 [15:53<12:29, 1.45s/it]
48%|████▊ | 483/1000 [15:53<12:29, 1.45s/it]
48%|████▊ | 484/1000 [15:55<11:56, 1.39s/it]
48%|████▊ | 484/1000 [15:55<11:56, 1.39s/it]
48%|████▊ | 485/1000 [15:56<11:34, 1.35s/it]
48%|████▊ | 485/1000 [15:56<11:34, 1.35s/it]
49%|████▊ | 486/1000 [15:57<11:16, 1.32s/it]
49%|████▊ | 486/1000 [15:57<11:16, 1.32s/it]
49%|████▊ | 487/1000 [15:58<11:02, 1.29s/it]
49%|████▊ | 487/1000 [15:58<11:02, 1.29s/it]
49%|████▉ | 488/1000 [16:00<10:51, 1.27s/it]
49%|████▉ | 488/1000 [16:00<10:51, 1.27s/it]
49%|████▉ | 489/1000 [16:01<10:52, 1.28s/it]
49%|████▉ | 489/1000 [16:01<10:52, 1.28s/it]
49%|████▉ | 490/1000 [16:02<10:44, 1.26s/it]
49%|████▉ | 490/1000 [16:02<10:44, 1.26s/it]
49%|████▉ | 491/1000 [16:03<10:14, 1.21s/it]
49%|████▉ | 491/1000 [16:03<10:14, 1.21s/it]
49%|████▉ | 492/1000 [16:04<09:35, 1.13s/it]
49%|████▉ | 492/1000 [16:04<09:35, 1.13s/it]
49%|████▉ | 493/1000 [16:05<09:04, 1.07s/it]
49%|████▉ | 493/1000 [16:05<09:04, 1.07s/it]
49%|████▉ | 494/1000 [16:06<08:43, 1.03s/it]
49%|████▉ | 494/1000 [16:06<08:43, 1.03s/it]
50%|████▉ | 495/1000 [16:07<08:32, 1.01s/it]
50%|████▉ | 495/1000 [16:07<08:32, 1.01s/it]
50%|████▉ | 496/1000 [16:08<08:20, 1.01it/s]
50%|████▉ | 496/1000 [16:08<08:20, 1.01it/s]
50%|████▉ | 497/1000 [16:09<07:51, 1.07it/s]
50%|████▉ | 497/1000 [16:09<07:51, 1.07it/s]
50%|████▉ | 498/1000 [16:09<07:12, 1.16it/s]
50%|████▉ | 498/1000 [16:09<07:12, 1.16it/s]
50%|████▉ | 499/1000 [16:10<06:43, 1.24it/s]
50%|████▉ | 499/1000 [16:10<06:43, 1.24it/s]
50%|█████ | 500/1000 [16:13<11:01, 1.32s/it]
50%|█████ | 500/1000 [16:13<11:01, 1.32s/it]
50%|█████ | 501/1000 [16:19<24:08, 2.90s/it]
50%|█████ | 501/1000 [16:19<24:08, 2.90s/it]
50%|█████ | 502/1000 [16:24<27:41, 3.34s/it]
50%|█████ | 502/1000 [16:24<27:41, 3.34s/it]
50%|█████ | 503/1000 [16:27<28:30, 3.44s/it]
50%|█████ | 503/1000 [16:27<28:30, 3.44s/it]
50%|█████ | 504/1000 [16:31<28:27, 3.44s/it]
50%|█████ | 504/1000 [16:31<28:27, 3.44s/it]
50%|█████ | 505/1000 [16:34<27:41, 3.36s/it]
50%|█████ | 505/1000 [16:34<27:41, 3.36s/it]
51%|█████ | 506/1000 [16:37<26:40, 3.24s/it]
51%|█████ | 506/1000 [16:37<26:40, 3.24s/it]
51%|█████ | 507/1000 [16:40<25:28, 3.10s/it]
51%|█████ | 507/1000 [16:40<25:28, 3.10s/it]
51%|█████ | 508/1000 [16:42<24:21, 2.97s/it]
51%|█████ | 508/1000 [16:42<24:21, 2.97s/it]
51%|█████ | 509/1000 [16:45<22:52, 2.79s/it]
51%|█████ | 509/1000 [16:45<22:52, 2.79s/it]
51%|█████ | 510/1000 [16:47<21:51, 2.68s/it]
51%|█████ | 510/1000 [16:47<21:51, 2.68s/it]
51%|█████ | 511/1000 [16:49<21:06, 2.59s/it]
51%|█████ | 511/1000 [16:49<21:06, 2.59s/it]
51%|█████ | 512/1000 [16:52<20:03, 2.47s/it]
51%|█████ | 512/1000 [16:52<20:03, 2.47s/it]
51%|█████▏ | 513/1000 [16:54<19:07, 2.36s/it]
51%|█████▏ | 513/1000 [16:54<19:07, 2.36s/it]
51%|█████▏ | 514/1000 [16:56<18:26, 2.28s/it]
51%|█████▏ | 514/1000 [16:56<18:26, 2.28s/it]
52%|█████▏ | 515/1000 [16:58<17:55, 2.22s/it]
52%|█████▏ | 515/1000 [16:58<17:55, 2.22s/it]
52%|█████▏ | 516/1000 [17:00<17:29, 2.17s/it]
52%|█████▏ | 516/1000 [17:00<17:29, 2.17s/it]
52%|█████▏ | 517/1000 [17:02<16:43, 2.08s/it]
52%|█████▏ | 517/1000 [17:02<16:43, 2.08s/it]
52%|█████▏ | 518/1000 [17:04<16:02, 2.00s/it]
52%|█████▏ | 518/1000 [17:04<16:02, 2.00s/it]
52%|█████▏ | 519/1000 [17:05<15:28, 1.93s/it]
52%|█████▏ | 519/1000 [17:05<15:28, 1.93s/it]
52%|█████▏ | 520/1000 [17:07<15:05, 1.89s/it]
52%|█████▏ | 520/1000 [17:07<15:05, 1.89s/it]
52%|█████▏ | 521/1000 [17:09<14:46, 1.85s/it]
52%|█████▏ | 521/1000 [17:09<14:46, 1.85s/it]
52%|█████▏ | 522/1000 [17:11<14:33, 1.83s/it]
52%|█████▏ | 522/1000 [17:11<14:33, 1.83s/it]
52%|█████▏ | 523/1000 [17:12<14:15, 1.79s/it]
52%|█████▏ | 523/1000 [17:12<14:15, 1.79s/it]
52%|█████▏ | 524/1000 [17:14<13:39, 1.72s/it]
52%|█████▏ | 524/1000 [17:14<13:39, 1.72s/it]
52%|█████▎ | 525/1000 [17:15<13:08, 1.66s/it]
52%|█████▎ | 525/1000 [17:16<13:08, 1.66s/it]
53%|█████▎ | 526/1000 [17:17<12:43, 1.61s/it]
53%|█████▎ | 526/1000 [17:17<12:43, 1.61s/it]
53%|█████▎ | 527/1000 [17:19<12:29, 1.59s/it]
53%|█████▎ | 527/1000 [17:19<12:29, 1.59s/it]
53%|█████▎ | 528/1000 [17:20<12:16, 1.56s/it]
53%|█████▎ | 528/1000 [17:20<12:16, 1.56s/it]
53%|█████▎ | 529/1000 [17:22<12:07, 1.54s/it]
53%|█████▎ | 529/1000 [17:22<12:07, 1.54s/it]
53%|█████▎ | 530/1000 [17:23<12:01, 1.54s/it]
53%|█████▎ | 530/1000 [17:23<12:01, 1.54s/it]
53%|█████▎ | 531/1000 [17:25<11:54, 1.52s/it]
53%|█████▎ | 531/1000 [17:25<11:54, 1.52s/it]
53%|█████▎ | 532/1000 [17:26<11:19, 1.45s/it]
53%|█████▎ | 532/1000 [17:26<11:19, 1.45s/it]
53%|█████▎ | 533/1000 [17:27<10:47, 1.39s/it]
53%|█████▎ | 533/1000 [17:27<10:47, 1.39s/it]
53%|█████▎ | 534/1000 [17:28<10:25, 1.34s/it]
53%|█████▎ | 534/1000 [17:28<10:25, 1.34s/it]
54%|█████▎ | 535/1000 [17:30<10:09, 1.31s/it]
54%|█████▎ | 535/1000 [17:30<10:09, 1.31s/it]
54%|█████▎ | 536/1000 [17:31<09:57, 1.29s/it]
54%|█████▎ | 536/1000 [17:31<09:57, 1.29s/it]
54%|█████▎ | 537/1000 [17:32<09:50, 1.28s/it]
54%|█████▎ | 537/1000 [17:32<09:50, 1.28s/it]
54%|█████▍ | 538/1000 [17:33<09:44, 1.26s/it]
54%|█████▍ | 538/1000 [17:33<09:44, 1.26s/it]
54%|█████▍ | 539/1000 [17:34<09:40, 1.26s/it]
54%|█████▍ | 539/1000 [17:35<09:40, 1.26s/it]
54%|█████▍ | 540/1000 [17:36<09:14, 1.20s/it]
54%|█████▍ | 540/1000 [17:36<09:14, 1.20s/it]
54%|█████▍ | 541/1000 [17:37<08:37, 1.13s/it]
54%|█████▍ | 541/1000 [17:37<08:37, 1.13s/it]
54%|█████▍ | 542/1000 [17:37<08:11, 1.07s/it]
54%|█████▍ | 542/1000 [17:37<08:11, 1.07s/it]
54%|█████▍ | 543/1000 [17:38<07:53, 1.04s/it]
54%|█████▍ | 543/1000 [17:38<07:53, 1.04s/it]
54%|█████▍ | 544/1000 [17:39<07:40, 1.01s/it]
54%|█████▍ | 544/1000 [17:39<07:40, 1.01s/it]
55%|█████▍ | 545/1000 [17:40<07:30, 1.01it/s]
55%|█████▍ | 545/1000 [17:40<07:30, 1.01it/s]
55%|█████▍ | 546/1000 [17:41<07:22, 1.03it/s]
55%|█████▍ | 546/1000 [17:41<07:22, 1.03it/s]
55%|█████▍ | 547/1000 [17:42<06:47, 1.11it/s]
55%|█████▍ | 547/1000 [17:42<06:47, 1.11it/s]
55%|█████▍ | 548/1000 [17:43<06:17, 1.20it/s]
55%|█████▍ | 548/1000 [17:43<06:17, 1.20it/s]
55%|█████▍ | 549/1000 [17:43<05:55, 1.27it/s]
55%|█████▍ | 549/1000 [17:43<05:55, 1.27it/s]
55%|█████▌ | 550/1000 [17:46<10:48, 1.44s/it]
55%|█████▌ | 550/1000 [17:46<10:48, 1.44s/it]
55%|█████▌ | 551/1000 [17:55<26:19, 3.52s/it]
55%|█████▌ | 551/1000 [17:55<26:19, 3.52s/it]
55%|█████▌ | 552/1000 [17:59<28:13, 3.78s/it]
55%|█████▌ | 552/1000 [17:59<28:13, 3.78s/it]
55%|█████▌ | 553/1000 [18:03<28:37, 3.84s/it]
55%|█████▌ | 553/1000 [18:03<28:37, 3.84s/it]
55%|█████▌ | 554/1000 [18:07<27:42, 3.73s/it]
55%|█████▌ | 554/1000 [18:07<27:42, 3.73s/it]
56%|█████▌ | 555/1000 [18:10<26:36, 3.59s/it]
56%|█████▌ | 555/1000 [18:10<26:36, 3.59s/it]
56%|█████▌ | 556/1000 [18:13<25:15, 3.41s/it]
56%|█████▌ | 556/1000 [18:13<25:15, 3.41s/it]
56%|█████▌ | 557/1000 [18:16<23:55, 3.24s/it]
56%|█████▌ | 557/1000 [18:16<23:55, 3.24s/it]
56%|█████▌ | 558/1000 [18:18<22:52, 3.11s/it]
56%|█████▌ | 558/1000 [18:18<22:52, 3.11s/it]
56%|█████▌ | 559/1000 [18:21<22:03, 3.00s/it]
56%|█████▌ | 559/1000 [18:21<22:03, 3.00s/it]
56%|█████▌ | 560/1000 [18:24<20:57, 2.86s/it]
56%|█████▌ | 560/1000 [18:24<20:57, 2.86s/it]
56%|█████▌ | 561/1000 [18:26<19:57, 2.73s/it]
56%|█████▌ | 561/1000 [18:26<19:57, 2.73s/it]
56%|█████▌ | 562/1000 [18:29<19:16, 2.64s/it]
56%|█████▌ | 562/1000 [18:29<19:16, 2.64s/it]
56%|█████▋ | 563/1000 [18:31<18:44, 2.57s/it]
56%|█████▋ | 563/1000 [18:31<18:44, 2.57s/it]
56%|█████▋ | 564/1000 [18:33<17:51, 2.46s/it]
56%|█████▋ | 564/1000 [18:33<17:51, 2.46s/it]
56%|█████▋ | 565/1000 [18:35<17:02, 2.35s/it]
56%|█████▋ | 565/1000 [18:35<17:02, 2.35s/it]
57%|█████▋ | 566/1000 [18:37<16:30, 2.28s/it]
57%|█████▋ | 566/1000 [18:37<16:30, 2.28s/it]
57%|█████▋ | 567/1000 [18:39<16:01, 2.22s/it]
57%|█████▋ | 567/1000 [18:39<16:01, 2.22s/it]
57%|█████▋ | 568/1000 [18:44<20:36, 2.86s/it]
57%|█████▋ | 568/1000 [18:44<20:36, 2.86s/it]
57%|█████▋ | 569/1000 [18:46<18:33, 2.58s/it]
57%|█████▋ | 569/1000 [18:46<18:33, 2.58s/it]
57%|█████▋ | 570/1000 [18:48<16:46, 2.34s/it]
57%|█████▋ | 570/1000 [18:48<16:46, 2.34s/it]
57%|█████▋ | 571/1000 [18:49<15:35, 2.18s/it]
57%|█████▋ | 571/1000 [18:49<15:35, 2.18s/it]
57%|█████▋ | 572/1000 [18:51<14:42, 2.06s/it]
57%|█████▋ | 572/1000 [18:51<14:42, 2.06s/it]
57%|█████▋ | 573/1000 [18:53<14:04, 1.98s/it]
57%|█████▋ | 573/1000 [18:53<14:04, 1.98s/it]
57%|█████▋ | 574/1000 [18:55<13:35, 1.92s/it]
57%|█████▋ | 574/1000 [18:55<13:35, 1.92s/it]
57%|█████▊ | 575/1000 [18:56<13:04, 1.85s/it]
57%|█████▊ | 575/1000 [18:56<13:04, 1.85s/it]
58%|█████▊ | 576/1000 [18:58<12:21, 1.75s/it]
58%|█████▊ | 576/1000 [18:58<12:21, 1.75s/it]
58%|█████▊ | 577/1000 [18:59<11:49, 1.68s/it]
58%|█████▊ | 577/1000 [18:59<11:49, 1.68s/it]
58%|█████▊ | 578/1000 [19:01<11:33, 1.64s/it]
58%|█████▊ | 578/1000 [19:01<11:33, 1.64s/it]
58%|█████▊ | 579/1000 [19:02<11:18, 1.61s/it]
58%|█████▊ | 579/1000 [19:02<11:18, 1.61s/it]
58%|█████▊ | 580/1000 [19:04<11:04, 1.58s/it]
58%|█████▊ | 580/1000 [19:04<11:04, 1.58s/it]
58%|█████▊ | 581/1000 [19:06<10:54, 1.56s/it]
58%|█████▊ | 581/1000 [19:06<10:54, 1.56s/it]
58%|█████▊ | 582/1000 [19:07<10:46, 1.55s/it]
58%|█████▊ | 582/1000 [19:07<10:46, 1.55s/it]
58%|█████▊ | 583/1000 [19:08<10:14, 1.47s/it]
58%|█████▊ | 583/1000 [19:08<10:14, 1.47s/it]
58%|█████▊ | 584/1000 [19:10<09:44, 1.40s/it]
58%|█████▊ | 584/1000 [19:10<09:44, 1.40s/it]
58%|█████▊ | 585/1000 [19:11<09:22, 1.36s/it]
58%|█████▊ | 585/1000 [19:11<09:22, 1.36s/it]
59%|█████▊ | 586/1000 [19:12<09:04, 1.32s/it]
59%|█████▊ | 586/1000 [19:12<09:04, 1.32s/it]
59%|█████▊ | 587/1000 [19:13<08:53, 1.29s/it]
59%|█████▊ | 587/1000 [19:13<08:53, 1.29s/it]
59%|█████▉ | 588/1000 [19:14<08:44, 1.27s/it]
59%|█████▉ | 588/1000 [19:15<08:44, 1.27s/it]
59%|█████▉ | 589/1000 [19:16<08:38, 1.26s/it]
59%|█████▉ | 589/1000 [19:16<08:38, 1.26s/it]
59%|█████▉ | 590/1000 [19:17<08:36, 1.26s/it]
59%|█████▉ | 590/1000 [19:17<08:36, 1.26s/it]
59%|█████▉ | 591/1000 [19:18<08:13, 1.21s/it]
59%|█████▉ | 591/1000 [19:18<08:13, 1.21s/it]
59%|█████▉ | 592/1000 [19:19<07:40, 1.13s/it]
59%|█████▉ | 592/1000 [19:19<07:40, 1.13s/it]
59%|█████▉ | 593/1000 [19:20<07:16, 1.07s/it]
59%|█████▉ | 593/1000 [19:20<07:16, 1.07s/it]
59%|█████▉ | 594/1000 [19:21<06:59, 1.03s/it]
59%|█████▉ | 594/1000 [19:21<06:59, 1.03s/it]
60%|█████▉ | 595/1000 [19:22<06:47, 1.01s/it]
60%|█████▉ | 595/1000 [19:22<06:47, 1.01s/it]
60%|█████▉ | 596/1000 [19:23<06:39, 1.01it/s]
60%|█████▉ | 596/1000 [19:23<06:39, 1.01it/s]
60%|█████▉ | 597/1000 [19:24<06:25, 1.05it/s]
60%|█████▉ | 597/1000 [19:24<06:25, 1.05it/s]
60%|█████▉ | 598/1000 [19:24<05:56, 1.13it/s]
60%|█████▉ | 598/1000 [19:24<05:56, 1.13it/s]
60%|█████▉ | 599/1000 [19:25<05:30, 1.21it/s]
60%|█████▉ | 599/1000 [19:25<05:30, 1.21it/s]
60%|██████ | 600/1000 [19:27<08:24, 1.26s/it]
60%|██████ | 600/1000 [19:27<08:24, 1.26s/it]
60%|██████ | 601/1000 [19:36<23:26, 3.52s/it]
60%|██████ | 601/1000 [19:36<23:26, 3.52s/it]
60%|██████ | 602/1000 [19:40<23:39, 3.57s/it]
60%|██████ | 602/1000 [19:40<23:39, 3.57s/it]
60%|██████ | 603/1000 [19:43<22:42, 3.43s/it]
60%|██████ | 603/1000 [19:43<22:42, 3.43s/it]
60%|██████ | 604/1000 [19:46<21:19, 3.23s/it]
60%|██████ | 604/1000 [19:46<21:19, 3.23s/it]
60%|██████ | 605/1000 [19:48<19:48, 3.01s/it]
60%|██████ | 605/1000 [19:48<19:48, 3.01s/it]
61%|██████ | 606/1000 [19:50<18:16, 2.78s/it]
61%|██████ | 606/1000 [19:50<18:16, 2.78s/it]
61%|██████ | 607/1000 [19:53<16:52, 2.58s/it]
61%|██████ | 607/1000 [19:53<16:52, 2.58s/it]
61%|██████ | 608/1000 [19:55<15:53, 2.43s/it]
61%|██████ | 608/1000 [19:55<15:53, 2.43s/it]
61%|██████ | 609/1000 [19:56<14:43, 2.26s/it]
61%|██████ | 609/1000 [19:57<14:43, 2.26s/it]
61%|██████ | 610/1000 [19:58<13:48, 2.12s/it]
61%|██████ | 610/1000 [19:58<13:48, 2.12s/it]
61%|██████ | 611/1000 [20:00<13:06, 2.02s/it]
61%|██████ | 611/1000 [20:00<13:06, 2.02s/it]
61%|██████ | 612/1000 [20:02<12:23, 1.92s/it]
61%|██████ | 612/1000 [20:02<12:23, 1.92s/it]
61%|██████▏ | 613/1000 [20:03<11:35, 1.80s/it]
61%|██████▏ | 613/1000 [20:03<11:35, 1.80s/it]
61%|██████▏ | 614/1000 [20:05<11:00, 1.71s/it]
61%|██████▏ | 614/1000 [20:05<11:00, 1.71s/it]
62%|██████▏ | 615/1000 [20:06<10:35, 1.65s/it]
62%|██████▏ | 615/1000 [20:06<10:35, 1.65s/it]
62%|██████▏ | 616/1000 [20:08<10:16, 1.60s/it]
62%|██████▏ | 616/1000 [20:08<10:16, 1.60s/it]
62%|██████▏ | 617/1000 [20:09<09:37, 1.51s/it]
62%|██████▏ | 617/1000 [20:09<09:37, 1.51s/it]
62%|██████▏ | 618/1000 [20:10<09:06, 1.43s/it]
62%|██████▏ | 618/1000 [20:10<09:06, 1.43s/it]
62%|██████▏ | 619/1000 [20:12<08:45, 1.38s/it]
62%|██████▏ | 619/1000 [20:12<08:45, 1.38s/it]
62%|██████▏ | 620/1000 [20:13<08:25, 1.33s/it]
62%|██████▏ | 620/1000 [20:13<08:25, 1.33s/it]
62%|██████▏ | 621/1000 [20:14<07:49, 1.24s/it]
62%|██████▏ | 621/1000 [20:14<07:49, 1.24s/it]
62%|██████▏ | 622/1000 [20:15<07:14, 1.15s/it]
62%|██████▏ | 622/1000 [20:15<07:14, 1.15s/it]
62%|██████▏ | 623/1000 [20:16<06:45, 1.08s/it]
62%|██████▏ | 623/1000 [20:16<06:45, 1.08s/it]
62%|██████▏ | 624/1000 [20:16<06:05, 1.03it/s]
62%|██████▏ | 624/1000 [20:16<06:05, 1.03it/s]
62%|██████▎ | 625/1000 [20:17<05:08, 1.22it/s]
62%|██████▎ | 625/1000 [20:17<05:08, 1.22it/s]
63%|██████▎ | 626/1000 [20:31<29:09, 4.68s/it]
63%|██████▎ | 626/1000 [20:31<29:09, 4.68s/it]
63%|██████▎ | 627/1000 [20:35<28:41, 4.62s/it]
63%|██████▎ | 627/1000 [20:35<28:41, 4.62s/it]
63%|██████▎ | 628/1000 [20:39<27:02, 4.36s/it]
63%|██████▎ | 628/1000 [20:39<27:02, 4.36s/it]
63%|██████▎ | 629/1000 [20:42<25:20, 4.10s/it]
63%|██████▎ | 629/1000 [20:42<25:20, 4.10s/it]
63%|██████▎ | 630/1000 [20:46<23:44, 3.85s/it]
63%|██████▎ | 630/1000 [20:46<23:44, 3.85s/it]
63%|██████▎ | 631/1000 [20:49<22:11, 3.61s/it]
63%|██████▎ | 631/1000 [20:49<22:11, 3.61s/it]
63%|██████▎ | 632/1000 [20:51<20:44, 3.38s/it]
63%|██████▎ | 632/1000 [20:51<20:44, 3.38s/it]
63%|██████▎ | 633/1000 [20:54<19:37, 3.21s/it]
63%|██████▎ | 633/1000 [20:54<19:37, 3.21s/it]
63%|██████▎ | 634/1000 [20:57<18:30, 3.03s/it]
63%|██████▎ | 634/1000 [20:57<18:30, 3.03s/it]
64%|██████▎ | 635/1000 [20:59<17:17, 2.84s/it]
64%|██████▎ | 635/1000 [20:59<17:17, 2.84s/it]
64%|██████▎ | 636/1000 [21:02<16:35, 2.74s/it]
64%|██████▎ | 636/1000 [21:02<16:35, 2.74s/it]
64%|██████▎ | 637/1000 [21:04<15:45, 2.61s/it]
64%|██████▎ | 637/1000 [21:04<15:45, 2.61s/it]
64%|██████▍ | 638/1000 [21:06<14:50, 2.46s/it]
64%|██████▍ | 638/1000 [21:06<14:50, 2.46s/it]
64%|██████▍ | 639/1000 [21:08<14:09, 2.35s/it]
64%|██████▍ | 639/1000 [21:08<14:09, 2.35s/it]
64%|██████▍ | 640/1000 [21:10<13:42, 2.28s/it]
64%|██████▍ | 640/1000 [21:10<13:42, 2.28s/it]
64%|██████▍ | 641/1000 [21:13<13:21, 2.23s/it]
64%|██████▍ | 641/1000 [21:13<13:21, 2.23s/it]
64%|██████▍ | 642/1000 [21:15<13:00, 2.18s/it]
64%|██████▍ | 642/1000 [21:15<13:00, 2.18s/it]
64%|██████▍ | 643/1000 [21:16<12:22, 2.08s/it]
64%|██████▍ | 643/1000 [21:16<12:22, 2.08s/it]
64%|██████▍ | 644/1000 [21:18<11:47, 1.99s/it]
64%|██████▍ | 644/1000 [21:18<11:47, 1.99s/it]
64%|██████▍ | 645/1000 [21:20<11:22, 1.92s/it]
64%|████���█▍ | 645/1000 [21:20<11:22, 1.92s/it]
65%|██████▍ | 646/1000 [21:22<11:06, 1.88s/it]
65%|██████▍ | 646/1000 [21:22<11:06, 1.88s/it]
65%|██████▍ | 647/1000 [21:24<11:00, 1.87s/it]
65%|██████▍ | 647/1000 [21:24<11:00, 1.87s/it]
65%|██████▍ | 648/1000 [21:25<10:48, 1.84s/it]
65%|██████▍ | 648/1000 [21:25<10:48, 1.84s/it]
65%|██████▍ | 649/1000 [21:27<10:37, 1.82s/it]
65%|██████▍ | 649/1000 [21:27<10:37, 1.82s/it]
65%|██████▌ | 650/1000 [21:29<10:08, 1.74s/it]
65%|██████▌ | 650/1000 [21:29<10:08, 1.74s/it]
65%|██████▌ | 651/1000 [21:30<09:43, 1.67s/it]
65%|██████▌ | 651/1000 [21:30<09:43, 1.67s/it]
65%|██████▌ | 652/1000 [21:32<09:30, 1.64s/it]
65%|██████▌ | 652/1000 [21:32<09:30, 1.64s/it]
65%|██████▌ | 653/1000 [21:33<09:14, 1.60s/it]
65%|██████▌ | 653/1000 [21:33<09:14, 1.60s/it]
65%|██████▌ | 654/1000 [21:35<09:04, 1.57s/it]
65%|██████▌ | 654/1000 [21:35<09:04, 1.57s/it]
66%|██████▌ | 655/1000 [21:36<08:56, 1.56s/it]
66%|██████▌ | 655/1000 [21:36<08:56, 1.56s/it]
66%|██████▌ | 656/1000 [21:38<08:53, 1.55s/it]
66%|██████▌ | 656/1000 [21:38<08:53, 1.55s/it]
66%|██████▌ | 657/1000 [21:39<08:47, 1.54s/it]
66%|██████▌ | 657/1000 [21:39<08:47, 1.54s/it]
66%|██████▌ | 658/1000 [21:41<08:21, 1.47s/it]
66%|██████▌ | 658/1000 [21:41<08:21, 1.47s/it]
66%|██████▌ | 659/1000 [21:42<07:57, 1.40s/it]
66%|██████▌ | 659/1000 [21:42<07:57, 1.40s/it]
66%|██████▌ | 660/1000 [21:43<07:38, 1.35s/it]
66%|██████▌ | 660/1000 [21:43<07:38, 1.35s/it]
66%|██████▌ | 661/1000 [21:44<07:26, 1.32s/it]
66%|██████▌ | 661/1000 [21:44<07:26, 1.32s/it]
66%|██████▌ | 662/1000 [21:46<07:16, 1.29s/it]
66%|██████▌ | 662/1000 [21:46<07:16, 1.29s/it]
66%|██████▋ | 663/1000 [21:47<07:09, 1.27s/it]
66%|██████▋ | 663/1000 [21:47<07:09, 1.27s/it]
66%|██████▋ | 664/1000 [21:48<07:04, 1.26s/it]
66%|██████▋ | 664/1000 [21:48<07:04, 1.26s/it]
66%|██████▋ | 665/1000 [21:49<06:57, 1.25s/it]
66%|██████▋ | 665/1000 [21:49<06:57, 1.25s/it]
67%|██████▋ | 666/1000 [21:50<06:31, 1.17s/it]
67%|██████▋ | 666/1000 [21:50<06:31, 1.17s/it]
67%|██████▋ | 667/1000 [21:51<06:08, 1.11s/it]
67%|██████▋ | 667/1000 [21:51<06:08, 1.11s/it]
67%|██████▋ | 668/1000 [21:52<05:52, 1.06s/it]
67%|██████▋ | 668/1000 [21:52<05:52, 1.06s/it]
67%|██████▋ | 669/1000 [21:53<05:39, 1.03s/it]
67%|██████▋ | 669/1000 [21:53<05:39, 1.03s/it]
67%|██████▋ | 670/1000 [21:54<05:31, 1.00s/it]
67%|██████▋ | 670/1000 [21:54<05:31, 1.00s/it]
67%|██████▋ | 671/1000 [21:55<05:23, 1.02it/s]
67%|██████▋ | 671/1000 [21:55<05:23, 1.02it/s]
67%|██████▋ | 672/1000 [21:56<05:05, 1.07it/s]
67%|██████▋ | 672/1000 [21:56<05:05, 1.07it/s]
67%|██████▋ | 673/1000 [21:56<04:40, 1.17it/s]
67%|██████▋ | 673/1000 [21:57<04:40, 1.17it/s]
67%|██████▋ | 674/1000 [21:57<04:22, 1.24it/s]
67%|██████▋ | 674/1000 [21:57<04:22, 1.24it/s]
68%|██████▊ | 675/1000 [22:00<07:04, 1.31s/it]
68%|██████▊ | 675/1000 [22:00<07:04, 1.31s/it]
68%|██████▊ | 676/1000 [22:06<15:16, 2.83s/it]
68%|██████▊ | 676/1000 [22:06<15:16, 2.83s/it]
68%|██████▊ | 677/1000 [22:10<17:22, 3.23s/it]
68%|██████▊ | 677/1000 [22:10<17:22, 3.23s/it]
68%|██████▊ | 678/1000 [22:14<17:57, 3.35s/it]
68%|██████▊ | 678/1000 [22:14<17:57, 3.35s/it]
68%|██████▊ | 679/1000 [22:17<17:57, 3.36s/it]
68%|██████▊ | 679/1000 [22:17<17:57, 3.36s/it]
68%|██████▊ | 680/1000 [22:20<17:31, 3.29s/it]
68%|██████▊ | 680/1000 [22:20<17:31, 3.29s/it]
68%|██████▊ | 681/1000 [22:23<16:56, 3.19s/it]
68%|██████▊ | 681/1000 [22:23<16:56, 3.19s/it]
68%|██████▊ | 682/1000 [22:26<16:14, 3.06s/it]
68%|██████▊ | 682/1000 [22:26<16:14, 3.06s/it]
68%|██████▊ | 683/1000 [22:29<15:40, 2.97s/it]
68%|██████▊ | 683/1000 [22:29<15:40, 2.97s/it]
68%|██████▊ | 684/1000 [22:31<14:52, 2.82s/it]
68%|██████▊ | 684/1000 [22:31<14:52, 2.82s/it]
68%|██████▊ | 685/1000 [22:34<14:12, 2.71s/it]
68%|██████▊ | 685/1000 [22:34<14:12, 2.71s/it]
69%|██████▊ | 686/1000 [22:36<13:40, 2.61s/it]
69%|██████▊ | 686/1000 [22:36<13:40, 2.61s/it]
69%|██████▊ | 687/1000 [22:38<13:11, 2.53s/it]
69%|██████▊ | 687/1000 [22:38<13:11, 2.53s/it]
69%|██████▉ | 688/1000 [22:41<12:29, 2.40s/it]
69%|██████▉ | 688/1000 [22:41<12:29, 2.40s/it]
69%|██████▉ | 689/1000 [22:43<11:59, 2.31s/it]
69%|██████▉ | 689/1000 [22:43<11:59, 2.31s/it]
69%|██████▉ | 690/1000 [22:45<11:38, 2.25s/it]
69%|██████▉ | 690/1000 [22:45<11:38, 2.25s/it]
69%|██████▉ | 691/1000 [22:47<11:22, 2.21s/it]
69%|██████▉ | 691/1000 [22:47<11:22, 2.21s/it]
69%|██████▉ | 692/1000 [22:49<10:47, 2.10s/it]
69%|██████▉ | 692/1000 [22:49<10:47, 2.10s/it]
69%|██████▉ | 693/1000 [22:51<10:17, 2.01s/it]
69%|██████▉ | 693/1000 [22:51<10:17, 2.01s/it]
69%|██████▉ | 694/1000 [22:52<09:54, 1.94s/it]
69%|██████▉ | 694/1000 [22:52<09:54, 1.94s/it]
70%|██████▉ | 695/1000 [22:54<09:36, 1.89s/it]
70%|██████▉ | 695/1000 [22:54<09:36, 1.89s/it]
70%|██████▉ | 696/1000 [22:56<09:24, 1.86s/it]
70%|██████▉ | 696/1000 [22:56<09:24, 1.86s/it]
70%|██████▉ | 697/1000 [22:58<09:14, 1.83s/it]
70%|██████▉ | 697/1000 [22:58<09:14, 1.83s/it]
70%|██████▉ | 698/1000 [22:59<09:05, 1.81s/it]
70%|██████▉ | 698/1000 [22:59<09:05, 1.81s/it]
70%|██████▉ | 699/1000 [23:01<08:42, 1.73s/it]
70%|██████▉ | 699/1000 [23:01<08:42, 1.73s/it]
70%|███████ | 700/1000 [23:02<08:23, 1.68s/it]
70%|███████ | 700/1000 [23:03<08:23, 1.68s/it]
70%|███████ | 701/1000 [23:04<08:06, 1.63s/it]
70%|███████ | 701/1000 [23:04<08:06, 1.63s/it]
70%|███████ | 702/1000 [23:06<07:55, 1.60s/it]
70%|███████ | 702/1000 [23:06<07:55, 1.60s/it]
70%|███████ | 703/1000 [23:07<07:48, 1.58s/it]
70%|███████ | 703/1000 [23:07<07:48, 1.58s/it]
70%|███████ | 704/1000 [23:09<07:40, 1.56s/it]
70%|███████ | 704/1000 [23:09<07:40, 1.56s/it]
70%|███████ | 705/1000 [23:10<07:35, 1.54s/it]
70%|███████ | 705/1000 [23:10<07:35, 1.54s/it]
71%|███████ | 706/1000 [23:12<07:29, 1.53s/it]
71%|███████ | 706/1000 [23:12<07:29, 1.53s/it]
71%|███████ | 707/1000 [23:13<07:06, 1.46s/it]
71%|███████ | 707/1000 [23:13<07:06, 1.46s/it]
71%|███████ | 708/1000 [23:14<06:45, 1.39s/it]
71%|███████ | 708/1000 [23:14<06:45, 1.39s/it]
71%|███████ | 709/1000 [23:15<06:30, 1.34s/it]
71%|███████ | 709/1000 [23:15<06:30, 1.34s/it]
71%|███████ | 710/1000 [23:17<06:20, 1.31s/it]
71%|███████ | 710/1000 [23:17<06:20, 1.31s/it]
71%|███████ | 711/1000 [23:18<06:13, 1.29s/it]
71%|███████ | 711/1000 [23:18<06:13, 1.29s/it]
71%|███████ | 712/1000 [23:19<06:09, 1.28s/it]
71%|███████ | 712/1000 [23:19<06:09, 1.28s/it]
71%|███████▏ | 713/1000 [23:20<06:04, 1.27s/it]
71%|███████▏ | 713/1000 [23:20<06:04, 1.27s/it]
71%|███████▏ | 714/1000 [23:22<06:00, 1.26s/it]
71%|███████▏ | 714/1000 [23:22<06:00, 1.26s/it]
72%|███████▏ | 715/1000 [23:23<05:44, 1.21s/it]
72%|███████▏ | 715/1000 [23:23<05:44, 1.21s/it]
72%|███████▏ | 716/1000 [23:24<05:20, 1.13s/it]
72%|███████▏ | 716/1000 [23:24<05:20, 1.13s/it]
72%|███████▏ | 717/1000 [23:25<05:03, 1.07s/it]
72%|███████▏ | 717/1000 [23:25<05:03, 1.07s/it]
72%|███████▏ | 718/1000 [23:25<04:50, 1.03s/it]
72%|███████▏ | 718/1000 [23:25<04:50, 1.03s/it]
72%|███████▏ | 719/1000 [23:26<04:42, 1.01s/it]
72%|███████▏ | 719/1000 [23:26<04:42, 1.01s/it]
72%|███████▏ | 720/1000 [23:27<04:35, 1.01it/s]
72%|███████▏ | 720/1000 [23:27<04:35, 1.01it/s]
72%|███████▏ | 721/1000 [23:28<04:26, 1.04it/s]
72%|███████▏ | 721/1000 [23:28<04:26, 1.04it/s]
72%|███████▏ | 722/1000 [23:29<04:07, 1.13it/s]
72%|███████▏ | 722/1000 [23:29<04:07, 1.13it/s]
72%|███████▏ | 723/1000 [23:30<03:48, 1.21it/s]
72%|███████▏ | 723/1000 [23:30<03:48, 1.21it/s]
72%|███████▏ | 724/1000 [23:30<03:36, 1.28it/s]
72%|███████▏ | 724/1000 [23:30<03:36, 1.28it/s]
72%|███████▎ | 725/1000 [23:33<06:10, 1.35s/it]
72%|███████▎ | 725/1000 [23:33<06:10, 1.35s/it]
73%|███████▎ | 726/1000 [23:40<14:26, 3.16s/it]
73%|███████▎ | 726/1000 [23:40<14:26, 3.16s/it]
73%|███████▎ | 727/1000 [23:45<15:42, 3.45s/it]
73%|███████▎ | 727/1000 [23:45<15:42, 3.45s/it]
73%|███████▎ | 728/1000 [23:48<15:52, 3.50s/it]
73%|███████▎ | 728/1000 [23:48<15:52, 3.50s/it]
73%|███████▎ | 729/1000 [23:52<15:40, 3.47s/it]
73%|██████���▎ | 729/1000 [23:52<15:40, 3.47s/it]
73%|███████▎ | 730/1000 [23:55<15:11, 3.38s/it]
73%|███████▎ | 730/1000 [23:55<15:11, 3.38s/it]
73%|███████▎ | 731/1000 [23:58<14:34, 3.25s/it]
73%|███████▎ | 731/1000 [23:58<14:34, 3.25s/it]
73%|███████▎ | 732/1000 [24:00<13:56, 3.12s/it]
73%|███████▎ | 732/1000 [24:00<13:56, 3.12s/it]
73%|███████▎ | 733/1000 [24:03<13:29, 3.03s/it]
73%|███████▎ | 733/1000 [24:03<13:29, 3.03s/it]
73%|███████▎ | 734/1000 [24:06<12:58, 2.93s/it]
73%|███████▎ | 734/1000 [24:06<12:58, 2.93s/it]
74%|███████▎ | 735/1000 [24:08<12:14, 2.77s/it]
74%|███████▎ | 735/1000 [24:08<12:14, 2.77s/it]
74%|███████▎ | 736/1000 [24:11<11:41, 2.66s/it]
74%|███████▎ | 736/1000 [24:11<11:41, 2.66s/it]
74%|███████▎ | 737/1000 [24:13<11:19, 2.58s/it]
74%|███████▎ | 737/1000 [24:13<11:19, 2.58s/it]
74%|███████▍ | 738/1000 [24:15<10:52, 2.49s/it]
74%|███████▍ | 738/1000 [24:15<10:52, 2.49s/it]
74%|███████▍ | 739/1000 [24:18<10:22, 2.39s/it]
74%|███████▍ | 739/1000 [24:18<10:22, 2.39s/it]
74%|███████▍ | 740/1000 [24:20<10:00, 2.31s/it]
74%|███████▍ | 740/1000 [24:20<10:00, 2.31s/it]
74%|███████▍ | 741/1000 [24:22<09:41, 2.25s/it]
74%|███████▍ | 741/1000 [24:22<09:41, 2.25s/it]
74%|███████▍ | 742/1000 [24:24<09:27, 2.20s/it]
74%|███████▍ | 742/1000 [24:24<09:27, 2.20s/it]
74%|███████▍ | 743/1000 [24:26<09:10, 2.14s/it]
74%|███████▍ | 743/1000 [24:26<09:10, 2.14s/it]
74%|███████▍ | 744/1000 [24:28<08:45, 2.05s/it]
74%|███████▍ | 744/1000 [24:28<08:45, 2.05s/it]
74%|███████▍ | 745/1000 [24:30<08:22, 1.97s/it]
74%|███████▍ | 745/1000 [24:30<08:22, 1.97s/it]
75%|███████▍ | 746/1000 [24:31<08:06, 1.91s/it]
75%|███████▍ | 746/1000 [24:31<08:06, 1.91s/it]
75%|███████▍ | 747/1000 [24:33<07:57, 1.89s/it]
75%|███████▍ | 747/1000 [24:33<07:57, 1.89s/it]
75%|███████▍ | 748/1000 [24:35<07:47, 1.85s/it]
75%|███████▍ | 748/1000 [24:35<07:47, 1.85s/it]
75%|███████▍ | 749/1000 [24:37<07:39, 1.83s/it]
75%|███████▍ | 749/1000 [24:37<07:39, 1.83s/it]
75%|███████▌ | 750/1000 [24:38<07:21, 1.77s/it]
75%|███████▌ | 750/1000 [24:38<07:21, 1.77s/it]
75%|███████▌ | 751/1000 [24:40<07:00, 1.69s/it]
75%|███████▌ | 751/1000 [24:40<07:00, 1.69s/it]
75%|███████▌ | 752/1000 [24:41<06:45, 1.64s/it]
75%|███████▌ | 752/1000 [24:41<06:45, 1.64s/it]
75%|███████▌ | 753/1000 [24:43<06:35, 1.60s/it]
75%|███████▌ | 753/1000 [24:43<06:35, 1.60s/it]
75%|███████▌ | 754/1000 [24:44<06:27, 1.58s/it]
75%|███████▌ | 754/1000 [24:44<06:27, 1.58s/it]
76%|███████▌ | 755/1000 [24:46<06:20, 1.55s/it]
76%|███████▌ | 755/1000 [24:46<06:20, 1.55s/it]
76%|███████▌ | 756/1000 [24:47<06:17, 1.55s/it]
76%|███████▌ | 756/1000 [24:47<06:17, 1.55s/it]
76%|███████▌ | 757/1000 [24:49<06:13, 1.54s/it]
76%|███████▌ | 757/1000 [24:49<06:13, 1.54s/it]
76%|███████▌ | 758/1000 [24:50<05:53, 1.46s/it]
76%|███████▌ | 758/1000 [24:50<05:53, 1.46s/it]
76%|███████▌ | 759/1000 [24:51<05:35, 1.39s/it]
76%|███████▌ | 759/1000 [24:51<05:35, 1.39s/it]
76%|███████▌ | 760/1000 [24:53<05:23, 1.35s/it]
76%|███████▌ | 760/1000 [24:53<05:23, 1.35s/it]
76%|███████▌ | 761/1000 [24:54<05:13, 1.31s/it]
76%|███████▌ | 761/1000 [24:54<05:13, 1.31s/it]
76%|███████▌ | 762/1000 [24:55<05:07, 1.29s/it]
76%|███████▌ | 762/1000 [24:55<05:07, 1.29s/it]
76%|███████▋ | 763/1000 [24:56<05:01, 1.27s/it]
76%|███████▋ | 763/1000 [24:56<05:01, 1.27s/it]
76%|███████▋ | 764/1000 [24:58<04:57, 1.26s/it]
76%|███████▋ | 764/1000 [24:58<04:57, 1.26s/it]
76%|███████▋ | 765/1000 [24:59<04:45, 1.21s/it]
76%|███████▋ | 765/1000 [24:59<04:45, 1.21s/it]
77%|███████▋ | 766/1000 [25:00<04:25, 1.13s/it]
77%|███████▋ | 766/1000 [25:00<04:25, 1.13s/it]
77%|███████▋ | 767/1000 [25:01<04:11, 1.08s/it]
77%|███████▋ | 767/1000 [25:01<04:11, 1.08s/it]
77%|███████▋ | 768/1000 [25:02<04:00, 1.04s/it]
77%|███████▋ | 768/1000 [25:02<04:00, 1.04s/it]
77%|███████▋ | 769/1000 [25:03<03:55, 1.02s/it]
77%|███████▋ | 769/1000 [25:03<03:55, 1.02s/it]
77%|███████▋ | 770/1000 [25:03<03:49, 1.00it/s]
77%|███████▋ | 770/1000 [25:03<03:49, 1.00it/s]
77%|███████▋ | 771/1000 [25:04<03:36, 1.06it/s]
77%|███████▋ | 771/1000 [25:04<03:36, 1.06it/s]
77%|███████▋ | 772/1000 [25:05<03:18, 1.15it/s]
77%|███████▋ | 772/1000 [25:05<03:18, 1.15it/s]
77%|███████▋ | 773/1000 [25:06<03:04, 1.23it/s]
77%|███████▋ | 773/1000 [25:06<03:04, 1.23it/s]
77%|███████▋ | 774/1000 [25:06<02:54, 1.29it/s]
77%|███████▋ | 774/1000 [25:06<02:54, 1.29it/s]
78%|███████▊ | 775/1000 [25:09<05:04, 1.35s/it]
78%|███████▊ | 775/1000 [25:09<05:04, 1.35s/it]
78%|███████▊ | 776/1000 [25:17<12:49, 3.44s/it]
78%|███████▊ | 776/1000 [25:17<12:49, 3.44s/it]
78%|███████▊ | 777/1000 [25:22<13:55, 3.75s/it]
78%|███████▊ | 777/1000 [25:22<13:55, 3.75s/it]
78%|███████▊ | 778/1000 [25:26<14:09, 3.83s/it]
78%|███████▊ | 778/1000 [25:26<14:09, 3.83s/it]
78%|███████▊ | 779/1000 [25:29<13:49, 3.75s/it]
78%|███████▊ | 779/1000 [25:29<13:49, 3.75s/it]
78%|███████▊ | 780/1000 [25:33<13:23, 3.65s/it]
78%|███████▊ | 780/1000 [25:33<13:23, 3.65s/it]
78%|███████▊ | 781/1000 [25:36<12:44, 3.49s/it]
78%|███████▊ | 781/1000 [25:36<12:44, 3.49s/it]
78%|███████▊ | 782/1000 [25:39<12:05, 3.33s/it]
78%|███████▊ | 782/1000 [25:39<12:05, 3.33s/it]
78%|███████▊ | 783/1000 [25:42<11:30, 3.18s/it]
78%|███████▊ | 783/1000 [25:42<11:30, 3.18s/it]
78%|███████▊ | 784/1000 [25:45<11:02, 3.07s/it]
78%|███████▊ | 784/1000 [25:45<11:02, 3.07s/it]
78%|███████▊ | 785/1000 [25:47<10:22, 2.90s/it]
78%|███████▊ | 785/1000 [25:47<10:22, 2.90s/it]
79%|███████▊ | 786/1000 [25:49<09:48, 2.75s/it]
79%|███████▊ | 786/1000 [25:49<09:48, 2.75s/it]
79%|███████▊ | 787/1000 [25:52<09:22, 2.64s/it]
79%|███████▊ | 787/1000 [25:52<09:22, 2.64s/it]
79%|███████▉ | 788/1000 [25:54<08:58, 2.54s/it]
79%|███████▉ | 788/1000 [25:54<08:58, 2.54s/it]
79%|███████▉ | 789/1000 [25:56<08:28, 2.41s/it]
79%|███████▉ | 789/1000 [25:56<08:28, 2.41s/it]
79%|███████▉ | 790/1000 [25:58<08:07, 2.32s/it]
79%|███████▉ | 790/1000 [25:58<08:07, 2.32s/it]
79%|███████▉ | 791/1000 [26:00<07:51, 2.25s/it]
79%|███████▉ | 791/1000 [26:00<07:51, 2.25s/it]
79%|███████▉ | 792/1000 [26:03<07:38, 2.20s/it]
79%|███████▉ | 792/1000 [26:03<07:38, 2.20s/it]
79%|███████▉ | 793/1000 [26:05<07:27, 2.16s/it]
79%|███████▉ | 793/1000 [26:05<07:27, 2.16s/it]
79%|███████▉ | 794/1000 [26:06<07:04, 2.06s/it]
79%|███████▉ | 794/1000 [26:06<07:04, 2.06s/it]
80%|███████▉ | 795/1000 [26:08<06:45, 1.98s/it]
80%|███████▉ | 795/1000 [26:08<06:45, 1.98s/it]
80%|███████▉ | 796/1000 [26:10<06:30, 1.92s/it]
80%|███████▉ | 796/1000 [26:10<06:30, 1.92s/it]
80%|███████▉ | 797/1000 [26:12<06:20, 1.87s/it]
80%|███████▉ | 797/1000 [26:12<06:20, 1.87s/it]
80%|███████▉ | 798/1000 [26:14<06:13, 1.85s/it]
80%|███████▉ | 798/1000 [26:14<06:13, 1.85s/it]
80%|███████▉ | 799/1000 [26:15<06:07, 1.83s/it]
80%|███████▉ | 799/1000 [26:15<06:07, 1.83s/it]
80%|████████ | 800/1000 [26:17<05:53, 1.77s/it]
80%|████████ | 800/1000 [26:17<05:53, 1.77s/it]
80%|████████ | 801/1000 [26:18<05:35, 1.69s/it]
80%|████████ | 801/1000 [26:18<05:35, 1.69s/it]
80%|████████ | 802/1000 [26:20<05:22, 1.63s/it]
80%|████████ | 802/1000 [26:20<05:22, 1.63s/it]
80%|████████ | 803/1000 [26:21<05:14, 1.59s/it]
80%|████████ | 803/1000 [26:22<05:14, 1.59s/it]
80%|████████ | 804/1000 [26:23<05:06, 1.57s/it]
80%|████████ | 804/1000 [26:23<05:06, 1.57s/it]
80%|████████ | 805/1000 [26:24<05:02, 1.55s/it]
80%|████████ | 805/1000 [26:25<05:02, 1.55s/it]
81%|████████ | 806/1000 [26:26<04:57, 1.54s/it]
81%|████████ | 806/1000 [26:26<04:57, 1.54s/it]
81%|████████ | 807/1000 [26:28<04:55, 1.53s/it]
81%|████████ | 807/1000 [26:28<04:55, 1.53s/it]
81%|████████ | 808/1000 [26:29<04:50, 1.51s/it]
81%|████████ | 808/1000 [26:29<04:50, 1.51s/it]
81%|████████ | 809/1000 [26:30<04:36, 1.45s/it]
81%|████████ | 809/1000 [26:30<04:36, 1.45s/it]
81%|████████ | 810/1000 [26:32<04:23, 1.39s/it]
81%|████████ | 810/1000 [26:32<04:23, 1.39s/it]
81%|████████ | 811/1000 [26:33<04:15, 1.35s/it]
81%|████████ | 811/1000 [26:33<04:15, 1.35s/it]
81%|████████ | 812/1000 [26:34<04:08, 1.32s/it]
81%|████████ | 812/1000 [26:34<04:08, 1.32s/it]
81%|████████▏ | 813/1000 [26:35<04:02, 1.30s/it]
81%|████████▏ | 813/1000 [26:35<04:02, 1.30s/it]
81%|████████▏ | 814/1000 [26:37<03:57, 1.28s/it]
81%|████████▏ | 814/1000 [26:37<03:57, 1.28s/it]
82%|████████▏ | 815/1000 [26:38<03:54, 1.26s/it]
82%|████████▏ | 815/1000 [26:38<03:54, 1.26s/it]
82%|████████▏ | 816/1000 [26:39<03:43, 1.22s/it]
82%|████████▏ | 816/1000 [26:39<03:43, 1.22s/it]
82%|████████▏ | 817/1000 [26:40<03:27, 1.14s/it]
82%|████████▏ | 817/1000 [26:40<03:27, 1.14s/it]
82%|████████▏ | 818/1000 [26:41<03:16, 1.08s/it]
82%|████████▏ | 818/1000 [26:41<03:16, 1.08s/it]
82%|████████▏ | 819/1000 [26:42<03:08, 1.04s/it]
82%|████████▏ | 819/1000 [26:42<03:08, 1.04s/it]
82%|████████▏ | 820/1000 [26:43<03:02, 1.01s/it]
82%|████████▏ | 820/1000 [26:43<03:02, 1.01s/it]
82%|████████▏ | 821/1000 [26:44<02:57, 1.01it/s]
82%|████████▏ | 821/1000 [26:44<02:57, 1.01it/s]
82%|████████▏ | 822/1000 [26:44<02:45, 1.08it/s]
82%|████████▏ | 822/1000 [26:44<02:45, 1.08it/s]
82%|████████▏ | 823/1000 [26:45<02:31, 1.17it/s]
82%|████████▏ | 823/1000 [26:45<02:31, 1.17it/s]
82%|████████▏ | 824/1000 [26:46<02:21, 1.24it/s]
82%|████████▏ | 824/1000 [26:46<02:21, 1.24it/s]
82%|████████▎ | 825/1000 [26:48<04:00, 1.38s/it]
82%|████████▎ | 825/1000 [26:48<04:00, 1.38s/it]
83%|████████▎ | 826/1000 [26:56<09:29, 3.27s/it]
83%|████████▎ | 826/1000 [26:56<09:29, 3.27s/it]
83%|████████▎ | 827/1000 [27:00<10:16, 3.56s/it]
83%|████████▎ | 827/1000 [27:00<10:16, 3.56s/it]
83%|████████▎ | 828/1000 [27:04<10:22, 3.62s/it]
83%|████████▎ | 828/1000 [27:04<10:22, 3.62s/it]
83%|████████▎ | 829/1000 [27:08<10:06, 3.55s/it]
83%|████████▎ | 829/1000 [27:08<10:06, 3.55s/it]
83%|████████▎ | 830/1000 [27:11<09:40, 3.41s/it]
83%|████████▎ | 830/1000 [27:11<09:40, 3.41s/it]
83%|████████▎ | 831/1000 [27:14<09:14, 3.28s/it]
83%|████████▎ | 831/1000 [27:14<09:14, 3.28s/it]
83%|████████▎ | 832/1000 [27:16<08:44, 3.12s/it]
83%|████████▎ | 832/1000 [27:16<08:44, 3.12s/it]
83%|████████▎ | 833/1000 [27:19<08:20, 3.00s/it]
83%|████████▎ | 833/1000 [27:19<08:20, 3.00s/it]
83%|████████▎ | 834/1000 [27:22<07:57, 2.87s/it]
83%|████████▎ | 834/1000 [27:22<07:57, 2.87s/it]
84%|████████▎ | 835/1000 [27:24<07:31, 2.73s/it]
84%|████████▎ | 835/1000 [27:24<07:31, 2.73s/it]
84%|████████▎ | 836/1000 [27:26<07:13, 2.64s/it]
84%|████████▎ | 836/1000 [27:27<07:13, 2.64s/it]
84%|████████▎ | 837/1000 [27:29<06:57, 2.56s/it]
84%|████████▎ | 837/1000 [27:29<06:57, 2.56s/it]
84%|████████▍ | 838/1000 [27:31<06:34, 2.44s/it]
84%|████████▍ | 838/1000 [27:31<06:34, 2.44s/it]
84%|████████▍ | 839/1000 [27:33<06:15, 2.34s/it]
84%|████████▍ | 839/1000 [27:33<06:15, 2.34s/it]
84%|████████▍ | 840/1000 [27:35<06:03, 2.27s/it]
84%|████████▍ | 840/1000 [27:35<06:03, 2.27s/it]
84%|████████▍ | 841/1000 [27:37<05:52, 2.22s/it]
84%|████████▍ | 841/1000 [27:37<05:52, 2.22s/it]
84%|████████▍ | 842/1000 [27:39<05:45, 2.19s/it]
84%|████████▍ | 842/1000 [27:39<05:45, 2.19s/it]
84%|████████▍ | 843/1000 [27:41<05:34, 2.13s/it]
84%|████████▍ | 843/1000 [27:41<05:34, 2.13s/it]
84%|████████▍ | 844/1000 [27:43<05:16, 2.03s/it]
84%|████████▍ | 844/1000 [27:43<05:16, 2.03s/it]
84%|████████▍ | 845/1000 [27:45<05:02, 1.95s/it]
84%|████████▍ | 845/1000 [27:45<05:02, 1.95s/it]
85%|████████▍ | 846/1000 [27:47<04:52, 1.90s/it]
85%|████████▍ | 846/1000 [27:47<04:52, 1.90s/it]
85%|████████▍ | 847/1000 [27:49<04:45, 1.86s/it]
85%|████████▍ | 847/1000 [27:49<04:45, 1.86s/it]
85%|████████▍ | 848/1000 [27:50<04:38, 1.83s/it]
85%|████████▍ | 848/1000 [27:50<04:38, 1.83s/it]
85%|████████▍ | 849/1000 [27:52<04:35, 1.82s/it]
85%|████████▍ | 849/1000 [27:52<04:35, 1.82s/it]
85%|████████▌ | 850/1000 [27:54<04:26, 1.77s/it]
85%|████████▌ | 850/1000 [27:54<04:26, 1.77s/it]
85%|████████▌ | 851/1000 [27:55<04:12, 1.69s/it]
85%|████████▌ | 851/1000 [27:55<04:12, 1.69s/it]
85%|████████▌ | 852/1000 [27:57<04:01, 1.63s/it]
85%|████████▌ | 852/1000 [27:57<04:01, 1.63s/it]
85%|████████▌ | 853/1000 [27:58<03:54, 1.59s/it]
85%|████████▌ | 853/1000 [27:58<03:54, 1.59s/it]
85%|████████▌ | 854/1000 [28:00<03:48, 1.57s/it]
85%|████████▌ | 854/1000 [28:00<03:48, 1.57s/it]
86%|████████▌ | 855/1000 [28:01<03:44, 1.55s/it]
86%|████████▌ | 855/1000 [28:01<03:44, 1.55s/it]
86%|████████▌ | 856/1000 [28:03<03:41, 1.54s/it]
86%|████████▌ | 856/1000 [28:03<03:41, 1.54s/it]
86%|████████▌ | 857/1000 [28:04<03:40, 1.54s/it]
86%|████████▌ | 857/1000 [28:04<03:40, 1.54s/it]
86%|████████▌ | 858/1000 [28:06<03:31, 1.49s/it]
86%|████████▌ | 858/1000 [28:06<03:31, 1.49s/it]
86%|████████▌ | 859/1000 [28:07<03:19, 1.42s/it]
86%|████████▌ | 859/1000 [28:07<03:19, 1.42s/it]
86%|████████▌ | 860/1000 [28:08<03:10, 1.36s/it]
86%|████████▌ | 860/1000 [28:08<03:10, 1.36s/it]
86%|████████▌ | 861/1000 [28:09<03:04, 1.33s/it]
86%|████████▌ | 861/1000 [28:09<03:04, 1.33s/it]
86%|████████▌ | 862/1000 [28:11<02:59, 1.30s/it]
86%|████████▌ | 862/1000 [28:11<02:59, 1.30s/it]
86%|████████▋ | 863/1000 [28:12<02:55, 1.28s/it]
86%|████████▋ | 863/1000 [28:12<02:55, 1.28s/it]
86%|████████▋ | 864/1000 [28:13<02:52, 1.27s/it]
86%|████████▋ | 864/1000 [28:13<02:52, 1.27s/it]
86%|████████▋ | 865/1000 [28:14<02:49, 1.26s/it]
86%|████████▋ | 865/1000 [28:14<02:49, 1.26s/it]
87%|████████▋ | 866/1000 [28:15<02:41, 1.21s/it]
87%|████████▋ | 866/1000 [28:15<02:41, 1.21s/it]
87%|████████▋ | 867/1000 [28:16<02:29, 1.13s/it]
87%|████████▋ | 867/1000 [28:16<02:29, 1.13s/it]
87%|████████▋ | 868/1000 [28:17<02:21, 1.07s/it]
87%|████████▋ | 868/1000 [28:17<02:21, 1.07s/it]
87%|████████▋ | 869/1000 [28:18<02:15, 1.03s/it]
87%|████████▋ | 869/1000 [28:18<02:15, 1.03s/it]
87%|████████▋ | 870/1000 [28:19<02:10, 1.01s/it]
87%|████████▋ | 870/1000 [28:19<02:10, 1.01s/it]
87%|████████▋ | 871/1000 [28:20<02:07, 1.01it/s]
87%|████████▋ | 871/1000 [28:20<02:07, 1.01it/s]
87%|████████▋ | 872/1000 [28:21<02:00, 1.06it/s]
87%|████████▋ | 872/1000 [28:21<02:00, 1.06it/s]
87%|████████▋ | 873/1000 [28:22<01:49, 1.16it/s]
87%|████████▋ | 873/1000 [28:22<01:49, 1.16it/s]
87%|████████▋ | 874/1000 [28:22<01:41, 1.24it/s]
87%|████████▋ | 874/1000 [28:22<01:41, 1.24it/s]
88%|████████▊ | 875/1000 [28:25<02:48, 1.35s/it]
88%|████████▊ | 875/1000 [28:25<02:48, 1.35s/it]
88%|████████▊ | 876/1000 [28:32<06:07, 2.97s/it]
88%|████████▊ | 876/1000 [28:32<06:07, 2.97s/it]
88%|████████▊ | 877/1000 [28:36<06:55, 3.38s/it]
88%|████████▊ | 877/1000 [28:36<06:55, 3.38s/it]
88%|████████▊ | 878/1000 [28:40<07:05, 3.48s/it]
88%|████████▊ | 878/1000 [28:40<07:05, 3.48s/it]
88%|████████▊ | 879/1000 [28:43<06:58, 3.46s/it]
88%|████████▊ | 879/1000 [28:43<06:58, 3.46s/it]
88%|████████▊ | 880/1000 [28:46<06:46, 3.39s/it]
88%|████████▊ | 880/1000 [28:46<06:46, 3.39s/it]
88%|████████▊ | 881/1000 [28:49<06:28, 3.26s/it]
88%|████████▊ | 881/1000 [28:49<06:28, 3.26s/it]
88%|████████▊ | 882/1000 [28:52<06:09, 3.13s/it]
88%|████████▊ | 882/1000 [28:52<06:09, 3.13s/it]
88%|████████▊ | 883/1000 [28:55<05:51, 3.01s/it]
88%|████████▊ | 883/1000 [28:55<05:51, 3.01s/it]
88%|████████▊ | 884/1000 [28:58<05:33, 2.88s/it]
88%|████████▊ | 884/1000 [28:58<05:33, 2.88s/it]
88%|████████▊ | 885/1000 [29:00<05:14, 2.73s/it]
88%|████████▊ | 885/1000 [29:00<05:14, 2.73s/it]
89%|████████▊ | 886/1000 [29:02<05:00, 2.64s/it]
89%|████████▊ | 886/1000 [29:02<05:00, 2.64s/it]
89%|████████▊ | 887/1000 [29:05<04:50, 2.57s/it]
89%|████████▊ | 887/1000 [29:05<04:50, 2.57s/it]
89%|████████▉ | 888/1000 [29:07<04:33, 2.45s/it]
89%|████████▉ | 888/1000 [29:07<04:33, 2.45s/it]
89%|████████▉ | 889/1000 [29:09<04:19, 2.34s/it]
89%|████████▉ | 889/1000 [29:09<04:19, 2.34s/it]
89%|████████▉ | 890/1000 [29:11<04:08, 2.26s/it]
89%|████████▉ | 890/1000 [29:11<04:08, 2.26s/it]
89%|████████▉ | 891/1000 [29:13<04:01, 2.21s/it]
89%|████████▉ | 891/1000 [29:13<04:01, 2.21s/it]
89%|████████▉ | 892/1000 [29:15<03:54, 2.17s/it]
89%|████████▉ | 892/1000 [29:15<03:54, 2.17s/it]
89%|████████▉ | 893/1000 [29:17<03:42, 2.08s/it]
89%|████████▉ | 893/1000 [29:17<03:42, 2.08s/it]
89%|████████▉ | 894/1000 [29:19<03:31, 1.99s/it]
89%|████████▉ | 894/1000 [29:19<03:31, 1.99s/it]
90%|████████▉ | 895/1000 [29:21<03:22, 1.93s/it]
90%|████████▉ | 895/1000 [29:21<03:22, 1.93s/it]
90%|████████▉ | 896/1000 [29:22<03:15, 1.88s/it]
90%|████████▉ | 896/1000 [29:22<03:15, 1.88s/it]
90%|████████▉ | 897/1000 [29:24<03:11, 1.86s/it]
90%|████████▉ | 897/1000 [29:24<03:11, 1.86s/it]
90%|████████▉ | 898/1000 [29:26<03:06, 1.83s/it]
90%|████████▉ | 898/1000 [29:26<03:06, 1.83s/it]
90%|████████▉ | 899/1000 [29:28<03:01, 1.80s/it]
90%|████████▉ | 899/1000 [29:28<03:01, 1.80s/it]
90%|█████████ | 900/1000 [29:29<02:52, 1.73s/it]
90%|█████████ | 900/1000 [29:29<02:52, 1.73s/it]
90%|█████████ | 901/1000 [29:31<02:44, 1.67s/it]
90%|█████████ | 901/1000 [29:31<02:44, 1.67s/it]
90%|█████████ | 902/1000 [29:32<02:39, 1.63s/it]
90%|█████████ | 902/1000 [29:32<02:39, 1.63s/it]
90%|█████████ | 903/1000 [29:34<02:34, 1.60s/it]
90%|█████████ | 903/1000 [29:34<02:34, 1.60s/it]
90%|█████████ | 904/1000 [29:35<02:30, 1.57s/it]
90%|█████████ | 904/1000 [29:35<02:30, 1.57s/it]
90%|█████████ | 905/1000 [29:37<02:27, 1.56s/it]
90%|█████████ | 905/1000 [29:37<02:27, 1.56s/it]
91%|█████████ | 906/1000 [29:38<02:24, 1.54s/it]
91%|█████████ | 906/1000 [29:38<02:24, 1.54s/it]
91%|█████████ | 907/1000 [29:40<02:21, 1.52s/it]
91%|█████████ | 907/1000 [29:40<02:21, 1.52s/it]
91%|█████████ | 908/1000 [29:41<02:13, 1.45s/it]
91%|█████████ | 908/1000 [29:41<02:13, 1.45s/it]
91%|█████████ | 909/1000 [29:42<02:06, 1.39s/it]
91%|█████████ | 909/1000 [29:42<02:06, 1.39s/it]
91%|█████████ | 910/1000 [29:44<02:01, 1.35s/it]
91%|█████████ | 910/1000 [29:44<02:01, 1.35s/it]
91%|█████████ | 911/1000 [29:45<01:57, 1.32s/it]
91%|█████████ | 911/1000 [29:45<01:57, 1.32s/it]
91%|█████████ | 912/1000 [29:46<01:54, 1.30s/it]
91%|█████████ | 912/1000 [29:46<01:54, 1.30s/it]
91%|█████████▏| 913/1000 [29:47<01:51, 1.28s/it]
91%|█████████▏| 913/1000 [29:47<01:51, 1.28s/it]
91%|█████████▏| 914/1000 [29:49<01:48, 1.26s/it]
91%|█████████▏| 914/1000 [29:49<01:48, 1.26s/it]
92%|█████████▏| 915/1000 [29:50<01:40, 1.18s/it]
92%|█████████▏| 915/1000 [29:50<01:40, 1.18s/it]
92%|█████████▏| 916/1000 [29:51<01:33, 1.11s/it]
92%|█████████▏| 916/1000 [29:51<01:33, 1.11s/it]
92%|█████████▏| 917/1000 [29:52<01:28, 1.06s/it]
92%|█████████▏| 917/1000 [29:52<01:28, 1.06s/it]
92%|█████████▏| 918/1000 [29:53<01:24, 1.03s/it]
92%|█████████▏| 918/1000 [29:53<01:24, 1.03s/it]
92%|█████████▏| 919/1000 [29:53<01:20, 1.00it/s]
92%|█████████▏| 919/1000 [29:53<01:20, 1.00it/s]
92%|█████████▏| 920/1000 [29:54<01:18, 1.02it/s]
92%|█████████▏| 920/1000 [29:54<01:18, 1.02it/s]
92%|█████████▏| 921/1000 [29:55<01:16, 1.03it/s]
92%|█████████▏| 921/1000 [29:55<01:16, 1.03it/s]
92%|█████████▏| 922/1000 [29:56<01:11, 1.09it/s]
92%|█████████▏| 922/1000 [29:56<01:11, 1.09it/s]
92%|█████████▏| 923/1000 [29:57<01:05, 1.18it/s]
92%|█████████▏| 923/1000 [29:57<01:05, 1.18it/s]
92%|█████████▏| 924/1000 [29:57<01:00, 1.25it/s]
92%|█████████▏| 924/1000 [29:58<01:00, 1.25it/s]
92%|█████████▎| 925/1000 [30:00<01:39, 1.32s/it]
92%|█████████▎| 925/1000 [30:00<01:39, 1.32s/it]
93%|█████████▎| 926/1000 [30:07<03:32, 2.87s/it]
93%|█████████▎| 926/1000 [30:07<03:32, 2.87s/it]
93%|█████████▎| 927/1000 [30:11<04:04, 3.36s/it]
93%|█████████▎| 927/1000 [30:11<04:04, 3.36s/it]
93%|█████████▎| 928/1000 [30:15<04:15, 3.55s/it]
93%|█████████▎| 928/1000 [30:15<04:15, 3.55s/it]
93%|█████████▎| 929/1000 [30:19<04:11, 3.55s/it]
93%|█████████▎| 929/1000 [30:19<04:11, 3.55s/it]
93%|█████████▎| 930/1000 [30:22<04:01, 3.46s/it]
93%|█████████▎| 930/1000 [30:22<04:01, 3.46s/it]
93%|█████████▎| 931/1000 [30:25<03:49, 3.32s/it]
93%|█████████▎| 931/1000 [30:25<03:49, 3.32s/it]
93%|█████████▎| 932/1000 [30:28<03:38, 3.21s/it]
93%|█████████▎| 932/1000 [30:28<03:38, 3.21s/it]
93%|█████████▎| 933/1000 [30:31<03:26, 3.09s/it]
93%|█████████▎| 933/1000 [30:31<03:26, 3.09s/it]
93%|█████████▎| 934/1000 [30:33<03:16, 2.98s/it]
93%|█████████▎| 934/1000 [30:33<03:16, 2.98s/it]
94%|█████████▎| 935/1000 [30:36<03:05, 2.85s/it]
94%|█████████▎| 935/1000 [30:36<03:05, 2.85s/it]
94%|█████████▎| 936/1000 [30:38<02:53, 2.71s/it]
94%|█████████▎| 936/1000 [30:38<02:53, 2.71s/it]
94%|█████████▎| 937/1000 [30:41<02:44, 2.60s/it]
94%|█████████▎| 937/1000 [30:41<02:44, 2.60s/it]
94%|█████████▍| 938/1000 [30:43<02:32, 2.47s/it]
94%|█████████▍| 938/1000 [30:43<02:32, 2.47s/it]
94%|█████████▍| 939/1000 [30:45<02:23, 2.36s/it]
94%|█████████▍| 939/1000 [30:45<02:23, 2.36s/it]
94%|█████████▍| 940/1000 [30:47<02:17, 2.29s/it]
94%|█████████▍| 940/1000 [30:47<02:17, 2.29s/it]
94%|█████████▍| 941/1000 [30:49<02:11, 2.23s/it]
94%|█████████▍| 941/1000 [30:49<02:11, 2.23s/it]
94%|█████████▍| 942/1000 [30:51<02:06, 2.18s/it]
94%|█████████▍| 942/1000 [30:51<02:06, 2.18s/it]
94%|█████████▍| 943/1000 [30:53<01:58, 2.08s/it]
94%|█████████▍| 943/1000 [30:53<01:58, 2.08s/it]
94%|█████████▍| 944/1000 [30:55<01:51, 1.99s/it]
94%|█████████▍| 944/1000 [30:55<01:51, 1.99s/it]
94%|█████████▍| 945/1000 [30:56<01:45, 1.92s/it]
94%|█████████▍| 945/1000 [30:57<01:45, 1.92s/it]
95%|█████████▍| 946/1000 [30:58<01:41, 1.88s/it]
95%|█████████▍| 946/1000 [30:58<01:41, 1.88s/it]
95%|█████████▍| 947/1000 [31:00<01:38, 1.86s/it]
95%|█████████▍| 947/1000 [31:00<01:38, 1.86s/it]
95%|█████████▍| 948/1000 [31:02<01:35, 1.84s/it]
95%|█████████▍| 948/1000 [31:02<01:35, 1.84s/it]
95%|█████████▍| 949/1000 [31:04<01:32, 1.82s/it]
95%|█████████▍| 949/1000 [31:04<01:32, 1.82s/it]
95%|█████████▌| 950/1000 [31:05<01:29, 1.78s/it]
95%|█████████▌| 950/1000 [31:05<01:29, 1.78s/it]
95%|█████████▌| 951/1000 [31:07<01:23, 1.70s/it]
95%|█████████▌| 951/1000 [31:07<01:23, 1.70s/it]
95%|█████████▌| 952/1000 [31:08<01:18, 1.64s/it]
95%|█████████▌| 952/1000 [31:08<01:18, 1.64s/it]
95%|█████████▌| 953/1000 [31:10<01:15, 1.61s/it]
95%|█████████▌| 953/1000 [31:10<01:15, 1.61s/it]
95%|█████████▌| 954/1000 [31:11<01:12, 1.58s/it]
95%|█████████▌| 954/1000 [31:11<01:12, 1.58s/it]
96%|█████████▌| 955/1000 [31:13<01:10, 1.56s/it]
96%|█████████▌| 955/1000 [31:13<01:10, 1.56s/it]
96%|█████████▌| 956/1000 [31:14<01:08, 1.55s/it]
96%|█████████▌| 956/1000 [31:14<01:08, 1.55s/it]
96%|█████████▌| 957/1000 [31:16<01:06, 1.54s/it]
96%|█████████▌| 957/1000 [31:16<01:06, 1.54s/it]
96%|█████████▌| 958/1000 [31:17<01:02, 1.49s/it]
96%|█████████▌| 958/1000 [31:17<01:02, 1.49s/it]
96%|█████████▌| 959/1000 [31:19<00:58, 1.42s/it]
96%|█████████▌| 959/1000 [31:19<00:58, 1.42s/it]
96%|█████████▌| 960/1000 [31:20<00:54, 1.37s/it]
96%|█████████▌| 960/1000 [31:20<00:54, 1.37s/it]
96%|█████████▌| 961/1000 [31:21<00:51, 1.33s/it]
96%|█████████▌| 961/1000 [31:21<00:51, 1.33s/it]
96%|█████████▌| 962/1000 [31:22<00:49, 1.30s/it]
96%|█████████▌| 962/1000 [31:22<00:49, 1.30s/it]
96%|█████████▋| 963/1000 [31:24<00:47, 1.28s/it]
96%|█████████▋| 963/1000 [31:24<00:47, 1.28s/it]
96%|█████████▋| 964/1000 [31:25<00:45, 1.27s/it]
96%|█████████▋| 964/1000 [31:25<00:45, 1.27s/it]
96%|█████████▋| 965/1000 [31:26<00:44, 1.26s/it]
96%|█████████▋| 965/1000 [31:26<00:44, 1.26s/it]
97%|█████████▋| 966/1000 [31:27<00:41, 1.21s/it]
97%|█████████▋| 966/1000 [31:27<00:41, 1.21s/it]
97%|█████████▋| 967/1000 [31:28<00:37, 1.13s/it]
97%|█████████▋| 967/1000 [31:28<00:37, 1.13s/it]
97%|█████████▋| 968/1000 [31:29<00:34, 1.08s/it]
97%|█████████▋| 968/1000 [31:29<00:34, 1.08s/it]
97%|█████████▋| 969/1000 [31:30<00:32, 1.04s/it]
97%|█████████▋| 969/1000 [31:30<00:32, 1.04s/it]
97%|█████████▋| 970/1000 [31:31<00:30, 1.01s/it]
97%|█████████▋| 970/1000 [31:31<00:30, 1.01s/it]
97%|█████████▋| 971/1000 [31:32<00:28, 1.01it/s]
97%|█████████▋| 971/1000 [31:32<00:28, 1.01it/s]
97%|█████████▋| 972/1000 [31:33<00:26, 1.08it/s]
97%|████████���▋| 972/1000 [31:33<00:26, 1.08it/s]
97%|█████████▋| 973/1000 [31:33<00:23, 1.17it/s]
97%|█████████▋| 973/1000 [31:33<00:23, 1.17it/s]
97%|█████████▋| 974/1000 [31:34<00:20, 1.25it/s]
97%|█████████▋| 974/1000 [31:34<00:20, 1.25it/s]
98%|█████████▊| 975/1000 [31:37<00:33, 1.35s/it]
98%|█████████▊| 975/1000 [31:37<00:33, 1.35s/it]
98%|█████████▊| 976/1000 [31:44<01:14, 3.09s/it]
98%|█████████▊| 976/1000 [31:44<01:14, 3.09s/it]
98%|█████████▊| 977/1000 [31:48<01:17, 3.38s/it]
98%|█████████▊| 977/1000 [31:48<01:17, 3.38s/it]
98%|█████████▊| 978/1000 [31:52<01:16, 3.49s/it]
98%|█████████▊| 978/1000 [31:52<01:16, 3.49s/it]
98%|█████████▊| 979/1000 [31:55<01:12, 3.46s/it]
98%|█████████▊| 979/1000 [31:55<01:12, 3.46s/it]
98%|█████████▊| 980/1000 [31:58<01:06, 3.35s/it]
98%|█████████▊| 980/1000 [31:58<01:06, 3.35s/it]
98%|█████████▊| 981/1000 [32:01<01:00, 3.21s/it]
98%|█████████▊| 981/1000 [32:01<01:00, 3.21s/it]
98%|█████████▊| 982/1000 [32:04<00:55, 3.06s/it]
98%|█████████▊| 982/1000 [32:04<00:55, 3.06s/it]
98%|█████████▊| 983/1000 [32:06<00:50, 2.96s/it]
98%|█████████▊| 983/1000 [32:06<00:50, 2.96s/it]
98%|█████████▊| 984/1000 [32:09<00:44, 2.81s/it]
98%|█████████▊| 984/1000 [32:09<00:44, 2.81s/it]
98%|█████████▊| 985/1000 [32:11<00:40, 2.69s/it]
98%|█████████▊| 985/1000 [32:11<00:40, 2.69s/it]
99%|█████████▊| 986/1000 [32:14<00:36, 2.60s/it]
99%|█████████▊| 986/1000 [32:14<00:36, 2.60s/it]
99%|█████████▊| 987/1000 [32:16<00:32, 2.50s/it]
99%|█████████▊| 987/1000 [32:16<00:32, 2.50s/it]
99%|█████████▉| 988/1000 [32:18<00:28, 2.38s/it]
99%|█████████▉| 988/1000 [32:18<00:28, 2.38s/it]
99%|█████████▉| 989/1000 [32:20<00:25, 2.30s/it]
99%|█████████▉| 989/1000 [32:20<00:25, 2.30s/it]
99%|█████████▉| 990/1000 [32:22<00:22, 2.24s/it]
99%|█████████▉| 990/1000 [32:22<00:22, 2.24s/it]
99%|█████████▉| 991/1000 [32:24<00:19, 2.20s/it]
99%|█████████▉| 991/1000 [32:24<00:19, 2.20s/it]
99%|█████████▉| 992/1000 [32:26<00:17, 2.15s/it]
99%|█████████▉| 992/1000 [32:26<00:17, 2.15s/it]
99%|█████████▉| 993/1000 [32:28<00:14, 2.06s/it]
99%|█████████▉| 993/1000 [32:28<00:14, 2.06s/it]
99%|█████████▉| 994/1000 [32:30<00:11, 1.97s/it]
99%|█████████▉| 994/1000 [32:30<00:11, 1.97s/it]
100%|█████████▉| 995/1000 [32:32<00:09, 1.92s/it]
100%|█████████▉| 995/1000 [32:32<00:09, 1.92s/it]
100%|█████████▉| 996/1000 [32:34<00:07, 1.87s/it]
100%|█████████▉| 996/1000 [32:34<00:07, 1.87s/it]
100%|█████████▉| 997/1000 [32:35<00:05, 1.86s/it]
100%|█████████▉| 997/1000 [32:35<00:05, 1.86s/it]
100%|█████████▉| 998/1000 [32:37<00:03, 1.84s/it]
100%|█████████▉| 998/1000 [32:37<00:03, 1.84s/it]
100%|█████████▉| 999/1000 [32:39<00:01, 1.79s/it]
100%|█████████▉| 999/1000 [32:39<00:01, 1.79s/it]
100%|██████████| 1000/1000 [32:40<00:00, 1.71s/it]
100%|██████████| 1000/1000 [32:40<00:00, 1.71s/it]{'loss': 65.7309, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 40.497, 'grad_norm': 19.42571258544922, 'learning_rate': 1.2e-06, 'epoch': 0.0}
+{'loss': 36.2325, 'grad_norm': 20.210697174072266, 'learning_rate': 2.4e-06, 'epoch': 0.0}
+{'loss': 27.9292, 'grad_norm': 11.6329984664917, 'learning_rate': 3.6e-06, 'epoch': 0.01}
+{'loss': 27.8415, 'grad_norm': nan, 'learning_rate': 3.6e-06, 'epoch': 0.01}
+{'loss': 28.3299, 'grad_norm': 13.364580154418945, 'learning_rate': 4.8e-06, 'epoch': 0.01}
+{'loss': 28.7461, 'grad_norm': 12.661221504211426, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.01}
+{'loss': 26.408, 'grad_norm': 11.256682395935059, 'learning_rate': 7.2e-06, 'epoch': 0.01}
+{'loss': 23.0338, 'grad_norm': 10.342412948608398, 'learning_rate': 8.4e-06, 'epoch': 0.01}
+{'loss': 25.8441, 'grad_norm': 10.92248249053955, 'learning_rate': 9.6e-06, 'epoch': 0.02}
+{'loss': 24.947, 'grad_norm': 13.47874927520752, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.02}
+{'loss': 24.6028, 'grad_norm': 10.545361518859863, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.02}
+{'loss': 23.1144, 'grad_norm': 10.622969627380371, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.02}
+{'loss': 23.0048, 'grad_norm': 11.04262638092041, 'learning_rate': 1.44e-05, 'epoch': 0.02}
+{'loss': 22.1154, 'grad_norm': 10.24647045135498, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.02}
+{'loss': 20.9556, 'grad_norm': 10.284615516662598, 'learning_rate': 1.68e-05, 'epoch': 0.03}
+{'loss': 20.0034, 'grad_norm': 10.44240665435791, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.03}
+{'loss': 20.0539, 'grad_norm': 10.120248794555664, 'learning_rate': 1.92e-05, 'epoch': 0.03}
+{'loss': 23.2292, 'grad_norm': 12.67894458770752, 'learning_rate': 2.04e-05, 'epoch': 0.03}
+{'loss': 20.6365, 'grad_norm': 10.929566383361816, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.03}
+{'loss': 19.693, 'grad_norm': 11.65320873260498, 'learning_rate': 2.28e-05, 'epoch': 0.03}
+{'loss': 22.1247, 'grad_norm': 13.149592399597168, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.04}
+{'loss': 20.4746, 'grad_norm': 11.752509117126465, 'learning_rate': 2.52e-05, 'epoch': 0.04}
+{'loss': 20.3509, 'grad_norm': 11.824477195739746, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.04}
+{'loss': 21.0099, 'grad_norm': 12.82703971862793, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.04}
+{'loss': 22.1527, 'grad_norm': 13.987628936767578, 'learning_rate': 2.88e-05, 'epoch': 0.04}
+{'loss': 18.2953, 'grad_norm': 11.758602142333984, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.04}
+{'loss': 22.904, 'grad_norm': 15.787925720214844, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.04}
+{'loss': 20.2212, 'grad_norm': 14.345751762390137, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.05}
+{'loss': 18.9764, 'grad_norm': 14.07507610321045, 'learning_rate': 3.36e-05, 'epoch': 0.05}
+{'loss': 20.2486, 'grad_norm': 15.66192626953125, 'learning_rate': 3.48e-05, 'epoch': 0.05}
+{'loss': 19.9455, 'grad_norm': 16.461139678955078, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.05}
+{'loss': 21.1121, 'grad_norm': 28.457700729370117, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.05}
+{'loss': 17.0574, 'grad_norm': 14.533676147460938, 'learning_rate': 3.84e-05, 'epoch': 0.05}
+{'loss': 18.3383, 'grad_norm': 16.640933990478516, 'learning_rate': 3.96e-05, 'epoch': 0.06}
+{'loss': 18.5058, 'grad_norm': 18.039518356323242, 'learning_rate': 4.08e-05, 'epoch': 0.06}
+{'loss': 18.7482, 'grad_norm': 19.170076370239258, 'learning_rate': 4.2e-05, 'epoch': 0.06}
+{'loss': 17.9028, 'grad_norm': 19.731523513793945, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.06}
+{'loss': 17.9833, 'grad_norm': 22.30010986328125, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.06}
+{'loss': 19.6469, 'grad_norm': 24.492427825927734, 'learning_rate': 4.56e-05, 'epoch': 0.06}
+{'loss': 20.8223, 'grad_norm': 28.03135871887207, 'learning_rate': 4.68e-05, 'epoch': 0.07}
+{'loss': 19.3428, 'grad_norm': 30.625825881958008, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.07}
+{'loss': 19.125, 'grad_norm': 27.889801025390625, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.07}
+{'loss': 18.7656, 'grad_norm': 28.31003761291504, 'learning_rate': 5.04e-05, 'epoch': 0.07}
+{'loss': 19.0239, 'grad_norm': 30.75078773498535, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.07}
+{'loss': 16.077, 'grad_norm': 25.573904037475586, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.07}
+{'loss': 15.6551, 'grad_norm': 26.403629302978516, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.08}
+{'loss': 17.9349, 'grad_norm': 34.77074432373047, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.08}
+{'loss': 16.1467, 'grad_norm': 32.53125762939453, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.08}
+{'loss': 13.7483, 'grad_norm': 27.667991638183594, 'learning_rate': 5.76e-05, 'epoch': 0.08}
+{'loss': 30.8331, 'grad_norm': nan, 'learning_rate': 5.76e-05, 'epoch': 0.08}
+{'loss': 26.5489, 'grad_norm': 88.7335433959961, 'learning_rate': 5.88e-05, 'epoch': 0.08}
+{'loss': 27.1984, 'grad_norm': inf, 'learning_rate': 5.88e-05, 'epoch': 0.08}
+{'loss': 18.4646, 'grad_norm': 50.00898361206055, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.09}
+{'loss': 23.2742, 'grad_norm': nan, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.09}
+{'loss': 15.4118, 'grad_norm': 45.58051300048828, 'learning_rate': 6.12e-05, 'epoch': 0.09}
+{'loss': 20.4728, 'grad_norm': 72.71048736572266, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.09}
+{'loss': 13.7603, 'grad_norm': 43.05719757080078, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.09}
+{'loss': 12.9296, 'grad_norm': 44.19600296020508, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.09}
+{'loss': 13.0066, 'grad_norm': 48.14889907836914, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.1}
+{'loss': 13.5834, 'grad_norm': 54.60736846923828, 'learning_rate': 6.72e-05, 'epoch': 0.1}
+{'loss': 10.8262, 'grad_norm': 43.944976806640625, 'learning_rate': 6.84e-05, 'epoch': 0.1}
+{'loss': 10.2533, 'grad_norm': 43.75444030761719, 'learning_rate': 6.96e-05, 'epoch': 0.1}
+{'loss': 9.3517, 'grad_norm': 40.64162063598633, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.1}
+{'loss': 8.3473, 'grad_norm': 36.59080123901367, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.1}
+{'loss': 8.9377, 'grad_norm': 44.07314682006836, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.11}
+{'loss': 8.1454, 'grad_norm': 40.354000091552734, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.11}
+{'loss': 7.5611, 'grad_norm': 36.78390121459961, 'learning_rate': 7.56e-05, 'epoch': 0.11}
+{'loss': 7.0082, 'grad_norm': 33.47190475463867, 'learning_rate': 7.68e-05, 'epoch': 0.11}
+{'loss': 6.8164, 'grad_norm': 32.52763366699219, 'learning_rate': 7.8e-05, 'epoch': 0.11}
+{'loss': 6.245, 'grad_norm': 27.902698516845703, 'learning_rate': 7.92e-05, 'epoch': 0.11}
+{'loss': 5.9886, 'grad_norm': 25.859025955200195, 'learning_rate': 8.04e-05, 'epoch': 0.12}
+{'loss': 5.6987, 'grad_norm': 23.116735458374023, 'learning_rate': 8.16e-05, 'epoch': 0.12}
+{'loss': 5.469, 'grad_norm': 19.784141540527344, 'learning_rate': 8.28e-05, 'epoch': 0.12}
+{'loss': 5.3807, 'grad_norm': 18.456439971923828, 'learning_rate': 8.4e-05, 'epoch': 0.12}
+{'loss': 5.0843, 'grad_norm': 13.152323722839355, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.12}
+{'loss': 4.9951, 'grad_norm': 11.37484073638916, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.12}
+{'loss': 5.0817, 'grad_norm': 11.618866920471191, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.12}
+{'loss': 4.7628, 'grad_norm': 4.811398506164551, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.13}
+{'loss': 4.7883, 'grad_norm': 5.922330856323242, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.13}
+{'loss': 4.6528, 'grad_norm': 3.48164439201355, 'learning_rate': 9.12e-05, 'epoch': 0.13}
+{'loss': 4.7193, 'grad_norm': 3.9609415531158447, 'learning_rate': 9.24e-05, 'epoch': 0.13}
+{'loss': 4.5918, 'grad_norm': 4.551467418670654, 'learning_rate': 9.36e-05, 'epoch': 0.13}
+{'loss': 4.6079, 'grad_norm': 3.0752663612365723, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.13}
+{'loss': 4.4719, 'grad_norm': 3.7670302391052246, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.14}
+{'loss': 4.4442, 'grad_norm': 3.8517978191375732, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.14}
+{'loss': 4.4187, 'grad_norm': 2.6793251037597656, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.14}
+{'loss': 4.3228, 'grad_norm': 2.919692039489746, 'learning_rate': 9.96e-05, 'epoch': 0.14}
+{'loss': 4.2273, 'grad_norm': 2.4879136085510254, 'learning_rate': 0.0001008, 'epoch': 0.14}
+{'loss': 4.1794, 'grad_norm': 2.8601455688476562, 'learning_rate': 0.000102, 'epoch': 0.14}
+{'loss': 4.1889, 'grad_norm': 2.2963764667510986, 'learning_rate': 0.00010319999999999999, 'epoch': 0.15}
+{'loss': 4.1709, 'grad_norm': 2.424469470977783, 'learning_rate': 0.00010439999999999999, 'epoch': 0.15}
+{'loss': 4.1143, 'grad_norm': 1.8539401292800903, 'learning_rate': 0.00010559999999999998, 'epoch': 0.15}
+{'loss': 4.1241, 'grad_norm': 1.346832513809204, 'learning_rate': 0.00010679999999999998, 'epoch': 0.15}
+{'loss': 4.1348, 'grad_norm': 4.990406513214111, 'learning_rate': 0.00010799999999999998, 'epoch': 0.15}
+{'loss': 4.0334, 'grad_norm': 2.1883411407470703, 'learning_rate': 0.00010919999999999998, 'epoch': 0.15}
+{'loss': 4.1032, 'grad_norm': 2.394371509552002, 'learning_rate': 0.00011039999999999999, 'epoch': 0.16}
+{'loss': 4.0986, 'grad_norm': 3.461583137512207, 'learning_rate': 0.00011159999999999999, 'epoch': 0.16}
+{'loss': 4.0866, 'grad_norm': 2.766143560409546, 'learning_rate': 0.00011279999999999999, 'epoch': 0.16}
+{'loss': 4.1731, 'grad_norm': 2.3883440494537354, 'learning_rate': 0.00011399999999999999, 'epoch': 0.16}
+{'loss': 4.7046, 'grad_norm': 34.70329284667969, 'learning_rate': 0.0001152, 'epoch': 0.16}
+{'loss': 4.0301, 'grad_norm': 10.834431648254395, 'learning_rate': 0.0001164, 'epoch': 0.16}
+{'loss': 3.977, 'grad_norm': 8.418821334838867, 'learning_rate': 0.0001176, 'epoch': 0.16}
+{'loss': 4.2047, 'grad_norm': 38.16987609863281, 'learning_rate': 0.0001188, 'epoch': 0.17}
+{'loss': 3.9206, 'grad_norm': 2.9158382415771484, 'learning_rate': 0.00011999999999999999, 'epoch': 0.17}
+{'loss': 3.8968, 'grad_norm': 1.6959060430526733, 'learning_rate': 0.00012119999999999999, 'epoch': 0.17}
+{'loss': 3.9406, 'grad_norm': 0.9792259931564331, 'learning_rate': 0.0001224, 'epoch': 0.17}
+{'loss': 3.8285, 'grad_norm': 3.0793938636779785, 'learning_rate': 0.0001236, 'epoch': 0.17}
+{'loss': 3.826, 'grad_norm': 2.328721523284912, 'learning_rate': 0.00012479999999999997, 'epoch': 0.17}
+{'loss': 3.8307, 'grad_norm': 2.0931191444396973, 'learning_rate': 0.00012599999999999997, 'epoch': 0.18}
+{'loss': 3.8271, 'grad_norm': 0.8303073048591614, 'learning_rate': 0.00012719999999999997, 'epoch': 0.18}
+{'loss': 3.785, 'grad_norm': 1.1904187202453613, 'learning_rate': 0.00012839999999999998, 'epoch': 0.18}
+{'loss': 3.8386, 'grad_norm': 2.81880521774292, 'learning_rate': 0.00012959999999999998, 'epoch': 0.18}
+{'loss': 3.8023, 'grad_norm': 1.530828833580017, 'learning_rate': 0.00013079999999999998, 'epoch': 0.18}
+{'loss': 3.7904, 'grad_norm': 0.5159357786178589, 'learning_rate': 0.00013199999999999998, 'epoch': 0.18}
+{'loss': 3.7615, 'grad_norm': 0.9115888476371765, 'learning_rate': 0.00013319999999999999, 'epoch': 0.19}
+{'loss': 3.8158, 'grad_norm': 0.6996227502822876, 'learning_rate': 0.0001344, 'epoch': 0.19}
+{'loss': 3.7404, 'grad_norm': 1.4346143007278442, 'learning_rate': 0.0001356, 'epoch': 0.19}
+{'loss': 3.8989, 'grad_norm': 4.567806243896484, 'learning_rate': 0.0001368, 'epoch': 0.19}
+{'loss': 3.7637, 'grad_norm': 2.4977810382843018, 'learning_rate': 0.000138, 'epoch': 0.19}
+{'loss': 3.8816, 'grad_norm': 2.513010025024414, 'learning_rate': 0.0001392, 'epoch': 0.19}
+{'loss': 3.7574, 'grad_norm': 2.067622661590576, 'learning_rate': 0.0001404, 'epoch': 0.2}
+{'loss': 3.7346, 'grad_norm': 1.2072046995162964, 'learning_rate': 0.00014159999999999997, 'epoch': 0.2}
+{'loss': 3.7583, 'grad_norm': 1.798423171043396, 'learning_rate': 0.00014279999999999997, 'epoch': 0.2}
+{'loss': 3.7742, 'grad_norm': 1.2921236753463745, 'learning_rate': 0.00014399999999999998, 'epoch': 0.2}
+{'loss': 3.8338, 'grad_norm': 5.594722747802734, 'learning_rate': 0.00014519999999999998, 'epoch': 0.2}
+{'loss': 3.8055, 'grad_norm': 2.1912341117858887, 'learning_rate': 0.00014639999999999998, 'epoch': 0.2}
+{'loss': 3.7557, 'grad_norm': 0.649720311164856, 'learning_rate': 0.00014759999999999998, 'epoch': 0.2}
+{'loss': 3.7957, 'grad_norm': 1.1442673206329346, 'learning_rate': 0.00014879999999999998, 'epoch': 0.21}
+{'loss': 3.7563, 'grad_norm': 1.6905125379562378, 'learning_rate': 0.00015, 'epoch': 0.21}
+{'loss': 3.7466, 'grad_norm': 0.8160539269447327, 'learning_rate': 0.0001512, 'epoch': 0.21}
+{'loss': 3.7962, 'grad_norm': 3.6465601921081543, 'learning_rate': 0.0001524, 'epoch': 0.21}
+{'loss': 3.8113, 'grad_norm': 3.571312427520752, 'learning_rate': 0.0001536, 'epoch': 0.21}
+{'loss': 3.8144, 'grad_norm': 3.5956647396087646, 'learning_rate': 0.0001548, 'epoch': 0.21}
+{'loss': 3.7434, 'grad_norm': 1.7279173135757446, 'learning_rate': 0.000156, 'epoch': 0.22}
+{'loss': 3.8826, 'grad_norm': 2.2562472820281982, 'learning_rate': 0.0001572, 'epoch': 0.22}
+{'loss': 3.7794, 'grad_norm': 2.880986452102661, 'learning_rate': 0.0001584, 'epoch': 0.22}
+{'loss': 3.9253, 'grad_norm': 1.1631349325180054, 'learning_rate': 0.0001596, 'epoch': 0.22}
+{'loss': 3.7968, 'grad_norm': 1.680976152420044, 'learning_rate': 0.0001608, 'epoch': 0.22}
+{'loss': 3.7905, 'grad_norm': 2.4712533950805664, 'learning_rate': 0.000162, 'epoch': 0.22}
+{'loss': 3.7511, 'grad_norm': 2.6224172115325928, 'learning_rate': 0.0001632, 'epoch': 0.23}
+{'loss': 3.875, 'grad_norm': 4.977555751800537, 'learning_rate': 0.0001644, 'epoch': 0.23}
+{'loss': 3.8867, 'grad_norm': 6.903820991516113, 'learning_rate': 0.0001656, 'epoch': 0.23}
+{'loss': 3.7438, 'grad_norm': 1.4294692277908325, 'learning_rate': 0.0001668, 'epoch': 0.23}
+{'loss': 3.7809, 'grad_norm': 1.941949486732483, 'learning_rate': 0.000168, 'epoch': 0.23}
+{'loss': 3.781, 'grad_norm': 3.570338487625122, 'learning_rate': 0.00016919999999999997, 'epoch': 0.23}
+{'loss': 3.8269, 'grad_norm': 3.1902639865875244, 'learning_rate': 0.00017039999999999997, 'epoch': 0.24}
+{'loss': 3.8133, 'grad_norm': 1.6526689529418945, 'learning_rate': 0.00017159999999999997, 'epoch': 0.24}
+{'loss': 3.8751, 'grad_norm': 1.6518597602844238, 'learning_rate': 0.00017279999999999997, 'epoch': 0.24}
+{'loss': 3.9036, 'grad_norm': 1.4060251712799072, 'learning_rate': 0.00017399999999999997, 'epoch': 0.24}
+{'loss': 5.0266, 'grad_norm': 37.37709045410156, 'learning_rate': 0.00017519999999999998, 'epoch': 0.24}
+{'loss': 3.963, 'grad_norm': 10.845247268676758, 'learning_rate': 0.00017639999999999998, 'epoch': 0.24}
+{'loss': 3.9461, 'grad_norm': 6.687464237213135, 'learning_rate': 0.00017759999999999998, 'epoch': 0.24}
+{'loss': 3.8473, 'grad_norm': 3.423074722290039, 'learning_rate': 0.00017879999999999998, 'epoch': 0.25}
+{'loss': 4.0021, 'grad_norm': 4.235264778137207, 'learning_rate': 0.00017999999999999998, 'epoch': 0.25}
+{'loss': 3.8892, 'grad_norm': 8.198822975158691, 'learning_rate': 0.00018119999999999999, 'epoch': 0.25}
+{'loss': 3.9602, 'grad_norm': 9.825005531311035, 'learning_rate': 0.0001824, 'epoch': 0.25}
+{'loss': 4.0213, 'grad_norm': 10.15653133392334, 'learning_rate': 0.0001836, 'epoch': 0.25}
+{'loss': 4.0269, 'grad_norm': 9.970484733581543, 'learning_rate': 0.0001848, 'epoch': 0.25}
+{'loss': 3.9019, 'grad_norm': 9.361249923706055, 'learning_rate': 0.000186, 'epoch': 0.26}
+{'loss': 3.836, 'grad_norm': 7.055674076080322, 'learning_rate': 0.0001872, 'epoch': 0.26}
+{'loss': 3.7777, 'grad_norm': 3.7005224227905273, 'learning_rate': 0.00018839999999999997, 'epoch': 0.26}
+{'loss': 3.7756, 'grad_norm': 0.9284306168556213, 'learning_rate': 0.00018959999999999997, 'epoch': 0.26}
+{'loss': 3.7814, 'grad_norm': 5.12371826171875, 'learning_rate': 0.00019079999999999998, 'epoch': 0.26}
+{'loss': 3.8955, 'grad_norm': 9.114039421081543, 'learning_rate': 0.00019199999999999998, 'epoch': 0.26}
+{'loss': 3.8841, 'grad_norm': 10.933822631835938, 'learning_rate': 0.00019319999999999998, 'epoch': 0.27}
+{'loss': 3.8668, 'grad_norm': 8.974702835083008, 'learning_rate': 0.00019439999999999998, 'epoch': 0.27}
+{'loss': 3.7561, 'grad_norm': 5.263654708862305, 'learning_rate': 0.00019559999999999998, 'epoch': 0.27}
+{'loss': 4.0137, 'grad_norm': 10.367670059204102, 'learning_rate': 0.00019679999999999999, 'epoch': 0.27}
+{'loss': 3.7523, 'grad_norm': 0.8031744360923767, 'learning_rate': 0.000198, 'epoch': 0.27}
+{'loss': 3.7377, 'grad_norm': 1.581931233406067, 'learning_rate': 0.0001992, 'epoch': 0.27}
+{'loss': 3.8019, 'grad_norm': 2.675785779953003, 'learning_rate': 0.0002004, 'epoch': 0.28}
+{'loss': 3.7245, 'grad_norm': 3.0185678005218506, 'learning_rate': 0.0002016, 'epoch': 0.28}
+{'loss': 3.7876, 'grad_norm': 2.201415538787842, 'learning_rate': 0.0002028, 'epoch': 0.28}
+{'loss': 3.7508, 'grad_norm': 0.9955088496208191, 'learning_rate': 0.000204, 'epoch': 0.28}
+{'loss': 3.6977, 'grad_norm': 0.9591023325920105, 'learning_rate': 0.0002052, 'epoch': 0.28}
+{'loss': 3.7276, 'grad_norm': 2.9556283950805664, 'learning_rate': 0.00020639999999999998, 'epoch': 0.28}
+{'loss': 3.7144, 'grad_norm': 3.5213005542755127, 'learning_rate': 0.00020759999999999998, 'epoch': 0.28}
+{'loss': 3.7934, 'grad_norm': 7.510404109954834, 'learning_rate': 0.00020879999999999998, 'epoch': 0.29}
+{'loss': 3.7563, 'grad_norm': 4.38034725189209, 'learning_rate': 0.00020999999999999998, 'epoch': 0.29}
+{'loss': 3.7318, 'grad_norm': 2.290154218673706, 'learning_rate': 0.00021119999999999996, 'epoch': 0.29}
+{'loss': 3.7221, 'grad_norm': 0.9388060569763184, 'learning_rate': 0.00021239999999999996, 'epoch': 0.29}
+{'loss': 3.7479, 'grad_norm': 1.7844797372817993, 'learning_rate': 0.00021359999999999996, 'epoch': 0.29}
+{'loss': 3.7539, 'grad_norm': 4.551971912384033, 'learning_rate': 0.00021479999999999996, 'epoch': 0.29}
+{'loss': 3.7915, 'grad_norm': 2.2757790088653564, 'learning_rate': 0.00021599999999999996, 'epoch': 0.3}
+{'loss': 3.7599, 'grad_norm': 2.8511180877685547, 'learning_rate': 0.00021719999999999997, 'epoch': 0.3}
+{'loss': 3.8157, 'grad_norm': 1.2191888093948364, 'learning_rate': 0.00021839999999999997, 'epoch': 0.3}
+{'loss': 3.7314, 'grad_norm': 1.2050197124481201, 'learning_rate': 0.00021959999999999997, 'epoch': 0.3}
+{'loss': 3.6884, 'grad_norm': 2.7236626148223877, 'learning_rate': 0.00022079999999999997, 'epoch': 0.3}
+{'loss': 3.8017, 'grad_norm': 5.043910980224609, 'learning_rate': 0.00022199999999999998, 'epoch': 0.3}
+{'loss': 3.7758, 'grad_norm': 3.8614418506622314, 'learning_rate': 0.00022319999999999998, 'epoch': 0.31}
+{'loss': 3.7547, 'grad_norm': 1.1346452236175537, 'learning_rate': 0.00022439999999999998, 'epoch': 0.31}
+{'loss': 3.753, 'grad_norm': 1.0689696073532104, 'learning_rate': 0.00022559999999999998, 'epoch': 0.31}
+{'loss': 3.7695, 'grad_norm': 0.8435825109481812, 'learning_rate': 0.00022679999999999998, 'epoch': 0.31}
+{'loss': 3.7443, 'grad_norm': 3.1550614833831787, 'learning_rate': 0.00022799999999999999, 'epoch': 0.31}
+{'loss': 3.744, 'grad_norm': 1.395892858505249, 'learning_rate': 0.0002292, 'epoch': 0.31}
+{'loss': 3.7178, 'grad_norm': 1.396396517753601, 'learning_rate': 0.0002304, 'epoch': 0.32}
+{'loss': 3.7936, 'grad_norm': 2.3831560611724854, 'learning_rate': 0.0002316, 'epoch': 0.32}
+{'loss': 3.8456, 'grad_norm': 1.0550271272659302, 'learning_rate': 0.0002328, 'epoch': 0.32}
+{'loss': 4.0069, 'grad_norm': nan, 'learning_rate': 0.0002328, 'epoch': 0.32}
+{'loss': 5.1383, 'grad_norm': 33.41340637207031, 'learning_rate': 0.000234, 'epoch': 0.32}
+{'loss': 3.9097, 'grad_norm': 7.806170463562012, 'learning_rate': 0.0002352, 'epoch': 0.32}
+{'loss': 4.1741, 'grad_norm': 14.041966438293457, 'learning_rate': 0.0002364, 'epoch': 0.32}
+{'loss': 3.7813, 'grad_norm': 3.9741554260253906, 'learning_rate': 0.0002376, 'epoch': 0.33}
+{'loss': 3.8102, 'grad_norm': 4.545853614807129, 'learning_rate': 0.0002388, 'epoch': 0.33}
+{'loss': 3.9618, 'grad_norm': 1.390458583831787, 'learning_rate': 0.00023999999999999998, 'epoch': 0.33}
+{'loss': 3.7913, 'grad_norm': 4.107555389404297, 'learning_rate': 0.00024119999999999998, 'epoch': 0.33}
+{'loss': 3.7686, 'grad_norm': 5.0071001052856445, 'learning_rate': 0.00024239999999999998, 'epoch': 0.33}
+{'loss': 3.7878, 'grad_norm': 1.4023362398147583, 'learning_rate': 0.00024359999999999999, 'epoch': 0.33}
+{'loss': 3.7219, 'grad_norm': 1.8946585655212402, 'learning_rate': 0.0002448, 'epoch': 0.34}
+{'loss': 3.8243, 'grad_norm': 6.606730937957764, 'learning_rate': 0.00024599999999999996, 'epoch': 0.34}
+{'loss': 3.7834, 'grad_norm': 6.040172576904297, 'learning_rate': 0.0002472, 'epoch': 0.34}
+{'loss': 3.641, 'grad_norm': 2.071228504180908, 'learning_rate': 0.00024839999999999997, 'epoch': 0.34}
+{'loss': 3.6105, 'grad_norm': 1.3428393602371216, 'learning_rate': 0.00024959999999999994, 'epoch': 0.34}
+{'loss': 3.6217, 'grad_norm': 0.787800669670105, 'learning_rate': 0.00025079999999999997, 'epoch': 0.34}
+{'loss': 3.7114, 'grad_norm': 2.0004360675811768, 'learning_rate': 0.00025199999999999995, 'epoch': 0.35}
+{'loss': 3.6323, 'grad_norm': 1.195417046546936, 'learning_rate': 0.0002532, 'epoch': 0.35}
+{'loss': 3.5889, 'grad_norm': 1.0387095212936401, 'learning_rate': 0.00025439999999999995, 'epoch': 0.35}
+{'loss': 3.655, 'grad_norm': 2.781135082244873, 'learning_rate': 0.0002556, 'epoch': 0.35}
+{'loss': 3.5095, 'grad_norm': 1.7965943813323975, 'learning_rate': 0.00025679999999999995, 'epoch': 0.35}
+{'loss': 3.4822, 'grad_norm': 1.3385984897613525, 'learning_rate': 0.000258, 'epoch': 0.35}
+{'loss': 3.5514, 'grad_norm': 0.9003497958183289, 'learning_rate': 0.00025919999999999996, 'epoch': 0.36}
+{'loss': 3.5991, 'grad_norm': 2.133894681930542, 'learning_rate': 0.0002604, 'epoch': 0.36}
+{'loss': 3.5298, 'grad_norm': 2.850198268890381, 'learning_rate': 0.00026159999999999996, 'epoch': 0.36}
+{'loss': 3.523, 'grad_norm': 2.5526442527770996, 'learning_rate': 0.0002628, 'epoch': 0.36}
+{'loss': 3.4451, 'grad_norm': 1.144463062286377, 'learning_rate': 0.00026399999999999997, 'epoch': 0.36}
+{'loss': 3.4878, 'grad_norm': 2.455634593963623, 'learning_rate': 0.0002652, 'epoch': 0.36}
+{'loss': 3.4994, 'grad_norm': 3.2465641498565674, 'learning_rate': 0.00026639999999999997, 'epoch': 0.36}
+{'loss': 3.6165, 'grad_norm': 5.939897060394287, 'learning_rate': 0.0002676, 'epoch': 0.37}
+{'loss': 3.435, 'grad_norm': 1.3382649421691895, 'learning_rate': 0.0002688, 'epoch': 0.37}
+{'loss': 3.3932, 'grad_norm': 2.1053507328033447, 'learning_rate': 0.00027, 'epoch': 0.37}
+{'loss': 3.3735, 'grad_norm': 2.439821243286133, 'learning_rate': 0.0002712, 'epoch': 0.37}
+{'loss': 3.4748, 'grad_norm': 2.1407806873321533, 'learning_rate': 0.0002724, 'epoch': 0.37}
+{'loss': 3.4818, 'grad_norm': 1.0282739400863647, 'learning_rate': 0.0002736, 'epoch': 0.37}
+{'loss': 3.2369, 'grad_norm': 2.0128676891326904, 'learning_rate': 0.0002748, 'epoch': 0.38}
+{'loss': 3.276, 'grad_norm': 1.8852875232696533, 'learning_rate': 0.000276, 'epoch': 0.38}
+{'loss': 3.1211, 'grad_norm': 2.1389763355255127, 'learning_rate': 0.0002772, 'epoch': 0.38}
+{'loss': 3.264, 'grad_norm': 0.9285290837287903, 'learning_rate': 0.0002784, 'epoch': 0.38}
+{'loss': 3.1274, 'grad_norm': 1.0446114540100098, 'learning_rate': 0.00027959999999999997, 'epoch': 0.38}
+{'loss': 3.1724, 'grad_norm': 1.0576235055923462, 'learning_rate': 0.0002808, 'epoch': 0.38}
+{'loss': 3.1182, 'grad_norm': 1.1633328199386597, 'learning_rate': 0.00028199999999999997, 'epoch': 0.39}
+{'loss': 3.2078, 'grad_norm': 1.1700071096420288, 'learning_rate': 0.00028319999999999994, 'epoch': 0.39}
+{'loss': 3.031, 'grad_norm': 1.20949125289917, 'learning_rate': 0.0002844, 'epoch': 0.39}
+{'loss': 3.1169, 'grad_norm': 1.5069172382354736, 'learning_rate': 0.00028559999999999995, 'epoch': 0.39}
+{'loss': 3.548, 'grad_norm': 5.52088737487793, 'learning_rate': 0.0002868, 'epoch': 0.39}
+{'loss': 2.9713, 'grad_norm': 2.012521505355835, 'learning_rate': 0.00028799999999999995, 'epoch': 0.39}
+{'loss': 3.1009, 'grad_norm': 1.2430109977722168, 'learning_rate': 0.0002892, 'epoch': 0.4}
+{'loss': 3.0908, 'grad_norm': 2.175598621368408, 'learning_rate': 0.00029039999999999996, 'epoch': 0.4}
+{'loss': 3.1309, 'grad_norm': 1.7490752935409546, 'learning_rate': 0.0002916, 'epoch': 0.4}
+{'loss': 3.4149, 'grad_norm': 2.675246477127075, 'learning_rate': 0.00029279999999999996, 'epoch': 0.4}
+{'loss': 7.3776, 'grad_norm': 67.86805725097656, 'learning_rate': 0.000294, 'epoch': 0.4}
+{'loss': 3.4882, 'grad_norm': 14.589703559875488, 'learning_rate': 0.00029519999999999997, 'epoch': 0.4}
+{'loss': 3.1488, 'grad_norm': 7.9796528816223145, 'learning_rate': 0.0002964, 'epoch': 0.4}
+{'loss': 2.877, 'grad_norm': 3.0207479000091553, 'learning_rate': 0.00029759999999999997, 'epoch': 0.41}
+{'loss': 2.9563, 'grad_norm': 2.367036819458008, 'learning_rate': 0.0002988, 'epoch': 0.41}
+{'loss': 2.954, 'grad_norm': 3.7514734268188477, 'learning_rate': 0.0003, 'epoch': 0.41}
+{'loss': 2.8172, 'grad_norm': 4.1485185623168945, 'learning_rate': 0.00030119999999999995, 'epoch': 0.41}
+{'loss': 2.9282, 'grad_norm': 1.7835866212844849, 'learning_rate': 0.0003024, 'epoch': 0.41}
+{'loss': 2.5845, 'grad_norm': 1.942415714263916, 'learning_rate': 0.00030359999999999995, 'epoch': 0.41}
+{'loss': 2.5646, 'grad_norm': 5.2271647453308105, 'learning_rate': 0.0003048, 'epoch': 0.42}
+{'loss': 2.7103, 'grad_norm': 6.962810516357422, 'learning_rate': 0.00030599999999999996, 'epoch': 0.42}
+{'loss': 2.423, 'grad_norm': 5.135075569152832, 'learning_rate': 0.0003072, 'epoch': 0.42}
+{'loss': 2.8392, 'grad_norm': 8.863642692565918, 'learning_rate': 0.00030839999999999996, 'epoch': 0.42}
+{'loss': 2.4988, 'grad_norm': 3.3374407291412354, 'learning_rate': 0.0003096, 'epoch': 0.42}
+{'loss': 2.3518, 'grad_norm': 1.1783090829849243, 'learning_rate': 0.00031079999999999997, 'epoch': 0.42}
+{'loss': 2.2305, 'grad_norm': 1.9863837957382202, 'learning_rate': 0.000312, 'epoch': 0.43}
+{'loss': 2.074, 'grad_norm': 2.0679221153259277, 'learning_rate': 0.00031319999999999997, 'epoch': 0.43}
+{'loss': 2.2423, 'grad_norm': 1.0884628295898438, 'learning_rate': 0.0003144, 'epoch': 0.43}
+{'loss': 2.2729, 'grad_norm': 1.5065993070602417, 'learning_rate': 0.0003156, 'epoch': 0.43}
+{'loss': 2.0671, 'grad_norm': 3.6157784461975098, 'learning_rate': 0.0003168, 'epoch': 0.43}
+{'loss': 2.068, 'grad_norm': 2.7996487617492676, 'learning_rate': 0.000318, 'epoch': 0.43}
+{'loss': 2.2638, 'grad_norm': 2.879556179046631, 'learning_rate': 0.0003192, 'epoch': 0.44}
+{'loss': 2.3935, 'grad_norm': 2.203124523162842, 'learning_rate': 0.0003204, 'epoch': 0.44}
+{'loss': 2.011, 'grad_norm': 1.6067564487457275, 'learning_rate': 0.0003216, 'epoch': 0.44}
+{'loss': 2.0908, 'grad_norm': 1.5974482297897339, 'learning_rate': 0.0003228, 'epoch': 0.44}
+{'loss': 2.274, 'grad_norm': 1.0055814981460571, 'learning_rate': 0.000324, 'epoch': 0.44}
+{'loss': 2.3729, 'grad_norm': 2.469381332397461, 'learning_rate': 0.0003252, 'epoch': 0.44}
+{'loss': 2.5572, 'grad_norm': 3.0898544788360596, 'learning_rate': 0.0003264, 'epoch': 0.44}
+{'loss': 2.0441, 'grad_norm': 2.4572532176971436, 'learning_rate': 0.0003276, 'epoch': 0.45}
+{'loss': 2.4606, 'grad_norm': 1.1149117946624756, 'learning_rate': 0.0003288, 'epoch': 0.45}
+{'loss': 1.9802, 'grad_norm': 1.2347513437271118, 'learning_rate': 0.00033, 'epoch': 0.45}
+{'loss': 2.0375, 'grad_norm': 0.9329550862312317, 'learning_rate': 0.0003312, 'epoch': 0.45}
+{'loss': 1.9136, 'grad_norm': 1.0154274702072144, 'learning_rate': 0.0003324, 'epoch': 0.45}
+{'loss': 1.9651, 'grad_norm': 1.4999691247940063, 'learning_rate': 0.0003336, 'epoch': 0.45}
+{'loss': 2.2576, 'grad_norm': 2.7222843170166016, 'learning_rate': 0.0003348, 'epoch': 0.46}
+{'loss': 2.5305, 'grad_norm': 3.6237800121307373, 'learning_rate': 0.000336, 'epoch': 0.46}
+{'loss': 2.0296, 'grad_norm': 1.117451786994934, 'learning_rate': 0.0003372, 'epoch': 0.46}
+{'loss': 1.7895, 'grad_norm': 1.1448254585266113, 'learning_rate': 0.00033839999999999993, 'epoch': 0.46}
+{'loss': 2.1357, 'grad_norm': 2.2782580852508545, 'learning_rate': 0.00033959999999999996, 'epoch': 0.46}
+{'loss': 2.0516, 'grad_norm': 1.6750726699829102, 'learning_rate': 0.00034079999999999994, 'epoch': 0.46}
+{'loss': 2.3526, 'grad_norm': 1.2394545078277588, 'learning_rate': 0.00034199999999999996, 'epoch': 0.47}
+{'loss': 1.6459, 'grad_norm': 1.8539354801177979, 'learning_rate': 0.00034319999999999994, 'epoch': 0.47}
+{'loss': 1.8823, 'grad_norm': 2.4915544986724854, 'learning_rate': 0.00034439999999999997, 'epoch': 0.47}
+{'loss': 2.3253, 'grad_norm': 3.2931063175201416, 'learning_rate': 0.00034559999999999994, 'epoch': 0.47}
+{'loss': 2.1961, 'grad_norm': 1.839165449142456, 'learning_rate': 0.0003467999999999999, 'epoch': 0.47}
+{'loss': 2.1387, 'grad_norm': 1.942629098892212, 'learning_rate': 0.00034799999999999995, 'epoch': 0.47}
+{'loss': 2.3971, 'grad_norm': 3.1105213165283203, 'learning_rate': 0.0003491999999999999, 'epoch': 0.48}
+{'loss': 2.3519, 'grad_norm': 4.102758407592773, 'learning_rate': 0.00035039999999999995, 'epoch': 0.48}
+{'loss': 2.3328, 'grad_norm': 1.9071604013442993, 'learning_rate': 0.0003515999999999999, 'epoch': 0.48}
+{'loss': 2.7772, 'grad_norm': 2.1007919311523438, 'learning_rate': 0.00035279999999999996, 'epoch': 0.48}
+{'loss': 3.5737, 'grad_norm': 16.104711532592773, 'learning_rate': 0.00035399999999999993, 'epoch': 0.48}
+{'loss': 2.6921, 'grad_norm': 7.038409233093262, 'learning_rate': 0.00035519999999999996, 'epoch': 0.48}
+{'loss': 1.8049, 'grad_norm': 1.6274710893630981, 'learning_rate': 0.00035639999999999994, 'epoch': 0.48}
+{'loss': 2.3663, 'grad_norm': 2.712127923965454, 'learning_rate': 0.00035759999999999996, 'epoch': 0.49}
+{'loss': 2.0543, 'grad_norm': 2.4220919609069824, 'learning_rate': 0.00035879999999999994, 'epoch': 0.49}
+{'loss': 2.0634, 'grad_norm': 4.0067291259765625, 'learning_rate': 0.00035999999999999997, 'epoch': 0.49}
+{'loss': 2.3239, 'grad_norm': 3.2753944396972656, 'learning_rate': 0.00036119999999999994, 'epoch': 0.49}
+{'loss': 1.7574, 'grad_norm': 2.2122488021850586, 'learning_rate': 0.00036239999999999997, 'epoch': 0.49}
+{'loss': 2.0192, 'grad_norm': 1.5825291872024536, 'learning_rate': 0.00036359999999999995, 'epoch': 0.49}
+{'loss': 1.9231, 'grad_norm': 2.8736724853515625, 'learning_rate': 0.0003648, 'epoch': 0.5}
+{'loss': 1.5975, 'grad_norm': 2.250493288040161, 'learning_rate': 0.00036599999999999995, 'epoch': 0.5}
+{'loss': 1.8792, 'grad_norm': 2.5043630599975586, 'learning_rate': 0.0003672, 'epoch': 0.5}
+{'loss': 1.7717, 'grad_norm': 0.8661364912986755, 'learning_rate': 0.00036839999999999996, 'epoch': 0.5}
+{'loss': 1.5281, 'grad_norm': 0.8577361702919006, 'learning_rate': 0.0003696, 'epoch': 0.5}
+{'loss': 1.628, 'grad_norm': 1.055830478668213, 'learning_rate': 0.00037079999999999996, 'epoch': 0.5}
+{'loss': 1.4602, 'grad_norm': 1.0024993419647217, 'learning_rate': 0.000372, 'epoch': 0.51}
+{'loss': 1.8524, 'grad_norm': 0.9780610203742981, 'learning_rate': 0.00037319999999999996, 'epoch': 0.51}
+{'loss': 2.0074, 'grad_norm': 1.4789562225341797, 'learning_rate': 0.0003744, 'epoch': 0.51}
+{'loss': 1.2627, 'grad_norm': 0.8723859786987305, 'learning_rate': 0.00037559999999999997, 'epoch': 0.51}
+{'loss': 1.9843, 'grad_norm': 1.3482846021652222, 'learning_rate': 0.00037679999999999994, 'epoch': 0.51}
+{'loss': 1.6801, 'grad_norm': 0.9912565350532532, 'learning_rate': 0.00037799999999999997, 'epoch': 0.51}
+{'loss': 1.9071, 'grad_norm': 1.0150072574615479, 'learning_rate': 0.00037919999999999995, 'epoch': 0.52}
+{'loss': 1.8058, 'grad_norm': 1.704774260520935, 'learning_rate': 0.0003804, 'epoch': 0.52}
+{'loss': 1.8745, 'grad_norm': 0.9451725482940674, 'learning_rate': 0.00038159999999999995, 'epoch': 0.52}
+{'loss': 1.5741, 'grad_norm': 0.9761624336242676, 'learning_rate': 0.0003828, 'epoch': 0.52}
+{'loss': 1.3833, 'grad_norm': 1.4582504034042358, 'learning_rate': 0.00038399999999999996, 'epoch': 0.52}
+{'loss': 1.5075, 'grad_norm': 1.1197179555892944, 'learning_rate': 0.0003852, 'epoch': 0.52}
+{'loss': 1.4607, 'grad_norm': 0.9969186186790466, 'learning_rate': 0.00038639999999999996, 'epoch': 0.52}
+{'loss': 1.6644, 'grad_norm': 1.349977970123291, 'learning_rate': 0.0003876, 'epoch': 0.53}
+{'loss': 1.6294, 'grad_norm': 1.314611792564392, 'learning_rate': 0.00038879999999999996, 'epoch': 0.53}
+{'loss': 1.6681, 'grad_norm': 1.257775068283081, 'learning_rate': 0.00039, 'epoch': 0.53}
+{'loss': 1.6958, 'grad_norm': 1.4171950817108154, 'learning_rate': 0.00039119999999999997, 'epoch': 0.53}
+{'loss': 1.4356, 'grad_norm': 1.1131385564804077, 'learning_rate': 0.0003924, 'epoch': 0.53}
+{'loss': 1.8862, 'grad_norm': 1.3538260459899902, 'learning_rate': 0.00039359999999999997, 'epoch': 0.53}
+{'loss': 1.151, 'grad_norm': 1.371056079864502, 'learning_rate': 0.0003948, 'epoch': 0.54}
+{'loss': 1.6071, 'grad_norm': 1.915818691253662, 'learning_rate': 0.000396, 'epoch': 0.54}
+{'loss': 1.634, 'grad_norm': 1.0851808786392212, 'learning_rate': 0.0003972, 'epoch': 0.54}
+{'loss': 1.6541, 'grad_norm': 1.4100474119186401, 'learning_rate': 0.0003984, 'epoch': 0.54}
+{'loss': 1.5271, 'grad_norm': 1.3158091306686401, 'learning_rate': 0.0003996, 'epoch': 0.54}
+{'loss': 1.2765, 'grad_norm': 1.1614930629730225, 'learning_rate': 0.0004008, 'epoch': 0.54}
+{'loss': 1.7856, 'grad_norm': 1.33802330493927, 'learning_rate': 0.000402, 'epoch': 0.55}
+{'loss': 2.2085, 'grad_norm': 5.562392234802246, 'learning_rate': 0.0004032, 'epoch': 0.55}
+{'loss': 1.5976, 'grad_norm': 1.9968953132629395, 'learning_rate': 0.0004044, 'epoch': 0.55}
+{'loss': 1.8008, 'grad_norm': 1.8027876615524292, 'learning_rate': 0.0004056, 'epoch': 0.55}
+{'loss': 1.6538, 'grad_norm': 1.254902958869934, 'learning_rate': 0.00040679999999999997, 'epoch': 0.55}
+{'loss': 1.9169, 'grad_norm': 1.9276193380355835, 'learning_rate': 0.000408, 'epoch': 0.55}
+{'loss': 2.3671, 'grad_norm': 2.292935371398926, 'learning_rate': 0.00040919999999999997, 'epoch': 0.56}
+{'loss': 2.3169, 'grad_norm': 2.12475323677063, 'learning_rate': 0.0004104, 'epoch': 0.56}
+{'loss': 1.9982, 'grad_norm': 1.7366119623184204, 'learning_rate': 0.0004116, 'epoch': 0.56}
+{'loss': 2.0756, 'grad_norm': 2.0030996799468994, 'learning_rate': 0.00041279999999999995, 'epoch': 0.56}
+{'loss': 1.7156, 'grad_norm': 2.0033862590789795, 'learning_rate': 0.0004139999999999999, 'epoch': 0.56}
+{'loss': 1.5964, 'grad_norm': 1.3473812341690063, 'learning_rate': 0.00041519999999999995, 'epoch': 0.56}
+{'loss': 2.145, 'grad_norm': 1.2339274883270264, 'learning_rate': 0.00041639999999999993, 'epoch': 0.56}
+{'loss': 1.9784, 'grad_norm': 2.5667104721069336, 'learning_rate': 0.00041759999999999996, 'epoch': 0.57}
+{'loss': 2.0522, 'grad_norm': 3.6534647941589355, 'learning_rate': 0.00041879999999999993, 'epoch': 0.57}
+{'loss': 1.9374, 'grad_norm': 2.5614418983459473, 'learning_rate': 0.00041999999999999996, 'epoch': 0.57}
+{'loss': 1.9315, 'grad_norm': 1.8349665403366089, 'learning_rate': 0.00042119999999999994, 'epoch': 0.57}
+{'loss': 1.8887, 'grad_norm': 1.746505618095398, 'learning_rate': 0.0004223999999999999, 'epoch': 0.57}
+{'loss': 1.8386, 'grad_norm': 2.7527122497558594, 'learning_rate': 0.00042359999999999994, 'epoch': 0.57}
+{'loss': 1.5589, 'grad_norm': 1.1328954696655273, 'learning_rate': 0.0004247999999999999, 'epoch': 0.58}
+{'loss': 1.7198, 'grad_norm': 2.864661931991577, 'learning_rate': 0.00042599999999999995, 'epoch': 0.58}
+{'loss': 1.6276, 'grad_norm': 1.6503008604049683, 'learning_rate': 0.0004271999999999999, 'epoch': 0.58}
+{'loss': 1.5628, 'grad_norm': 1.7130440473556519, 'learning_rate': 0.00042839999999999995, 'epoch': 0.58}
+{'loss': 1.3983, 'grad_norm': 1.21794593334198, 'learning_rate': 0.0004295999999999999, 'epoch': 0.58}
+{'loss': 1.4055, 'grad_norm': 1.321083664894104, 'learning_rate': 0.00043079999999999995, 'epoch': 0.58}
+{'loss': 1.2443, 'grad_norm': 1.700247883796692, 'learning_rate': 0.00043199999999999993, 'epoch': 0.59}
+{'loss': 1.4464, 'grad_norm': 1.1965219974517822, 'learning_rate': 0.00043319999999999996, 'epoch': 0.59}
+{'loss': 1.8806, 'grad_norm': 3.254066228866577, 'learning_rate': 0.00043439999999999993, 'epoch': 0.59}
+{'loss': 2.4964, 'grad_norm': 5.463562488555908, 'learning_rate': 0.00043559999999999996, 'epoch': 0.59}
+{'loss': 1.3674, 'grad_norm': 1.5125354528427124, 'learning_rate': 0.00043679999999999994, 'epoch': 0.59}
+{'loss': 1.3027, 'grad_norm': 1.185897707939148, 'learning_rate': 0.00043799999999999997, 'epoch': 0.59}
+{'loss': 1.3632, 'grad_norm': 1.516951560974121, 'learning_rate': 0.00043919999999999994, 'epoch': 0.6}
+{'loss': 1.2936, 'grad_norm': 1.1514403820037842, 'learning_rate': 0.00044039999999999997, 'epoch': 0.6}
+{'loss': 1.6098, 'grad_norm': 1.5255740880966187, 'learning_rate': 0.00044159999999999995, 'epoch': 0.6}
+{'loss': 1.279, 'grad_norm': 0.9126186966896057, 'learning_rate': 0.0004428, 'epoch': 0.6}
+{'loss': 1.2755, 'grad_norm': 1.026580810546875, 'learning_rate': 0.00044399999999999995, 'epoch': 0.6}
+{'loss': 1.6704, 'grad_norm': 0.8756309151649475, 'learning_rate': 0.0004452, 'epoch': 0.6}
+{'loss': 1.4622, 'grad_norm': 1.0775223970413208, 'learning_rate': 0.00044639999999999995, 'epoch': 0.6}
+{'loss': 1.2966, 'grad_norm': 0.9524688720703125, 'learning_rate': 0.0004476, 'epoch': 0.61}
+{'loss': 1.7725, 'grad_norm': 1.137495756149292, 'learning_rate': 0.00044879999999999996, 'epoch': 0.61}
+{'loss': 1.4823, 'grad_norm': 1.6954994201660156, 'learning_rate': 0.00045, 'epoch': 0.61}
+{'loss': 1.5489, 'grad_norm': 1.0127160549163818, 'learning_rate': 0.00045119999999999996, 'epoch': 0.61}
+{'loss': 1.383, 'grad_norm': 0.8300620317459106, 'learning_rate': 0.00045239999999999994, 'epoch': 0.61}
+{'loss': 1.6092, 'grad_norm': 1.0958133935928345, 'learning_rate': 0.00045359999999999997, 'epoch': 0.61}
+{'loss': 1.341, 'grad_norm': 1.1555867195129395, 'learning_rate': 0.00045479999999999994, 'epoch': 0.62}
+{'loss': 1.4381, 'grad_norm': 1.214953064918518, 'learning_rate': 0.00045599999999999997, 'epoch': 0.62}
+{'loss': 1.2995, 'grad_norm': 1.4742426872253418, 'learning_rate': 0.00045719999999999995, 'epoch': 0.62}
+{'loss': 1.7789, 'grad_norm': 1.461856722831726, 'learning_rate': 0.0004584, 'epoch': 0.62}
+{'loss': 1.575, 'grad_norm': 1.4308078289031982, 'learning_rate': 0.00045959999999999995, 'epoch': 0.62}
+{'loss': 1.4533, 'grad_norm': 1.2594529390335083, 'learning_rate': 0.0004608, 'epoch': 0.62}
+{'loss': 1.3271, 'grad_norm': 1.5839440822601318, 'learning_rate': 0.00046199999999999995, 'epoch': 0.63}
+{'loss': 1.4592, 'grad_norm': 1.2260992527008057, 'learning_rate': 0.0004632, 'epoch': 0.63}
+{'loss': 1.3533, 'grad_norm': 1.3083007335662842, 'learning_rate': 0.00046439999999999996, 'epoch': 0.63}
+{'loss': 1.6796, 'grad_norm': 1.6389918327331543, 'learning_rate': 0.0004656, 'epoch': 0.63}
+{'loss': 1.8386, 'grad_norm': 1.3117871284484863, 'learning_rate': 0.00046679999999999996, 'epoch': 0.63}
+{'loss': 1.655, 'grad_norm': 2.565639019012451, 'learning_rate': 0.000468, 'epoch': 0.63}
+{'loss': 1.8948, 'grad_norm': 1.448935866355896, 'learning_rate': 0.00046919999999999997, 'epoch': 0.64}
+{'loss': 2.2576, 'grad_norm': 1.8764803409576416, 'learning_rate': 0.0004704, 'epoch': 0.64}
+{'loss': 1.9952, 'grad_norm': 2.017988681793213, 'learning_rate': 0.00047159999999999997, 'epoch': 0.64}
+{'loss': 1.8984, 'grad_norm': 2.5078186988830566, 'learning_rate': 0.0004728, 'epoch': 0.64}
+{'loss': 1.9603, 'grad_norm': 3.1720643043518066, 'learning_rate': 0.000474, 'epoch': 0.64}
+{'loss': 1.7871, 'grad_norm': 2.934274435043335, 'learning_rate': 0.0004752, 'epoch': 0.64}
+{'loss': 7.4159, 'grad_norm': 31.748046875, 'learning_rate': 0.0004764, 'epoch': 0.64}
+{'loss': 1.6849, 'grad_norm': 2.579294204711914, 'learning_rate': 0.0004776, 'epoch': 0.65}
+{'loss': 1.8641, 'grad_norm': 4.465425491333008, 'learning_rate': 0.0004788, 'epoch': 0.65}
+{'loss': 1.7485, 'grad_norm': 4.0198845863342285, 'learning_rate': 0.00047999999999999996, 'epoch': 0.65}
+{'loss': 1.4707, 'grad_norm': 5.093113422393799, 'learning_rate': 0.0004812, 'epoch': 0.65}
+{'loss': 1.6763, 'grad_norm': 2.745760440826416, 'learning_rate': 0.00048239999999999996, 'epoch': 0.65}
+{'loss': 1.5871, 'grad_norm': 0.9687884449958801, 'learning_rate': 0.0004836, 'epoch': 0.65}
+{'loss': 1.4119, 'grad_norm': 1.2059258222579956, 'learning_rate': 0.00048479999999999997, 'epoch': 0.66}
+{'loss': 1.495, 'grad_norm': 2.057121753692627, 'learning_rate': 0.000486, 'epoch': 0.66}
+{'loss': 1.4386, 'grad_norm': 3.4827053546905518, 'learning_rate': 0.00048719999999999997, 'epoch': 0.66}
+{'loss': 1.353, 'grad_norm': 2.003380537033081, 'learning_rate': 0.0004883999999999999, 'epoch': 0.66}
+{'loss': 1.1335, 'grad_norm': 0.9448583722114563, 'learning_rate': 0.0004896, 'epoch': 0.66}
+{'loss': 1.0505, 'grad_norm': 1.0274648666381836, 'learning_rate': 0.0004907999999999999, 'epoch': 0.66}
+{'loss': 1.509, 'grad_norm': 1.221886157989502, 'learning_rate': 0.0004919999999999999, 'epoch': 0.67}
+{'loss': 1.0935, 'grad_norm': 1.546191692352295, 'learning_rate': 0.0004932, 'epoch': 0.67}
+{'loss': 1.521, 'grad_norm': 1.7654293775558472, 'learning_rate': 0.0004944, 'epoch': 0.67}
+{'loss': 1.6335, 'grad_norm': 1.518165946006775, 'learning_rate': 0.0004955999999999999, 'epoch': 0.67}
+{'loss': 1.2315, 'grad_norm': 1.6623975038528442, 'learning_rate': 0.0004967999999999999, 'epoch': 0.67}
+{'loss': 1.5225, 'grad_norm': 1.2630988359451294, 'learning_rate': 0.000498, 'epoch': 0.67}
+{'loss': 1.1764, 'grad_norm': 0.9908505082130432, 'learning_rate': 0.0004991999999999999, 'epoch': 0.68}
+{'loss': 1.2603, 'grad_norm': 0.9683183431625366, 'learning_rate': 0.0005003999999999999, 'epoch': 0.68}
+{'loss': 1.4432, 'grad_norm': 1.0998846292495728, 'learning_rate': 0.0005015999999999999, 'epoch': 0.68}
+{'loss': 1.2796, 'grad_norm': 1.0269334316253662, 'learning_rate': 0.0005028, 'epoch': 0.68}
+{'loss': 1.4105, 'grad_norm': 0.9077733755111694, 'learning_rate': 0.0005039999999999999, 'epoch': 0.68}
+{'loss': 1.3406, 'grad_norm': 1.3366079330444336, 'learning_rate': 0.0005051999999999999, 'epoch': 0.68}
+{'loss': 1.1905, 'grad_norm': 1.4101577997207642, 'learning_rate': 0.0005064, 'epoch': 0.68}
+{'loss': 1.1317, 'grad_norm': 1.103102445602417, 'learning_rate': 0.0005076, 'epoch': 0.69}
+{'loss': 1.3766, 'grad_norm': 0.9465294480323792, 'learning_rate': 0.0005087999999999999, 'epoch': 0.69}
+{'loss': 1.3493, 'grad_norm': 1.0435762405395508, 'learning_rate': 0.0005099999999999999, 'epoch': 0.69}
+{'loss': 0.9838, 'grad_norm': 1.2893332242965698, 'learning_rate': 0.0005112, 'epoch': 0.69}
+{'loss': 1.2218, 'grad_norm': 0.8329612016677856, 'learning_rate': 0.0005124, 'epoch': 0.69}
+{'loss': 1.8575, 'grad_norm': 1.602290391921997, 'learning_rate': 0.0005135999999999999, 'epoch': 0.69}
+{'loss': 1.2371, 'grad_norm': 0.8070494532585144, 'learning_rate': 0.0005147999999999999, 'epoch': 0.7}
+{'loss': 1.9235, 'grad_norm': 1.5245780944824219, 'learning_rate': 0.000516, 'epoch': 0.7}
+{'loss': 1.522, 'grad_norm': 0.9657381176948547, 'learning_rate': 0.0005172, 'epoch': 0.7}
+{'loss': 1.4748, 'grad_norm': 1.3066210746765137, 'learning_rate': 0.0005183999999999999, 'epoch': 0.7}
+{'loss': 1.2555, 'grad_norm': 1.1301110982894897, 'learning_rate': 0.0005195999999999999, 'epoch': 0.7}
+{'loss': 1.341, 'grad_norm': 1.2480872869491577, 'learning_rate': 0.0005208, 'epoch': 0.7}
+{'loss': 1.3585, 'grad_norm': 1.0376918315887451, 'learning_rate': 0.000522, 'epoch': 0.71}
+{'loss': 1.599, 'grad_norm': 1.3093161582946777, 'learning_rate': 0.0005231999999999999, 'epoch': 0.71}
+{'loss': 1.7139, 'grad_norm': 1.9071390628814697, 'learning_rate': 0.0005244, 'epoch': 0.71}
+{'loss': 1.3638, 'grad_norm': 1.1246815919876099, 'learning_rate': 0.0005256, 'epoch': 0.71}
+{'loss': 1.8597, 'grad_norm': 1.378431797027588, 'learning_rate': 0.0005267999999999999, 'epoch': 0.71}
+{'loss': 1.4876, 'grad_norm': 1.1764037609100342, 'learning_rate': 0.0005279999999999999, 'epoch': 0.71}
+{'loss': 1.9046, 'grad_norm': 1.4928016662597656, 'learning_rate': 0.0005292, 'epoch': 0.72}
+{'loss': 1.8089, 'grad_norm': 2.034743070602417, 'learning_rate': 0.0005304, 'epoch': 0.72}
+{'loss': 1.8413, 'grad_norm': 1.540407657623291, 'learning_rate': 0.0005315999999999999, 'epoch': 0.72}
+{'loss': 2.2742, 'grad_norm': 3.950709581375122, 'learning_rate': 0.0005327999999999999, 'epoch': 0.72}
+{'loss': 3.3207, 'grad_norm': 15.23299789428711, 'learning_rate': 0.000534, 'epoch': 0.72}
+{'loss': 2.531, 'grad_norm': 6.555901527404785, 'learning_rate': 0.0005352, 'epoch': 0.72}
+{'loss': 1.9143, 'grad_norm': 3.783543109893799, 'learning_rate': 0.0005363999999999999, 'epoch': 0.72}
+{'loss': 1.9658, 'grad_norm': 1.695298671722412, 'learning_rate': 0.0005376, 'epoch': 0.73}
+{'loss': 1.6642, 'grad_norm': 2.622856378555298, 'learning_rate': 0.0005388, 'epoch': 0.73}
+{'loss': 1.4833, 'grad_norm': 2.731189012527466, 'learning_rate': 0.00054, 'epoch': 0.73}
+{'loss': 1.7344, 'grad_norm': 1.4314954280853271, 'learning_rate': 0.0005411999999999999, 'epoch': 0.73}
+{'loss': 1.6237, 'grad_norm': 3.498527765274048, 'learning_rate': 0.0005424, 'epoch': 0.73}
+{'loss': 1.3437, 'grad_norm': 2.0262954235076904, 'learning_rate': 0.0005436, 'epoch': 0.73}
+{'loss': 1.6199, 'grad_norm': 1.5271885395050049, 'learning_rate': 0.0005448, 'epoch': 0.74}
+{'loss': 1.3299, 'grad_norm': 0.9165617227554321, 'learning_rate': 0.0005459999999999999, 'epoch': 0.74}
+{'loss': 1.4318, 'grad_norm': 1.9898568391799927, 'learning_rate': 0.0005472, 'epoch': 0.74}
+{'loss': 1.2851, 'grad_norm': 2.3856873512268066, 'learning_rate': 0.0005484, 'epoch': 0.74}
+{'loss': 1.3408, 'grad_norm': 1.6049182415008545, 'learning_rate': 0.0005496, 'epoch': 0.74}
+{'loss': 1.3017, 'grad_norm': 1.0130642652511597, 'learning_rate': 0.0005507999999999999, 'epoch': 0.74}
+{'loss': 1.0274, 'grad_norm': 1.0306544303894043, 'learning_rate': 0.000552, 'epoch': 0.75}
+{'loss': 1.3187, 'grad_norm': 1.1104224920272827, 'learning_rate': 0.0005532, 'epoch': 0.75}
+{'loss': 1.3076, 'grad_norm': 1.14987051486969, 'learning_rate': 0.0005544, 'epoch': 0.75}
+{'loss': 1.252, 'grad_norm': 1.2761118412017822, 'learning_rate': 0.0005556, 'epoch': 0.75}
+{'loss': 1.3166, 'grad_norm': 0.9457799792289734, 'learning_rate': 0.0005568, 'epoch': 0.75}
+{'loss': 1.1882, 'grad_norm': 0.824832022190094, 'learning_rate': 0.000558, 'epoch': 0.75}
+{'loss': 1.2435, 'grad_norm': 0.9857451319694519, 'learning_rate': 0.0005591999999999999, 'epoch': 0.76}
+{'loss': 1.2344, 'grad_norm': 1.5159227848052979, 'learning_rate': 0.0005604, 'epoch': 0.76}
+{'loss': 1.013, 'grad_norm': 1.4017863273620605, 'learning_rate': 0.0005616, 'epoch': 0.76}
+{'loss': 1.2271, 'grad_norm': 1.1972615718841553, 'learning_rate': 0.0005627999999999999, 'epoch': 0.76}
+{'loss': 1.3682, 'grad_norm': 0.9828841090202332, 'learning_rate': 0.0005639999999999999, 'epoch': 0.76}
+{'loss': 1.3816, 'grad_norm': 1.062817096710205, 'learning_rate': 0.0005652, 'epoch': 0.76}
+{'loss': 1.2144, 'grad_norm': 1.049489140510559, 'learning_rate': 0.0005663999999999999, 'epoch': 0.76}
+{'loss': 1.2625, 'grad_norm': 1.626882553100586, 'learning_rate': 0.0005675999999999999, 'epoch': 0.77}
+{'loss': 1.0219, 'grad_norm': 1.114654779434204, 'learning_rate': 0.0005688, 'epoch': 0.77}
+{'loss': 1.2605, 'grad_norm': 1.0060404539108276, 'learning_rate': 0.00057, 'epoch': 0.77}
+{'loss': 1.0487, 'grad_norm': 0.9237557053565979, 'learning_rate': 0.0005711999999999999, 'epoch': 0.77}
+{'loss': 1.8105, 'grad_norm': 2.188255786895752, 'learning_rate': 0.0005723999999999999, 'epoch': 0.77}
+{'loss': 1.4796, 'grad_norm': 3.0459892749786377, 'learning_rate': 0.0005736, 'epoch': 0.77}
+{'loss': 1.4054, 'grad_norm': 2.037982940673828, 'learning_rate': 0.0005747999999999999, 'epoch': 0.78}
+{'loss': 1.385, 'grad_norm': 1.2173347473144531, 'learning_rate': 0.0005759999999999999, 'epoch': 0.78}
+{'loss': 1.545, 'grad_norm': 1.3485534191131592, 'learning_rate': 0.0005771999999999999, 'epoch': 0.78}
+{'loss': 1.6206, 'grad_norm': 2.718611240386963, 'learning_rate': 0.0005784, 'epoch': 0.78}
+{'loss': 1.5209, 'grad_norm': 1.6564363241195679, 'learning_rate': 0.0005795999999999999, 'epoch': 0.78}
+{'loss': 1.449, 'grad_norm': 1.4725884199142456, 'learning_rate': 0.0005807999999999999, 'epoch': 0.78}
+{'loss': 1.8618, 'grad_norm': 1.3264169692993164, 'learning_rate': 0.0005819999999999999, 'epoch': 0.79}
+{'loss': 1.5934, 'grad_norm': 1.0854110717773438, 'learning_rate': 0.0005832, 'epoch': 0.79}
+{'loss': 1.2471, 'grad_norm': 1.3333096504211426, 'learning_rate': 0.0005843999999999999, 'epoch': 0.79}
+{'loss': 1.8123, 'grad_norm': 1.5022006034851074, 'learning_rate': 0.0005855999999999999, 'epoch': 0.79}
+{'loss': 1.3155, 'grad_norm': 1.329306721687317, 'learning_rate': 0.0005868, 'epoch': 0.79}
+{'loss': 1.0192, 'grad_norm': 1.1506342887878418, 'learning_rate': 0.000588, 'epoch': 0.79}
+{'loss': 1.502, 'grad_norm': 1.5134472846984863, 'learning_rate': 0.0005891999999999999, 'epoch': 0.8}
+{'loss': 1.5467, 'grad_norm': 1.7710678577423096, 'learning_rate': 0.0005903999999999999, 'epoch': 0.8}
+{'loss': 2.19, 'grad_norm': 2.886460781097412, 'learning_rate': 0.0005916, 'epoch': 0.8}
+{'loss': 2.7593, 'grad_norm': 2.4858016967773438, 'learning_rate': 0.0005928, 'epoch': 0.8}
+{'loss': 1.8281, 'grad_norm': 1.9686570167541504, 'learning_rate': 0.0005939999999999999, 'epoch': 0.8}
+{'loss': 1.3073, 'grad_norm': 1.2734591960906982, 'learning_rate': 0.0005951999999999999, 'epoch': 0.8}
+{'loss': 2.0247, 'grad_norm': 2.072976589202881, 'learning_rate': 0.0005964, 'epoch': 0.8}
+{'loss': 1.8502, 'grad_norm': 1.9811313152313232, 'learning_rate': 0.0005976, 'epoch': 0.81}
+{'loss': 1.6976, 'grad_norm': 2.6311845779418945, 'learning_rate': 0.0005987999999999999, 'epoch': 0.81}
+{'loss': 1.9533, 'grad_norm': 2.684401750564575, 'learning_rate': 0.0006, 'epoch': 0.81}
+{'loss': 1.3887, 'grad_norm': 3.3301351070404053, 'learning_rate': 0.0005987999999999999, 'epoch': 0.81}
+{'loss': 1.5074, 'grad_norm': 2.357325553894043, 'learning_rate': 0.0005976, 'epoch': 0.81}
+{'loss': 1.3912, 'grad_norm': 1.2169139385223389, 'learning_rate': 0.0005964, 'epoch': 0.81}
+{'loss': 1.4808, 'grad_norm': 1.8445833921432495, 'learning_rate': 0.0005951999999999999, 'epoch': 0.82}
+{'loss': 1.0834, 'grad_norm': 1.3977484703063965, 'learning_rate': 0.0005939999999999999, 'epoch': 0.82}
+{'loss': 1.1475, 'grad_norm': 1.5727133750915527, 'learning_rate': 0.0005928, 'epoch': 0.82}
+{'loss': 1.5048, 'grad_norm': 1.4709762334823608, 'learning_rate': 0.0005916, 'epoch': 0.82}
+{'loss': 1.1661, 'grad_norm': 0.7950598001480103, 'learning_rate': 0.0005903999999999999, 'epoch': 0.82}
+{'loss': 1.1876, 'grad_norm': 1.0826159715652466, 'learning_rate': 0.0005891999999999999, 'epoch': 0.82}
+{'loss': 1.1763, 'grad_norm': 1.8124991655349731, 'learning_rate': 0.000588, 'epoch': 0.83}
+{'loss': 1.1749, 'grad_norm': 0.9041058421134949, 'learning_rate': 0.0005868, 'epoch': 0.83}
+{'loss': 0.8526, 'grad_norm': 0.8802869915962219, 'learning_rate': 0.0005855999999999999, 'epoch': 0.83}
+{'loss': 1.2469, 'grad_norm': 0.9845436215400696, 'learning_rate': 0.0005843999999999999, 'epoch': 0.83}
+{'loss': 1.3676, 'grad_norm': 0.8130229115486145, 'learning_rate': 0.0005832, 'epoch': 0.83}
+{'loss': 1.408, 'grad_norm': 1.4055910110473633, 'learning_rate': 0.0005819999999999999, 'epoch': 0.83}
+{'loss': 1.0278, 'grad_norm': 0.7262439727783203, 'learning_rate': 0.0005807999999999999, 'epoch': 0.84}
+{'loss': 1.1932, 'grad_norm': 0.7629141211509705, 'learning_rate': 0.0005795999999999999, 'epoch': 0.84}
+{'loss': 1.8301, 'grad_norm': 1.0631065368652344, 'learning_rate': 0.0005784, 'epoch': 0.84}
+{'loss': 1.5161, 'grad_norm': 0.9995020627975464, 'learning_rate': 0.0005771999999999999, 'epoch': 0.84}
+{'loss': 1.3039, 'grad_norm': 0.9407309889793396, 'learning_rate': 0.0005759999999999999, 'epoch': 0.84}
+{'loss': 1.1735, 'grad_norm': 0.9237894415855408, 'learning_rate': 0.0005747999999999999, 'epoch': 0.84}
+{'loss': 1.1395, 'grad_norm': 1.0956400632858276, 'learning_rate': 0.0005736, 'epoch': 0.84}
+{'loss': 1.1507, 'grad_norm': 2.5186548233032227, 'learning_rate': 0.0005723999999999999, 'epoch': 0.85}
+{'loss': 1.1775, 'grad_norm': 1.024733066558838, 'learning_rate': 0.0005711999999999999, 'epoch': 0.85}
+{'loss': 1.4415, 'grad_norm': 2.2728676795959473, 'learning_rate': 0.00057, 'epoch': 0.85}
+{'loss': 1.1036, 'grad_norm': 1.187499761581421, 'learning_rate': 0.0005688, 'epoch': 0.85}
+{'loss': 0.9976, 'grad_norm': 1.2145191431045532, 'learning_rate': 0.0005675999999999999, 'epoch': 0.85}
+{'loss': 1.2453, 'grad_norm': 0.9440417289733887, 'learning_rate': 0.0005663999999999999, 'epoch': 0.85}
+{'loss': 1.7054, 'grad_norm': 1.289574146270752, 'learning_rate': 0.0005652, 'epoch': 0.86}
+{'loss': 1.7251, 'grad_norm': 1.401564121246338, 'learning_rate': 0.0005639999999999999, 'epoch': 0.86}
+{'loss': 1.2378, 'grad_norm': 1.1180814504623413, 'learning_rate': 0.0005627999999999999, 'epoch': 0.86}
+{'loss': 1.0896, 'grad_norm': 0.9536440968513489, 'learning_rate': 0.0005616, 'epoch': 0.86}
+{'loss': 1.2259, 'grad_norm': 0.8881138563156128, 'learning_rate': 0.0005604, 'epoch': 0.86}
+{'loss': 1.3238, 'grad_norm': 0.96197509765625, 'learning_rate': 0.0005591999999999999, 'epoch': 0.86}
+{'loss': 1.1894, 'grad_norm': 1.1683094501495361, 'learning_rate': 0.000558, 'epoch': 0.87}
+{'loss': 1.5966, 'grad_norm': 1.276745080947876, 'learning_rate': 0.0005568, 'epoch': 0.87}
+{'loss': 1.3465, 'grad_norm': 1.0269030332565308, 'learning_rate': 0.0005556, 'epoch': 0.87}
+{'loss': 1.2189, 'grad_norm': 1.259565830230713, 'learning_rate': 0.0005544, 'epoch': 0.87}
+{'loss': 1.504, 'grad_norm': 1.0580670833587646, 'learning_rate': 0.0005532, 'epoch': 0.87}
+{'loss': 1.7338, 'grad_norm': 1.3217496871948242, 'learning_rate': 0.000552, 'epoch': 0.87}
+{'loss': 1.9817, 'grad_norm': 1.4637740850448608, 'learning_rate': 0.0005507999999999999, 'epoch': 0.88}
+{'loss': 2.0032, 'grad_norm': 2.559971570968628, 'learning_rate': 0.0005496, 'epoch': 0.88}
+{'loss': 1.7932, 'grad_norm': 1.6275663375854492, 'learning_rate': 0.0005484, 'epoch': 0.88}
+{'loss': 2.0458, 'grad_norm': 1.796790599822998, 'learning_rate': 0.0005472, 'epoch': 0.88}
+{'loss': 1.9726, 'grad_norm': 4.545191764831543, 'learning_rate': 0.0005459999999999999, 'epoch': 0.88}
+{'loss': 2.3674, 'grad_norm': 5.169295310974121, 'learning_rate': 0.0005448, 'epoch': 0.88}
+{'loss': 1.6493, 'grad_norm': 1.5627833604812622, 'learning_rate': 0.0005436, 'epoch': 0.88}
+{'loss': 2.0752, 'grad_norm': 3.6947457790374756, 'learning_rate': 0.0005424, 'epoch': 0.89}
+{'loss': 1.5896, 'grad_norm': 3.6189661026000977, 'learning_rate': 0.0005411999999999999, 'epoch': 0.89}
+{'loss': 1.2161, 'grad_norm': 2.7466511726379395, 'learning_rate': 0.00054, 'epoch': 0.89}
+{'loss': 1.2768, 'grad_norm': 3.221942663192749, 'learning_rate': 0.0005388, 'epoch': 0.89}
+{'loss': 1.749, 'grad_norm': 3.667484760284424, 'learning_rate': 0.0005376, 'epoch': 0.89}
+{'loss': 1.4901, 'grad_norm': 3.118382692337036, 'learning_rate': 0.0005363999999999999, 'epoch': 0.89}
+{'loss': 1.6848, 'grad_norm': 3.807770252227783, 'learning_rate': 0.0005352, 'epoch': 0.9}
+{'loss': 1.9896, 'grad_norm': 4.106380939483643, 'learning_rate': 0.000534, 'epoch': 0.9}
+{'loss': 1.5196, 'grad_norm': 2.869680643081665, 'learning_rate': 0.0005327999999999999, 'epoch': 0.9}
+{'loss': 1.1682, 'grad_norm': 0.984009325504303, 'learning_rate': 0.0005315999999999999, 'epoch': 0.9}
+{'loss': 1.2468, 'grad_norm': 1.011704444885254, 'learning_rate': 0.0005304, 'epoch': 0.9}
+{'loss': 1.2559, 'grad_norm': 1.148173451423645, 'learning_rate': 0.0005292, 'epoch': 0.9}
+{'loss': 1.0665, 'grad_norm': 0.933331310749054, 'learning_rate': 0.0005279999999999999, 'epoch': 0.91}
+{'loss': 1.0592, 'grad_norm': 1.015312671661377, 'learning_rate': 0.0005267999999999999, 'epoch': 0.91}
+{'loss': 0.924, 'grad_norm': 1.135771632194519, 'learning_rate': 0.0005256, 'epoch': 0.91}
+{'loss': 1.1068, 'grad_norm': 1.1397788524627686, 'learning_rate': 0.0005244, 'epoch': 0.91}
+{'loss': 1.0425, 'grad_norm': 0.9835603833198547, 'learning_rate': 0.0005231999999999999, 'epoch': 0.91}
+{'loss': 1.2302, 'grad_norm': 1.0392098426818848, 'learning_rate': 0.000522, 'epoch': 0.91}
+{'loss': 1.3862, 'grad_norm': 1.8193734884262085, 'learning_rate': 0.0005208, 'epoch': 0.92}
+{'loss': 1.5438, 'grad_norm': 1.6436972618103027, 'learning_rate': 0.0005195999999999999, 'epoch': 0.92}
+{'loss': 1.1842, 'grad_norm': 1.352057933807373, 'learning_rate': 0.0005183999999999999, 'epoch': 0.92}
+{'loss': 1.4275, 'grad_norm': 1.0538089275360107, 'learning_rate': 0.0005172, 'epoch': 0.92}
+{'loss': 1.2033, 'grad_norm': 1.1751643419265747, 'learning_rate': 0.000516, 'epoch': 0.92}
+{'loss': 1.6655, 'grad_norm': 1.044425129890442, 'learning_rate': 0.0005147999999999999, 'epoch': 0.92}
+{'loss': 1.2228, 'grad_norm': 0.7362115383148193, 'learning_rate': 0.0005135999999999999, 'epoch': 0.92}
+{'loss': 1.1776, 'grad_norm': 1.3597044944763184, 'learning_rate': 0.0005124, 'epoch': 0.93}
+{'loss': 1.013, 'grad_norm': 1.4289404153823853, 'learning_rate': 0.0005112, 'epoch': 0.93}
+{'loss': 1.1201, 'grad_norm': 1.58928644657135, 'learning_rate': 0.0005099999999999999, 'epoch': 0.93}
+{'loss': 1.0296, 'grad_norm': 0.878803014755249, 'learning_rate': 0.0005087999999999999, 'epoch': 0.93}
+{'loss': 1.3948, 'grad_norm': 1.7352557182312012, 'learning_rate': 0.0005076, 'epoch': 0.93}
+{'loss': 1.0634, 'grad_norm': 1.0597188472747803, 'learning_rate': 0.0005064, 'epoch': 0.93}
+{'loss': 0.9397, 'grad_norm': 0.8611565232276917, 'learning_rate': 0.0005051999999999999, 'epoch': 0.94}
+{'loss': 1.065, 'grad_norm': 1.1366254091262817, 'learning_rate': 0.0005039999999999999, 'epoch': 0.94}
+{'loss': 1.0936, 'grad_norm': 1.156342625617981, 'learning_rate': 0.0005028, 'epoch': 0.94}
+{'loss': 1.1916, 'grad_norm': 1.2860143184661865, 'learning_rate': 0.0005015999999999999, 'epoch': 0.94}
+{'loss': 1.0391, 'grad_norm': 1.1369061470031738, 'learning_rate': 0.0005003999999999999, 'epoch': 0.94}
+{'loss': 1.3709, 'grad_norm': 1.7245908975601196, 'learning_rate': 0.0004991999999999999, 'epoch': 0.94}
+{'loss': 1.2722, 'grad_norm': 1.0689557790756226, 'learning_rate': 0.000498, 'epoch': 0.95}
+{'loss': 1.5314, 'grad_norm': 1.8937160968780518, 'learning_rate': 0.0004967999999999999, 'epoch': 0.95}
+{'loss': 1.4849, 'grad_norm': 1.4616285562515259, 'learning_rate': 0.0004955999999999999, 'epoch': 0.95}
+{'loss': 1.5592, 'grad_norm': 3.183936834335327, 'learning_rate': 0.0004944, 'epoch': 0.95}
+{'loss': 1.3617, 'grad_norm': 1.1988084316253662, 'learning_rate': 0.0004932, 'epoch': 0.95}
+{'loss': 1.4135, 'grad_norm': 1.7577106952667236, 'learning_rate': 0.0004919999999999999, 'epoch': 0.95}
+{'loss': 1.1338, 'grad_norm': 1.496863603591919, 'learning_rate': 0.0004907999999999999, 'epoch': 0.96}
+{'loss': 3.0016, 'grad_norm': 9.257676124572754, 'learning_rate': 0.0004896, 'epoch': 0.96}
+{'loss': 1.5336, 'grad_norm': 1.5697489976882935, 'learning_rate': 0.0004883999999999999, 'epoch': 0.96}
+{'loss': 1.3453, 'grad_norm': nan, 'learning_rate': 0.0004883999999999999, 'epoch': 0.96}
+{'loss': 4.199, 'grad_norm': 18.818782806396484, 'learning_rate': 0.00048719999999999997, 'epoch': 0.96}
+{'loss': 1.6129, 'grad_norm': 1.5022028684616089, 'learning_rate': 0.000486, 'epoch': 0.96}
+{'loss': 1.558, 'grad_norm': 2.133873462677002, 'learning_rate': 0.00048479999999999997, 'epoch': 0.96}
+{'loss': 1.2855, 'grad_norm': 2.496293544769287, 'learning_rate': 0.0004836, 'epoch': 0.97}
+{'loss': 1.3996, 'grad_norm': 2.753438949584961, 'learning_rate': 0.00048239999999999996, 'epoch': 0.97}
+{'loss': 1.0731, 'grad_norm': 1.4719444513320923, 'learning_rate': 0.0004812, 'epoch': 0.97}
+{'loss': 1.1837, 'grad_norm': 1.9870835542678833, 'learning_rate': 0.00047999999999999996, 'epoch': 0.97}
+{'loss': 1.1817, 'grad_norm': 0.8579409122467041, 'learning_rate': 0.0004788, 'epoch': 0.97}
+{'loss': 1.2752, 'grad_norm': 0.6938973069190979, 'learning_rate': 0.0004776, 'epoch': 0.97}
+{'loss': 1.1829, 'grad_norm': 1.510031819343567, 'learning_rate': 0.0004764, 'epoch': 0.98}
+{'loss': 1.0776, 'grad_norm': 1.6417129039764404, 'learning_rate': 0.0004752, 'epoch': 0.98}
+{'loss': 1.1359, 'grad_norm': 1.4704375267028809, 'learning_rate': 0.000474, 'epoch': 0.98}
+{'loss': 0.947, 'grad_norm': 0.9758228063583374, 'learning_rate': 0.0004728, 'epoch': 0.98}
+{'loss': 1.1518, 'grad_norm': 1.2002493143081665, 'learning_rate': 0.00047159999999999997, 'epoch': 0.98}
+{'loss': 1.1217, 'grad_norm': 2.3293352127075195, 'learning_rate': 0.0004704, 'epoch': 0.98}
+{'loss': 0.9375, 'grad_norm': 0.8101193904876709, 'learning_rate': 0.00046919999999999997, 'epoch': 0.99}
+{'loss': 1.4114, 'grad_norm': 1.1048221588134766, 'learning_rate': 0.000468, 'epoch': 0.99}
+{'loss': 1.4405, 'grad_norm': 1.491821050643921, 'learning_rate': 0.00046679999999999996, 'epoch': 0.99}
+{'loss': 1.1741, 'grad_norm': 2.0165274143218994, 'learning_rate': 0.0004656, 'epoch': 0.99}
+{'loss': 0.9986, 'grad_norm': 1.7262567281723022, 'learning_rate': 0.00046439999999999996, 'epoch': 0.99}
+{'loss': 1.4554, 'grad_norm': 1.53129243850708, 'learning_rate': 0.0004632, 'epoch': 0.99}
+{'loss': 1.3938, 'grad_norm': 1.972591757774353, 'learning_rate': 0.00046199999999999995, 'epoch': 1.0}
+{'loss': 1.4817, 'grad_norm': 1.5069432258605957, 'learning_rate': 0.0004608, 'epoch': 1.0}
+{'loss': 1.3043, 'grad_norm': 1.252928614616394, 'learning_rate': 0.00045959999999999995, 'epoch': 1.0}
+{'loss': 1.5814, 'grad_norm': 2.1552650928497314, 'learning_rate': 0.0004584, 'epoch': 1.0}
+{'loss': 3.3539, 'grad_norm': 12.845656394958496, 'learning_rate': 0.00045719999999999995, 'epoch': 1.0}
+{'loss': 1.8614, 'grad_norm': 5.422074794769287, 'learning_rate': 0.00045599999999999997, 'epoch': 1.0}
+{'loss': 1.3776, 'grad_norm': 3.4376301765441895, 'learning_rate': 0.00045479999999999994, 'epoch': 1.0}
+{'loss': 2.3901, 'grad_norm': 4.690155506134033, 'learning_rate': 0.00045359999999999997, 'epoch': 1.01}
+{'loss': 2.0007, 'grad_norm': 3.5546085834503174, 'learning_rate': 0.00045239999999999994, 'epoch': 1.01}
+{'loss': 1.9367, 'grad_norm': 4.01783561706543, 'learning_rate': 0.00045119999999999996, 'epoch': 1.01}
+{'loss': 1.5302, 'grad_norm': 3.1941683292388916, 'learning_rate': 0.00045, 'epoch': 1.01}
+{'loss': 1.3838, 'grad_norm': 2.860696315765381, 'learning_rate': 0.00044879999999999996, 'epoch': 1.01}
+{'loss': 1.6477, 'grad_norm': 3.759099006652832, 'learning_rate': 0.0004476, 'epoch': 1.01}
+{'loss': 1.7445, 'grad_norm': 3.119152307510376, 'learning_rate': 0.00044639999999999995, 'epoch': 1.02}
+{'loss': 1.2008, 'grad_norm': 3.340733051300049, 'learning_rate': 0.0004452, 'epoch': 1.02}
+{'loss': 1.3083, 'grad_norm': 1.641968846321106, 'learning_rate': 0.00044399999999999995, 'epoch': 1.02}
+{'loss': 1.0248, 'grad_norm': 1.6026384830474854, 'learning_rate': 0.0004428, 'epoch': 1.02}
+{'loss': 1.3308, 'grad_norm': 0.840795636177063, 'learning_rate': 0.00044159999999999995, 'epoch': 1.02}
+{'loss': 1.0817, 'grad_norm': 0.8223994374275208, 'learning_rate': 0.00044039999999999997, 'epoch': 1.02}
+{'loss': 1.0903, 'grad_norm': 0.9794006943702698, 'learning_rate': 0.00043919999999999994, 'epoch': 1.03}
+{'loss': 1.2616, 'grad_norm': 1.5365368127822876, 'learning_rate': 0.00043799999999999997, 'epoch': 1.03}
+{'loss': 1.2687, 'grad_norm': 1.0885334014892578, 'learning_rate': 0.00043679999999999994, 'epoch': 1.03}
+{'loss': 1.1898, 'grad_norm': 0.7841877341270447, 'learning_rate': 0.00043559999999999996, 'epoch': 1.03}
+{'loss': 1.0463, 'grad_norm': 0.8564435839653015, 'learning_rate': 0.00043439999999999993, 'epoch': 1.03}
+{'loss': 1.0762, 'grad_norm': 1.2559213638305664, 'learning_rate': 0.00043319999999999996, 'epoch': 1.03}
+{'loss': 0.9965, 'grad_norm': 0.7620260715484619, 'learning_rate': 0.00043199999999999993, 'epoch': 1.04}
+{'loss': 1.0164, 'grad_norm': 0.9760488867759705, 'learning_rate': 0.00043079999999999995, 'epoch': 1.04}
+{'loss': 1.1046, 'grad_norm': 0.7712533473968506, 'learning_rate': 0.0004295999999999999, 'epoch': 1.04}
+{'loss': 1.2174, 'grad_norm': 1.1640052795410156, 'learning_rate': 0.00042839999999999995, 'epoch': 1.04}
+{'loss': 1.0906, 'grad_norm': 1.037165880203247, 'learning_rate': 0.0004271999999999999, 'epoch': 1.04}
+{'loss': 1.0219, 'grad_norm': 0.9110749959945679, 'learning_rate': 0.00042599999999999995, 'epoch': 1.04}
+{'loss': 1.17, 'grad_norm': 1.0287991762161255, 'learning_rate': 0.0004247999999999999, 'epoch': 1.04}
+{'loss': 1.2855, 'grad_norm': 1.1112055778503418, 'learning_rate': 0.00042359999999999994, 'epoch': 1.05}
+{'loss': 0.7607, 'grad_norm': 0.7852709293365479, 'learning_rate': 0.0004223999999999999, 'epoch': 1.05}
+{'loss': 1.0289, 'grad_norm': 0.9790500998497009, 'learning_rate': 0.00042119999999999994, 'epoch': 1.05}
+{'loss': 1.0636, 'grad_norm': 1.4499422311782837, 'learning_rate': 0.00041999999999999996, 'epoch': 1.05}
+{'loss': 1.3441, 'grad_norm': 1.9767885208129883, 'learning_rate': 0.00041879999999999993, 'epoch': 1.05}
+{'loss': 0.8745, 'grad_norm': 1.0959701538085938, 'learning_rate': 0.00041759999999999996, 'epoch': 1.05}
+{'loss': 1.1249, 'grad_norm': 0.9967984557151794, 'learning_rate': 0.00041639999999999993, 'epoch': 1.06}
+{'loss': 0.8992, 'grad_norm': 0.9587727189064026, 'learning_rate': 0.00041519999999999995, 'epoch': 1.06}
+{'loss': 0.9742, 'grad_norm': 1.1093708276748657, 'learning_rate': 0.0004139999999999999, 'epoch': 1.06}
+{'loss': 1.2295, 'grad_norm': 0.9936672449111938, 'learning_rate': 0.00041279999999999995, 'epoch': 1.06}
+{'loss': 1.2144, 'grad_norm': 1.1689198017120361, 'learning_rate': 0.0004116, 'epoch': 1.06}
+{'loss': 1.2725, 'grad_norm': 1.4126062393188477, 'learning_rate': 0.0004104, 'epoch': 1.06}
+{'loss': 1.5316, 'grad_norm': 1.4932892322540283, 'learning_rate': 0.00040919999999999997, 'epoch': 1.07}
+{'loss': 1.5249, 'grad_norm': 1.1049163341522217, 'learning_rate': 0.000408, 'epoch': 1.07}
+{'loss': 1.3551, 'grad_norm': 0.9667163491249084, 'learning_rate': 0.00040679999999999997, 'epoch': 1.07}
+{'loss': 1.3199, 'grad_norm': 0.9758523106575012, 'learning_rate': 0.0004056, 'epoch': 1.07}
+{'loss': 1.2972, 'grad_norm': 1.1948597431182861, 'learning_rate': 0.0004044, 'epoch': 1.07}
+{'loss': 1.122, 'grad_norm': 1.191303014755249, 'learning_rate': 0.0004032, 'epoch': 1.07}
+{'loss': 1.5213, 'grad_norm': 1.206954836845398, 'learning_rate': 0.000402, 'epoch': 1.08}
+{'loss': 1.6332, 'grad_norm': 1.3517687320709229, 'learning_rate': 0.0004008, 'epoch': 1.08}
+{'loss': 1.7137, 'grad_norm': 1.1111180782318115, 'learning_rate': 0.0003996, 'epoch': 1.08}
+{'loss': 1.6731, 'grad_norm': 1.4726959466934204, 'learning_rate': 0.0003984, 'epoch': 1.08}
+{'loss': 2.7504, 'grad_norm': 10.061053276062012, 'learning_rate': 0.0003972, 'epoch': 1.08}
+{'loss': 2.2303, 'grad_norm': 5.816658973693848, 'learning_rate': 0.000396, 'epoch': 1.08}
+{'loss': 1.868, 'grad_norm': 3.435324192047119, 'learning_rate': 0.0003948, 'epoch': 1.08}
+{'loss': 1.3964, 'grad_norm': 1.3176164627075195, 'learning_rate': 0.00039359999999999997, 'epoch': 1.09}
+{'loss': 1.2653, 'grad_norm': 2.0973780155181885, 'learning_rate': 0.0003924, 'epoch': 1.09}
+{'loss': 1.397, 'grad_norm': 3.4674441814422607, 'learning_rate': 0.00039119999999999997, 'epoch': 1.09}
+{'loss': 1.3017, 'grad_norm': 3.38520884513855, 'learning_rate': 0.00039, 'epoch': 1.09}
+{'loss': 1.482, 'grad_norm': 3.912292242050171, 'learning_rate': 0.00038879999999999996, 'epoch': 1.09}
+{'loss': 1.6181, 'grad_norm': 2.1913371086120605, 'learning_rate': 0.0003876, 'epoch': 1.09}
+{'loss': 1.2356, 'grad_norm': 2.3298208713531494, 'learning_rate': 0.00038639999999999996, 'epoch': 1.1}
+{'loss': 1.0381, 'grad_norm': 2.1702969074249268, 'learning_rate': 0.0003852, 'epoch': 1.1}
+{'loss': 0.9146, 'grad_norm': 1.1289864778518677, 'learning_rate': 0.00038399999999999996, 'epoch': 1.1}
+{'loss': 1.0582, 'grad_norm': 0.9991991519927979, 'learning_rate': 0.0003828, 'epoch': 1.1}
+{'loss': 0.8837, 'grad_norm': 0.7332308292388916, 'learning_rate': 0.00038159999999999995, 'epoch': 1.1}
+{'loss': 0.991, 'grad_norm': 1.068939447402954, 'learning_rate': 0.0003804, 'epoch': 1.1}
+{'loss': 0.8415, 'grad_norm': 1.5490227937698364, 'learning_rate': 0.00037919999999999995, 'epoch': 1.11}
+{'loss': 1.0779, 'grad_norm': 1.802791714668274, 'learning_rate': 0.00037799999999999997, 'epoch': 1.11}
+{'loss': 1.2486, 'grad_norm': 1.9739185571670532, 'learning_rate': 0.00037679999999999994, 'epoch': 1.11}
+{'loss': 1.1758, 'grad_norm': 1.049307107925415, 'learning_rate': 0.00037559999999999997, 'epoch': 1.11}
+{'loss': 1.1739, 'grad_norm': 1.0275464057922363, 'learning_rate': 0.0003744, 'epoch': 1.11}
+{'loss': 1.1667, 'grad_norm': 1.0034747123718262, 'learning_rate': 0.00037319999999999996, 'epoch': 1.11}
+{'loss': 1.2092, 'grad_norm': 0.8343290090560913, 'learning_rate': 0.000372, 'epoch': 1.12}
+{'loss': 1.0965, 'grad_norm': 0.9574180245399475, 'learning_rate': 0.00037079999999999996, 'epoch': 1.12}
+{'loss': 1.5092, 'grad_norm': 1.8875223398208618, 'learning_rate': 0.0003696, 'epoch': 1.12}
+{'loss': 1.1156, 'grad_norm': 0.9866309762001038, 'learning_rate': 0.00036839999999999996, 'epoch': 1.12}
+{'loss': 0.9822, 'grad_norm': 1.3818832635879517, 'learning_rate': 0.0003672, 'epoch': 1.12}
+{'loss': 1.3489, 'grad_norm': 1.0865228176116943, 'learning_rate': 0.00036599999999999995, 'epoch': 1.12}
+{'loss': 0.9266, 'grad_norm': 1.0702693462371826, 'learning_rate': 0.0003648, 'epoch': 1.12}
+{'loss': 1.0806, 'grad_norm': 1.2056565284729004, 'learning_rate': 0.00036359999999999995, 'epoch': 1.13}
+{'loss': 0.9282, 'grad_norm': 1.358705997467041, 'learning_rate': 0.00036239999999999997, 'epoch': 1.13}
+{'loss': 0.9558, 'grad_norm': 0.7640613317489624, 'learning_rate': 0.00036119999999999994, 'epoch': 1.13}
+{'loss': 1.4606, 'grad_norm': 1.973166584968567, 'learning_rate': 0.00035999999999999997, 'epoch': 1.13}
+{'loss': 1.045, 'grad_norm': 1.1392557621002197, 'learning_rate': 0.00035879999999999994, 'epoch': 1.13}
+{'loss': 0.9051, 'grad_norm': 1.138685703277588, 'learning_rate': 0.00035759999999999996, 'epoch': 1.13}
+{'loss': 1.13, 'grad_norm': 1.061118483543396, 'learning_rate': 0.00035639999999999994, 'epoch': 1.14}
+{'loss': 0.9264, 'grad_norm': 0.7949228286743164, 'learning_rate': 0.00035519999999999996, 'epoch': 1.14}
+{'loss': 0.7756, 'grad_norm': 0.7795979976654053, 'learning_rate': 0.00035399999999999993, 'epoch': 1.14}
+{'loss': 0.9986, 'grad_norm': 0.7646054029464722, 'learning_rate': 0.00035279999999999996, 'epoch': 1.14}
+{'loss': 1.0035, 'grad_norm': 1.2770469188690186, 'learning_rate': 0.0003515999999999999, 'epoch': 1.14}
+{'loss': 1.2797, 'grad_norm': 1.0702884197235107, 'learning_rate': 0.00035039999999999995, 'epoch': 1.14}
+{'loss': 1.2564, 'grad_norm': 1.9675824642181396, 'learning_rate': 0.0003491999999999999, 'epoch': 1.15}
+{'loss': 0.8434, 'grad_norm': 0.9342278838157654, 'learning_rate': 0.00034799999999999995, 'epoch': 1.15}
+{'loss': 1.9938, 'grad_norm': 2.6957037448883057, 'learning_rate': 0.0003467999999999999, 'epoch': 1.15}
+{'loss': 1.1458, 'grad_norm': 1.313462257385254, 'learning_rate': 0.00034559999999999994, 'epoch': 1.15}
+{'loss': 1.1156, 'grad_norm': 0.9469001889228821, 'learning_rate': 0.00034439999999999997, 'epoch': 1.15}
+{'loss': 0.7993, 'grad_norm': 0.9021716117858887, 'learning_rate': 0.00034319999999999994, 'epoch': 1.15}
+{'loss': 1.4469, 'grad_norm': 1.6395480632781982, 'learning_rate': 0.00034199999999999996, 'epoch': 1.16}
+{'loss': 1.5812, 'grad_norm': 1.6747560501098633, 'learning_rate': 0.00034079999999999994, 'epoch': 1.16}
+{'loss': 1.3118, 'grad_norm': 1.44581937789917, 'learning_rate': 0.00033959999999999996, 'epoch': 1.16}
+{'loss': 2.0225, 'grad_norm': 2.0632808208465576, 'learning_rate': 0.00033839999999999993, 'epoch': 1.16}
+{'loss': 2.8181, 'grad_norm': 9.794708251953125, 'learning_rate': 0.0003372, 'epoch': 1.16}
+{'loss': 2.1584, 'grad_norm': 6.015258312225342, 'learning_rate': 0.000336, 'epoch': 1.16}
+{'loss': 1.4894, 'grad_norm': 2.810046672821045, 'learning_rate': 0.0003348, 'epoch': 1.16}
+{'loss': 1.7008, 'grad_norm': 4.039572238922119, 'learning_rate': 0.0003336, 'epoch': 1.17}
+{'loss': 1.4878, 'grad_norm': 1.8455368280410767, 'learning_rate': 0.0003324, 'epoch': 1.17}
+{'loss': 1.8387, 'grad_norm': 1.9877344369888306, 'learning_rate': 0.0003312, 'epoch': 1.17}
+{'loss': 2.3008, 'grad_norm': 2.020326614379883, 'learning_rate': 0.00033, 'epoch': 1.17}
+{'loss': 1.0218, 'grad_norm': 1.342176079750061, 'learning_rate': 0.0003288, 'epoch': 1.17}
+{'loss': 1.1738, 'grad_norm': 3.733637809753418, 'learning_rate': 0.0003276, 'epoch': 1.17}
+{'loss': 1.0969, 'grad_norm': 3.3622446060180664, 'learning_rate': 0.0003264, 'epoch': 1.18}
+{'loss': 1.2702, 'grad_norm': 3.723426103591919, 'learning_rate': 0.0003252, 'epoch': 1.18}
+{'loss': 1.2957, 'grad_norm': 2.8122305870056152, 'learning_rate': 0.000324, 'epoch': 1.18}
+{'loss': 1.0445, 'grad_norm': 2.5551021099090576, 'learning_rate': 0.0003228, 'epoch': 1.18}
+{'loss': 1.2356, 'grad_norm': 2.1728436946868896, 'learning_rate': 0.0003216, 'epoch': 1.18}
+{'loss': 1.3066, 'grad_norm': 1.1469835042953491, 'learning_rate': 0.0003204, 'epoch': 1.18}
+{'loss': 1.0766, 'grad_norm': 0.8240766525268555, 'learning_rate': 0.0003192, 'epoch': 1.19}
+{'loss': 1.1108, 'grad_norm': 0.9729487299919128, 'learning_rate': 0.000318, 'epoch': 1.19}
+{'loss': 0.9828, 'grad_norm': 0.7998544573783875, 'learning_rate': 0.0003168, 'epoch': 1.19}
+{'loss': 1.0775, 'grad_norm': 1.330359697341919, 'learning_rate': 0.0003156, 'epoch': 1.19}
+{'loss': 1.038, 'grad_norm': 1.8550713062286377, 'learning_rate': 0.0003144, 'epoch': 1.19}
+{'loss': 1.1854, 'grad_norm': 1.3517425060272217, 'learning_rate': 0.00031319999999999997, 'epoch': 1.19}
+{'loss': 0.8974, 'grad_norm': 1.2003748416900635, 'learning_rate': 0.000312, 'epoch': 1.2}
+{'loss': 1.5292, 'grad_norm': 2.6782844066619873, 'learning_rate': 0.00031079999999999997, 'epoch': 1.2}
+{'loss': 0.977, 'grad_norm': 0.9224521517753601, 'learning_rate': 0.0003096, 'epoch': 1.2}
+{'loss': 0.8665, 'grad_norm': 0.7886136174201965, 'learning_rate': 0.00030839999999999996, 'epoch': 1.2}
+{'loss': 1.2128, 'grad_norm': 0.8379237055778503, 'learning_rate': 0.0003072, 'epoch': 1.2}
+{'loss': 0.9512, 'grad_norm': 0.8912472724914551, 'learning_rate': 0.00030599999999999996, 'epoch': 1.2}
+{'loss': 1.2134, 'grad_norm': 0.7551859021186829, 'learning_rate': 0.0003048, 'epoch': 1.2}
+{'loss': 0.8269, 'grad_norm': 0.8147563338279724, 'learning_rate': 0.00030359999999999995, 'epoch': 1.21}
+{'loss': 1.2237, 'grad_norm': 1.0927190780639648, 'learning_rate': 0.0003024, 'epoch': 1.21}
+{'loss': 0.9561, 'grad_norm': 1.3002434968948364, 'learning_rate': 0.00030119999999999995, 'epoch': 1.21}
+{'loss': 0.9805, 'grad_norm': 1.19173002243042, 'learning_rate': 0.0003, 'epoch': 1.21}
+{'loss': 0.9241, 'grad_norm': 0.8880097270011902, 'learning_rate': 0.0002988, 'epoch': 1.21}
+{'loss': 1.2185, 'grad_norm': 1.1053305864334106, 'learning_rate': 0.00029759999999999997, 'epoch': 1.21}
+{'loss': 1.4252, 'grad_norm': 0.9699023365974426, 'learning_rate': 0.0002964, 'epoch': 1.22}
+{'loss': 1.2692, 'grad_norm': 0.8996603488922119, 'learning_rate': 0.00029519999999999997, 'epoch': 1.22}
+{'loss': 1.1205, 'grad_norm': 0.8809080123901367, 'learning_rate': 0.000294, 'epoch': 1.22}
+{'loss': 1.1138, 'grad_norm': 0.9682839512825012, 'learning_rate': 0.00029279999999999996, 'epoch': 1.22}
+{'loss': 1.0813, 'grad_norm': 1.3711163997650146, 'learning_rate': 0.0002916, 'epoch': 1.22}
+{'loss': 1.1325, 'grad_norm': 0.9899935126304626, 'learning_rate': 0.00029039999999999996, 'epoch': 1.22}
+{'loss': 1.5435, 'grad_norm': 0.9368510842323303, 'learning_rate': 0.0002892, 'epoch': 1.23}
+{'loss': 1.3168, 'grad_norm': 1.091867208480835, 'learning_rate': 0.00028799999999999995, 'epoch': 1.23}
+{'loss': 1.7494, 'grad_norm': 2.5387539863586426, 'learning_rate': 0.0002868, 'epoch': 1.23}
+{'loss': 1.0951, 'grad_norm': 0.923830509185791, 'learning_rate': 0.00028559999999999995, 'epoch': 1.23}
+{'loss': 1.5517, 'grad_norm': 1.384752631187439, 'learning_rate': 0.0002844, 'epoch': 1.23}
+{'loss': 1.4577, 'grad_norm': 1.1273128986358643, 'learning_rate': 0.00028319999999999994, 'epoch': 1.23}
+{'loss': 1.0851, 'grad_norm': 1.3909173011779785, 'learning_rate': 0.00028199999999999997, 'epoch': 1.24}
+{'loss': 1.9448, 'grad_norm': 2.421490430831909, 'learning_rate': 0.0002808, 'epoch': 1.24}
+{'loss': 1.2732, 'grad_norm': 1.3807581663131714, 'learning_rate': 0.00027959999999999997, 'epoch': 1.24}
+{'loss': 1.9347, 'grad_norm': 2.0578272342681885, 'learning_rate': 0.0002784, 'epoch': 1.24}
+{'loss': 3.8362, 'grad_norm': 15.272141456604004, 'learning_rate': 0.0002772, 'epoch': 1.24}
+{'loss': 1.9091, 'grad_norm': 5.2646708488464355, 'learning_rate': 0.000276, 'epoch': 1.24}
+{'loss': 1.6095, 'grad_norm': 2.031355619430542, 'learning_rate': 0.0002748, 'epoch': 1.24}
+{'loss': 2.3089, 'grad_norm': 4.6534600257873535, 'learning_rate': 0.0002736, 'epoch': 1.25}
+{'loss': 2.4965, 'grad_norm': 6.541667461395264, 'learning_rate': 0.0002724, 'epoch': 1.25}
+{'loss': 1.6555, 'grad_norm': 2.7578318119049072, 'learning_rate': 0.0002712, 'epoch': 1.25}
+{'loss': 1.3038, 'grad_norm': 1.1129381656646729, 'learning_rate': 0.00027, 'epoch': 1.25}
+{'loss': 1.1506, 'grad_norm': 2.7952072620391846, 'learning_rate': 0.0002688, 'epoch': 1.25}
+{'loss': 1.1711, 'grad_norm': 3.8253567218780518, 'learning_rate': 0.0002676, 'epoch': 1.25}
+{'loss': 1.2522, 'grad_norm': 3.225694179534912, 'learning_rate': 0.00026639999999999997, 'epoch': 1.26}
+{'loss': 1.1518, 'grad_norm': 2.5266146659851074, 'learning_rate': 0.0002652, 'epoch': 1.26}
+{'loss': 1.2192, 'grad_norm': 2.8188230991363525, 'learning_rate': 0.00026399999999999997, 'epoch': 1.26}
+{'loss': 1.2666, 'grad_norm': 2.217848539352417, 'learning_rate': 0.0002628, 'epoch': 1.26}
+{'loss': 0.9006, 'grad_norm': 1.5173269510269165, 'learning_rate': 0.00026159999999999996, 'epoch': 1.26}
+{'loss': 1.0547, 'grad_norm': 0.8272497057914734, 'learning_rate': 0.0002604, 'epoch': 1.26}
+{'loss': 0.8253, 'grad_norm': 0.7954143285751343, 'learning_rate': 0.00025919999999999996, 'epoch': 1.27}
+{'loss': 0.9969, 'grad_norm': 0.5565853118896484, 'learning_rate': 0.000258, 'epoch': 1.27}
+{'loss': 1.4545, 'grad_norm': 1.0500190258026123, 'learning_rate': 0.00025679999999999995, 'epoch': 1.27}
+{'loss': 1.171, 'grad_norm': 0.8248721957206726, 'learning_rate': 0.0002556, 'epoch': 1.27}
+{'loss': 0.9472, 'grad_norm': 0.7490447759628296, 'learning_rate': 0.00025439999999999995, 'epoch': 1.27}
+{'loss': 1.3288, 'grad_norm': 1.4040035009384155, 'learning_rate': 0.0002532, 'epoch': 1.27}
+{'loss': 0.893, 'grad_norm': 1.6696480512619019, 'learning_rate': 0.00025199999999999995, 'epoch': 1.28}
+{'loss': 0.9655, 'grad_norm': 1.1780556440353394, 'learning_rate': 0.00025079999999999997, 'epoch': 1.28}
+{'loss': 0.8489, 'grad_norm': 0.8681122660636902, 'learning_rate': 0.00024959999999999994, 'epoch': 1.28}
+{'loss': 1.302, 'grad_norm': 2.7494149208068848, 'learning_rate': 0.00024839999999999997, 'epoch': 1.28}
+{'loss': 1.2423, 'grad_norm': 0.7193929553031921, 'learning_rate': 0.0002472, 'epoch': 1.28}
+{'loss': 1.1013, 'grad_norm': 0.7485970258712769, 'learning_rate': 0.00024599999999999996, 'epoch': 1.28}
+{'loss': 1.0633, 'grad_norm': 1.010740041732788, 'learning_rate': 0.0002448, 'epoch': 1.28}
+{'loss': 0.9045, 'grad_norm': 1.0126278400421143, 'learning_rate': 0.00024359999999999999, 'epoch': 1.29}
+{'loss': 1.1721, 'grad_norm': 0.8286617398262024, 'learning_rate': 0.00024239999999999998, 'epoch': 1.29}
+{'loss': 0.697, 'grad_norm': 0.8142926692962646, 'learning_rate': 0.00024119999999999998, 'epoch': 1.29}
+{'loss': 1.0488, 'grad_norm': 1.0537707805633545, 'learning_rate': 0.00023999999999999998, 'epoch': 1.29}
+{'loss': 0.8774, 'grad_norm': 1.3153316974639893, 'learning_rate': 0.0002388, 'epoch': 1.29}
+{'loss': 1.3213, 'grad_norm': 0.871797502040863, 'learning_rate': 0.0002376, 'epoch': 1.29}
+{'loss': 1.199, 'grad_norm': 0.7886813282966614, 'learning_rate': 0.0002364, 'epoch': 1.3}
+{'loss': 1.2296, 'grad_norm': 1.002602219581604, 'learning_rate': 0.0002352, 'epoch': 1.3}
+{'loss': 1.2236, 'grad_norm': 0.9214668273925781, 'learning_rate': 0.000234, 'epoch': 1.3}
+{'loss': 1.0334, 'grad_norm': 1.148370385169983, 'learning_rate': 0.0002328, 'epoch': 1.3}
+{'loss': 1.3067, 'grad_norm': 0.9379896521568298, 'learning_rate': 0.0002316, 'epoch': 1.3}
+{'loss': 1.3121, 'grad_norm': 0.956409215927124, 'learning_rate': 0.0002304, 'epoch': 1.3}
+{'loss': 0.9634, 'grad_norm': 0.7684486508369446, 'learning_rate': 0.0002292, 'epoch': 1.31}
+{'loss': 1.2217, 'grad_norm': 1.111099123954773, 'learning_rate': 0.00022799999999999999, 'epoch': 1.31}
+{'loss': 1.2113, 'grad_norm': 1.2419041395187378, 'learning_rate': 0.00022679999999999998, 'epoch': 1.31}
+{'loss': 1.2651, 'grad_norm': 1.0385098457336426, 'learning_rate': 0.00022559999999999998, 'epoch': 1.31}
+{'loss': 1.1297, 'grad_norm': 1.2145808935165405, 'learning_rate': 0.00022439999999999998, 'epoch': 1.31}
+{'loss': 1.3326, 'grad_norm': 1.5363961458206177, 'learning_rate': 0.00022319999999999998, 'epoch': 1.31}
+{'loss': 1.2146, 'grad_norm': 1.2900283336639404, 'learning_rate': 0.00022199999999999998, 'epoch': 1.32}
+{'loss': 1.6352, 'grad_norm': 1.2551729679107666, 'learning_rate': 0.00022079999999999997, 'epoch': 1.32}
+{'loss': 1.8657, 'grad_norm': 1.9140880107879639, 'learning_rate': 0.00021959999999999997, 'epoch': 1.32}
+{'loss': 1.7609, 'grad_norm': 1.6980606317520142, 'learning_rate': 0.00021839999999999997, 'epoch': 1.32}
+{'loss': 4.9791, 'grad_norm': 24.27659797668457, 'learning_rate': 0.00021719999999999997, 'epoch': 1.32}
+{'loss': 1.948, 'grad_norm': 4.224913597106934, 'learning_rate': 0.00021599999999999996, 'epoch': 1.32}
+{'loss': 1.2907, 'grad_norm': 1.786584496498108, 'learning_rate': 0.00021479999999999996, 'epoch': 1.32}
+{'loss': 1.8151, 'grad_norm': 3.6893458366394043, 'learning_rate': 0.00021359999999999996, 'epoch': 1.33}
+{'loss': 1.4565, 'grad_norm': 1.7416751384735107, 'learning_rate': 0.00021239999999999996, 'epoch': 1.33}
+{'loss': 1.4603, 'grad_norm': 1.4054017066955566, 'learning_rate': 0.00021119999999999996, 'epoch': 1.33}
+{'loss': 1.1399, 'grad_norm': 1.827987551689148, 'learning_rate': 0.00020999999999999998, 'epoch': 1.33}
+{'loss': 1.0021, 'grad_norm': 1.687665343284607, 'learning_rate': 0.00020879999999999998, 'epoch': 1.33}
+{'loss': 1.3135, 'grad_norm': 1.9120396375656128, 'learning_rate': 0.00020759999999999998, 'epoch': 1.33}
+{'loss': 1.2274, 'grad_norm': 1.4296196699142456, 'learning_rate': 0.00020639999999999998, 'epoch': 1.34}
+{'loss': 1.064, 'grad_norm': 2.3591153621673584, 'learning_rate': 0.0002052, 'epoch': 1.34}
+{'loss': 1.245, 'grad_norm': 2.0794975757598877, 'learning_rate': 0.000204, 'epoch': 1.34}
+{'loss': 1.0842, 'grad_norm': 1.6829882860183716, 'learning_rate': 0.0002028, 'epoch': 1.34}
+{'loss': 0.9773, 'grad_norm': 1.7696207761764526, 'learning_rate': 0.0002016, 'epoch': 1.34}
+{'loss': 1.0883, 'grad_norm': 0.9369833469390869, 'learning_rate': 0.0002004, 'epoch': 1.34}
+{'loss': 0.9052, 'grad_norm': 1.0317164659500122, 'learning_rate': 0.0001992, 'epoch': 1.35}
+{'loss': 1.0024, 'grad_norm': 0.7406511902809143, 'learning_rate': 0.000198, 'epoch': 1.35}
+{'loss': 1.0525, 'grad_norm': 0.7658127546310425, 'learning_rate': 0.00019679999999999999, 'epoch': 1.35}
+{'loss': 1.6095, 'grad_norm': 4.549338340759277, 'learning_rate': 0.00019559999999999998, 'epoch': 1.35}
+{'loss': 0.9631, 'grad_norm': 1.467298984527588, 'learning_rate': 0.00019439999999999998, 'epoch': 1.35}
+{'loss': 0.9923, 'grad_norm': 0.682819664478302, 'learning_rate': 0.00019319999999999998, 'epoch': 1.35}
+{'loss': 0.688, 'grad_norm': 1.0607706308364868, 'learning_rate': 0.00019199999999999998, 'epoch': 1.36}
+{'loss': 0.9521, 'grad_norm': 1.449480414390564, 'learning_rate': 0.00019079999999999998, 'epoch': 1.36}
+{'loss': 1.1783, 'grad_norm': 1.363101601600647, 'learning_rate': 0.00018959999999999997, 'epoch': 1.36}
+{'loss': 1.0023, 'grad_norm': 1.044743537902832, 'learning_rate': 0.00018839999999999997, 'epoch': 1.36}
+{'loss': 0.8738, 'grad_norm': 1.300769567489624, 'learning_rate': 0.0001872, 'epoch': 1.36}
+{'loss': 0.9665, 'grad_norm': 0.9082262516021729, 'learning_rate': 0.000186, 'epoch': 1.36}
+{'loss': 0.7391, 'grad_norm': 0.739010751247406, 'learning_rate': 0.0001848, 'epoch': 1.36}
+{'loss': 1.0973, 'grad_norm': 0.8147821426391602, 'learning_rate': 0.0001836, 'epoch': 1.37}
+{'loss': 0.912, 'grad_norm': 1.0824979543685913, 'learning_rate': 0.0001824, 'epoch': 1.37}
+{'loss': 0.9727, 'grad_norm': 0.9057460427284241, 'learning_rate': 0.00018119999999999999, 'epoch': 1.37}
+{'loss': 0.9984, 'grad_norm': 1.5311682224273682, 'learning_rate': 0.00017999999999999998, 'epoch': 1.37}
+{'loss': 1.3081, 'grad_norm': 1.1883121728897095, 'learning_rate': 0.00017879999999999998, 'epoch': 1.37}
+{'loss': 1.2561, 'grad_norm': 0.8667554259300232, 'learning_rate': 0.00017759999999999998, 'epoch': 1.37}
+{'loss': 0.9624, 'grad_norm': 0.9504633545875549, 'learning_rate': 0.00017639999999999998, 'epoch': 1.38}
+{'loss': 0.9895, 'grad_norm': 0.7584782242774963, 'learning_rate': 0.00017519999999999998, 'epoch': 1.38}
+{'loss': 1.4783, 'grad_norm': 0.8988743424415588, 'learning_rate': 0.00017399999999999997, 'epoch': 1.38}
+{'loss': 1.0286, 'grad_norm': 1.5294109582901, 'learning_rate': 0.00017279999999999997, 'epoch': 1.38}
+{'loss': 1.3548, 'grad_norm': 0.900830864906311, 'learning_rate': 0.00017159999999999997, 'epoch': 1.38}
+{'loss': 1.3327, 'grad_norm': 1.1617467403411865, 'learning_rate': 0.00017039999999999997, 'epoch': 1.38}
+{'loss': 0.9852, 'grad_norm': 0.9407745599746704, 'learning_rate': 0.00016919999999999997, 'epoch': 1.39}
+{'loss': 1.209, 'grad_norm': 1.5121272802352905, 'learning_rate': 0.000168, 'epoch': 1.39}
+{'loss': 1.336, 'grad_norm': 1.1016932725906372, 'learning_rate': 0.0001668, 'epoch': 1.39}
+{'loss': 1.4303, 'grad_norm': 1.236220359802246, 'learning_rate': 0.0001656, 'epoch': 1.39}
+{'loss': 1.4783, 'grad_norm': 1.2185155153274536, 'learning_rate': 0.0001644, 'epoch': 1.39}
+{'loss': 1.5201, 'grad_norm': 1.0286515951156616, 'learning_rate': 0.0001632, 'epoch': 1.39}
+{'loss': 1.299, 'grad_norm': 1.185445785522461, 'learning_rate': 0.000162, 'epoch': 1.4}
+{'loss': 1.4461, 'grad_norm': 1.2194920778274536, 'learning_rate': 0.0001608, 'epoch': 1.4}
+{'loss': 1.8892, 'grad_norm': 1.220286250114441, 'learning_rate': 0.0001596, 'epoch': 1.4}
+{'loss': 2.0015, 'grad_norm': 1.2706676721572876, 'learning_rate': 0.0001584, 'epoch': 1.4}
+{'loss': 1.6254, 'grad_norm': 3.5840415954589844, 'learning_rate': 0.0001572, 'epoch': 1.4}
+{'loss': 1.7071, 'grad_norm': 4.40497350692749, 'learning_rate': 0.000156, 'epoch': 1.4}
+{'loss': 1.1047, 'grad_norm': 0.8230572938919067, 'learning_rate': 0.0001548, 'epoch': 1.4}
+{'loss': 1.8217, 'grad_norm': 4.162302017211914, 'learning_rate': 0.0001536, 'epoch': 1.41}
+{'loss': 1.9785, 'grad_norm': 5.07633113861084, 'learning_rate': 0.0001524, 'epoch': 1.41}
+{'loss': 1.0672, 'grad_norm': 0.917648434638977, 'learning_rate': 0.0001512, 'epoch': 1.41}
+{'loss': 2.0423, 'grad_norm': 4.194571018218994, 'learning_rate': 0.00015, 'epoch': 1.41}
+{'loss': 1.6481, 'grad_norm': 2.5355117321014404, 'learning_rate': 0.00014879999999999998, 'epoch': 1.41}
+{'loss': 1.4132, 'grad_norm': 1.0271695852279663, 'learning_rate': 0.00014759999999999998, 'epoch': 1.41}
+{'loss': 1.2408, 'grad_norm': 1.7041980028152466, 'learning_rate': 0.00014639999999999998, 'epoch': 1.42}
+{'loss': 1.0874, 'grad_norm': 1.204385757446289, 'learning_rate': 0.00014519999999999998, 'epoch': 1.42}
+{'loss': 1.0752, 'grad_norm': 1.4748934507369995, 'learning_rate': 0.00014399999999999998, 'epoch': 1.42}
+{'loss': 0.9498, 'grad_norm': 1.2053824663162231, 'learning_rate': 0.00014279999999999997, 'epoch': 1.42}
+{'loss': 0.8382, 'grad_norm': 1.6274027824401855, 'learning_rate': 0.00014159999999999997, 'epoch': 1.42}
+{'loss': 0.847, 'grad_norm': 1.2175933122634888, 'learning_rate': 0.0001404, 'epoch': 1.42}
+{'loss': 0.9262, 'grad_norm': 1.1891071796417236, 'learning_rate': 0.0001392, 'epoch': 1.43}
+{'loss': 0.8711, 'grad_norm': 0.8570193648338318, 'learning_rate': 0.000138, 'epoch': 1.43}
+{'loss': 0.7945, 'grad_norm': 0.8134769201278687, 'learning_rate': 0.0001368, 'epoch': 1.43}
+{'loss': 1.0081, 'grad_norm': 0.8427578210830688, 'learning_rate': 0.0001356, 'epoch': 1.43}
+{'loss': 0.7724, 'grad_norm': 0.6914164423942566, 'learning_rate': 0.0001344, 'epoch': 1.43}
+{'loss': 1.3446, 'grad_norm': 1.2948582172393799, 'learning_rate': 0.00013319999999999999, 'epoch': 1.43}
+{'loss': 1.4488, 'grad_norm': 2.3760907649993896, 'learning_rate': 0.00013199999999999998, 'epoch': 1.44}
+{'loss': 1.0265, 'grad_norm': 0.8447459936141968, 'learning_rate': 0.00013079999999999998, 'epoch': 1.44}
+{'loss': 1.0248, 'grad_norm': 0.9479515552520752, 'learning_rate': 0.00012959999999999998, 'epoch': 1.44}
+{'loss': 1.1762, 'grad_norm': 0.8598971366882324, 'learning_rate': 0.00012839999999999998, 'epoch': 1.44}
+{'loss': 1.4474, 'grad_norm': 0.8861218690872192, 'learning_rate': 0.00012719999999999997, 'epoch': 1.44}
+{'loss': 1.234, 'grad_norm': 1.63547682762146, 'learning_rate': 0.00012599999999999997, 'epoch': 1.44}
+{'loss': 1.2004, 'grad_norm': 1.8481323719024658, 'learning_rate': 0.00012479999999999997, 'epoch': 1.44}
+{'loss': 0.9047, 'grad_norm': 1.1849677562713623, 'learning_rate': 0.0001236, 'epoch': 1.45}
+{'loss': 0.8302, 'grad_norm': 0.8991519808769226, 'learning_rate': 0.0001224, 'epoch': 1.45}
+{'loss': 1.1055, 'grad_norm': 0.7898010015487671, 'learning_rate': 0.00012119999999999999, 'epoch': 1.45}
+{'loss': 1.1601, 'grad_norm': 0.7709459662437439, 'learning_rate': 0.00011999999999999999, 'epoch': 1.45}
+{'loss': 0.8276, 'grad_norm': 0.7087196111679077, 'learning_rate': 0.0001188, 'epoch': 1.45}
+{'loss': 1.578, 'grad_norm': 1.3262732028961182, 'learning_rate': 0.0001176, 'epoch': 1.45}
+{'loss': 1.1724, 'grad_norm': 0.9715768694877625, 'learning_rate': 0.0001164, 'epoch': 1.46}
+{'loss': 1.191, 'grad_norm': 0.9180259108543396, 'learning_rate': 0.0001152, 'epoch': 1.46}
+{'loss': 1.1005, 'grad_norm': 0.8658446669578552, 'learning_rate': 0.00011399999999999999, 'epoch': 1.46}
+{'loss': 0.8082, 'grad_norm': 0.8337435126304626, 'learning_rate': 0.00011279999999999999, 'epoch': 1.46}
+{'loss': 1.3635, 'grad_norm': 1.3308426141738892, 'learning_rate': 0.00011159999999999999, 'epoch': 1.46}
+{'loss': 1.3976, 'grad_norm': 1.605542540550232, 'learning_rate': 0.00011039999999999999, 'epoch': 1.46}
+{'loss': 1.1107, 'grad_norm': 0.9793137907981873, 'learning_rate': 0.00010919999999999998, 'epoch': 1.47}
+{'loss': 1.0646, 'grad_norm': 1.0021345615386963, 'learning_rate': 0.00010799999999999998, 'epoch': 1.47}
+{'loss': 1.0765, 'grad_norm': 1.106182336807251, 'learning_rate': 0.00010679999999999998, 'epoch': 1.47}
+{'loss': 0.8327, 'grad_norm': 0.944386899471283, 'learning_rate': 0.00010559999999999998, 'epoch': 1.47}
+{'loss': 1.2833, 'grad_norm': 0.8899224996566772, 'learning_rate': 0.00010439999999999999, 'epoch': 1.47}
+{'loss': 1.4942, 'grad_norm': 0.9858981370925903, 'learning_rate': 0.00010319999999999999, 'epoch': 1.47}
+{'loss': 0.9906, 'grad_norm': 0.8973054885864258, 'learning_rate': 0.000102, 'epoch': 1.48}
+{'loss': 1.6196, 'grad_norm': 1.453721523284912, 'learning_rate': 0.0001008, 'epoch': 1.48}
+{'loss': 1.6073, 'grad_norm': 1.0986156463623047, 'learning_rate': 9.96e-05, 'epoch': 1.48}
+{'loss': 1.9778, 'grad_norm': 2.032989978790283, 'learning_rate': 9.839999999999999e-05, 'epoch': 1.48}
+{'loss': 1.141, 'grad_norm': 1.989129900932312, 'learning_rate': 9.719999999999999e-05, 'epoch': 1.48}
+{'loss': 1.5118, 'grad_norm': 3.4167699813842773, 'learning_rate': 9.599999999999999e-05, 'epoch': 1.48}
+{'loss': 1.0734, 'grad_norm': 1.3643302917480469, 'learning_rate': 9.479999999999999e-05, 'epoch': 1.48}
+{'loss': 1.7124, 'grad_norm': 2.2885854244232178, 'learning_rate': 9.36e-05, 'epoch': 1.49}
+{'loss': 0.8954, 'grad_norm': 0.6576846241950989, 'learning_rate': 9.24e-05, 'epoch': 1.49}
+{'loss': 1.0185, 'grad_norm': 0.8722153306007385, 'learning_rate': 9.12e-05, 'epoch': 1.49}
+{'loss': 1.004, 'grad_norm': 0.8326541781425476, 'learning_rate': 8.999999999999999e-05, 'epoch': 1.49}
+{'loss': 1.1592, 'grad_norm': 2.4778904914855957, 'learning_rate': 8.879999999999999e-05, 'epoch': 1.49}
+{'loss': 1.2076, 'grad_norm': 0.8404483795166016, 'learning_rate': 8.759999999999999e-05, 'epoch': 1.49}
+{'loss': 0.9555, 'grad_norm': 0.8248417973518372, 'learning_rate': 8.639999999999999e-05, 'epoch': 1.5}
+{'loss': 0.979, 'grad_norm': 1.3365864753723145, 'learning_rate': 8.519999999999998e-05, 'epoch': 1.5}
+{'loss': 1.0958, 'grad_norm': 1.1861578226089478, 'learning_rate': 8.4e-05, 'epoch': 1.5}
+{'loss': 0.9629, 'grad_norm': 0.88190758228302, 'learning_rate': 8.28e-05, 'epoch': 1.5}
+{'loss': 0.8173, 'grad_norm': 0.7885952591896057, 'learning_rate': 8.16e-05, 'epoch': 1.5}
+{'loss': 0.9212, 'grad_norm': 0.8672547936439514, 'learning_rate': 8.04e-05, 'epoch': 1.5}
+{'loss': 0.7609, 'grad_norm': 0.9873324036598206, 'learning_rate': 7.92e-05, 'epoch': 1.51}
+{'loss': 0.9147, 'grad_norm': 0.7246285676956177, 'learning_rate': 7.8e-05, 'epoch': 1.51}
+{'loss': 1.0565, 'grad_norm': 0.935647189617157, 'learning_rate': 7.68e-05, 'epoch': 1.51}
+{'loss': 0.9969, 'grad_norm': 0.9067904353141785, 'learning_rate': 7.56e-05, 'epoch': 1.51}
+{'loss': 1.02, 'grad_norm': 0.711391031742096, 'learning_rate': 7.439999999999999e-05, 'epoch': 1.51}
+{'loss': 0.8794, 'grad_norm': 0.6557864546775818, 'learning_rate': 7.319999999999999e-05, 'epoch': 1.51}
+{'loss': 0.7447, 'grad_norm': 0.6219711899757385, 'learning_rate': 7.199999999999999e-05, 'epoch': 1.52}
+{'loss': 0.7373, 'grad_norm': 0.8622006773948669, 'learning_rate': 7.079999999999999e-05, 'epoch': 1.52}
+{'loss': 1.2627, 'grad_norm': 1.1472575664520264, 'learning_rate': 6.96e-05, 'epoch': 1.52}
+{'loss': 1.0621, 'grad_norm': 0.7451357245445251, 'learning_rate': 6.84e-05, 'epoch': 1.52}
+{'loss': 0.9089, 'grad_norm': 0.6065587997436523, 'learning_rate': 6.72e-05, 'epoch': 1.52}
+{'loss': 1.0643, 'grad_norm': 1.4195854663848877, 'learning_rate': 6.599999999999999e-05, 'epoch': 1.52}
+{'loss': 0.7469, 'grad_norm': 0.5955117344856262, 'learning_rate': 6.479999999999999e-05, 'epoch': 1.52}
+{'loss': 1.0978, 'grad_norm': 0.6250576972961426, 'learning_rate': 6.359999999999999e-05, 'epoch': 1.53}
+{'loss': 0.8296, 'grad_norm': 0.6930971145629883, 'learning_rate': 6.239999999999999e-05, 'epoch': 1.53}
+{'loss': 1.0546, 'grad_norm': 0.6830615997314453, 'learning_rate': 6.12e-05, 'epoch': 1.53}
+{'loss': 0.8516, 'grad_norm': 0.7899861931800842, 'learning_rate': 5.9999999999999995e-05, 'epoch': 1.53}
+{'loss': 0.9437, 'grad_norm': 0.7817133665084839, 'learning_rate': 5.88e-05, 'epoch': 1.53}
+{'loss': 0.9189, 'grad_norm': 0.7757598161697388, 'learning_rate': 5.76e-05, 'epoch': 1.53}
+{'loss': 1.1483, 'grad_norm': 1.3347138166427612, 'learning_rate': 5.6399999999999995e-05, 'epoch': 1.54}
+{'loss': 0.9015, 'grad_norm': 1.1997400522232056, 'learning_rate': 5.519999999999999e-05, 'epoch': 1.54}
+{'loss': 1.1634, 'grad_norm': 0.887032687664032, 'learning_rate': 5.399999999999999e-05, 'epoch': 1.54}
+{'loss': 0.9525, 'grad_norm': 0.8554338812828064, 'learning_rate': 5.279999999999999e-05, 'epoch': 1.54}
+{'loss': 1.2372, 'grad_norm': 1.3892364501953125, 'learning_rate': 5.1599999999999994e-05, 'epoch': 1.54}
+{'loss': 1.3967, 'grad_norm': 0.9542357921600342, 'learning_rate': 5.04e-05, 'epoch': 1.54}
+{'loss': 1.22, 'grad_norm': 0.8893820643424988, 'learning_rate': 4.9199999999999997e-05, 'epoch': 1.55}
+{'loss': 1.2027, 'grad_norm': 1.0028985738754272, 'learning_rate': 4.7999999999999994e-05, 'epoch': 1.55}
+{'loss': 1.0165, 'grad_norm': 0.9833260774612427, 'learning_rate': 4.68e-05, 'epoch': 1.55}
+{'loss': 0.9173, 'grad_norm': 1.2113572359085083, 'learning_rate': 4.56e-05, 'epoch': 1.55}
+{'loss': 1.2573, 'grad_norm': 1.3547580242156982, 'learning_rate': 4.4399999999999995e-05, 'epoch': 1.55}
+{'loss': 1.244, 'grad_norm': 1.373116135597229, 'learning_rate': 4.319999999999999e-05, 'epoch': 1.55}
+{'loss': 1.6164, 'grad_norm': 1.7258973121643066, 'learning_rate': 4.2e-05, 'epoch': 1.56}
+{'loss': 1.5954, 'grad_norm': 1.2587857246398926, 'learning_rate': 4.08e-05, 'epoch': 1.56}
+{'loss': 1.6517, 'grad_norm': 1.243959903717041, 'learning_rate': 3.96e-05, 'epoch': 1.56}
+{'loss': 3.1696, 'grad_norm': 8.083672523498535, 'learning_rate': 3.84e-05, 'epoch': 1.56}
+{'loss': 1.6055, 'grad_norm': 3.0081162452697754, 'learning_rate': 3.7199999999999996e-05, 'epoch': 1.56}
+{'loss': 1.4517, 'grad_norm': 2.0530784130096436, 'learning_rate': 3.5999999999999994e-05, 'epoch': 1.56}
+{'loss': 1.3951, 'grad_norm': 2.999591588973999, 'learning_rate': 3.48e-05, 'epoch': 1.56}
+{'loss': 1.6471, 'grad_norm': 3.652292490005493, 'learning_rate': 3.36e-05, 'epoch': 1.57}
+{'loss': 1.1589, 'grad_norm': 0.9475372433662415, 'learning_rate': 3.2399999999999995e-05, 'epoch': 1.57}
+{'loss': 1.2993, 'grad_norm': 1.1663963794708252, 'learning_rate': 3.119999999999999e-05, 'epoch': 1.57}
+{'loss': 0.8657, 'grad_norm': 0.7425952553749084, 'learning_rate': 2.9999999999999997e-05, 'epoch': 1.57}
+{'loss': 0.8047, 'grad_norm': 0.7692848443984985, 'learning_rate': 2.88e-05, 'epoch': 1.57}
+{'loss': 1.0338, 'grad_norm': 1.0877598524093628, 'learning_rate': 2.7599999999999997e-05, 'epoch': 1.57}
+{'loss': 1.02, 'grad_norm': 1.2162353992462158, 'learning_rate': 2.6399999999999995e-05, 'epoch': 1.58}
+{'loss': 1.1142, 'grad_norm': 0.8985974788665771, 'learning_rate': 2.52e-05, 'epoch': 1.58}
+{'loss': 1.7305, 'grad_norm': 3.2390971183776855, 'learning_rate': 2.3999999999999997e-05, 'epoch': 1.58}
+{'loss': 0.7165, 'grad_norm': 0.744255781173706, 'learning_rate': 2.28e-05, 'epoch': 1.58}
+{'loss': 0.846, 'grad_norm': 0.8843870759010315, 'learning_rate': 2.1599999999999996e-05, 'epoch': 1.58}
+{'loss': 1.038, 'grad_norm': 0.8216111660003662, 'learning_rate': 2.04e-05, 'epoch': 1.58}
+{'loss': 0.735, 'grad_norm': 0.7894061207771301, 'learning_rate': 1.92e-05, 'epoch': 1.59}
+{'loss': 0.8259, 'grad_norm': 1.1496872901916504, 'learning_rate': 1.7999999999999997e-05, 'epoch': 1.59}
+{'loss': 0.8359, 'grad_norm': 0.7256965637207031, 'learning_rate': 1.68e-05, 'epoch': 1.59}
+{'loss': 1.1465, 'grad_norm': 1.1701247692108154, 'learning_rate': 1.5599999999999996e-05, 'epoch': 1.59}
+{'loss': 0.9484, 'grad_norm': 0.8793047070503235, 'learning_rate': 1.44e-05, 'epoch': 1.59}
+{'loss': 0.8829, 'grad_norm': 1.147821307182312, 'learning_rate': 1.3199999999999997e-05, 'epoch': 1.59}
+{'loss': 1.0134, 'grad_norm': 0.9907615184783936, 'learning_rate': 1.1999999999999999e-05, 'epoch': 1.6}
+{'loss': 0.9232, 'grad_norm': 1.2195550203323364, 'learning_rate': 1.0799999999999998e-05, 'epoch': 1.6}
+{'loss': 0.803, 'grad_norm': 0.745823085308075, 'learning_rate': 9.6e-06, 'epoch': 1.6}
+{'loss': 0.9856, 'grad_norm': 0.9418966174125671, 'learning_rate': 8.4e-06, 'epoch': 1.6}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<01:15, 2.58it/s][A
+
2%|▏ | 3/196 [00:01<01:38, 1.97it/s][A
+
2%|▏ | 4/196 [00:02<01:57, 1.64it/s][A
+
3%|▎ | 5/196 [00:03<02:09, 1.47it/s][A
+
3%|▎ | 6/196 [00:04<02:28, 1.28it/s][A
+
4%|▎ | 7/196 [00:04<02:29, 1.26it/s][A
+
4%|▍ | 8/196 [00:05<02:39, 1.18it/s][A
+
5%|▍ | 9/196 [00:07<03:34, 1.15s/it][A
+
5%|▌ | 10/196 [00:09<04:08, 1.34s/it][A
+
6%|▌ | 11/196 [00:11<04:47, 1.55s/it][A
+
6%|▌ | 12/196 [00:13<04:48, 1.57s/it][A
+
7%|▋ | 13/196 [00:13<04:08, 1.36s/it][A
+
7%|▋ | 14/196 [00:14<03:30, 1.15s/it][A
+
8%|▊ | 15/196 [00:15<02:58, 1.01it/s][A
+
8%|▊ | 16/196 [00:15<02:46, 1.08it/s][A
+
9%|▊ | 17/196 [00:16<02:44, 1.09it/s][A
+
9%|▉ | 18/196 [00:18<03:09, 1.06s/it][A
+
10%|▉ | 19/196 [00:20<04:00, 1.36s/it][A
+
10%|█ | 20/196 [00:21<04:11, 1.43s/it][A
+
11%|█ | 21/196 [00:23<04:22, 1.50s/it][A
+
11%|█ | 22/196 [00:24<04:03, 1.40s/it][A
+
12%|█▏ | 23/196 [00:25<03:34, 1.24s/it][A
+
12%|█▏ | 24/196 [00:26<02:53, 1.01s/it][A
+
13%|█▎ | 25/196 [00:26<02:30, 1.13it/s][A
+
13%|█▎ | 26/196 [00:27<02:13, 1.27it/s][A
+
14%|█▍ | 27/196 [00:27<02:03, 1.37it/s][A
+
14%|█▍ | 28/196 [00:28<01:59, 1.41it/s][A
+
15%|█▍ | 29/196 [00:29<02:00, 1.39it/s][A
+
15%|█▌ | 30/196 [00:29<01:58, 1.40it/s][A
+
16%|█▌ | 31/196 [00:30<01:46, 1.55it/s][A
+
16%|█▋ | 32/196 [00:31<01:47, 1.52it/s][A
+
17%|█▋ | 33/196 [00:32<02:02, 1.33it/s][A
+
17%|█▋ | 34/196 [00:33<02:28, 1.09it/s][A
+
18%|█▊ | 35/196 [00:34<02:41, 1.00s/it][A
+
18%|█▊ | 36/196 [00:35<02:58, 1.12s/it][A
+
19%|█▉ | 37/196 [00:36<02:50, 1.07s/it][A
+
19%|█▉ | 38/196 [00:37<02:39, 1.01s/it][A
+
20%|█▉ | 39/196 [00:38<02:26, 1.07it/s][A
+
20%|██ | 40/196 [00:39<02:17, 1.14it/s][A
+
21%|██ | 41/196 [00:39<02:05, 1.23it/s][A
+
21%|██▏ | 42/196 [00:40<02:00, 1.27it/s][A
+
22%|██▏ | 43/196 [00:41<01:57, 1.30it/s][A
+
22%|██▏ | 44/196 [00:42<01:52, 1.35it/s][A
+
23%|██▎ | 45/196 [00:42<01:43, 1.45it/s][A
+
23%|██▎ | 46/196 [00:43<01:40, 1.50it/s][A
+
24%|██▍ | 47/196 [00:43<01:39, 1.50it/s][A
+
24%|██▍ | 48/196 [00:44<01:36, 1.53it/s][A
+
25%|██▌ | 49/196 [00:45<01:35, 1.53it/s][A
+
26%|██▌ | 50/196 [00:45<01:34, 1.55it/s][A
+
26%|██▌ | 51/196 [00:46<01:31, 1.58it/s][A
+
27%|██▋ | 52/196 [00:47<01:32, 1.55it/s][A
+
27%|██▋ | 53/196 [00:47<01:32, 1.54it/s][A
+
28%|██▊ | 54/196 [00:48<01:32, 1.53it/s][A
+
28%|██▊ | 55/196 [00:49<01:41, 1.39it/s][A
+
29%|██▊ | 56/196 [00:50<01:49, 1.28it/s][A
+
29%|██▉ | 57/196 [00:51<01:54, 1.21it/s][A
+
30%|██▉ | 58/196 [00:52<01:55, 1.19it/s][A
+
30%|███ | 59/196 [00:52<01:53, 1.21it/s][A
+
31%|███ | 60/196 [00:53<01:43, 1.32it/s][A
+
31%|███ | 61/196 [00:54<01:36, 1.40it/s][A
+
32%|███▏ | 62/196 [00:54<01:37, 1.37it/s][A
+
32%|███▏ | 63/196 [00:55<01:39, 1.34it/s][A
+
33%|███▎ | 64/196 [00:56<01:37, 1.35it/s][A
+
33%|███▎ | 65/196 [00:57<01:37, 1.35it/s][A
+
34%|███▎ | 66/196 [00:57<01:41, 1.28it/s][A
+
34%|███▍ | 67/196 [00:58<01:43, 1.24it/s][A
+
35%|███▍ | 68/196 [00:59<01:55, 1.11it/s][A
+
35%|███▌ | 69/196 [01:00<01:52, 1.13it/s][A
+
36%|███▌ | 70/196 [01:01<01:44, 1.20it/s][A
+
36%|███▌ | 71/196 [01:02<01:38, 1.27it/s][A
+
37%|███▋ | 72/196 [01:02<01:31, 1.35it/s][A
+
37%|███▋ | 73/196 [01:03<01:24, 1.45it/s][A
+
38%|███▊ | 74/196 [01:03<01:20, 1.52it/s][A
+
38%|███▊ | 75/196 [01:04<01:18, 1.55it/s][A
+
39%|███▉ | 76/196 [01:05<01:16, 1.57it/s][A
+
39%|███▉ | 77/196 [01:05<01:19, 1.50it/s][A
+
40%|███▉ | 78/196 [01:06<01:20, 1.47it/s][A
+
40%|████ | 79/196 [01:07<01:19, 1.48it/s][A
+
41%|████ | 80/196 [01:08<01:24, 1.38it/s][A
+
41%|████▏ | 81/196 [01:08<01:24, 1.37it/s][A
+
42%|████▏ | 82/196 [01:09<01:23, 1.37it/s][A
+
42%|████▏ | 83/196 [01:10<01:24, 1.33it/s][A
+
43%|████▎ | 84/196 [01:11<01:24, 1.33it/s][A
+
43%|████▎ | 85/196 [01:11<01:23, 1.33it/s][A
+
44%|████▍ | 86/196 [01:12<01:25, 1.29it/s][A
+
44%|████▍ | 87/196 [01:13<01:23, 1.30it/s][A
+
45%|████▍ | 88/196 [01:14<01:25, 1.27it/s][A
+
45%|████▌ | 89/196 [01:15<01:26, 1.23it/s][A
+
46%|████▌ | 90/196 [01:15<01:24, 1.26it/s][A
+
46%|████▋ | 91/196 [01:16<01:19, 1.32it/s][A
+
47%|████▋ | 92/196 [01:17<01:16, 1.36it/s][A
+
47%|████▋ | 93/196 [01:18<01:20, 1.28it/s][A
+
48%|████▊ | 94/196 [01:18<01:18, 1.29it/s][A
+
48%|████▊ | 95/196 [01:19<01:18, 1.29it/s][A
+
49%|████▉ | 96/196 [01:20<01:20, 1.24it/s][A
+
49%|████▉ | 97/196 [01:21<01:16, 1.29it/s][A
+
50%|█████ | 98/196 [01:22<01:17, 1.27it/s][A
+
51%|█████ | 99/196 [01:22<01:11, 1.36it/s][A
+
51%|█████ | 100/196 [01:23<01:03, 1.51it/s][A
+
52%|█████▏ | 101/196 [01:23<01:01, 1.55it/s][A
+
52%|█████▏ | 102/196 [01:24<01:05, 1.44it/s][A
+
53%|█████▎ | 103/196 [01:25<01:10, 1.31it/s][A
+
53%|█████▎ | 104/196 [01:26<01:18, 1.18it/s][A
+
54%|█████▎ | 105/196 [01:27<01:18, 1.16it/s][A
+
54%|█████▍ | 106/196 [01:28<01:15, 1.19it/s][A
+
55%|█████▍ | 107/196 [01:28<01:10, 1.26it/s][A
+
55%|█████▌ | 108/196 [01:29<01:02, 1.40it/s][A
+
56%|█████▌ | 109/196 [01:30<00:59, 1.47it/s][A
+
56%|█████▌ | 110/196 [01:30<00:58, 1.48it/s][A
+
57%|█████▋ | 111/196 [01:31<00:58, 1.45it/s][A
+
57%|█████▋ | 112/196 [01:32<01:00, 1.40it/s][A
+
58%|█████▊ | 113/196 [01:32<00:58, 1.41it/s][A
+
58%|█████▊ | 114/196 [01:33<00:54, 1.51it/s][A
+
59%|█████▊ | 115/196 [01:34<00:52, 1.53it/s][A
+
59%|█████▉ | 116/196 [01:34<00:51, 1.54it/s][A
+
60%|█████▉ | 117/196 [01:35<00:47, 1.65it/s][A
+
60%|██████ | 118/196 [01:35<00:43, 1.80it/s][A
+
61%|██████ | 119/196 [01:36<00:46, 1.66it/s][A
+
61%|██████ | 120/196 [01:37<00:47, 1.60it/s][A
+
62%|██████▏ | 121/196 [01:37<00:47, 1.57it/s][A
+
62%|██████▏ | 122/196 [01:38<00:48, 1.53it/s][A
+
63%|██████▎ | 123/196 [01:39<00:46, 1.57it/s][A
+
63%|██████▎ | 124/196 [01:39<00:47, 1.52it/s][A
+
64%|██████▍ | 125/196 [01:40<00:47, 1.51it/s][A
+
64%|██████▍ | 126/196 [01:41<00:53, 1.32it/s][A
+
65%|██████▍ | 127/196 [01:42<00:50, 1.37it/s][A
+
65%|██████▌ | 128/196 [01:42<00:48, 1.41it/s][A
+
66%|██████▌ | 129/196 [01:43<00:46, 1.43it/s][A
+
66%|██████▋ | 130/196 [01:44<00:46, 1.40it/s][A
+
67%|██████▋ | 131/196 [01:44<00:45, 1.44it/s][A
+
67%|██████▋ | 132/196 [01:45<00:41, 1.53it/s][A
+
68%|██████▊ | 133/196 [01:46<00:41, 1.53it/s][A
+
68%|██████▊ | 134/196 [01:46<00:41, 1.49it/s][A
+
69%|██████▉ | 135/196 [01:47<00:40, 1.51it/s][A
+
69%|██████▉ | 136/196 [01:48<00:39, 1.51it/s][A
+
70%|██████▉ | 137/196 [01:48<00:38, 1.51it/s][A
+
70%|███████ | 138/196 [01:49<00:38, 1.52it/s][A
+
71%|███████ | 139/196 [01:50<00:38, 1.47it/s][A
+
71%|███████▏ | 140/196 [01:50<00:36, 1.53it/s][A
+
72%|███████▏ | 141/196 [01:51<00:35, 1.55it/s][A
+
72%|███████▏ | 142/196 [01:52<00:35, 1.50it/s][A
+
73%|███████▎ | 143/196 [01:52<00:36, 1.45it/s][A
+
73%|███████▎ | 144/196 [01:53<00:35, 1.47it/s][A
+
74%|███████▍ | 145/196 [01:53<00:32, 1.59it/s][A
+
74%|███████▍ | 146/196 [01:54<00:30, 1.65it/s][A
+
75%|███████▌ | 147/196 [01:55<00:29, 1.67it/s][A
+
76%|███████▌ | 148/196 [01:55<00:29, 1.65it/s][A
+
76%|███████▌ | 149/196 [01:56<00:26, 1.74it/s][A
+
77%|███████▋ | 150/196 [01:56<00:28, 1.60it/s][A
+
77%|███████▋ | 151/196 [01:57<00:29, 1.55it/s][A
+
78%|███████▊ | 152/196 [01:58<00:28, 1.55it/s][A
+
78%|███████▊ | 153/196 [01:58<00:27, 1.54it/s][A
+
79%|███████▊ | 154/196 [01:59<00:27, 1.54it/s][A
+
79%|███████▉ | 155/196 [02:00<00:28, 1.44it/s][A
+
80%|███████▉ | 156/196 [02:01<00:30, 1.31it/s][A
+
80%|████████ | 157/196 [02:02<00:30, 1.26it/s][A
+
81%|████████ | 158/196 [02:02<00:27, 1.39it/s][A
+
81%|████████ | 159/196 [02:03<00:24, 1.49it/s][A
+
82%|████████▏ | 160/196 [02:03<00:23, 1.51it/s][A
+
82%|████████▏ | 161/196 [02:04<00:23, 1.49it/s][A
+
83%|████████▎ | 162/196 [02:05<00:22, 1.49it/s][A
+
83%|████████▎ | 163/196 [02:05<00:21, 1.52it/s][A
+
84%|████████▎ | 164/196 [02:06<00:21, 1.52it/s][A
+
84%|████████▍ | 165/196 [02:07<00:21, 1.47it/s][A
+
85%|████████▍ | 166/196 [02:07<00:19, 1.52it/s][A
+
85%|████████▌ | 167/196 [02:08<00:18, 1.55it/s][A
+
86%|████████▌ | 168/196 [02:09<00:17, 1.61it/s][A
+
86%|████████▌ | 169/196 [02:09<00:17, 1.52it/s][A
+
87%|████████▋ | 170/196 [02:10<00:17, 1.45it/s][A
+
87%|████████▋ | 171/196 [02:11<00:17, 1.47it/s][A
+
88%|████████▊ | 172/196 [02:12<00:16, 1.44it/s][A
+
88%|████████▊ | 173/196 [02:12<00:15, 1.45it/s][A
+
89%|████████▉ | 174/196 [02:13<00:15, 1.38it/s][A
+
89%|████████▉ | 175/196 [02:14<00:19, 1.10it/s][A
+
90%|████████▉ | 176/196 [02:17<00:26, 1.33s/it][A
+
90%|█████████ | 177/196 [02:19<00:28, 1.52s/it][A
+
91%|█████████ | 178/196 [02:21<00:30, 1.71s/it][A
+
91%|█████████▏| 179/196 [02:22<00:28, 1.69s/it][A
+
92%|█████████▏| 180/196 [02:23<00:22, 1.40s/it][A
+
92%|█████████▏| 181/196 [02:24<00:17, 1.18s/it][A
+
93%|█████████▎| 182/196 [02:24<00:14, 1.03s/it][A
+
93%|█████████▎| 183/196 [02:25<00:13, 1.01s/it][A
+
94%|█████████▍| 184/196 [02:26<00:10, 1.10it/s][A
+
94%|█████████▍| 185/196 [02:27<00:09, 1.14it/s][A
+
95%|█████████▍| 186/196 [02:28<00:08, 1.14it/s][A
+
95%|█████████▌| 187/196 [02:28<00:07, 1.23it/s][A
+
96%|█████████▌| 188/196 [02:29<00:06, 1.31it/s][A
+
96%|█████████▋| 189/196 [02:30<00:05, 1.34it/s][A
+
97%|█████████▋| 190/196 [02:30<00:04, 1.42it/s][A
+
97%|█████████▋| 191/196 [02:31<00:03, 1.50it/s][A
+
98%|█████████▊| 192/196 [02:32<00:02, 1.48it/s][A
+
98%|█████████▊| 193/196 [02:32<00:02, 1.46it/s][A
+
99%|█████████▉| 194/196 [02:33<00:01, 1.49it/s][A
+
99%|█████████▉| 195/196 [02:34<00:00, 1.53it/s][A
+
100%|██████████| 196/196 [02:34<00:00, 1.91it/s][A
+
[A
100%|██████████| 1000/1000 [35:23<00:00, 1.71s/it]
+
100%|██████████| 196/196 [02:41<00:00, 1.91it/s][A
+
[A
100%|██████████| 1000/1000 [35:32<00:00, 1.71s/it]
100%|██████████| 1000/1000 [35:32<00:00, 2.13s/it]