diff --git "a/indicwav2vec_MUCS_warmup500_s300shuff100_2143522.out" "b/indicwav2vec_MUCS_warmup500_s300shuff100_2143522.out"
new file mode 100644--- /dev/null
+++ "b/indicwav2vec_MUCS_warmup500_s300shuff100_2143522.out"
@@ -0,0 +1,1306 @@
+wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
+wandb: wandb version 0.17.7 is available! To upgrade, please run:
+wandb: $ pip install wandb --upgrade
+wandb: Tracking run with wandb version 0.17.6
+wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_160311-ed2pxb18
+wandb: Run `wandb offline` to turn off syncing.
+wandb: Syncing run glamorous-tree-37
+wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
+wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/ed2pxb18
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
+ warnings.warn(
+08/22/2024 16:03:16 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:508: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
+Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
+- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
+- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
+Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
+max_steps is given, it will override any value given in num_train_epochs
+Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+ 150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+}
+CHECK MODEL PARAMS Wav2Vec2ForCTC(
+ (wav2vec2): Wav2Vec2Model(
+ (feature_extractor): Wav2Vec2FeatureEncoder(
+ (conv_layers): ModuleList(
+ (0): Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ )
+ )
+ (feature_projection): Wav2Vec2FeatureProjection(
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
+ (dropout): Dropout(p=0.3, inplace=False)
+ )
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
+ (conv): ParametrizedConv1d(
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
+ (parametrizations): ModuleDict(
+ (weight): ParametrizationList(
+ (0): _WeightNorm()
+ )
+ )
+ )
+ (padding): Wav2Vec2SamePadLayer()
+ (activation): GELUActivation()
+ )
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layers): ModuleList(
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
+ (attention): Wav2Vec2SdpaAttention(
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ )
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (feed_forward): Wav2Vec2FeedForward(
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
+ (intermediate_act_fn): GELUActivation()
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
+ (output_dropout): Dropout(p=0.2, inplace=False)
+ )
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ )
+ )
+ )
+ )
+ (dropout): Dropout(p=0.0, inplace=False)
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
+)
+
0%| | 0/1000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
+ return fn(*args, **kwargs)
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
0%| | 1/1000 [00:26<7:13:50, 26.06s/it]
0%| | 1/1000 [00:26<7:13:50, 26.06s/it]
0%| | 2/1000 [00:30<3:42:45, 13.39s/it]
0%| | 2/1000 [00:30<3:42:45, 13.39s/it]
0%| | 3/1000 [00:34<2:27:46, 8.89s/it]
0%| | 3/1000 [00:34<2:27:46, 8.89s/it]
0%| | 4/1000 [00:37<1:50:46, 6.67s/it]
0%| | 4/1000 [00:37<1:50:46, 6.67s/it]
0%| | 5/1000 [00:40<1:28:41, 5.35s/it]
0%| | 5/1000 [00:40<1:28:41, 5.35s/it]
1%| | 6/1000 [00:43<1:14:26, 4.49s/it]
1%| | 6/1000 [00:43<1:14:26, 4.49s/it]
1%| | 7/1000 [00:45<1:04:40, 3.91s/it]
1%| | 7/1000 [00:45<1:04:40, 3.91s/it]
1%| | 8/1000 [00:48<58:10, 3.52s/it]
1%| | 8/1000 [00:48<58:10, 3.52s/it]
1%| | 9/1000 [00:51<52:44, 3.19s/it]
1%| | 9/1000 [00:51<52:44, 3.19s/it]
1%| | 10/1000 [00:53<48:39, 2.95s/it]
1%| | 10/1000 [00:53<48:39, 2.95s/it]
1%| | 11/1000 [00:55<45:39, 2.77s/it]
1%| | 11/1000 [00:55<45:39, 2.77s/it]
1%| | 12/1000 [00:58<43:12, 2.62s/it]
1%| | 12/1000 [00:58<43:12, 2.62s/it]
1%|▏ | 13/1000 [01:00<40:23, 2.46s/it]
1%|▏ | 13/1000 [01:00<40:23, 2.46s/it]
1%|▏ | 14/1000 [01:02<38:28, 2.34s/it]
1%|▏ | 14/1000 [01:02<38:28, 2.34s/it]
2%|▏ | 15/1000 [01:04<37:06, 2.26s/it]
2%|▏ | 15/1000 [01:04<37:06, 2.26s/it]
2%|▏ | 16/1000 [01:06<36:11, 2.21s/it]
2%|▏ | 16/1000 [01:06<36:11, 2.21s/it]
2%|▏ | 17/1000 [01:08<35:31, 2.17s/it]
2%|▏ | 17/1000 [01:08<35:31, 2.17s/it]
2%|▏ | 18/1000 [01:10<34:35, 2.11s/it]
2%|▏ | 18/1000 [01:10<34:35, 2.11s/it]
2%|▏ | 19/1000 [01:12<32:51, 2.01s/it]
2%|▏ | 19/1000 [01:12<32:51, 2.01s/it]
2%|▏ | 20/1000 [01:14<31:38, 1.94s/it]
2%|▏ | 20/1000 [01:14<31:38, 1.94s/it]
2%|▏ | 21/1000 [01:15<30:50, 1.89s/it]
2%|▏ | 21/1000 [01:15<30:50, 1.89s/it]
2%|▏ | 22/1000 [01:17<30:09, 1.85s/it]
2%|▏ | 22/1000 [01:17<30:09, 1.85s/it]
2%|▏ | 23/1000 [01:19<29:43, 1.83s/it]
2%|▏ | 23/1000 [01:19<29:43, 1.83s/it]
2%|▏ | 24/1000 [01:21<28:56, 1.78s/it]
2%|▏ | 24/1000 [01:21<28:56, 1.78s/it]
2%|▎ | 25/1000 [01:22<27:31, 1.69s/it]
2%|▎ | 25/1000 [01:22<27:31, 1.69s/it]
3%|▎ | 26/1000 [01:24<26:31, 1.63s/it]
3%|▎ | 26/1000 [01:24<26:31, 1.63s/it]
3%|▎ | 27/1000 [01:25<25:43, 1.59s/it]
3%|▎ | 27/1000 [01:25<25:43, 1.59s/it]
3%|▎ | 28/1000 [01:26<25:14, 1.56s/it]
3%|▎ | 28/1000 [01:27<25:14, 1.56s/it]
3%|▎ | 29/1000 [01:28<24:56, 1.54s/it]
3%|▎ | 29/1000 [01:28<24:56, 1.54s/it]
3%|▎ | 30/1000 [01:29<24:37, 1.52s/it]
3%|▎ | 30/1000 [01:29<24:37, 1.52s/it]
3%|▎ | 31/1000 [01:31<24:23, 1.51s/it]
3%|▎ | 31/1000 [01:31<24:23, 1.51s/it]
3%|▎ | 32/1000 [01:32<24:02, 1.49s/it]
3%|▎ | 32/1000 [01:32<24:02, 1.49s/it]
3%|▎ | 33/1000 [01:34<22:59, 1.43s/it]
3%|▎ | 33/1000 [01:34<22:59, 1.43s/it]
3%|▎ | 34/1000 [01:35<21:57, 1.36s/it]
3%|▎ | 34/1000 [01:35<21:57, 1.36s/it]
4%|▎ | 35/1000 [01:36<21:13, 1.32s/it]
4%|▎ | 35/1000 [01:36<21:13, 1.32s/it]
4%|▎ | 36/1000 [01:37<20:41, 1.29s/it]
4%|▎ | 36/1000 [01:37<20:41, 1.29s/it]
4%|▎ | 37/1000 [01:39<20:30, 1.28s/it]
4%|▎ | 37/1000 [01:39<20:30, 1.28s/it]
4%|▍ | 38/1000 [01:40<20:10, 1.26s/it]
4%|▍ | 38/1000 [01:40<20:10, 1.26s/it]
4%|▍ | 39/1000 [01:41<19:55, 1.24s/it]
4%|▍ | 39/1000 [01:41<19:55, 1.24s/it]
4%|▍ | 40/1000 [01:42<19:36, 1.23s/it]
4%|▍ | 40/1000 [01:42<19:36, 1.23s/it]
4%|▍ | 41/1000 [01:43<18:26, 1.15s/it]
4%|▍ | 41/1000 [01:43<18:26, 1.15s/it]
4%|▍ | 42/1000 [01:44<17:18, 1.08s/it]
4%|▍ | 42/1000 [01:44<17:18, 1.08s/it]
4%|▍ | 43/1000 [01:45<16:32, 1.04s/it]
4%|▍ | 43/1000 [01:45<16:32, 1.04s/it]
4%|▍ | 44/1000 [01:46<15:58, 1.00s/it]
4%|▍ | 44/1000 [01:46<15:58, 1.00s/it]
4%|▍ | 45/1000 [01:47<15:35, 1.02it/s]
4%|▍ | 45/1000 [01:47<15:35, 1.02it/s]
5%|▍ | 46/1000 [01:48<15:20, 1.04it/s]
5%|▍ | 46/1000 [01:48<15:20, 1.04it/s]
5%|▍ | 47/1000 [01:49<14:31, 1.09it/s]
5%|▍ | 47/1000 [01:49<14:31, 1.09it/s]
5%|▍ | 48/1000 [01:49<14:00, 1.13it/s]
5%|▍ | 48/1000 [01:49<14:00, 1.13it/s]
5%|▍ | 49/1000 [01:50<12:56, 1.22it/s]
5%|▍ | 49/1000 [01:50<12:56, 1.22it/s]
5%|▌ | 50/1000 [01:53<21:42, 1.37s/it]
5%|▌ | 50/1000 [01:53<21:42, 1.37s/it]
5%|▌ | 51/1000 [02:00<49:11, 3.11s/it]
5%|▌ | 51/1000 [02:00<49:11, 3.11s/it]
5%|▌ | 52/1000 [02:04<55:01, 3.48s/it]
5%|▌ | 52/1000 [02:04<55:01, 3.48s/it]
5%|▌ | 53/1000 [02:08<56:35, 3.59s/it]
5%|▌ | 53/1000 [02:08<56:35, 3.59s/it]
5%|▌ | 54/1000 [02:12<56:01, 3.55s/it]
5%|▌ | 54/1000 [02:12<56:01, 3.55s/it]
6%|▌ | 55/1000 [02:15<54:14, 3.44s/it]
6%|▌ | 55/1000 [02:15<54:14, 3.44s/it]
6%|▌ | 56/1000 [02:18<51:52, 3.30s/it]
6%|▌ | 56/1000 [02:18<51:52, 3.30s/it]
6%|▌ | 57/1000 [02:20<49:18, 3.14s/it]
6%|▌ | 57/1000 [02:20<49:18, 3.14s/it]
6%|▌ | 58/1000 [02:23<47:06, 3.00s/it]
6%|▌ | 58/1000 [02:23<47:06, 3.00s/it]
6%|▌ | 59/1000 [02:26<44:28, 2.84s/it]
6%|▌ | 59/1000 [02:26<44:28, 2.84s/it]
6%|▌ | 60/1000 [02:28<42:12, 2.69s/it]
6%|▌ | 60/1000 [02:28<42:12, 2.69s/it]
6%|▌ | 61/1000 [02:30<40:35, 2.59s/it]
6%|▌ | 61/1000 [02:30<40:35, 2.59s/it]
6%|▌ | 62/1000 [02:32<38:27, 2.46s/it]
6%|▌ | 62/1000 [02:32<38:27, 2.46s/it]
6%|▋ | 63/1000 [02:35<36:39, 2.35s/it]
6%|▋ | 63/1000 [02:35<36:39, 2.35s/it]
6%|▋ | 64/1000 [02:37<35:25, 2.27s/it]
6%|▋ | 64/1000 [02:37<35:25, 2.27s/it]
6%|▋ | 65/1000 [02:39<34:29, 2.21s/it]
6%|▋ | 65/1000 [02:39<34:29, 2.21s/it]
7%|▋ | 66/1000 [02:41<33:47, 2.17s/it]
7%|▋ | 66/1000 [02:41<33:47, 2.17s/it]
7%|▋ | 67/1000 [02:43<33:00, 2.12s/it]
7%|▋ | 67/1000 [02:43<33:00, 2.12s/it]
7%|▋ | 68/1000 [02:45<31:33, 2.03s/it]
7%|▋ | 68/1000 [02:45<31:33, 2.03s/it]
7%|▋ | 69/1000 [02:46<30:12, 1.95s/it]
7%|▋ | 69/1000 [02:46<30:12, 1.95s/it]
7%|▋ | 70/1000 [02:48<29:20, 1.89s/it]
7%|▋ | 70/1000 [02:48<29:20, 1.89s/it]
7%|▋ | 71/1000 [02:50<28:46, 1.86s/it]
7%|▋ | 71/1000 [02:50<28:46, 1.86s/it]
7%|▋ | 72/1000 [02:52<28:19, 1.83s/it]
7%|▋ | 72/1000 [02:52<28:19, 1.83s/it]
7%|▋ | 73/1000 [02:53<27:54, 1.81s/it]
7%|▋ | 73/1000 [02:53<27:54, 1.81s/it]
7%|▋ | 74/1000 [02:55<26:58, 1.75s/it]
7%|▋ | 74/1000 [02:55<26:58, 1.75s/it]
8%|▊ | 75/1000 [02:57<25:41, 1.67s/it]
8%|▊ | 75/1000 [02:57<25:41, 1.67s/it]
8%|▊ | 76/1000 [02:58<24:45, 1.61s/it]
8%|▊ | 76/1000 [02:58<24:45, 1.61s/it]
8%|▊ | 77/1000 [02:59<24:09, 1.57s/it]
8%|▊ | 77/1000 [02:59<24:09, 1.57s/it]
8%|▊ | 78/1000 [03:01<23:43, 1.54s/it]
8%|▊ | 78/1000 [03:01<23:43, 1.54s/it]
8%|▊ | 79/1000 [03:02<23:25, 1.53s/it]
8%|▊ | 79/1000 [03:02<23:25, 1.53s/it]
8%|▊ | 80/1000 [03:04<23:16, 1.52s/it]
8%|▊ | 80/1000 [03:04<23:16, 1.52s/it]
8%|▊ | 81/1000 [03:05<23:06, 1.51s/it]
8%|▊ | 81/1000 [03:05<23:06, 1.51s/it]
8%|▊ | 82/1000 [03:07<22:46, 1.49s/it]
8%|▊ | 82/1000 [03:07<22:46, 1.49s/it]
8%|▊ | 83/1000 [03:08<21:42, 1.42s/it]
8%|▊ | 83/1000 [03:08<21:42, 1.42s/it]
8%|▊ | 84/1000 [03:09<20:41, 1.36s/it]
8%|▊ | 84/1000 [03:09<20:41, 1.36s/it]
8%|▊ | 85/1000 [03:11<19:59, 1.31s/it]
8%|▊ | 85/1000 [03:11<19:59, 1.31s/it]
9%|▊ | 86/1000 [03:12<19:39, 1.29s/it]
9%|▊ | 86/1000 [03:12<19:39, 1.29s/it]
9%|▊ | 87/1000 [03:13<19:14, 1.26s/it]
9%|▊ | 87/1000 [03:13<19:14, 1.26s/it]
9%|▉ | 88/1000 [03:14<18:59, 1.25s/it]
9%|▉ | 88/1000 [03:14<18:59, 1.25s/it]
9%|▉ | 89/1000 [03:15<18:49, 1.24s/it]
9%|▉ | 89/1000 [03:15<18:49, 1.24s/it]
9%|▉ | 90/1000 [03:17<18:34, 1.23s/it]
9%|▉ | 90/1000 [03:17<18:34, 1.23s/it]
9%|▉ | 91/1000 [03:18<17:31, 1.16s/it]
9%|▉ | 91/1000 [03:18<17:31, 1.16s/it]
9%|▉ | 92/1000 [03:19<16:26, 1.09s/it]
9%|▉ | 92/1000 [03:19<16:26, 1.09s/it]
9%|▉ | 93/1000 [03:19<15:43, 1.04s/it]
9%|▉ | 93/1000 [03:19<15:43, 1.04s/it]
9%|▉ | 94/1000 [03:20<15:10, 1.00s/it]
9%|▉ | 94/1000 [03:20<15:10, 1.00s/it]
10%|▉ | 95/1000 [03:21<14:46, 1.02it/s]
10%|▉ | 95/1000 [03:21<14:46, 1.02it/s]
10%|▉ | 96/1000 [03:22<14:29, 1.04it/s]
10%|▉ | 96/1000 [03:22<14:29, 1.04it/s]
10%|▉ | 97/1000 [03:23<13:45, 1.09it/s]
10%|▉ | 97/1000 [03:23<13:45, 1.09it/s]
10%|▉ | 98/1000 [03:24<12:37, 1.19it/s]
10%|▉ | 98/1000 [03:24<12:37, 1.19it/s]
10%|▉ | 99/1000 [03:24<11:50, 1.27it/s]
10%|▉ | 99/1000 [03:24<11:50, 1.27it/s]
10%|█ | 100/1000 [03:27<20:26, 1.36s/it]
10%|█ | 100/1000 [03:27<20:26, 1.36s/it]
10%|█ | 101/1000 [03:34<45:49, 3.06s/it]
10%|█ | 101/1000 [03:34<45:49, 3.06s/it]
10%|█ | 102/1000 [03:38<50:59, 3.41s/it]
10%|█ | 102/1000 [03:38<50:59, 3.41s/it]
10%|█ | 103/1000 [03:42<52:12, 3.49s/it]
10%|█ | 103/1000 [03:42<52:12, 3.49s/it]
10%|█ | 104/1000 [03:45<51:12, 3.43s/it]
10%|█ | 104/1000 [03:45<51:12, 3.43s/it]
10%|█ | 105/1000 [03:48<49:38, 3.33s/it]
10%|█ | 105/1000 [03:48<49:38, 3.33s/it]
11%|█ | 106/1000 [03:51<47:39, 3.20s/it]
11%|█ | 106/1000 [03:51<47:39, 3.20s/it]
11%|█ | 107/1000 [03:54<45:20, 3.05s/it]
11%|█ | 107/1000 [03:54<45:20, 3.05s/it]
11%|█ | 108/1000 [03:57<43:29, 2.92s/it]
11%|█ | 108/1000 [03:57<43:29, 2.92s/it]
11%|█ | 109/1000 [03:59<41:20, 2.78s/it]
11%|█ | 109/1000 [03:59<41:20, 2.78s/it]
11%|█ | 110/1000 [04:01<39:34, 2.67s/it]
11%|█ | 110/1000 [04:01<39:34, 2.67s/it]
11%|█ | 111/1000 [04:04<38:19, 2.59s/it]
11%|█ | 111/1000 [04:04<38:19, 2.59s/it]
11%|█ | 112/1000 [04:06<37:11, 2.51s/it]
11%|█ | 112/1000 [04:06<37:11, 2.51s/it]
11%|█▏ | 113/1000 [04:08<35:33, 2.40s/it]
11%|█▏ | 113/1000 [04:08<35:33, 2.40s/it]
11%|█▏ | 114/1000 [04:10<34:07, 2.31s/it]
11%|█▏ | 114/1000 [04:10<34:07, 2.31s/it]
12%|█▏ | 115/1000 [04:12<33:00, 2.24s/it]
12%|█▏ | 115/1000 [04:13<33:00, 2.24s/it]
12%|█▏ | 116/1000 [04:15<32:13, 2.19s/it]
12%|█▏ | 116/1000 [04:15<32:13, 2.19s/it]
12%|█▏ | 117/1000 [04:17<31:13, 2.12s/it]
12%|█▏ | 117/1000 [04:17<31:13, 2.12s/it]
12%|█▏ | 118/1000 [04:18<29:39, 2.02s/it]
12%|█▏ | 118/1000 [04:18<29:39, 2.02s/it]
12%|█▏ | 119/1000 [04:20<28:35, 1.95s/it]
12%|█▏ | 119/1000 [04:20<28:35, 1.95s/it]
12%|█▏ | 120/1000 [04:22<27:51, 1.90s/it]
12%|█▏ | 120/1000 [04:22<27:51, 1.90s/it]
12%|█▏ | 121/1000 [04:24<27:20, 1.87s/it]
12%|█▏ | 121/1000 [04:24<27:20, 1.87s/it]
12%|█▏ | 122/1000 [04:25<26:53, 1.84s/it]
12%|█▏ | 122/1000 [04:25<26:53, 1.84s/it]
12%|█▏ | 123/1000 [04:27<26:32, 1.82s/it]
12%|█▏ | 123/1000 [04:27<26:32, 1.82s/it]
12%|█▏ | 124/1000 [04:29<25:51, 1.77s/it]
12%|█▏ | 124/1000 [04:29<25:51, 1.77s/it]
12%|█▎ | 125/1000 [04:30<24:35, 1.69s/it]
12%|█▎ | 125/1000 [04:30<24:35, 1.69s/it]
13%|█▎ | 126/1000 [04:32<23:40, 1.63s/it]
13%|█▎ | 126/1000 [04:32<23:40, 1.63s/it]
13%|█▎ | 127/1000 [04:33<23:04, 1.59s/it]
13%|█▎ | 127/1000 [04:33<23:04, 1.59s/it]
13%|█▎ | 128/1000 [04:35<22:36, 1.56s/it]
13%|█▎ | 128/1000 [04:35<22:36, 1.56s/it]
13%|█▎ | 129/1000 [04:36<22:15, 1.53s/it]
13%|█▎ | 129/1000 [04:36<22:15, 1.53s/it]
13%|█▎ | 130/1000 [04:38<22:01, 1.52s/it]
13%|█▎ | 130/1000 [04:38<22:01, 1.52s/it]
13%|█▎ | 131/1000 [04:39<21:48, 1.51s/it]
13%|█▎ | 131/1000 [04:39<21:48, 1.51s/it]
13%|█▎ | 132/1000 [04:41<21:06, 1.46s/it]
13%|█▎ | 132/1000 [04:41<21:06, 1.46s/it]
13%|█▎ | 133/1000 [04:42<19:59, 1.38s/it]
13%|█▎ | 133/1000 [04:42<19:59, 1.38s/it]
13%|█▎ | 134/1000 [04:43<19:13, 1.33s/it]
13%|█▎ | 134/1000 [04:43<19:13, 1.33s/it]
14%|█▎ | 135/1000 [04:44<18:41, 1.30s/it]
14%|█▎ | 135/1000 [04:44<18:41, 1.30s/it]
14%|█▎ | 136/1000 [04:45<18:20, 1.27s/it]
14%|█▎ | 136/1000 [04:45<18:20, 1.27s/it]
14%|█▎ | 137/1000 [04:47<18:02, 1.25s/it]
14%|█▎ | 137/1000 [04:47<18:02, 1.25s/it]
14%|█▍ | 138/1000 [04:48<17:53, 1.25s/it]
14%|█▍ | 138/1000 [04:48<17:53, 1.25s/it]
14%|█▍ | 139/1000 [04:49<17:44, 1.24s/it]
14%|█▍ | 139/1000 [04:49<17:44, 1.24s/it]
14%|█▍ | 140/1000 [04:50<17:06, 1.19s/it]
14%|█▍ | 140/1000 [04:50<17:06, 1.19s/it]
14%|█▍ | 141/1000 [04:51<15:55, 1.11s/it]
14%|█▍ | 141/1000 [04:51<15:55, 1.11s/it]
14%|█▍ | 142/1000 [04:52<15:06, 1.06s/it]
14%|█▍ | 142/1000 [04:52<15:06, 1.06s/it]
14%|█▍ | 143/1000 [04:53<14:31, 1.02s/it]
14%|█▍ | 143/1000 [04:53<14:31, 1.02s/it]
14%|█▍ | 144/1000 [04:54<14:06, 1.01it/s]
14%|█▍ | 144/1000 [04:54<14:06, 1.01it/s]
14%|█▍ | 145/1000 [04:55<13:48, 1.03it/s]
14%|█▍ | 145/1000 [04:55<13:48, 1.03it/s]
15%|█▍ | 146/1000 [04:56<13:23, 1.06it/s]
15%|█▍ | 146/1000 [04:56<13:23, 1.06it/s]
15%|█▍ | 147/1000 [04:56<12:24, 1.15it/s]
15%|█▍ | 147/1000 [04:56<12:24, 1.15it/s]
15%|█▍ | 148/1000 [04:57<11:31, 1.23it/s]
15%|█▍ | 148/1000 [04:57<11:31, 1.23it/s]
15%|█▍ | 149/1000 [04:58<10:57, 1.30it/s]
15%|█▍ | 149/1000 [04:58<10:57, 1.30it/s]
15%|█▌ | 150/1000 [05:00<18:25, 1.30s/it]
15%|█▌ | 150/1000 [05:00<18:25, 1.30s/it]
15%|█▌ | 151/1000 [05:08<45:57, 3.25s/it]
15%|█▌ | 151/1000 [05:08<45:57, 3.25s/it]
15%|█▌ | 152/1000 [05:13<51:31, 3.65s/it]
15%|█▌ | 152/1000 [05:13<51:31, 3.65s/it]
15%|█▌ | 153/1000 [05:17<53:05, 3.76s/it]
15%|█▌ | 153/1000 [05:17<53:05, 3.76s/it]
15%|█▌ | 154/1000 [05:20<52:22, 3.71s/it]
15%|█▌ | 154/1000 [05:20<52:22, 3.71s/it]
16%|█▌ | 155/1000 [05:24<50:47, 3.61s/it]
16%|█▌ | 155/1000 [05:24<50:47, 3.61s/it]
16%|█▌ | 156/1000 [05:27<48:26, 3.44s/it]
16%|█▌ | 156/1000 [05:27<48:26, 3.44s/it]
16%|█▌ | 157/1000 [05:30<45:48, 3.26s/it]
16%|█▌ | 157/1000 [05:30<45:48, 3.26s/it]
16%|█▌ | 158/1000 [05:32<43:28, 3.10s/it]
16%|█▌ | 158/1000 [05:32<43:28, 3.10s/it]
16%|█▌ | 159/1000 [05:35<41:29, 2.96s/it]
16%|█▌ | 159/1000 [05:35<41:29, 2.96s/it]
16%|█▌ | 160/1000 [05:37<39:22, 2.81s/it]
16%|█▌ | 160/1000 [05:37<39:22, 2.81s/it]
16%|█▌ | 161/1000 [05:40<37:29, 2.68s/it]
16%|█▌ | 161/1000 [05:40<37:29, 2.68s/it]
16%|█▌ | 162/1000 [05:42<36:07, 2.59s/it]
16%|█▌ | 162/1000 [05:42<36:07, 2.59s/it]
16%|█▋ | 163/1000 [05:44<34:14, 2.45s/it]
16%|█▋ | 163/1000 [05:44<34:14, 2.45s/it]
16%|█▋ | 164/1000 [05:46<32:34, 2.34s/it]
16%|█▋ | 164/1000 [05:46<32:34, 2.34s/it]
16%|█▋ | 165/1000 [05:48<31:32, 2.27s/it]
16%|█▋ | 165/1000 [05:48<31:32, 2.27s/it]
17%|█▋ | 166/1000 [05:50<30:40, 2.21s/it]
17%|█▋ | 166/1000 [05:51<30:40, 2.21s/it]
17%|█▋ | 167/1000 [05:53<30:03, 2.17s/it]
17%|█▋ | 167/1000 [05:53<30:03, 2.17s/it]
17%|█▋ | 168/1000 [05:55<29:14, 2.11s/it]
17%|█▋ | 168/1000 [05:55<29:14, 2.11s/it]
17%|█▋ | 169/1000 [05:56<27:44, 2.00s/it]
17%|█▋ | 169/1000 [05:56<27:44, 2.00s/it]
17%|█▋ | 170/1000 [05:58<26:42, 1.93s/it]
17%|█▋ | 170/1000 [05:58<26:42, 1.93s/it]
17%|█▋ | 171/1000 [06:00<25:57, 1.88s/it]
17%|█▋ | 171/1000 [06:00<25:57, 1.88s/it]
17%|█▋ | 172/1000 [06:02<25:27, 1.84s/it]
17%|█▋ | 172/1000 [06:02<25:27, 1.84s/it]
17%|█▋ | 173/1000 [06:03<25:05, 1.82s/it]
17%|█▋ | 173/1000 [06:03<25:05, 1.82s/it]
17%|█▋ | 174/1000 [06:05<24:46, 1.80s/it]
17%|█▋ | 174/1000 [06:05<24:46, 1.80s/it]
18%|█▊ | 175/1000 [06:07<23:38, 1.72s/it]
18%|█▊ | 175/1000 [06:07<23:38, 1.72s/it]
18%|█▊ | 176/1000 [06:08<22:39, 1.65s/it]
18%|█▊ | 176/1000 [06:08<22:39, 1.65s/it]
18%|█▊ | 177/1000 [06:10<22:02, 1.61s/it]
18%|█▊ | 177/1000 [06:10<22:02, 1.61s/it]
18%|█▊ | 178/1000 [06:11<21:26, 1.57s/it]
18%|█▊ | 178/1000 [06:11<21:26, 1.57s/it]
18%|█▊ | 179/1000 [06:13<21:05, 1.54s/it]
18%|█▊ | 179/1000 [06:13<21:05, 1.54s/it]
18%|█▊ | 180/1000 [06:14<20:51, 1.53s/it]
18%|█▊ | 180/1000 [06:14<20:51, 1.53s/it]
18%|█▊ | 181/1000 [06:16<20:38, 1.51s/it]
18%|█▊ | 181/1000 [06:16<20:38, 1.51s/it]
18%|█▊ | 182/1000 [06:17<19:59, 1.47s/it]
18%|█▊ | 182/1000 [06:17<19:59, 1.47s/it]
18%|█▊ | 183/1000 [06:18<18:59, 1.39s/it]
18%|█▊ | 183/1000 [06:18<18:59, 1.39s/it]
18%|█▊ | 184/1000 [06:19<18:18, 1.35s/it]
18%|█▊ | 184/1000 [06:19<18:18, 1.35s/it]
18%|█▊ | 185/1000 [06:21<17:46, 1.31s/it]
18%|█▊ | 185/1000 [06:21<17:46, 1.31s/it]
19%|█▊ | 186/1000 [06:22<17:21, 1.28s/it]
19%|█▊ | 186/1000 [06:22<17:21, 1.28s/it]
19%|█▊ | 187/1000 [06:23<17:04, 1.26s/it]
19%|█▊ | 187/1000 [06:23<17:04, 1.26s/it]
19%|█▉ | 188/1000 [06:24<16:52, 1.25s/it]
19%|█▉ | 188/1000 [06:24<16:52, 1.25s/it]
19%|█▉ | 189/1000 [06:25<16:42, 1.24s/it]
19%|█▉ | 189/1000 [06:25<16:42, 1.24s/it]
19%|█▉ | 190/1000 [06:26<15:41, 1.16s/it]
19%|█▉ | 190/1000 [06:26<15:41, 1.16s/it]
19%|█▉ | 191/1000 [06:27<14:42, 1.09s/it]
19%|█▉ | 191/1000 [06:27<14:42, 1.09s/it]
19%|█▉ | 192/1000 [06:28<14:00, 1.04s/it]
19%|█▉ | 192/1000 [06:28<14:00, 1.04s/it]
19%|█▉ | 193/1000 [06:29<13:30, 1.00s/it]
19%|█▉ | 193/1000 [06:29<13:30, 1.00s/it]
19%|█▉ | 194/1000 [06:30<13:10, 1.02it/s]
19%|█▉ | 194/1000 [06:30<13:10, 1.02it/s]
20%|█▉ | 195/1000 [06:31<12:58, 1.03it/s]
20%|█▉ | 195/1000 [06:31<12:58, 1.03it/s]
20%|█▉ | 196/1000 [06:32<12:44, 1.05it/s]
20%|█▉ | 196/1000 [06:32<12:44, 1.05it/s]
20%|█▉ | 197/1000 [06:33<11:48, 1.13it/s]
20%|█▉ | 197/1000 [06:33<11:48, 1.13it/s]
20%|█▉ | 198/1000 [06:33<10:55, 1.22it/s]
20%|█▉ | 198/1000 [06:33<10:55, 1.22it/s]
20%|█▉ | 199/1000 [06:34<10:19, 1.29it/s]
20%|█▉ | 199/1000 [06:34<10:19, 1.29it/s]
20%|██ | 200/1000 [06:37<17:29, 1.31s/it]
20%|██ | 200/1000 [06:37<17:29, 1.31s/it]
20%|██ | 201/1000 [06:44<41:17, 3.10s/it]
20%|██ | 201/1000 [06:44<41:17, 3.10s/it]
20%|██ | 202/1000 [06:48<46:05, 3.47s/it]
20%|██ | 202/1000 [06:48<46:05, 3.47s/it]
20%|██ | 203/1000 [06:52<47:06, 3.55s/it]
20%|██ | 203/1000 [06:52<47:06, 3.55s/it]
20%|██ | 204/1000 [06:55<46:47, 3.53s/it]
20%|██ | 204/1000 [06:55<46:47, 3.53s/it]
20%|██ | 205/1000 [06:59<45:17, 3.42s/it]
20%|██ | 205/1000 [06:59<45:17, 3.42s/it]
21%|██ | 206/1000 [07:02<43:22, 3.28s/it]
21%|██ | 206/1000 [07:02<43:22, 3.28s/it]
21%|██ | 207/1000 [07:04<41:44, 3.16s/it]
21%|██ | 207/1000 [07:04<41:44, 3.16s/it]
21%|██ | 208/1000 [07:07<39:50, 3.02s/it]
21%|██ | 208/1000 [07:07<39:50, 3.02s/it]
21%|██ | 209/1000 [07:10<38:17, 2.90s/it]
21%|██ | 209/1000 [07:10<38:17, 2.90s/it]
21%|██ | 210/1000 [07:12<36:28, 2.77s/it]
21%|██ | 210/1000 [07:12<36:28, 2.77s/it]
21%|██ | 211/1000 [07:15<34:45, 2.64s/it]
21%|██ | 211/1000 [07:15<34:45, 2.64s/it]
21%|██ | 212/1000 [07:17<33:34, 2.56s/it]
21%|██ | 212/1000 [07:17<33:34, 2.56s/it]
21%|██▏ | 213/1000 [07:19<32:11, 2.45s/it]
21%|██▏ | 213/1000 [07:19<32:11, 2.45s/it]
21%|██▏ | 214/1000 [07:21<30:38, 2.34s/it]
21%|██▏ | 214/1000 [07:21<30:38, 2.34s/it]
22%|██▏ | 215/1000 [07:23<29:29, 2.25s/it]
22%|██▏ | 215/1000 [07:23<29:29, 2.25s/it]
22%|██▏ | 216/1000 [07:25<28:40, 2.19s/it]
22%|██▏ | 216/1000 [07:25<28:40, 2.19s/it]
22%|██▏ | 217/1000 [07:27<27:58, 2.14s/it]
22%|██▏ | 217/1000 [07:27<27:58, 2.14s/it]
22%|██▏ | 218/1000 [07:29<26:39, 2.05s/it]
22%|██▏ | 218/1000 [07:29<26:39, 2.05s/it]
22%|██▏ | 219/1000 [07:31<25:27, 1.96s/it]
22%|██▏ | 219/1000 [07:31<25:27, 1.96s/it]
22%|██▏ | 220/1000 [07:33<24:38, 1.90s/it]
22%|██▏ | 220/1000 [07:33<24:38, 1.90s/it]
22%|██▏ | 221/1000 [07:34<24:00, 1.85s/it]
22%|██▏ | 221/1000 [07:34<24:00, 1.85s/it]
22%|██▏ | 222/1000 [07:36<23:36, 1.82s/it]
22%|██▏ | 222/1000 [07:36<23:36, 1.82s/it]
22%|██▏ | 223/1000 [07:38<23:17, 1.80s/it]
22%|██▏ | 223/1000 [07:38<23:17, 1.80s/it]
22%|██▏ | 224/1000 [07:40<23:04, 1.78s/it]
22%|██▏ | 224/1000 [07:40<23:04, 1.78s/it]
22%|██▎ | 225/1000 [07:41<22:27, 1.74s/it]
22%|██▎ | 225/1000 [07:41<22:27, 1.74s/it]
23%|██▎ | 226/1000 [07:43<21:25, 1.66s/it]
23%|██▎ | 226/1000 [07:43<21:25, 1.66s/it]
23%|██▎ | 227/1000 [07:44<20:41, 1.61s/it]
23%|██▎ | 227/1000 [07:44<20:41, 1.61s/it]
23%|██▎ | 228/1000 [07:46<20:10, 1.57s/it]
23%|██▎ | 228/1000 [07:46<20:10, 1.57s/it]
23%|██▎ | 229/1000 [07:47<19:47, 1.54s/it]
23%|██▎ | 229/1000 [07:47<19:47, 1.54s/it]
23%|██▎ | 230/1000 [07:49<19:33, 1.52s/it]
23%|██▎ | 230/1000 [07:49<19:33, 1.52s/it]
23%|██▎ | 231/1000 [07:50<19:20, 1.51s/it]
23%|██▎ | 231/1000 [07:50<19:20, 1.51s/it]
23%|██▎ | 232/1000 [07:52<19:14, 1.50s/it]
23%|██▎ | 232/1000 [07:52<19:14, 1.50s/it]
23%|██▎ | 233/1000 [07:53<18:55, 1.48s/it]
23%|██▎ | 233/1000 [07:53<18:55, 1.48s/it]
23%|██▎ | 234/1000 [07:54<18:03, 1.41s/it]
23%|██▎ | 234/1000 [07:54<18:03, 1.41s/it]
24%|██▎ | 235/1000 [07:56<17:15, 1.35s/it]
24%|██▎ | 235/1000 [07:56<17:15, 1.35s/it]
24%|██▎ | 236/1000 [07:57<16:46, 1.32s/it]
24%|██▎ | 236/1000 [07:57<16:46, 1.32s/it]
24%|██▎ | 237/1000 [07:58<16:19, 1.28s/it]
24%|██▎ | 237/1000 [07:58<16:19, 1.28s/it]
24%|██▍ | 238/1000 [07:59<16:01, 1.26s/it]
24%|██▍ | 238/1000 [07:59<16:01, 1.26s/it]
24%|██▍ | 239/1000 [08:00<15:51, 1.25s/it]
24%|██▍ | 239/1000 [08:00<15:51, 1.25s/it]
24%|██▍ | 240/1000 [08:02<15:39, 1.24s/it]
24%|██▍ | 240/1000 [08:02<15:39, 1.24s/it]
24%|██▍ | 241/1000 [08:03<14:40, 1.16s/it]
24%|██▍ | 241/1000 [08:03<14:40, 1.16s/it]
24%|██▍ | 242/1000 [08:03<13:46, 1.09s/it]
24%|██▍ | 242/1000 [08:04<13:46, 1.09s/it]
24%|██▍ | 243/1000 [08:04<13:07, 1.04s/it]
24%|██▍ | 243/1000 [08:04<13:07, 1.04s/it]
24%|██▍ | 244/1000 [08:05<12:41, 1.01s/it]
24%|██▍ | 244/1000 [08:05<12:41, 1.01s/it]
24%|██▍ | 245/1000 [08:06<12:20, 1.02it/s]
24%|██▍ | 245/1000 [08:06<12:20, 1.02it/s]
25%|██▍ | 246/1000 [08:07<12:06, 1.04it/s]
25%|██▍ | 246/1000 [08:07<12:06, 1.04it/s]
25%|██▍ | 247/1000 [08:08<11:29, 1.09it/s]
25%|██▍ | 247/1000 [08:08<11:29, 1.09it/s]
25%|██▍ | 248/1000 [08:09<10:33, 1.19it/s]
25%|██▍ | 248/1000 [08:09<10:33, 1.19it/s]
25%|██▍ | 249/1000 [08:09<09:53, 1.27it/s]
25%|██▍ | 249/1000 [08:09<09:53, 1.27it/s]
25%|██▌ | 250/1000 [08:12<16:17, 1.30s/it]
25%|██▌ | 250/1000 [08:12<16:17, 1.30s/it]
25%|██▌ | 251/1000 [08:19<38:59, 3.12s/it]
25%|██▌ | 251/1000 [08:19<38:59, 3.12s/it]
25%|██▌ | 252/1000 [08:23<42:47, 3.43s/it]
25%|██▌ | 252/1000 [08:23<42:47, 3.43s/it]
25%|██▌ | 253/1000 [08:27<43:49, 3.52s/it]
25%|██▌ | 253/1000 [08:27<43:49, 3.52s/it]
25%|██▌ | 254/1000 [08:30<43:09, 3.47s/it]
25%|██▌ | 254/1000 [08:30<43:09, 3.47s/it]
26%|██▌ | 255/1000 [08:34<42:01, 3.38s/it]
26%|██▌ | 255/1000 [08:34<42:01, 3.38s/it]
26%|██▌ | 256/1000 [08:37<40:28, 3.26s/it]
26%|██▌ | 256/1000 [08:37<40:28, 3.26s/it]
26%|██▌ | 257/1000 [08:39<38:47, 3.13s/it]
26%|██▌ | 257/1000 [08:39<38:47, 3.13s/it]
26%|██▌ | 258/1000 [08:42<37:03, 3.00s/it]
26%|██▌ | 258/1000 [08:42<37:03, 3.00s/it]
26%|██▌ | 259/1000 [08:45<35:49, 2.90s/it]
26%|██▌ | 259/1000 [08:45<35:49, 2.90s/it]
26%|██▌ | 260/1000 [08:47<34:05, 2.76s/it]
26%|██▌ | 260/1000 [08:47<34:05, 2.76s/it]
26%|██▌ | 261/1000 [08:50<32:40, 2.65s/it]
26%|██▌ | 261/1000 [08:50<32:40, 2.65s/it]
26%|██▌ | 262/1000 [08:52<31:40, 2.58s/it]
26%|██▌ | 262/1000 [08:52<31:40, 2.58s/it]
26%|██▋ | 263/1000 [08:54<30:54, 2.52s/it]
26%|██▋ | 263/1000 [08:54<30:54, 2.52s/it]
26%|██▋ | 264/1000 [08:57<29:48, 2.43s/it]
26%|██▋ | 264/1000 [08:57<29:48, 2.43s/it]
26%|██▋ | 265/1000 [08:59<28:27, 2.32s/it]
26%|██▋ | 265/1000 [08:59<28:27, 2.32s/it]
27%|██▋ | 266/1000 [09:01<27:29, 2.25s/it]
27%|██▋ | 266/1000 [09:01<27:29, 2.25s/it]
27%|██▋ | 267/1000 [09:03<26:48, 2.19s/it]
27%|██▋ | 267/1000 [09:03<26:48, 2.19s/it]
27%|██▋ | 268/1000 [09:05<26:14, 2.15s/it]
27%|██▋ | 268/1000 [09:05<26:14, 2.15s/it]
27%|██▋ | 269/1000 [09:07<25:03, 2.06s/it]
27%|██▋ | 269/1000 [09:07<25:03, 2.06s/it]
27%|██▋ | 270/1000 [09:09<23:58, 1.97s/it]
27%|██▋ | 270/1000 [09:09<23:58, 1.97s/it]
27%|██▋ | 271/1000 [09:10<23:09, 1.91s/it]
27%|██▋ | 271/1000 [09:10<23:09, 1.91s/it]
27%|██▋ | 272/1000 [09:12<22:43, 1.87s/it]
27%|██▋ | 272/1000 [09:12<22:43, 1.87s/it]
27%|██▋ | 273/1000 [09:14<22:16, 1.84s/it]
27%|██▋ | 273/1000 [09:14<22:16, 1.84s/it]
27%|██▋ | 274/1000 [09:16<21:54, 1.81s/it]
27%|██▋ | 274/1000 [09:16<21:54, 1.81s/it]
28%|██▊ | 275/1000 [09:17<21:37, 1.79s/it]
28%|██▊ | 275/1000 [09:17<21:37, 1.79s/it]
28%|██▊ | 276/1000 [09:19<20:40, 1.71s/it]
28%|██▊ | 276/1000 [09:19<20:40, 1.71s/it]
28%|██▊ | 277/1000 [09:20<19:48, 1.64s/it]
28%|██▊ | 277/1000 [09:20<19:48, 1.64s/it]
28%|██▊ | 278/1000 [09:22<19:16, 1.60s/it]
28%|██▊ | 278/1000 [09:22<19:16, 1.60s/it]
28%|██▊ | 279/1000 [09:23<18:50, 1.57s/it]
28%|██▊ | 279/1000 [09:23<18:50, 1.57s/it]
28%|██▊ | 280/1000 [09:25<18:30, 1.54s/it]
28%|██▊ | 280/1000 [09:25<18:30, 1.54s/it]
28%|██▊ | 281/1000 [09:26<18:14, 1.52s/it]
28%|██▊ | 281/1000 [09:26<18:14, 1.52s/it]
28%|██▊ | 282/1000 [09:28<18:04, 1.51s/it]
28%|██▊ | 282/1000 [09:28<18:04, 1.51s/it]
28%|██▊ | 283/1000 [09:29<17:40, 1.48s/it]
28%|██▊ | 283/1000 [09:29<17:40, 1.48s/it]
28%|██▊ | 284/1000 [09:30<16:52, 1.41s/it]
28%|██▊ | 284/1000 [09:30<16:52, 1.41s/it]
28%|██▊ | 285/1000 [09:32<16:08, 1.36s/it]
28%|██▊ | 285/1000 [09:32<16:08, 1.36s/it]
29%|██▊ | 286/1000 [09:33<15:37, 1.31s/it]
29%|██▊ | 286/1000 [09:33<15:37, 1.31s/it]
29%|██▊ | 287/1000 [09:34<15:15, 1.28s/it]
29%|██▊ | 287/1000 [09:34<15:15, 1.28s/it]
29%|██▉ | 288/1000 [09:35<14:57, 1.26s/it]
29%|██▉ | 288/1000 [09:35<14:57, 1.26s/it]
29%|██▉ | 289/1000 [09:37<14:51, 1.25s/it]
29%|██▉ | 289/1000 [09:37<14:51, 1.25s/it]
29%|██▉ | 290/1000 [09:38<14:32, 1.23s/it]
29%|██▉ | 290/1000 [09:38<14:32, 1.23s/it]
29%|██▉ | 291/1000 [09:39<13:40, 1.16s/it]
29%|██▉ | 291/1000 [09:39<13:40, 1.16s/it]
29%|██▉ | 292/1000 [09:40<12:49, 1.09s/it]
29%|██▉ | 292/1000 [09:40<12:49, 1.09s/it]
29%|██▉ | 293/1000 [09:41<12:13, 1.04s/it]
29%|██▉ | 293/1000 [09:41<12:13, 1.04s/it]
29%|██▉ | 294/1000 [09:41<11:58, 1.02s/it]
29%|██▉ | 294/1000 [09:42<11:58, 1.02s/it]
30%|██▉ | 295/1000 [09:42<11:38, 1.01it/s]
30%|██▉ | 295/1000 [09:42<11:38, 1.01it/s]
30%|██▉ | 296/1000 [09:43<11:24, 1.03it/s]
30%|██▉ | 296/1000 [09:43<11:24, 1.03it/s]
30%|██▉ | 297/1000 [09:44<10:41, 1.10it/s]
30%|██▉ | 297/1000 [09:44<10:41, 1.10it/s]
30%|██▉ | 298/1000 [09:45<09:50, 1.19it/s]
30%|██▉ | 298/1000 [09:45<09:50, 1.19it/s]
30%|██▉ | 299/1000 [09:45<09:13, 1.27it/s]
30%|██▉ | 299/1000 [09:45<09:13, 1.27it/s]
30%|███ | 300/1000 [09:48<15:05, 1.29s/it]
30%|███ | 300/1000 [09:48<15:05, 1.29s/it]
30%|███ | 301/1000 [09:55<36:31, 3.13s/it]
30%|███ | 301/1000 [09:55<36:31, 3.13s/it]
30%|███ | 302/1000 [10:00<40:10, 3.45s/it]
30%|███ | 302/1000 [10:00<40:10, 3.45s/it]
30%|███ | 303/1000 [10:03<40:54, 3.52s/it]
30%|███ | 303/1000 [10:03<40:54, 3.52s/it]
30%|███ | 304/1000 [10:07<40:20, 3.48s/it]
30%|███ | 304/1000 [10:07<40:20, 3.48s/it]
30%|███ | 305/1000 [10:10<39:19, 3.39s/it]
30%|███ | 305/1000 [10:10<39:19, 3.39s/it]
31%|███ | 306/1000 [10:13<37:41, 3.26s/it]
31%|███ | 306/1000 [10:13<37:41, 3.26s/it]
31%|███ | 307/1000 [10:15<35:51, 3.10s/it]
31%|███ | 307/1000 [10:16<35:51, 3.10s/it]
31%|███ | 308/1000 [10:18<34:17, 2.97s/it]
31%|███ | 308/1000 [10:18<34:17, 2.97s/it]
31%|███ | 309/1000 [10:21<32:23, 2.81s/it]
31%|███ | 309/1000 [10:21<32:23, 2.81s/it]
31%|███ | 310/1000 [10:23<30:53, 2.69s/it]
31%|███ | 310/1000 [10:23<30:53, 2.69s/it]
31%|███ | 311/1000 [10:25<29:44, 2.59s/it]
31%|███ | 311/1000 [10:25<29:44, 2.59s/it]
31%|███ | 312/1000 [10:28<28:11, 2.46s/it]
31%|███ | 312/1000 [10:28<28:11, 2.46s/it]
31%|███▏ | 313/1000 [10:30<26:48, 2.34s/it]
31%|███▏ | 313/1000 [10:30<26:48, 2.34s/it]
31%|███▏ | 314/1000 [10:32<25:51, 2.26s/it]
31%|███▏ | 314/1000 [10:32<25:51, 2.26s/it]
32%|███▏ | 315/1000 [10:34<25:10, 2.21s/it]
32%|███▏ | 315/1000 [10:34<25:10, 2.21s/it]
32%|███▏ | 316/1000 [10:36<24:40, 2.17s/it]
32%|███▏ | 316/1000 [10:36<24:40, 2.17s/it]
32%|███▏ | 317/1000 [10:38<24:03, 2.11s/it]
32%|███▏ | 317/1000 [10:38<24:03, 2.11s/it]
32%|███▏ | 318/1000 [10:40<23:03, 2.03s/it]
32%|███▏ | 318/1000 [10:40<23:03, 2.03s/it]
32%|███▏ | 319/1000 [10:41<22:16, 1.96s/it]
32%|███▏ | 319/1000 [10:41<22:16, 1.96s/it]
32%|███▏ | 320/1000 [10:43<21:31, 1.90s/it]
32%|███▏ | 320/1000 [10:43<21:31, 1.90s/it]
32%|███▏ | 321/1000 [10:45<20:59, 1.86s/it]
32%|███▏ | 321/1000 [10:45<20:59, 1.86s/it]
32%|███▏ | 322/1000 [10:47<20:35, 1.82s/it]
32%|███▏ | 322/1000 [10:47<20:35, 1.82s/it]
32%|███▏ | 323/1000 [10:48<20:18, 1.80s/it]
32%|███▏ | 323/1000 [10:48<20:18, 1.80s/it]
32%|███▏ | 324/1000 [10:50<19:44, 1.75s/it]
32%|███▏ | 324/1000 [10:50<19:44, 1.75s/it]
32%|███▎ | 325/1000 [10:52<18:47, 1.67s/it]
32%|███▎ | 325/1000 [10:52<18:47, 1.67s/it]
33%|███▎ | 326/1000 [10:53<18:10, 1.62s/it]
33%|███▎ | 326/1000 [10:53<18:10, 1.62s/it]
33%|███▎ | 327/1000 [10:55<17:40, 1.58s/it]
33%|███▎ | 327/1000 [10:55<17:40, 1.58s/it]
33%|███▎ | 328/1000 [10:56<17:19, 1.55s/it]
33%|███▎ | 328/1000 [10:56<17:19, 1.55s/it]
33%|███▎ | 329/1000 [10:57<17:03, 1.53s/it]
33%|███▎ | 329/1000 [10:57<17:03, 1.53s/it]
33%|███▎ | 330/1000 [10:59<16:53, 1.51s/it]
33%|███▎ | 330/1000 [10:59<16:53, 1.51s/it]
33%|███▎ | 331/1000 [11:00<16:45, 1.50s/it]
33%|███▎ | 331/1000 [11:00<16:45, 1.50s/it]
33%|███▎ | 332/1000 [11:02<16:11, 1.45s/it]
33%|███▎ | 332/1000 [11:02<16:11, 1.45s/it]
33%|███▎ | 333/1000 [11:03<15:19, 1.38s/it]
33%|███▎ | 333/1000 [11:03<15:19, 1.38s/it]
33%|███▎ | 334/1000 [11:04<14:45, 1.33s/it]
33%|███▎ | 334/1000 [11:04<14:45, 1.33s/it]
34%|███▎ | 335/1000 [11:05<14:22, 1.30s/it]
34%|███▎ | 335/1000 [11:05<14:22, 1.30s/it]
34%|███▎ | 336/1000 [11:07<14:06, 1.27s/it]
34%|███▎ | 336/1000 [11:07<14:06, 1.27s/it]
34%|███▎ | 337/1000 [11:08<13:53, 1.26s/it]
34%|███▎ | 337/1000 [11:08<13:53, 1.26s/it]
34%|███▍ | 338/1000 [11:09<13:43, 1.24s/it]
34%|███▍ | 338/1000 [11:09<13:43, 1.24s/it]
34%|███▍ | 339/1000 [11:10<13:34, 1.23s/it]
34%|███▍ | 339/1000 [11:10<13:34, 1.23s/it]
34%|███▍ | 340/1000 [11:11<13:22, 1.22s/it]
34%|███▍ | 340/1000 [11:11<13:22, 1.22s/it]
34%|███▍ | 341/1000 [11:12<12:23, 1.13s/it]
34%|███▍ | 341/1000 [11:12<12:23, 1.13s/it]
34%|███▍ | 342/1000 [11:13<11:42, 1.07s/it]
34%|███▍ | 342/1000 [11:13<11:42, 1.07s/it]
34%|███▍ | 343/1000 [11:14<11:13, 1.03s/it]
34%|███▍ | 343/1000 [11:14<11:13, 1.03s/it]
34%|███▍ | 344/1000 [11:15<10:52, 1.01it/s]
34%|███▍ | 344/1000 [11:15<10:52, 1.01it/s]
34%|███▍ | 345/1000 [11:16<10:37, 1.03it/s]
34%|███▍ | 345/1000 [11:16<10:37, 1.03it/s]
35%|███▍ | 346/1000 [11:17<10:09, 1.07it/s]
35%|███▍ | 346/1000 [11:17<10:09, 1.07it/s]
35%|███▍ | 347/1000 [11:18<09:18, 1.17it/s]
35%|███▍ | 347/1000 [11:18<09:18, 1.17it/s]
35%|███▍ | 348/1000 [11:18<08:41, 1.25it/s]
35%|███▍ | 348/1000 [11:18<08:41, 1.25it/s]
35%|███▍ | 349/1000 [11:19<08:16, 1.31it/s]
35%|███▍ | 349/1000 [11:19<08:16, 1.31it/s]
35%|███▌ | 350/1000 [11:21<14:07, 1.30s/it]
35%|███▌ | 350/1000 [11:22<14:07, 1.30s/it]
35%|███▌ | 351/1000 [11:28<31:19, 2.90s/it]
35%|███▌ | 351/1000 [11:28<31:19, 2.90s/it]
35%|███▌ | 352/1000 [11:32<35:45, 3.31s/it]
35%|███▌ | 352/1000 [11:32<35:45, 3.31s/it]
35%|███▌ | 353/1000 [11:36<37:07, 3.44s/it]
35%|███▌ | 353/1000 [11:36<37:07, 3.44s/it]
35%|███▌ | 354/1000 [11:40<36:58, 3.43s/it]
35%|███▌ | 354/1000 [11:40<36:58, 3.43s/it]
36%|███▌ | 355/1000 [11:43<36:08, 3.36s/it]
36%|███▌ | 355/1000 [11:43<36:08, 3.36s/it]
36%|███▌ | 356/1000 [11:46<34:50, 3.25s/it]
36%|███▌ | 356/1000 [11:46<34:50, 3.25s/it]
36%|███▌ | 357/1000 [11:49<33:37, 3.14s/it]
36%|███▌ | 357/1000 [11:49<33:37, 3.14s/it]
36%|███▌ | 358/1000 [11:51<32:08, 3.00s/it]
36%|███▌ | 358/1000 [11:51<32:08, 3.00s/it]
36%|███▌ | 359/1000 [11:54<31:11, 2.92s/it]
36%|███▌ | 359/1000 [11:54<31:11, 2.92s/it]
36%|███▌ | 360/1000 [11:57<29:57, 2.81s/it]
36%|███▌ | 360/1000 [11:57<29:57, 2.81s/it]
36%|███▌ | 361/1000 [11:59<28:30, 2.68s/it]
36%|███▌ | 361/1000 [11:59<28:30, 2.68s/it]
36%|███▌ | 362/1000 [12:01<27:29, 2.59s/it]
36%|███▌ | 362/1000 [12:01<27:29, 2.59s/it]
36%|███▋ | 363/1000 [12:04<26:31, 2.50s/it]
36%|███▋ | 363/1000 [12:04<26:31, 2.50s/it]
36%|███▋ | 364/1000 [12:06<25:16, 2.38s/it]
36%|███▋ | 364/1000 [12:06<25:16, 2.38s/it]
36%|███▋ | 365/1000 [12:08<24:15, 2.29s/it]
36%|███▋ | 365/1000 [12:08<24:15, 2.29s/it]
37%|███▋ | 366/1000 [12:10<23:32, 2.23s/it]
37%|███▋ | 366/1000 [12:10<23:32, 2.23s/it]
37%|███▋ | 367/1000 [12:12<23:10, 2.20s/it]
37%|███▋ | 367/1000 [12:12<23:10, 2.20s/it]
37%|███▋ | 368/1000 [12:14<22:32, 2.14s/it]
37%|███▋ | 368/1000 [12:14<22:32, 2.14s/it]
37%|███▋ | 369/1000 [12:16<21:30, 2.05s/it]
37%|███▋ | 369/1000 [12:16<21:30, 2.05s/it]
37%|███▋ | 370/1000 [12:18<20:32, 1.96s/it]
37%|███▋ | 370/1000 [12:18<20:32, 1.96s/it]
37%|███▋ | 371/1000 [12:19<19:52, 1.90s/it]
37%|███▋ | 371/1000 [12:19<19:52, 1.90s/it]
37%|███▋ | 372/1000 [12:21<19:23, 1.85s/it]
37%|███▋ | 372/1000 [12:21<19:23, 1.85s/it]
37%|███▋ | 373/1000 [12:23<19:03, 1.82s/it]
37%|███▋ | 373/1000 [12:23<19:03, 1.82s/it]
37%|███▋ | 374/1000 [12:25<18:48, 1.80s/it]
37%|███▋ | 374/1000 [12:25<18:48, 1.80s/it]
38%|███▊ | 375/1000 [12:26<17:59, 1.73s/it]
38%|███▊ | 375/1000 [12:26<17:59, 1.73s/it]
38%|███▊ | 376/1000 [12:28<17:11, 1.65s/it]
38%|███▊ | 376/1000 [12:28<17:11, 1.65s/it]
38%|███▊ | 377/1000 [12:29<16:37, 1.60s/it]
38%|███▊ | 377/1000 [12:29<16:37, 1.60s/it]
38%|███▊ | 378/1000 [12:31<16:13, 1.56s/it]
38%|███▊ | 378/1000 [12:31<16:13, 1.56s/it]
38%|███▊ | 379/1000 [12:32<15:56, 1.54s/it]
38%|███▊ | 379/1000 [12:32<15:56, 1.54s/it]
38%|███▊ | 380/1000 [12:34<15:43, 1.52s/it]
38%|███▊ | 380/1000 [12:34<15:43, 1.52s/it]
38%|███▊ | 381/1000 [12:35<15:33, 1.51s/it]
38%|███▊ | 381/1000 [12:35<15:33, 1.51s/it]
38%|███▊ | 382/1000 [12:37<15:28, 1.50s/it]
38%|███▊ | 382/1000 [12:37<15:28, 1.50s/it]
38%|███▊ | 383/1000 [12:38<14:54, 1.45s/it]
38%|███▊ | 383/1000 [12:38<14:54, 1.45s/it]
38%|███▊ | 384/1000 [12:39<14:08, 1.38s/it]
38%|███▊ | 384/1000 [12:39<14:08, 1.38s/it]
38%|███▊ | 385/1000 [12:40<13:38, 1.33s/it]
38%|███▊ | 385/1000 [12:40<13:38, 1.33s/it]
39%|███▊ | 386/1000 [12:41<13:16, 1.30s/it]
39%|███▊ | 386/1000 [12:42<13:16, 1.30s/it]
39%|███▊ | 387/1000 [12:43<13:02, 1.28s/it]
39%|███▊ | 387/1000 [12:43<13:02, 1.28s/it]
39%|███▉ | 388/1000 [12:44<12:50, 1.26s/it]
39%|███▉ | 388/1000 [12:44<12:50, 1.26s/it]
39%|███▉ | 389/1000 [12:45<12:40, 1.24s/it]
39%|███▉ | 389/1000 [12:45<12:40, 1.24s/it]
39%|███▉ | 390/1000 [12:46<12:25, 1.22s/it]
39%|███▉ | 390/1000 [12:46<12:25, 1.22s/it]
39%|███▉ | 391/1000 [12:47<11:40, 1.15s/it]
39%|███▉ | 391/1000 [12:47<11:40, 1.15s/it]
39%|███▉ | 392/1000 [12:48<10:58, 1.08s/it]
39%|███▉ | 392/1000 [12:48<10:58, 1.08s/it]
39%|███▉ | 393/1000 [12:49<10:28, 1.04s/it]
39%|███▉ | 393/1000 [12:49<10:28, 1.04s/it]
39%|███▉ | 394/1000 [12:50<10:08, 1.00s/it]
39%|███▉ | 394/1000 [12:50<10:08, 1.00s/it]
40%|███▉ | 395/1000 [12:51<09:53, 1.02it/s]
40%|███▉ | 395/1000 [12:51<09:53, 1.02it/s]
40%|███▉ | 396/1000 [12:52<09:39, 1.04it/s]
40%|███▉ | 396/1000 [12:52<09:39, 1.04it/s]
40%|███▉ | 397/1000 [12:53<08:53, 1.13it/s]
40%|███▉ | 397/1000 [12:53<08:53, 1.13it/s]
40%|███▉ | 398/1000 [12:53<08:14, 1.22it/s]
40%|███▉ | 398/1000 [12:53<08:14, 1.22it/s]
40%|███▉ | 399/1000 [12:54<07:52, 1.27it/s]
40%|███▉ | 399/1000 [12:54<07:52, 1.27it/s]
40%|████ | 400/1000 [12:57<13:39, 1.37s/it]
40%|████ | 400/1000 [12:57<13:39, 1.37s/it]
40%|████ | 401/1000 [13:05<35:21, 3.54s/it]
40%|████ | 401/1000 [13:05<35:21, 3.54s/it]
40%|████ | 402/1000 [13:10<37:28, 3.76s/it]
40%|████ | 402/1000 [13:10<37:28, 3.76s/it]
40%|████ | 403/1000 [13:13<37:06, 3.73s/it]
40%|████ | 403/1000 [13:13<37:06, 3.73s/it]
40%|████ | 404/1000 [13:17<35:34, 3.58s/it]
40%|████ | 404/1000 [13:17<35:34, 3.58s/it]
40%|████ | 405/1000 [13:19<33:39, 3.39s/it]
40%|████ | 405/1000 [13:19<33:39, 3.39s/it]
41%|████ | 406/1000 [13:22<31:53, 3.22s/it]
41%|████ | 406/1000 [13:22<31:53, 3.22s/it]
41%|████ | 407/1000 [13:25<30:20, 3.07s/it]
41%|████ | 407/1000 [13:25<30:20, 3.07s/it]
41%|████ | 408/1000 [13:28<28:54, 2.93s/it]
41%|████ | 408/1000 [13:28<28:54, 2.93s/it]
41%|████ | 409/1000 [13:30<27:24, 2.78s/it]
41%|████ | 409/1000 [13:30<27:24, 2.78s/it]
41%|████ | 410/1000 [13:32<26:10, 2.66s/it]
41%|████ | 410/1000 [13:32<26:10, 2.66s/it]
41%|████ | 411/1000 [13:35<25:17, 2.58s/it]
41%|████ | 411/1000 [13:35<25:17, 2.58s/it]
41%|████ | 412/1000 [13:37<24:17, 2.48s/it]
41%|████ | 412/1000 [13:37<24:17, 2.48s/it]
41%|████▏ | 413/1000 [13:39<23:07, 2.36s/it]
41%|████▏ | 413/1000 [13:39<23:07, 2.36s/it]
41%|███��▏ | 414/1000 [13:41<22:12, 2.27s/it]
41%|████▏ | 414/1000 [13:41<22:12, 2.27s/it]
42%|████▏ | 415/1000 [13:43<21:43, 2.23s/it]
42%|████▏ | 415/1000 [13:43<21:43, 2.23s/it]
42%|████▏ | 416/1000 [13:45<21:11, 2.18s/it]
42%|████▏ | 416/1000 [13:45<21:11, 2.18s/it]
42%|████▏ | 417/1000 [13:47<20:28, 2.11s/it]
42%|████▏ | 417/1000 [13:47<20:28, 2.11s/it]
42%|████▏ | 418/1000 [13:49<19:23, 2.00s/it]
42%|████▏ | 418/1000 [13:49<19:23, 2.00s/it]
42%|████▏ | 419/1000 [13:51<18:36, 1.92s/it]
42%|████▏ | 419/1000 [13:51<18:36, 1.92s/it]
42%|████▏ | 420/1000 [13:53<18:03, 1.87s/it]
42%|████▏ | 420/1000 [13:53<18:03, 1.87s/it]
42%|████▏ | 421/1000 [13:54<17:40, 1.83s/it]
42%|████▏ | 421/1000 [13:54<17:40, 1.83s/it]
42%|████▏ | 422/1000 [13:56<17:27, 1.81s/it]
42%|████▏ | 422/1000 [13:56<17:27, 1.81s/it]
42%|████▏ | 423/1000 [13:58<17:13, 1.79s/it]
42%|████▏ | 423/1000 [13:58<17:13, 1.79s/it]
42%|████▏ | 424/1000 [13:59<16:50, 1.75s/it]
42%|████▏ | 424/1000 [14:00<16:50, 1.75s/it]
42%|████▎ | 425/1000 [14:01<16:06, 1.68s/it]
42%|████▎ | 425/1000 [14:01<16:06, 1.68s/it]
43%|████▎ | 426/1000 [14:02<15:29, 1.62s/it]
43%|████▎ | 426/1000 [14:03<15:29, 1.62s/it]
43%|████▎ | 427/1000 [14:04<15:02, 1.58s/it]
43%|████▎ | 427/1000 [14:04<15:02, 1.58s/it]
43%|████▎ | 428/1000 [14:05<14:44, 1.55s/it]
43%|████▎ | 428/1000 [14:05<14:44, 1.55s/it]
43%|████▎ | 429/1000 [14:07<14:30, 1.53s/it]
43%|████▎ | 429/1000 [14:07<14:30, 1.53s/it]
43%|████▎ | 430/1000 [14:08<14:21, 1.51s/it]
43%|████▎ | 430/1000 [14:08<14:21, 1.51s/it]
43%|████▎ | 431/1000 [14:10<14:16, 1.51s/it]
43%|████▎ | 431/1000 [14:10<14:16, 1.51s/it]
43%|████▎ | 432/1000 [14:11<14:09, 1.50s/it]
43%|████▎ | 432/1000 [14:11<14:09, 1.50s/it]
43%|████▎ | 433/1000 [14:13<13:27, 1.42s/it]
43%|████▎ | 433/1000 [14:13<13:27, 1.42s/it]
43%|████▎ | 434/1000 [14:14<12:50, 1.36s/it]
43%|████▎ | 434/1000 [14:14<12:50, 1.36s/it]
44%|████▎ | 435/1000 [14:15<12:22, 1.31s/it]
44%|████▎ | 435/1000 [14:15<12:22, 1.31s/it]
44%|████▎ | 436/1000 [14:16<12:01, 1.28s/it]
44%|████▎ | 436/1000 [14:16<12:01, 1.28s/it]
44%|████▎ | 437/1000 [14:17<11:47, 1.26s/it]
44%|████▎ | 437/1000 [14:17<11:47, 1.26s/it]
44%|████▍ | 438/1000 [14:19<11:36, 1.24s/it]
44%|████▍ | 438/1000 [14:19<11:36, 1.24s/it]
44%|████▍ | 439/1000 [14:20<11:29, 1.23s/it]
44%|████▍ | 439/1000 [14:20<11:29, 1.23s/it]
44%|████▍ | 440/1000 [14:21<11:21, 1.22s/it]
44%|████▍ | 440/1000 [14:21<11:21, 1.22s/it]
44%|████▍ | 441/1000 [14:22<10:41, 1.15s/it]
44%|████▍ | 441/1000 [14:22<10:41, 1.15s/it]
44%|████▍ | 442/1000 [14:23<10:03, 1.08s/it]
44%|████▍ | 442/1000 [14:23<10:03, 1.08s/it]
44%|████▍ | 443/1000 [14:24<09:36, 1.03s/it]
44%|████▍ | 443/1000 [14:24<09:36, 1.03s/it]
44%|████▍ | 444/1000 [14:25<09:17, 1.00s/it]
44%|████▍ | 444/1000 [14:25<09:17, 1.00s/it]
44%|████▍ | 445/1000 [14:26<09:02, 1.02it/s]
44%|████▍ | 445/1000 [14:26<09:02, 1.02it/s]
45%|████▍ | 446/1000 [14:27<08:51, 1.04it/s]
45%|████▍ | 446/1000 [14:27<08:51, 1.04it/s]
45%|████▍ | 447/1000 [14:27<08:08, 1.13it/s]
45%|████▍ | 447/1000 [14:27<08:08, 1.13it/s]
45%|████▍ | 448/1000 [14:28<07:32, 1.22it/s]
45%|████▍ | 448/1000 [14:28<07:32, 1.22it/s]
45%|████▍ | 449/1000 [14:29<07:06, 1.29it/s]
45%|████▍ | 449/1000 [14:29<07:06, 1.29it/s]
45%|████▌ | 450/1000 [14:31<12:16, 1.34s/it]
45%|████▌ | 450/1000 [14:31<12:16, 1.34s/it]
45%|████▌ | 451/1000 [14:39<28:26, 3.11s/it]
45%|████▌ | 451/1000 [14:39<28:26, 3.11s/it]
45%|████▌ | 452/1000 [14:43<31:43, 3.47s/it]
45%|████▌ | 452/1000 [14:43<31:43, 3.47s/it]
45%|████▌ | 453/1000 [14:47<32:16, 3.54s/it]
45%|████▌ | 453/1000 [14:47<32:16, 3.54s/it]
45%|████▌ | 454/1000 [14:50<31:46, 3.49s/it]
45%|████▌ | 454/1000 [14:50<31:46, 3.49s/it]
46%|████▌ | 455/1000 [14:53<30:55, 3.40s/it]
46%|████▌ | 455/1000 [14:53<30:55, 3.40s/it]
46%|████▌ | 456/1000 [14:56<29:45, 3.28s/it]
46%|████▌ | 456/1000 [14:56<29:45, 3.28s/it]
46%|████▌ | 457/1000 [14:59<28:15, 3.12s/it]
46%|████▌ | 457/1000 [14:59<28:15, 3.12s/it]
46%|████▌ | 458/1000 [15:02<26:59, 2.99s/it]
46%|████▌ | 458/1000 [15:02<26:59, 2.99s/it]
46%|████▌ | 459/1000 [15:04<25:43, 2.85s/it]
46%|████▌ | 459/1000 [15:04<25:43, 2.85s/it]
46%|████▌ | 460/1000 [15:06<24:19, 2.70s/it]
46%|████▌ | 460/1000 [15:07<24:19, 2.70s/it]
46%|████▌ | 461/1000 [15:09<23:25, 2.61s/it]
46%|████▌ | 461/1000 [15:09<23:25, 2.61s/it]
46%|████▌ | 462/1000 [15:11<22:39, 2.53s/it]
46%|████▌ | 462/1000 [15:11<22:39, 2.53s/it]
46%|████▋ | 463/1000 [15:13<21:31, 2.40s/it]
46%|████▋ | 463/1000 [15:13<21:31, 2.40s/it]
46%|████▋ | 464/1000 [15:15<20:34, 2.30s/it]
46%|████▋ | 464/1000 [15:15<20:34, 2.30s/it]
46%|████▋ | 465/1000 [15:17<19:53, 2.23s/it]
46%|████▋ | 465/1000 [15:17<19:53, 2.23s/it]
47%|████▋ | 466/1000 [15:20<19:24, 2.18s/it]
47%|████▋ | 466/1000 [15:20<19:24, 2.18s/it]
47%|████▋ | 467/1000 [15:21<18:46, 2.11s/it]
47%|████▋ | 467/1000 [15:21<18:46, 2.11s/it]
47%|████▋ | 468/1000 [15:23<17:47, 2.01s/it]
47%|████▋ | 468/1000 [15:23<17:47, 2.01s/it]
47%|████▋ | 469/1000 [15:25<17:04, 1.93s/it]
47%|████▋ | 469/1000 [15:25<17:04, 1.93s/it]
47%|████▋ | 470/1000 [15:27<16:31, 1.87s/it]
47%|████▋ | 470/1000 [15:27<16:31, 1.87s/it]
47%|████▋ | 471/1000 [15:28<16:09, 1.83s/it]
47%|████▋ | 471/1000 [15:28<16:09, 1.83s/it]
47%|████▋ | 472/1000 [15:30<15:52, 1.80s/it]
47%|████▋ | 472/1000 [15:30<15:52, 1.80s/it]
47%|████▋ | 473/1000 [15:32<15:40, 1.78s/it]
47%|████▋ | 473/1000 [15:32<15:40, 1.78s/it]
47%|████▋ | 474/1000 [15:34<15:14, 1.74s/it]
47%|████▋ | 474/1000 [15:34<15:14, 1.74s/it]
48%|████▊ | 475/1000 [15:35<14:32, 1.66s/it]
48%|████▊ | 475/1000 [15:35<14:32, 1.66s/it]
48%|████▊ | 476/1000 [15:37<14:02, 1.61s/it]
48%|████▊ | 476/1000 [15:37<14:02, 1.61s/it]
48%|████▊ | 477/1000 [15:38<13:40, 1.57s/it]
48%|████▊ | 477/1000 [15:38<13:40, 1.57s/it]
48%|████▊ | 478/1000 [15:39<13:23, 1.54s/it]
48%|████▊ | 478/1000 [15:40<13:23, 1.54s/it]
48%|████▊ | 479/1000 [15:41<13:12, 1.52s/it]
48%|████▊ | 479/1000 [15:41<13:12, 1.52s/it]
48%|████▊ | 480/1000 [15:42<13:02, 1.50s/it]
48%|████▊ | 480/1000 [15:42<13:02, 1.50s/it]
48%|████▊ | 481/1000 [15:44<12:55, 1.49s/it]
48%|████▊ | 481/1000 [15:44<12:55, 1.49s/it]
48%|████▊ | 482/1000 [15:45<12:46, 1.48s/it]
48%|████▊ | 482/1000 [15:45<12:46, 1.48s/it]
48%|████▊ | 483/1000 [15:47<12:10, 1.41s/it]
48%|████▊ | 483/1000 [15:47<12:10, 1.41s/it]
48%|████▊ | 484/1000 [15:48<11:36, 1.35s/it]
48%|████▊ | 484/1000 [15:48<11:36, 1.35s/it]
48%|████▊ | 485/1000 [15:49<11:12, 1.31s/it]
48%|████▊ | 485/1000 [15:49<11:12, 1.31s/it]
49%|████▊ | 486/1000 [15:50<10:57, 1.28s/it]
49%|████▊ | 486/1000 [15:50<10:57, 1.28s/it]
49%|████▊ | 487/1000 [15:51<10:45, 1.26s/it]
49%|████▊ | 487/1000 [15:51<10:45, 1.26s/it]
49%|████▉ | 488/1000 [15:53<10:35, 1.24s/it]
49%|████▉ | 488/1000 [15:53<10:35, 1.24s/it]
49%|████▉ | 489/1000 [15:54<10:27, 1.23s/it]
49%|████▉ | 489/1000 [15:54<10:27, 1.23s/it]
49%|████▉ | 490/1000 [15:55<10:23, 1.22s/it]
49%|████▉ | 490/1000 [15:55<10:23, 1.22s/it]
49%|████▉ | 491/1000 [15:56<09:56, 1.17s/it]
49%|████▉ | 491/1000 [15:56<09:56, 1.17s/it]
49%|████▉ | 492/1000 [15:57<09:16, 1.10s/it]
49%|████▉ | 492/1000 [15:57<09:16, 1.10s/it]
49%|████▉ | 493/1000 [15:58<08:48, 1.04s/it]
49%|████▉ | 493/1000 [15:58<08:48, 1.04s/it]
49%|████▉ | 494/1000 [15:59<08:28, 1.00s/it]
49%|████▉ | 494/1000 [15:59<08:28, 1.00s/it]
50%|████▉ | 495/1000 [16:00<08:14, 1.02it/s]
50%|████▉ | 495/1000 [16:00<08:14, 1.02it/s]
50%|████▉ | 496/1000 [16:01<08:04, 1.04it/s]
50%|████▉ | 496/1000 [16:01<08:04, 1.04it/s]
50%|████▉ | 497/1000 [16:01<07:37, 1.10it/s]
50%|████▉ | 497/1000 [16:01<07:37, 1.10it/s]
50%|████▉ | 498/1000 [16:02<07:00, 1.19it/s]
50%|████▉ | 498/1000 [16:02<07:00, 1.19it/s]
50%|████▉ | 499/1000 [16:03<06:33, 1.27it/s]
50%|████▉ | 499/1000 [16:03<06:33, 1.27it/s]
50%|█████ | 500/1000 [16:05<10:42, 1.29s/it]
50%|█████ | 500/1000 [16:05<10:42, 1.29s/it]
50%|█████ | 501/1000 [16:12<23:32, 2.83s/it]
50%|█████ | 501/1000 [16:12<23:32, 2.83s/it]
50%|█████ | 502/1000 [16:16<27:03, 3.26s/it]
50%|█████ | 502/1000 [16:16<27:03, 3.26s/it]
50%|█████ | 503/1000 [16:20<27:57, 3.38s/it]
50%|█████ | 503/1000 [16:20<27:57, 3.38s/it]
50%|█████ | 504/1000 [16:23<27:48, 3.36s/it]
50%|█████ | 504/1000 [16:23<27:48, 3.36s/it]
50%|█████ | 505/1000 [16:26<26:56, 3.27s/it]
50%|█████ | 505/1000 [16:26<26:56, 3.27s/it]
51%|█████ | 506/1000 [16:29<25:49, 3.14s/it]
51%|█████ | 506/1000 [16:29<25:49, 3.14s/it]
51%|█████ | 507/1000 [16:31<24:35, 2.99s/it]
51%|█████ | 507/1000 [16:31<24:35, 2.99s/it]
51%|█████ | 508/1000 [16:34<23:27, 2.86s/it]
51%|█████ | 508/1000 [16:34<23:27, 2.86s/it]
51%|█████ | 509/1000 [16:36<22:13, 2.72s/it]
51%|█████ | 509/1000 [16:36<22:13, 2.72s/it]
51%|█████ | 510/1000 [16:39<21:19, 2.61s/it]
51%|█████ | 510/1000 [16:39<21:19, 2.61s/it]
51%|█████ | 511/1000 [16:41<20:34, 2.52s/it]
51%|█████ | 511/1000 [16:41<20:34, 2.52s/it]
51%|█████ | 512/1000 [16:43<19:42, 2.42s/it]
51%|█████ | 512/1000 [16:43<19:42, 2.42s/it]
51%|█████▏ | 513/1000 [16:45<18:59, 2.34s/it]
51%|█████▏ | 513/1000 [16:45<18:59, 2.34s/it]
51%|█████▏ | 514/1000 [16:48<18:20, 2.26s/it]
51%|█████▏ | 514/1000 [16:48<18:20, 2.26s/it]
52%|█████▏ | 515/1000 [16:50<17:58, 2.22s/it]
52%|█████▏ | 515/1000 [16:50<17:58, 2.22s/it]
52%|█████▏ | 516/1000 [16:53<20:31, 2.54s/it]
52%|█████▏ | 516/1000 [16:53<20:31, 2.54s/it]
52%|█████▏ | 517/1000 [16:55<19:26, 2.42s/it]
52%|█████▏ | 517/1000 [16:55<19:26, 2.42s/it]
52%|█████▏ | 518/1000 [16:57<17:54, 2.23s/it]
52%|█████▏ | 518/1000 [16:57<17:54, 2.23s/it]
52%|█████▏ | 519/1000 [16:59<16:43, 2.09s/it]
52%|█████▏ | 519/1000 [16:59<16:43, 2.09s/it]
52%|█████▏ | 520/1000 [17:00<15:53, 1.99s/it]
52%|█████▏ | 520/1000 [17:00<15:53, 1.99s/it]
52%|█████▏ | 521/1000 [17:02<15:24, 1.93s/it]
52%|█████▏ | 521/1000 [17:02<15:24, 1.93s/it]
52%|█████▏ | 522/1000 [17:04<14:59, 1.88s/it]
52%|█████▏ | 522/1000 [17:04<14:59, 1.88s/it]
52%|█████▏ | 523/1000 [17:06<14:30, 1.82s/it]
52%|█████▏ | 523/1000 [17:06<14:30, 1.82s/it]
52%|█████▏ | 524/1000 [17:07<13:45, 1.73s/it]
52%|█████▏ | 524/1000 [17:07<13:45, 1.73s/it]
52%|█████▎ | 525/1000 [17:09<13:19, 1.68s/it]
52%|█████▎ | 525/1000 [17:09<13:19, 1.68s/it]
53%|█████▎ | 526/1000 [17:10<12:53, 1.63s/it]
53%|█████▎ | 526/1000 [17:10<12:53, 1.63s/it]
53%|█████▎ | 527/1000 [17:12<12:33, 1.59s/it]
53%|█████▎ | 527/1000 [17:12<12:33, 1.59s/it]
53%|█████▎ | 528/1000 [17:13<12:25, 1.58s/it]
53%|█████▎ | 528/1000 [17:13<12:25, 1.58s/it]
53%|█████▎ | 529/1000 [17:15<12:19, 1.57s/it]
53%|█████▎ | 529/1000 [17:15<12:19, 1.57s/it]
53%|█████▎ | 530/1000 [17:16<12:19, 1.57s/it]
53%|█████▎ | 530/1000 [17:16<12:19, 1.57s/it]
53%|█████▎ | 531/1000 [17:18<12:04, 1.54s/it]
53%|█████▎ | 531/1000 [17:18<12:04, 1.54s/it]
53%|█████▎ | 532/1000 [17:19<11:22, 1.46s/it]
53%|█████▎ | 532/1000 [17:19<11:22, 1.46s/it]
53%|█████▎ | 533/1000 [17:20<10:50, 1.39s/it]
53%|█████▎ | 533/1000 [17:20<10:50, 1.39s/it]
53%|█████▎ | 534/1000 [17:22<10:22, 1.34s/it]
53%|█████▎ | 534/1000 [17:22<10:22, 1.34s/it]
54%|█████▎ | 535/1000 [17:23<10:04, 1.30s/it]
54%|█████▎ | 535/1000 [17:23<10:04, 1.30s/it]
54%|█████▎ | 536/1000 [17:24<09:55, 1.28s/it]
54%|█████▎ | 536/1000 [17:24<09:55, 1.28s/it]
54%|█████▎ | 537/1000 [17:25<09:43, 1.26s/it]
54%|█████▎ | 537/1000 [17:25<09:43, 1.26s/it]
54%|█████▍ | 538/1000 [17:26<09:39, 1.26s/it]
54%|█████▍ | 538/1000 [17:26<09:39, 1.26s/it]
54%|█████▍ | 539/1000 [17:28<09:31, 1.24s/it]
54%|█████▍ | 539/1000 [17:28<09:31, 1.24s/it]
54%|█████▍ | 540/1000 [17:29<09:04, 1.18s/it]
54%|█████▍ | 540/1000 [17:29<09:04, 1.18s/it]
54%|█████▍ | 541/1000 [17:30<08:27, 1.11s/it]
54%|█████▍ | 541/1000 [17:30<08:27, 1.11s/it]
54%|█████▍ | 542/1000 [17:31<08:00, 1.05s/it]
54%|█████▍ | 542/1000 [17:31<08:00, 1.05s/it]
54%|█████▍ | 543/1000 [17:31<07:41, 1.01s/it]
54%|█████▍ | 543/1000 [17:32<07:41, 1.01s/it]
54%|█████▍ | 544/1000 [17:32<07:31, 1.01it/s]
54%|█████▍ | 544/1000 [17:32<07:31, 1.01it/s]
55%|█████▍ | 545/1000 [17:33<07:20, 1.03it/s]
55%|█████▍ | 545/1000 [17:33<07:20, 1.03it/s]
55%|█████▍ | 546/1000 [17:34<07:13, 1.05it/s]
55%|█████▍ | 546/1000 [17:34<07:13, 1.05it/s]
55%|█████▍ | 547/1000 [17:35<06:39, 1.13it/s]
55%|█████▍ | 547/1000 [17:35<06:39, 1.13it/s]
55%|█████▍ | 548/1000 [17:36<06:09, 1.22it/s]
55%|█████▍ | 548/1000 [17:36<06:09, 1.22it/s]
55%|█████▍ | 549/1000 [17:36<05:52, 1.28it/s]
55%|█████▍ | 549/1000 [17:36<05:52, 1.28it/s]
55%|█████▌ | 550/1000 [17:39<10:39, 1.42s/it]
55%|█████▌ | 550/1000 [17:39<10:39, 1.42s/it]
55%|█████▌ | 551/1000 [17:48<26:21, 3.52s/it]
55%|█████▌ | 551/1000 [17:48<26:21, 3.52s/it]
55%|█████▌ | 552/1000 [17:52<28:14, 3.78s/it]
55%|█████▌ | 552/1000 [17:52<28:14, 3.78s/it]
55%|█████▌ | 553/1000 [17:56<28:34, 3.84s/it]
55%|█████▌ | 553/1000 [17:56<28:34, 3.84s/it]
55%|█████▌ | 554/1000 [17:59<27:34, 3.71s/it]
55%|█████▌ | 554/1000 [17:59<27:34, 3.71s/it]
56%|█████▌ | 555/1000 [18:03<26:19, 3.55s/it]
56%|█████▌ | 555/1000 [18:03<26:19, 3.55s/it]
56%|█████▌ | 556/1000 [18:06<25:06, 3.39s/it]
56%|█████▌ | 556/1000 [18:06<25:06, 3.39s/it]
56%|█████▌ | 557/1000 [18:08<23:48, 3.22s/it]
56%|█████▌ | 557/1000 [18:09<23:48, 3.22s/it]
56%|█████▌ | 558/1000 [18:11<22:33, 3.06s/it]
56%|█████▌ | 558/1000 [18:11<22:33, 3.06s/it]
56%|█████▌ | 559/1000 [18:14<21:49, 2.97s/it]
56%|█████▌ | 559/1000 [18:14<21:49, 2.97s/it]
56%|█████▌ | 560/1000 [18:16<20:35, 2.81s/it]
56%|█████▌ | 560/1000 [18:16<20:35, 2.81s/it]
56%|█████▌ | 561/1000 [18:19<19:39, 2.69s/it]
56%|█████▌ | 561/1000 [18:19<19:39, 2.69s/it]
56%|█████▌ | 562/1000 [18:21<19:01, 2.61s/it]
56%|█████▌ | 562/1000 [18:21<19:01, 2.61s/it]
56%|█████▋ | 563/1000 [18:24<18:28, 2.54s/it]
56%|█████▋ | 563/1000 [18:24<18:28, 2.54s/it]
56%|█████▋ | 564/1000 [18:26<17:35, 2.42s/it]
56%|█████▋ | 564/1000 [18:26<17:35, 2.42s/it]
56%|█████▋ | 565/1000 [18:28<16:45, 2.31s/it]
56%|█████▋ | 565/1000 [18:28<16:45, 2.31s/it]
57%|█████▋ | 566/1000 [18:30<16:09, 2.23s/it]
57%|█████▋ | 566/1000 [18:30<16:09, 2.23s/it]
57%|█████▋ | 567/1000 [18:32<15:43, 2.18s/it]
57%|█████▋ | 567/1000 [18:32<15:43, 2.18s/it]
57%|█████▋ | 568/1000 [18:34<15:32, 2.16s/it]
57%|█████▋ | 568/1000 [18:34<15:32, 2.16s/it]
57%|█████▋ | 569/1000 [18:36<14:58, 2.09s/it]
57%|█████▋ | 569/1000 [18:36<14:58, 2.09s/it]
57%|█████▋ | 570/1000 [18:38<14:11, 1.98s/it]
57%|█████▋ | 570/1000 [18:38<14:11, 1.98s/it]
57%|█████▋ | 571/1000 [18:39<13:40, 1.91s/it]
57%|█████▋ | 571/1000 [18:39<13:40, 1.91s/it]
57%|█████▋ | 572/1000 [18:41<13:23, 1.88s/it]
57%|█████▋ | 572/1000 [18:41<13:23, 1.88s/it]
57%|█████▋ | 573/1000 [18:43<13:05, 1.84s/it]
57%|█████▋ | 573/1000 [18:43<13:05, 1.84s/it]
57%|█████▋ | 574/1000 [18:45<12:57, 1.82s/it]
57%|█████▋ | 574/1000 [18:45<12:57, 1.82s/it]
57%|█████▊ | 575/1000 [18:46<12:39, 1.79s/it]
57%|█████▊ | 575/1000 [18:46<12:39, 1.79s/it]
58%|█████▊ | 576/1000 [18:48<12:04, 1.71s/it]
58%|█████▊ | 576/1000 [18:48<12:04, 1.71s/it]
58%|█████▊ | 577/1000 [18:49<11:37, 1.65s/it]
58%|█████▊ | 577/1000 [18:49<11:37, 1.65s/it]
58%|█████▊ | 578/1000 [18:51<11:13, 1.60s/it]
58%|█████▊ | 578/1000 [18:51<11:13, 1.60s/it]
58%|█████▊ | 579/1000 [18:52<11:01, 1.57s/it]
58%|█████▊ | 579/1000 [18:52<11:01, 1.57s/it]
58%|█████▊ | 580/1000 [18:54<10:53, 1.56s/it]
58%|█████▊ | 580/1000 [18:54<10:53, 1.56s/it]
58%|█████▊ | 581/1000 [18:55<10:46, 1.54s/it]
58%|█████▊ | 581/1000 [18:55<10:46, 1.54s/it]
58%|█████▊ | 582/1000 [18:57<10:36, 1.52s/it]
58%|█████▊ | 582/1000 [18:57<10:36, 1.52s/it]
58%|█████▊ | 583/1000 [18:58<10:03, 1.45s/it]
58%|█████▊ | 583/1000 [18:58<10:03, 1.45s/it]
58%|█████▊ | 584/1000 [18:59<09:38, 1.39s/it]
58%|█████▊ | 584/1000 [18:59<09:38, 1.39s/it]
58%|█████▊ | 585/1000 [19:01<09:16, 1.34s/it]
58%|█████▊ | 585/1000 [19:01<09:16, 1.34s/it]
59%|█████▊ | 586/1000 [19:02<09:02, 1.31s/it]
59%|█████▊ | 586/1000 [19:02<09:02, 1.31s/it]
59%|█████▊ | 587/1000 [19:03<08:56, 1.30s/it]
59%|█████▊ | 587/1000 [19:03<08:56, 1.30s/it]
59%|█████▉ | 588/1000 [19:04<08:43, 1.27s/it]
59%|█████▉ | 588/1000 [19:04<08:43, 1.27s/it]
59%|█████▉ | 589/1000 [19:06<08:34, 1.25s/it]
59%|█████▉ | 589/1000 [19:06<08:34, 1.25s/it]
59%|█████▉ | 590/1000 [19:07<08:30, 1.25s/it]
59%|█████▉ | 590/1000 [19:07<08:30, 1.25s/it]
59%|█████▉ | 591/1000 [19:08<08:15, 1.21s/it]
59%|█████▉ | 591/1000 [19:08<08:15, 1.21s/it]
59%|█████▉ | 592/1000 [19:09<07:40, 1.13s/it]
59%|█████▉ | 592/1000 [19:09<07:40, 1.13s/it]
59%|█████▉ | 593/1000 [19:10<07:16, 1.07s/it]
59%|█████▉ | 593/1000 [19:10<07:16, 1.07s/it]
59%|█████▉ | 594/1000 [19:11<06:56, 1.03s/it]
59%|█████▉ | 594/1000 [19:11<06:56, 1.03s/it]
60%|█████▉ | 595/1000 [19:12<06:46, 1.00s/it]
60%|█████▉ | 595/1000 [19:12<06:46, 1.00s/it]
60%|█████▉ | 596/1000 [19:13<06:35, 1.02it/s]
60%|█████▉ | 596/1000 [19:13<06:35, 1.02it/s]
60%|█████▉ | 597/1000 [19:14<06:22, 1.05it/s]
60%|█████▉ | 597/1000 [19:14<06:22, 1.05it/s]
60%|█████▉ | 598/1000 [19:14<05:52, 1.14it/s]
60%|█████▉ | 598/1000 [19:14<05:52, 1.14it/s]
60%|█████▉ | 599/1000 [19:15<05:34, 1.20it/s]
60%|█████▉ | 599/1000 [19:15<05:34, 1.20it/s]
60%|██████ | 600/1000 [19:17<08:21, 1.25s/it]
60%|██████ | 600/1000 [19:17<08:21, 1.25s/it]
60%|██████ | 601/1000 [19:26<23:30, 3.54s/it]
60%|██████ | 601/1000 [19:26<23:30, 3.54s/it]
60%|██████ | 602/1000 [19:30<23:27, 3.54s/it]
60%|██████ | 602/1000 [19:30<23:27, 3.54s/it]
60%|██████ | 603/1000 [19:33<22:28, 3.40s/it]
60%|██████ | 603/1000 [19:33<22:28, 3.40s/it]
60%|██████ | 604/1000 [19:35<21:05, 3.20s/it]
60%|██████ | 604/1000 [19:35<21:05, 3.20s/it]
60%|██████ | 605/1000 [19:38<19:38, 2.98s/it]
60%|██████ | 605/1000 [19:38<19:38, 2.98s/it]
61%|██████ | 606/1000 [19:40<18:20, 2.79s/it]
61%|██████ | 606/1000 [19:40<18:20, 2.79s/it]
61%|██████ | 607/1000 [19:43<17:32, 2.68s/it]
61%|██████ | 607/1000 [19:43<17:32, 2.68s/it]
61%|██████ | 608/1000 [19:45<16:18, 2.50s/it]
61%|██████ | 608/1000 [19:45<16:18, 2.50s/it]
61%|██████ | 609/1000 [19:47<15:02, 2.31s/it]
61%|██████ | 609/1000 [19:47<15:02, 2.31s/it]
61%|██████ | 610/1000 [19:48<14:01, 2.16s/it]
61%|██████ | 610/1000 [19:48<14:01, 2.16s/it]
61%|██████ | 611/1000 [19:50<13:10, 2.03s/it]
61%|██████ | 611/1000 [19:50<13:10, 2.03s/it]
61%|██████ | 612/1000 [19:52<12:25, 1.92s/it]
61%|██████ | 612/1000 [19:52<12:25, 1.92s/it]
61%|██████▏ | 613/1000 [19:53<11:37, 1.80s/it]
61%|██████▏ | 613/1000 [19:53<11:37, 1.80s/it]
61%|██████▏ | 614/1000 [19:55<11:00, 1.71s/it]
61%|██████▏ | 614/1000 [19:55<11:00, 1.71s/it]
62%|██████▏ | 615/1000 [19:56<10:32, 1.64s/it]
62%|██████▏ | 615/1000 [19:56<10:32, 1.64s/it]
62%|██████▏ | 616/1000 [19:58<10:16, 1.61s/it]
62%|██████▏ | 616/1000 [19:58<10:16, 1.61s/it]
62%|██████▏ | 617/1000 [19:59<09:35, 1.50s/it]
62%|██████▏ | 617/1000 [19:59<09:35, 1.50s/it]
62%|██████▏ | 618/1000 [20:00<09:08, 1.44s/it]
62%|██████▏ | 618/1000 [20:00<09:08, 1.44s/it]
62%|██████▏ | 619/1000 [20:02<08:47, 1.38s/it]
62%|██████▏ | 619/1000 [20:02<08:47, 1.38s/it]
62%|██████▏ | 620/1000 [20:03<08:24, 1.33s/it]
62%|██████▏ | 620/1000 [20:03<08:24, 1.33s/it]
62%|██████▏ | 621/1000 [20:04<07:48, 1.24s/it]
62%|██████▏ | 621/1000 [20:04<07:48, 1.24s/it]
62%|██████▏ | 622/1000 [20:05<07:11, 1.14s/it]
62%|██████▏ | 622/1000 [20:05<07:11, 1.14s/it]
62%|██████▏ | 623/1000 [20:06<06:44, 1.07s/it]
62%|██████▏ | 623/1000 [20:06<06:44, 1.07s/it]
62%|██████▏ | 624/1000 [20:06<06:03, 1.03it/s]
62%|██████▏ | 624/1000 [20:06<06:03, 1.03it/s]
62%|██████▎ | 625/1000 [20:07<05:06, 1.22it/s]
62%|██████▎ | 625/1000 [20:07<05:06, 1.22it/s]
63%|██████▎ | 626/1000 [20:20<29:00, 4.65s/it]
63%|██████▎ | 626/1000 [20:20<29:00, 4.65s/it]
63%|██████▎ | 627/1000 [20:25<28:23, 4.57s/it]
63%|██████▎ | 627/1000 [20:25<28:23, 4.57s/it]
63%|██████▎ | 628/1000 [20:29<26:57, 4.35s/it]
63%|██████▎ | 628/1000 [20:29<26:57, 4.35s/it]
63%|██████▎ | 629/1000 [20:32<25:04, 4.06s/it]
63%|██████▎ | 629/1000 [20:32<25:04, 4.06s/it]
63%|██████▎ | 630/1000 [20:35<23:24, 3.79s/it]
63%|██████▎ | 630/1000 [20:35<23:24, 3.79s/it]
63%|██████▎ | 631/1000 [20:38<21:41, 3.53s/it]
63%|██████▎ | 631/1000 [20:38<21:41, 3.53s/it]
63%|██████▎ | 632/1000 [20:41<20:21, 3.32s/it]
63%|██████▎ | 632/1000 [20:41<20:21, 3.32s/it]
63%|██████▎ | 633/1000 [20:44<19:12, 3.14s/it]
63%|██████▎ | 633/1000 [20:44<19:12, 3.14s/it]
63%|██████▎ | 634/1000 [20:46<18:06, 2.97s/it]
63%|██████▎ | 634/1000 [20:46<18:06, 2.97s/it]
64%|██████▎ | 635/1000 [20:49<17:06, 2.81s/it]
64%|██████▎ | 635/1000 [20:49<17:06, 2.81s/it]
64%|██████▎ | 636/1000 [20:51<16:18, 2.69s/it]
64%|██████▎ | 636/1000 [20:51<16:18, 2.69s/it]
64%|██████▎ | 637/1000 [20:53<15:36, 2.58s/it]
64%|██████▎ | 637/1000 [20:53<15:36, 2.58s/it]
64%|██████▍ | 638/1000 [20:56<14:46, 2.45s/it]
64%|██████▍ | 638/1000 [20:56<14:46, 2.45s/it]
64%|██████▍ | 639/1000 [20:58<14:09, 2.35s/it]
64%|██████▍ | 639/1000 [20:58<14:09, 2.35s/it]
64%|██████▍ | 640/1000 [21:00<13:36, 2.27s/it]
64%|██████▍ | 640/1000 [21:00<13:36, 2.27s/it]
64%|██████▍ | 641/1000 [21:02<13:11, 2.20s/it]
64%|██████▍ | 641/1000 [21:02<13:11, 2.20s/it]
64%|██████▍ | 642/1000 [21:04<12:57, 2.17s/it]
64%|██████▍ | 642/1000 [21:04<12:57, 2.17s/it]
64%|██████▍ | 643/1000 [21:06<12:18, 2.07s/it]
64%|██████▍ | 643/1000 [21:06<12:18, 2.07s/it]
64%|██████▍ | 644/1000 [21:08<11:44, 1.98s/it]
64%|██████▍ | 644/1000 [21:08<11:44, 1.98s/it]
64%|██████▍ | 645/1000 [21:09<11:16, 1.91s/it]
64%|█���████▍ | 645/1000 [21:09<11:16, 1.91s/it]
65%|██████▍ | 646/1000 [21:11<10:57, 1.86s/it]
65%|██████▍ | 646/1000 [21:11<10:57, 1.86s/it]
65%|██████▍ | 647/1000 [21:13<10:44, 1.83s/it]
65%|██████▍ | 647/1000 [21:13<10:44, 1.83s/it]
65%|██████▍ | 648/1000 [21:15<10:55, 1.86s/it]
65%|██████▍ | 648/1000 [21:15<10:55, 1.86s/it]
65%|██████▍ | 649/1000 [21:16<10:38, 1.82s/it]
65%|██████▍ | 649/1000 [21:16<10:38, 1.82s/it]
65%|██████▌ | 650/1000 [21:18<10:12, 1.75s/it]
65%|██████▌ | 650/1000 [21:18<10:12, 1.75s/it]
65%|██████▌ | 651/1000 [21:20<09:43, 1.67s/it]
65%|██████▌ | 651/1000 [21:20<09:43, 1.67s/it]
65%|██████▌ | 652/1000 [21:21<09:21, 1.61s/it]
65%|██████▌ | 652/1000 [21:21<09:21, 1.61s/it]
65%|██████▌ | 653/1000 [21:22<09:05, 1.57s/it]
65%|██████▌ | 653/1000 [21:22<09:05, 1.57s/it]
65%|██████▌ | 654/1000 [21:24<08:53, 1.54s/it]
65%|██████▌ | 654/1000 [21:24<08:53, 1.54s/it]
66%|██████▌ | 655/1000 [21:25<08:48, 1.53s/it]
66%|██████▌ | 655/1000 [21:25<08:48, 1.53s/it]
66%|██████▌ | 656/1000 [21:27<08:40, 1.51s/it]
66%|██████▌ | 656/1000 [21:27<08:40, 1.51s/it]
66%|██████▌ | 657/1000 [21:28<08:35, 1.50s/it]
66%|██████▌ | 657/1000 [21:28<08:35, 1.50s/it]
66%|██████▌ | 658/1000 [21:30<08:12, 1.44s/it]
66%|██████▌ | 658/1000 [21:30<08:12, 1.44s/it]
66%|██████▌ | 659/1000 [21:31<07:52, 1.39s/it]
66%|██████▌ | 659/1000 [21:31<07:52, 1.39s/it]
66%|██████▌ | 660/1000 [21:32<07:40, 1.35s/it]
66%|██████▌ | 660/1000 [21:32<07:40, 1.35s/it]
66%|██████▌ | 661/1000 [21:33<07:24, 1.31s/it]
66%|██████▌ | 661/1000 [21:33<07:24, 1.31s/it]
66%|██████▌ | 662/1000 [21:35<07:12, 1.28s/it]
66%|██████▌ | 662/1000 [21:35<07:12, 1.28s/it]
66%|██████▋ | 663/1000 [21:36<07:06, 1.26s/it]
66%|██████▋ | 663/1000 [21:36<07:06, 1.26s/it]
66%|██████▋ | 664/1000 [21:37<06:59, 1.25s/it]
66%|██████▋ | 664/1000 [21:37<06:59, 1.25s/it]
66%|██████▋ | 665/1000 [21:38<06:54, 1.24s/it]
66%|██████▋ | 665/1000 [21:38<06:54, 1.24s/it]
67%|██████▋ | 666/1000 [21:39<06:29, 1.17s/it]
67%|██████▋ | 666/1000 [21:39<06:29, 1.17s/it]
67%|██████▋ | 667/1000 [21:40<06:13, 1.12s/it]
67%|██████▋ | 667/1000 [21:40<06:13, 1.12s/it]
67%|██████▋ | 668/1000 [21:41<05:52, 1.06s/it]
67%|██████▋ | 668/1000 [21:41<05:52, 1.06s/it]
67%|██████▋ | 669/1000 [21:42<05:37, 1.02s/it]
67%|██████▋ | 669/1000 [21:42<05:37, 1.02s/it]
67%|██████▋ | 670/1000 [21:43<05:27, 1.01it/s]
67%|██████▋ | 670/1000 [21:43<05:27, 1.01it/s]
67%|██████▋ | 671/1000 [21:44<05:19, 1.03it/s]
67%|██████▋ | 671/1000 [21:44<05:19, 1.03it/s]
67%|██████▋ | 672/1000 [21:45<05:05, 1.07it/s]
67%|██████▋ | 672/1000 [21:45<05:05, 1.07it/s]
67%|██████▋ | 673/1000 [21:46<04:39, 1.17it/s]
67%|██████▋ | 673/1000 [21:46<04:39, 1.17it/s]
67%|██████▋ | 674/1000 [21:46<04:21, 1.25it/s]
67%|██████▋ | 674/1000 [21:46<04:21, 1.25it/s]
68%|██████▊ | 675/1000 [21:49<07:00, 1.29s/it]
68%|██████▊ | 675/1000 [21:49<07:00, 1.29s/it]
68%|██████▊ | 676/1000 [21:55<15:12, 2.82s/it]
68%|██████▊ | 676/1000 [21:55<15:12, 2.82s/it]
68%|██████▊ | 677/1000 [21:59<17:21, 3.23s/it]
68%|██████▊ | 677/1000 [21:59<17:21, 3.23s/it]
68%|██████▊ | 678/1000 [22:03<17:46, 3.31s/it]
68%|██████▊ | 678/1000 [22:03<17:46, 3.31s/it]
68%|██████▊ | 679/1000 [22:06<17:34, 3.28s/it]
68%|██████▊ | 679/1000 [22:06<17:34, 3.28s/it]
68%|██████▊ | 680/1000 [22:09<17:06, 3.21s/it]
68%|██████▊ | 680/1000 [22:09<17:06, 3.21s/it]
68%|██████▊ | 681/1000 [22:12<16:41, 3.14s/it]
68%|██████▊ | 681/1000 [22:12<16:41, 3.14s/it]
68%|██████▊ | 682/1000 [22:15<15:56, 3.01s/it]
68%|██████▊ | 682/1000 [22:15<15:56, 3.01s/it]
68%|██████▊ | 683/1000 [22:17<15:20, 2.91s/it]
68%|██████▊ | 683/1000 [22:17<15:20, 2.91s/it]
68%|██████▊ | 684/1000 [22:20<14:33, 2.76s/it]
68%|██████▊ | 684/1000 [22:20<14:33, 2.76s/it]
68%|██████▊ | 685/1000 [22:22<13:55, 2.65s/it]
68%|██████▊ | 685/1000 [22:22<13:55, 2.65s/it]
69%|██████▊ | 686/1000 [22:25<13:28, 2.58s/it]
69%|██████▊ | 686/1000 [22:25<13:28, 2.58s/it]
69%|██████▊ | 687/1000 [22:27<12:58, 2.49s/it]
69%|██████▊ | 687/1000 [22:27<12:58, 2.49s/it]
69%|██████▉ | 688/1000 [22:29<12:16, 2.36s/it]
69%|██████▉ | 688/1000 [22:29<12:16, 2.36s/it]
69%|██████▉ | 689/1000 [22:31<11:48, 2.28s/it]
69%|██████▉ | 689/1000 [22:31<11:48, 2.28s/it]
69%|██████▉ | 690/1000 [22:33<11:24, 2.21s/it]
69%|██████▉ | 690/1000 [22:33<11:24, 2.21s/it]
69%|██████▉ | 691/1000 [22:35<11:08, 2.16s/it]
69%|██████▉ | 691/1000 [22:35<11:08, 2.16s/it]
69%|██████▉ | 692/1000 [22:37<10:34, 2.06s/it]
69%|██████▉ | 692/1000 [22:37<10:34, 2.06s/it]
69%|██████▉ | 693/1000 [22:39<10:10, 1.99s/it]
69%|██████▉ | 693/1000 [22:39<10:10, 1.99s/it]
69%|██████▉ | 694/1000 [22:41<09:52, 1.94s/it]
69%|██████▉ | 694/1000 [22:41<09:52, 1.94s/it]
70%|██████▉ | 695/1000 [22:42<09:32, 1.88s/it]
70%|██████▉ | 695/1000 [22:42<09:32, 1.88s/it]
70%|██████▉ | 696/1000 [22:44<09:21, 1.85s/it]
70%|██████▉ | 696/1000 [22:44<09:21, 1.85s/it]
70%|██████▉ | 697/1000 [22:46<09:15, 1.83s/it]
70%|██████▉ | 697/1000 [22:46<09:15, 1.83s/it]
70%|██████▉ | 698/1000 [22:48<09:02, 1.80s/it]
70%|██████▉ | 698/1000 [22:48<09:02, 1.80s/it]
70%|██████▉ | 699/1000 [22:49<08:44, 1.74s/it]
70%|██████▉ | 699/1000 [22:49<08:44, 1.74s/it]
70%|███████ | 700/1000 [22:51<08:27, 1.69s/it]
70%|███████ | 700/1000 [22:51<08:27, 1.69s/it]
70%|███████ | 701/1000 [22:52<08:11, 1.64s/it]
70%|███████ | 701/1000 [22:52<08:11, 1.64s/it]
70%|███████ | 702/1000 [22:54<07:54, 1.59s/it]
70%|███████ | 702/1000 [22:54<07:54, 1.59s/it]
70%|███████ | 703/1000 [22:55<07:42, 1.56s/it]
70%|███████ | 703/1000 [22:55<07:42, 1.56s/it]
70%|███████ | 704/1000 [22:57<07:32, 1.53s/it]
70%|███████ | 704/1000 [22:57<07:32, 1.53s/it]
70%|███████ | 705/1000 [22:58<07:27, 1.52s/it]
70%|███████ | 705/1000 [22:58<07:27, 1.52s/it]
71%|███████ | 706/1000 [23:00<07:21, 1.50s/it]
71%|███████ | 706/1000 [23:00<07:21, 1.50s/it]
71%|███████ | 707/1000 [23:01<06:58, 1.43s/it]
71%|███████ | 707/1000 [23:01<06:58, 1.43s/it]
71%|███████ | 708/1000 [23:02<06:40, 1.37s/it]
71%|███████ | 708/1000 [23:02<06:40, 1.37s/it]
71%|███████ | 709/1000 [23:03<06:28, 1.33s/it]
71%|███████ | 709/1000 [23:03<06:28, 1.33s/it]
71%|███████ | 710/1000 [23:05<06:16, 1.30s/it]
71%|███████ | 710/1000 [23:05<06:16, 1.30s/it]
71%|███████ | 711/1000 [23:06<06:07, 1.27s/it]
71%|███████ | 711/1000 [23:06<06:07, 1.27s/it]
71%|███████ | 712/1000 [23:07<06:00, 1.25s/it]
71%|███████ | 712/1000 [23:07<06:00, 1.25s/it]
71%|███████▏ | 713/1000 [23:08<05:55, 1.24s/it]
71%|███████▏ | 713/1000 [23:08<05:55, 1.24s/it]
71%|███████▏ | 714/1000 [23:09<05:51, 1.23s/it]
71%|███████▏ | 714/1000 [23:09<05:51, 1.23s/it]
72%|███████▏ | 715/1000 [23:11<05:39, 1.19s/it]
72%|███████▏ | 715/1000 [23:11<05:39, 1.19s/it]
72%|███████▏ | 716/1000 [23:11<05:15, 1.11s/it]
72%|███████▏ | 716/1000 [23:11<05:15, 1.11s/it]
72%|███████▏ | 717/1000 [23:12<04:57, 1.05s/it]
72%|███████▏ | 717/1000 [23:12<04:57, 1.05s/it]
72%|███████▏ | 718/1000 [23:13<04:45, 1.01s/it]
72%|███████▏ | 718/1000 [23:13<04:45, 1.01s/it]
72%|███████▏ | 719/1000 [23:14<04:36, 1.02it/s]
72%|███████▏ | 719/1000 [23:14<04:36, 1.02it/s]
72%|███████▏ | 720/1000 [23:15<04:32, 1.03it/s]
72%|███████▏ | 720/1000 [23:15<04:32, 1.03it/s]
72%|███████▏ | 721/1000 [23:16<04:22, 1.06it/s]
72%|███████▏ | 721/1000 [23:16<04:22, 1.06it/s]
72%|███████▏ | 722/1000 [23:17<04:03, 1.14it/s]
72%|███████▏ | 722/1000 [23:17<04:03, 1.14it/s]
72%|███████▏ | 723/1000 [23:17<03:47, 1.22it/s]
72%|███████▏ | 723/1000 [23:17<03:47, 1.22it/s]
72%|███████▏ | 724/1000 [23:18<03:34, 1.29it/s]
72%|███████▏ | 724/1000 [23:18<03:34, 1.29it/s]
72%|███████▎ | 725/1000 [23:21<06:04, 1.32s/it]
72%|███████▎ | 725/1000 [23:21<06:04, 1.32s/it]
73%|███████▎ | 726/1000 [23:28<14:14, 3.12s/it]
73%|███████▎ | 726/1000 [23:28<14:14, 3.12s/it]
73%|███████▎ | 727/1000 [23:32<15:28, 3.40s/it]
73%|███████▎ | 727/1000 [23:32<15:28, 3.40s/it]
73%|███████▎ | 728/1000 [23:36<15:35, 3.44s/it]
73%|███████▎ | 728/1000 [23:36<15:35, 3.44s/it]
73%|███████▎ | 729/1000 [23:39<15:20, 3.40s/it]
73%|███���███▎ | 729/1000 [23:39<15:20, 3.40s/it]
73%|███████▎ | 730/1000 [23:42<14:52, 3.30s/it]
73%|███████▎ | 730/1000 [23:42<14:52, 3.30s/it]
73%|███████▎ | 731/1000 [23:45<14:16, 3.18s/it]
73%|███████▎ | 731/1000 [23:45<14:16, 3.18s/it]
73%|███████▎ | 732/1000 [23:48<13:39, 3.06s/it]
73%|███████▎ | 732/1000 [23:48<13:39, 3.06s/it]
73%|███████▎ | 733/1000 [23:50<13:05, 2.94s/it]
73%|███████▎ | 733/1000 [23:50<13:05, 2.94s/it]
73%|███████▎ | 734/1000 [23:53<12:35, 2.84s/it]
73%|███████▎ | 734/1000 [23:53<12:35, 2.84s/it]
74%|███████▎ | 735/1000 [23:55<11:53, 2.69s/it]
74%|███████▎ | 735/1000 [23:55<11:53, 2.69s/it]
74%|███████▎ | 736/1000 [23:58<11:25, 2.59s/it]
74%|███████▎ | 736/1000 [23:58<11:25, 2.59s/it]
74%|███████▎ | 737/1000 [24:00<11:04, 2.53s/it]
74%|███████▎ | 737/1000 [24:00<11:04, 2.53s/it]
74%|███████▍ | 738/1000 [24:02<10:40, 2.45s/it]
74%|███████▍ | 738/1000 [24:02<10:40, 2.45s/it]
74%|███████▍ | 739/1000 [24:04<10:16, 2.36s/it]
74%|███████▍ | 739/1000 [24:04<10:16, 2.36s/it]
74%|███████▍ | 740/1000 [24:06<09:51, 2.28s/it]
74%|███████▍ | 740/1000 [24:07<09:51, 2.28s/it]
74%|███████▍ | 741/1000 [24:09<09:32, 2.21s/it]
74%|███████▍ | 741/1000 [24:09<09:32, 2.21s/it]
74%|███████▍ | 742/1000 [24:11<09:25, 2.19s/it]
74%|███████▍ | 742/1000 [24:11<09:25, 2.19s/it]
74%|███████▍ | 743/1000 [24:13<09:06, 2.13s/it]
74%|███████▍ | 743/1000 [24:13<09:06, 2.13s/it]
74%|███████▍ | 744/1000 [24:14<08:40, 2.03s/it]
74%|███████▍ | 744/1000 [24:15<08:40, 2.03s/it]
74%|███████▍ | 745/1000 [24:16<08:22, 1.97s/it]
74%|███████▍ | 745/1000 [24:16<08:22, 1.97s/it]
75%|███████▍ | 746/1000 [24:18<08:06, 1.92s/it]
75%|███████▍ | 746/1000 [24:18<08:06, 1.92s/it]
75%|███████▍ | 747/1000 [24:20<07:52, 1.87s/it]
75%|███████▍ | 747/1000 [24:20<07:52, 1.87s/it]
75%|███████▍ | 748/1000 [24:22<07:42, 1.84s/it]
75%|███████▍ | 748/1000 [24:22<07:42, 1.84s/it]
75%|███████▍ | 749/1000 [24:23<07:35, 1.82s/it]
75%|███████▍ | 749/1000 [24:23<07:35, 1.82s/it]
75%|███████▌ | 750/1000 [24:25<07:18, 1.75s/it]
75%|███████▌ | 750/1000 [24:25<07:18, 1.75s/it]
75%|███████▌ | 751/1000 [24:27<06:58, 1.68s/it]
75%|███████▌ | 751/1000 [24:27<06:58, 1.68s/it]
75%|███████▌ | 752/1000 [24:28<06:44, 1.63s/it]
75%|███████▌ | 752/1000 [24:28<06:44, 1.63s/it]
75%|███████▌ | 753/1000 [24:30<06:31, 1.58s/it]
75%|███████▌ | 753/1000 [24:30<06:31, 1.58s/it]
75%|███████▌ | 754/1000 [24:31<06:21, 1.55s/it]
75%|███████▌ | 754/1000 [24:31<06:21, 1.55s/it]
76%|███████▌ | 755/1000 [24:32<06:15, 1.53s/it]
76%|███████▌ | 755/1000 [24:32<06:15, 1.53s/it]
76%|███████▌ | 756/1000 [24:34<06:11, 1.52s/it]
76%|███████▌ | 756/1000 [24:34<06:11, 1.52s/it]
76%|███████▌ | 757/1000 [24:35<06:06, 1.51s/it]
76%|███████▌ | 757/1000 [24:35<06:06, 1.51s/it]
76%|███████▌ | 758/1000 [24:37<05:49, 1.44s/it]
76%|███████▌ | 758/1000 [24:37<05:49, 1.44s/it]
76%|███████▌ | 759/1000 [24:38<05:33, 1.39s/it]
76%|███████▌ | 759/1000 [24:38<05:33, 1.39s/it]
76%|███████▌ | 760/1000 [24:39<05:20, 1.33s/it]
76%|███████▌ | 760/1000 [24:39<05:20, 1.33s/it]
76%|███████▌ | 761/1000 [24:40<05:09, 1.30s/it]
76%|███████▌ | 761/1000 [24:40<05:09, 1.30s/it]
76%|███████▌ | 762/1000 [24:42<05:04, 1.28s/it]
76%|███████▌ | 762/1000 [24:42<05:04, 1.28s/it]
76%|███████▋ | 763/1000 [24:43<04:57, 1.25s/it]
76%|███████▋ | 763/1000 [24:43<04:57, 1.25s/it]
76%|███████▋ | 764/1000 [24:44<04:52, 1.24s/it]
76%|███████▋ | 764/1000 [24:44<04:52, 1.24s/it]
76%|███████▋ | 765/1000 [24:45<04:41, 1.20s/it]
76%|███████▋ | 765/1000 [24:45<04:41, 1.20s/it]
77%|███████▋ | 766/1000 [24:46<04:23, 1.13s/it]
77%|███████▋ | 766/1000 [24:46<04:23, 1.13s/it]
77%|███████▋ | 767/1000 [24:47<04:10, 1.08s/it]
77%|███████▋ | 767/1000 [24:47<04:10, 1.08s/it]
77%|███████▋ | 768/1000 [24:48<03:58, 1.03s/it]
77%|███████▋ | 768/1000 [24:48<03:58, 1.03s/it]
77%|███████▋ | 769/1000 [24:49<03:58, 1.03s/it]
77%|███████▋ | 769/1000 [24:49<03:58, 1.03s/it]
77%|███████▋ | 770/1000 [24:50<03:49, 1.00it/s]
77%|███████▋ | 770/1000 [24:50<03:49, 1.00it/s]
77%|███████▋ | 771/1000 [24:51<03:37, 1.05it/s]
77%|███████▋ | 771/1000 [24:51<03:37, 1.05it/s]
77%|███████▋ | 772/1000 [24:51<03:17, 1.15it/s]
77%|███████▋ | 772/1000 [24:51<03:17, 1.15it/s]
77%|███████▋ | 773/1000 [24:52<03:03, 1.24it/s]
77%|███████▋ | 773/1000 [24:52<03:03, 1.24it/s]
77%|███████▋ | 774/1000 [24:53<02:53, 1.31it/s]
77%|███████▋ | 774/1000 [24:53<02:53, 1.31it/s]
78%|███████▊ | 775/1000 [24:55<05:02, 1.34s/it]
78%|███████▊ | 775/1000 [24:56<05:02, 1.34s/it]
78%|███████▊ | 776/1000 [25:04<12:46, 3.42s/it]
78%|███████▊ | 776/1000 [25:04<12:46, 3.42s/it]
78%|███████▊ | 777/1000 [25:08<13:49, 3.72s/it]
78%|███████▊ | 777/1000 [25:08<13:49, 3.72s/it]
78%|███████▊ | 778/1000 [25:12<13:57, 3.77s/it]
78%|███████▊ | 778/1000 [25:12<13:57, 3.77s/it]
78%|███████▊ | 779/1000 [25:16<13:37, 3.70s/it]
78%|███████▊ | 779/1000 [25:16<13:37, 3.70s/it]
78%|███████▊ | 780/1000 [25:19<13:07, 3.58s/it]
78%|███████▊ | 780/1000 [25:19<13:07, 3.58s/it]
78%|███████▊ | 781/1000 [25:22<12:32, 3.44s/it]
78%|███████▊ | 781/1000 [25:22<12:32, 3.44s/it]
78%|███████▊ | 782/1000 [25:25<11:59, 3.30s/it]
78%|███████▊ | 782/1000 [25:25<11:59, 3.30s/it]
78%|███████▊ | 783/1000 [25:28<11:20, 3.14s/it]
78%|███████▊ | 783/1000 [25:28<11:20, 3.14s/it]
78%|███████▊ | 784/1000 [25:30<10:53, 3.02s/it]
78%|██████��▊ | 784/1000 [25:31<10:53, 3.02s/it]
78%|███████▊ | 785/1000 [25:33<10:11, 2.84s/it]
78%|███████▊ | 785/1000 [25:33<10:11, 2.84s/it]
79%|███████▊ | 786/1000 [25:35<09:40, 2.71s/it]
79%|███████▊ | 786/1000 [25:35<09:40, 2.71s/it]
79%|███████▊ | 787/1000 [25:38<09:17, 2.62s/it]
79%|███████▊ | 787/1000 [25:38<09:17, 2.62s/it]
79%|███████▉ | 788/1000 [25:40<08:54, 2.52s/it]
79%|███████▉ | 788/1000 [25:40<08:54, 2.52s/it]
79%|███████▉ | 789/1000 [25:42<08:23, 2.38s/it]
79%|███████▉ | 789/1000 [25:42<08:23, 2.38s/it]
79%|███████▉ | 790/1000 [25:44<08:01, 2.29s/it]
79%|███████▉ | 790/1000 [25:44<08:01, 2.29s/it]
79%|███████▉ | 791/1000 [25:46<07:47, 2.24s/it]
79%|███████▉ | 791/1000 [25:46<07:47, 2.24s/it]
79%|███████▉ | 792/1000 [25:48<07:35, 2.19s/it]
79%|███████▉ | 792/1000 [25:48<07:35, 2.19s/it]
79%|███████▉ | 793/1000 [25:50<07:21, 2.13s/it]
79%|███████▉ | 793/1000 [25:50<07:21, 2.13s/it]
79%|███████▉ | 794/1000 [25:52<07:02, 2.05s/it]
79%|███████▉ | 794/1000 [25:52<07:02, 2.05s/it]
80%|███████▉ | 795/1000 [25:54<06:45, 1.98s/it]
80%|███████▉ | 795/1000 [25:54<06:45, 1.98s/it]
80%|███████▉ | 796/1000 [25:56<06:32, 1.92s/it]
80%|███████▉ | 796/1000 [25:56<06:32, 1.92s/it]
80%|███████▉ | 797/1000 [25:58<06:22, 1.88s/it]
80%|███████▉ | 797/1000 [25:58<06:22, 1.88s/it]
80%|███████▉ | 798/1000 [25:59<06:12, 1.84s/it]
80%|███████▉ | 798/1000 [25:59<06:12, 1.84s/it]
80%|███████▉ | 799/1000 [26:01<06:10, 1.84s/it]
80%|███████▉ | 799/1000 [26:01<06:10, 1.84s/it]
80%|████████ | 800/1000 [26:03<05:56, 1.78s/it]
80%|████████ | 800/1000 [26:03<05:56, 1.78s/it]
80%|████████ | 801/1000 [26:04<05:36, 1.69s/it]
80%|████████ | 801/1000 [26:04<05:36, 1.69s/it]
80%|████████ | 802/1000 [26:06<05:23, 1.63s/it]
80%|████████ | 802/1000 [26:06<05:23, 1.63s/it]
80%|████████ | 803/1000 [26:07<05:13, 1.59s/it]
80%|████████ | 803/1000 [26:07<05:13, 1.59s/it]
80%|████████ | 804/1000 [26:09<05:05, 1.56s/it]
80%|████████ | 804/1000 [26:09<05:05, 1.56s/it]
80%|████████ | 805/1000 [26:10<05:01, 1.55s/it]
80%|████████ | 805/1000 [26:10<05:01, 1.55s/it]
81%|████████ | 806/1000 [26:12<05:00, 1.55s/it]
81%|████████ | 806/1000 [26:12<05:00, 1.55s/it]
81%|████████ | 807/1000 [26:13<04:55, 1.53s/it]
81%|████████ | 807/1000 [26:13<04:55, 1.53s/it]
81%|████████ | 808/1000 [26:15<04:49, 1.51s/it]
81%|████████ | 808/1000 [26:15<04:49, 1.51s/it]
81%|████████ | 809/1000 [26:16<04:36, 1.45s/it]
81%|████████ | 809/1000 [26:16<04:36, 1.45s/it]
81%|████████ | 810/1000 [26:17<04:20, 1.37s/it]
81%|████████ | 810/1000 [26:17<04:20, 1.37s/it]
81%|████████ | 811/1000 [26:19<04:14, 1.35s/it]
81%|████████ | 811/1000 [26:19<04:14, 1.35s/it]
81%|████████ | 812/1000 [26:20<04:05, 1.30s/it]
81%|████████ | 812/1000 [26:20<04:05, 1.30s/it]
81%|████████▏ | 813/1000 [26:21<03:58, 1.28s/it]
81%|████████▏ | 813/1000 [26:21<03:58, 1.28s/it]
81%|████████▏ | 814/1000 [26:22<03:53, 1.26s/it]
81%|████████▏ | 814/1000 [26:22<03:53, 1.26s/it]
82%|████████▏ | 815/1000 [26:23<03:50, 1.25s/it]
82%|████████▏ | 815/1000 [26:23<03:50, 1.25s/it]
82%|████████▏ | 816/1000 [26:25<03:40, 1.20s/it]
82%|████████▏ | 816/1000 [26:25<03:40, 1.20s/it]
82%|████████▏ | 817/1000 [26:25<03:26, 1.13s/it]
82%|████████▏ | 817/1000 [26:26<03:26, 1.13s/it]
82%|████████▏ | 818/1000 [26:26<03:14, 1.07s/it]
82%|████████▏ | 818/1000 [26:26<03:14, 1.07s/it]
82%|████████▏ | 819/1000 [26:27<03:05, 1.03s/it]
82%|████████▏ | 819/1000 [26:27<03:05, 1.03s/it]
82%|████████▏ | 820/1000 [26:28<03:00, 1.00s/it]
82%|████████▏ | 820/1000 [26:28<03:00, 1.00s/it]
82%|████████▏ | 821/1000 [26:29<02:55, 1.02it/s]
82%|████████▏ | 821/1000 [26:29<02:55, 1.02it/s]
82%|████████▏ | 822/1000 [26:30<02:45, 1.07it/s]
82%|████████▏ | 822/1000 [26:30<02:45, 1.07it/s]
82%|████████▏ | 823/1000 [26:31<02:31, 1.17it/s]
82%|████████▏ | 823/1000 [26:31<02:31, 1.17it/s]
82%|████████▏ | 824/1000 [26:31<02:20, 1.25it/s]
82%|████████▏ | 824/1000 [26:31<02:20, 1.25it/s]
82%|████████▎ | 825/1000 [26:34<04:01, 1.38s/it]
82%|████████▎ | 825/1000 [26:34<04:01, 1.38s/it]
83%|████████▎ | 826/1000 [26:42<09:26, 3.26s/it]
83%|████████▎ | 826/1000 [26:42<09:26, 3.26s/it]
83%|████████▎ | 827/1000 [26:46<10:13, 3.54s/it]
83%|████████▎ | 827/1000 [26:46<10:13, 3.54s/it]
83%|████████▎ | 828/1000 [26:50<10:14, 3.57s/it]
83%|████████▎ | 828/1000 [26:50<10:14, 3.57s/it]
83%|████████▎ | 829/1000 [26:53<10:03, 3.53s/it]
83%|████████▎ | 829/1000 [26:53<10:03, 3.53s/it]
83%|████████▎ | 830/1000 [26:56<09:37, 3.40s/it]
83%|████████▎ | 830/1000 [26:56<09:37, 3.40s/it]
83%|████████▎ | 831/1000 [26:59<09:12, 3.27s/it]
83%|████████▎ | 831/1000 [26:59<09:12, 3.27s/it]
83%|████████▎ | 832/1000 [27:02<08:42, 3.11s/it]
83%|████████▎ | 832/1000 [27:02<08:42, 3.11s/it]
83%|████████▎ | 833/1000 [27:05<08:20, 3.00s/it]
83%|████████▎ | 833/1000 [27:05<08:20, 3.00s/it]
83%|████████▎ | 834/1000 [27:07<07:56, 2.87s/it]
83%|████████▎ | 834/1000 [27:07<07:56, 2.87s/it]
84%|████████▎ | 835/1000 [27:10<07:29, 2.72s/it]
84%|████████▎ | 835/1000 [27:10<07:29, 2.72s/it]
84%|████████▎ | 836/1000 [27:12<07:08, 2.61s/it]
84%|████████▎ | 836/1000 [27:12<07:08, 2.61s/it]
84%|████████▎ | 837/1000 [27:14<06:53, 2.54s/it]
84%|████████▎ | 837/1000 [27:14<06:53, 2.54s/it]
84%|████████▍ | 838/1000 [27:16<06:33, 2.43s/it]
84%|████████▍ | 838/1000 [27:16<06:33, 2.43s/it]
84%|████████▍ | 839/1000 [27:18<06:13, 2.32s/it]
84%|████████▍ | 839/1000 [27:19<06:13, 2.32s/it]
84%|████████▍ | 840/1000 [27:21<06:00, 2.25s/it]
84%|████████▍ | 840/1000 [27:21<06:00, 2.25s/it]
84%|████████▍ | 841/1000 [27:23<05:50, 2.20s/it]
84%|████████▍ | 841/1000 [27:23<05:50, 2.20s/it]
84%|████████▍ | 842/1000 [27:25<05:45, 2.18s/it]
84%|████████▍ | 842/1000 [27:25<05:45, 2.18s/it]
84%|████████▍ | 843/1000 [27:27<05:34, 2.13s/it]
84%|████████▍ | 843/1000 [27:27<05:34, 2.13s/it]
84%|████████▍ | 844/1000 [27:29<05:14, 2.01s/it]
84%|████████▍ | 844/1000 [27:29<05:14, 2.01s/it]
84%|████████▍ | 845/1000 [27:30<05:01, 1.94s/it]
84%|████████▍ | 845/1000 [27:30<05:01, 1.94s/it]
85%|████████▍ | 846/1000 [27:32<04:52, 1.90s/it]
85%|████████▍ | 846/1000 [27:32<04:52, 1.90s/it]
85%|████████▍ | 847/1000 [27:34<04:46, 1.87s/it]
85%|████████▍ | 847/1000 [27:34<04:46, 1.87s/it]
85%|████████▍ | 848/1000 [27:36<04:38, 1.84s/it]
85%|████████▍ | 848/1000 [27:36<04:38, 1.84s/it]
85%|████████▍ | 849/1000 [27:37<04:33, 1.81s/it]
85%|████████▍ | 849/1000 [27:37<04:33, 1.81s/it]
85%|████████▌ | 850/1000 [27:39<04:22, 1.75s/it]
85%|████████▌ | 850/1000 [27:39<04:22, 1.75s/it]
85%|████████▌ | 851/1000 [27:41<04:10, 1.68s/it]
85%|████████▌ | 851/1000 [27:41<04:10, 1.68s/it]
85%|████████▌ | 852/1000 [27:42<03:59, 1.62s/it]
85%|████████▌ | 852/1000 [27:42<03:59, 1.62s/it]
85%|████████▌ | 853/1000 [27:44<03:51, 1.57s/it]
85%|████████▌ | 853/1000 [27:44<03:51, 1.57s/it]
85%|████████▌ | 854/1000 [27:45<03:45, 1.55s/it]
85%|████████▌ | 854/1000 [27:45<03:45, 1.55s/it]
86%|████████▌ | 855/1000 [27:47<03:43, 1.54s/it]
86%|████████▌ | 855/1000 [27:47<03:43, 1.54s/it]
86%|████████▌ | 856/1000 [27:48<03:39, 1.52s/it]
86%|████████▌ | 856/1000 [27:48<03:39, 1.52s/it]
86%|████████▌ | 857/1000 [27:50<03:37, 1.52s/it]
86%|████████▌ | 857/1000 [27:50<03:37, 1.52s/it]
86%|████████▌ | 858/1000 [27:51<03:28, 1.47s/it]
86%|████████▌ | 858/1000 [27:51<03:28, 1.47s/it]
86%|████████▌ | 859/1000 [27:52<03:15, 1.39s/it]
86%|████████▌ | 859/1000 [27:52<03:15, 1.39s/it]
86%|████████▌ | 860/1000 [27:53<03:07, 1.34s/it]
86%|████████▌ | 860/1000 [27:53<03:07, 1.34s/it]
86%|████████▌ | 861/1000 [27:55<03:01, 1.31s/it]
86%|████████▌ | 861/1000 [27:55<03:01, 1.31s/it]
86%|████████▌ | 862/1000 [27:56<02:56, 1.28s/it]
86%|████████▌ | 862/1000 [27:56<02:56, 1.28s/it]
86%|████████▋ | 863/1000 [27:57<02:52, 1.26s/it]
86%|████████▋ | 863/1000 [27:57<02:52, 1.26s/it]
86%|████████▋ | 864/1000 [27:58<02:51, 1.26s/it]
86%|████████▋ | 864/1000 [27:58<02:51, 1.26s/it]
86%|████████▋ | 865/1000 [27:59<02:49, 1.25s/it]
86%|████████▋ | 865/1000 [27:59<02:49, 1.25s/it]
87%|████████▋ | 866/1000 [28:01<02:40, 1.20s/it]
87%|████████▋ | 866/1000 [28:01<02:40, 1.20s/it]
87%|████████▋ | 867/1000 [28:01<02:28, 1.12s/it]
87%|████████▋ | 867/1000 [28:01<02:28, 1.12s/it]
87%|████████▋ | 868/1000 [28:02<02:19, 1.06s/it]
87%|████████▋ | 868/1000 [28:02<02:19, 1.06s/it]
87%|████████▋ | 869/1000 [28:03<02:13, 1.02s/it]
87%|████████▋ | 869/1000 [28:03<02:13, 1.02s/it]
87%|████████▋ | 870/1000 [28:04<02:09, 1.01it/s]
87%|████████▋ | 870/1000 [28:04<02:09, 1.01it/s]
87%|████████▋ | 871/1000 [28:05<02:05, 1.03it/s]
87%|████████▋ | 871/1000 [28:05<02:05, 1.03it/s]
87%|████████▋ | 872/1000 [28:06<01:58, 1.08it/s]
87%|████████▋ | 872/1000 [28:06<01:58, 1.08it/s]
87%|████████▋ | 873/1000 [28:07<01:47, 1.18it/s]
87%|████████▋ | 873/1000 [28:07<01:47, 1.18it/s]
87%|████████▋ | 874/1000 [28:07<01:40, 1.26it/s]
87%|████████▋ | 874/1000 [28:07<01:40, 1.26it/s]
88%|████████▊ | 875/1000 [28:10<02:46, 1.33s/it]
88%|████████▊ | 875/1000 [28:10<02:46, 1.33s/it]
88%|████████▊ | 876/1000 [28:17<06:05, 2.95s/it]
88%|████████▊ | 876/1000 [28:17<06:05, 2.95s/it]
88%|████████▊ | 877/1000 [28:21<06:52, 3.36s/it]
88%|████████▊ | 877/1000 [28:21<06:52, 3.36s/it]
88%|████████▊ | 878/1000 [28:25<07:00, 3.45s/it]
88%|████████▊ | 878/1000 [28:25<07:00, 3.45s/it]
88%|████████▊ | 879/1000 [28:28<06:56, 3.44s/it]
88%|████████▊ | 879/1000 [28:28<06:56, 3.44s/it]
88%|████████▊ | 880/1000 [28:31<06:46, 3.39s/it]
88%|████████▊ | 880/1000 [28:31<06:46, 3.39s/it]
88%|████████▊ | 881/1000 [28:34<06:27, 3.25s/it]
88%|████████▊ | 881/1000 [28:34<06:27, 3.25s/it]
88%|████████▊ | 882/1000 [28:37<06:05, 3.09s/it]
88%|████████▊ | 882/1000 [28:37<06:05, 3.09s/it]
88%|████████▊ | 883/1000 [28:40<05:48, 2.98s/it]
88%|████████▊ | 883/1000 [28:40<05:48, 2.98s/it]
88%|████████▊ | 884/1000 [28:42<05:30, 2.85s/it]
88%|████████▊ | 884/1000 [28:42<05:30, 2.85s/it]
88%|████████▊ | 885/1000 [28:45<05:10, 2.70s/it]
88%|████████▊ | 885/1000 [28:45<05:10, 2.70s/it]
89%|████████▊ | 886/1000 [28:47<04:59, 2.62s/it]
89%|████████▊ | 886/1000 [28:47<04:59, 2.62s/it]
89%|████████▊ | 887/1000 [28:49<04:46, 2.54s/it]
89%|████████▊ | 887/1000 [28:49<04:46, 2.54s/it]
89%|████████▉ | 888/1000 [28:51<04:29, 2.41s/it]
89%|████████▉ | 888/1000 [28:51<04:29, 2.41s/it]
89%|████████▉ | 889/1000 [28:53<04:15, 2.30s/it]
89%|████████▉ | 889/1000 [28:54<04:15, 2.30s/it]
89%|████████▉ | 890/1000 [28:56<04:05, 2.23s/it]
89%|████████▉ | 890/1000 [28:56<04:05, 2.23s/it]
89%|████████▉ | 891/1000 [28:58<04:01, 2.21s/it]
89%|████████▉ | 891/1000 [28:58<04:01, 2.21s/it]
89%|████████▉ | 892/1000 [29:00<03:52, 2.15s/it]
89%|████████▉ | 892/1000 [29:00<03:52, 2.15s/it]
89%|████████��� | 893/1000 [29:02<03:39, 2.05s/it]
89%|████████▉ | 893/1000 [29:02<03:39, 2.05s/it]
89%|████████▉ | 894/1000 [29:03<03:28, 1.96s/it]
89%|████████▉ | 894/1000 [29:03<03:28, 1.96s/it]
90%|████████▉ | 895/1000 [29:05<03:20, 1.91s/it]
90%|████████▉ | 895/1000 [29:05<03:20, 1.91s/it]
90%|████████▉ | 896/1000 [29:07<03:14, 1.87s/it]
90%|████████▉ | 896/1000 [29:07<03:14, 1.87s/it]
90%|████████▉ | 897/1000 [29:09<03:09, 1.84s/it]
90%|████████▉ | 897/1000 [29:09<03:09, 1.84s/it]
90%|████████▉ | 898/1000 [29:10<03:05, 1.82s/it]
90%|████████▉ | 898/1000 [29:10<03:05, 1.82s/it]
90%|████████▉ | 899/1000 [29:12<02:59, 1.78s/it]
90%|████████▉ | 899/1000 [29:12<02:59, 1.78s/it]
90%|█████████ | 900/1000 [29:14<02:50, 1.70s/it]
90%|█████████ | 900/1000 [29:14<02:50, 1.70s/it]
90%|█████████ | 901/1000 [29:15<02:42, 1.64s/it]
90%|█████████ | 901/1000 [29:15<02:42, 1.64s/it]
90%|█████████ | 902/1000 [29:17<02:36, 1.60s/it]
90%|█████████ | 902/1000 [29:17<02:36, 1.60s/it]
90%|█████████ | 903/1000 [29:18<02:32, 1.58s/it]
90%|█████████ | 903/1000 [29:18<02:32, 1.58s/it]
90%|█████████ | 904/1000 [29:20<02:28, 1.55s/it]
90%|█████████ | 904/1000 [29:20<02:28, 1.55s/it]
90%|█████████ | 905/1000 [29:21<02:25, 1.53s/it]
90%|█████████ | 905/1000 [29:21<02:25, 1.53s/it]
91%|█████████ | 906/1000 [29:23<02:22, 1.52s/it]
91%|█████████ | 906/1000 [29:23<02:22, 1.52s/it]
91%|█████████ | 907/1000 [29:24<02:19, 1.50s/it]
91%|█████████ | 907/1000 [29:24<02:19, 1.50s/it]
91%|█████████ | 908/1000 [29:25<02:11, 1.43s/it]
91%|█████████ | 908/1000 [29:25<02:11, 1.43s/it]
91%|█████████ | 909/1000 [29:27<02:04, 1.36s/it]
91%|█████████ | 909/1000 [29:27<02:04, 1.36s/it]
91%|█████████ | 910/1000 [29:28<01:59, 1.33s/it]
91%|█████████ | 910/1000 [29:28<01:59, 1.33s/it]
91%|█████████ | 911/1000 [29:29<01:56, 1.31s/it]
91%|█████████ | 911/1000 [29:29<01:56, 1.31s/it]
91%|█████████ | 912/1000 [29:30<01:53, 1.29s/it]
91%|█████████ | 912/1000 [29:30<01:53, 1.29s/it]
91%|█████████▏| 913/1000 [29:32<01:50, 1.27s/it]
91%|█████████▏| 913/1000 [29:32<01:50, 1.27s/it]
91%|█████████▏| 914/1000 [29:33<01:47, 1.26s/it]
91%|█████████▏| 914/1000 [29:33<01:47, 1.26s/it]
92%|█████████▏| 915/1000 [29:34<01:39, 1.17s/it]
92%|█████████▏| 915/1000 [29:34<01:39, 1.17s/it]
92%|█████████▏| 916/1000 [29:35<01:32, 1.10s/it]
92%|█████████▏| 916/1000 [29:35<01:32, 1.10s/it]
92%|█████████▏| 917/1000 [29:36<01:26, 1.04s/it]
92%|█████████▏| 917/1000 [29:36<01:26, 1.04s/it]
92%|█████████▏| 918/1000 [29:37<01:23, 1.01s/it]
92%|█████████▏| 918/1000 [29:37<01:23, 1.01s/it]
92%|█████████▏| 919/1000 [29:37<01:19, 1.01it/s]
92%|█████████▏| 919/1000 [29:37<01:19, 1.01it/s]
92%|█████████▏| 920/1000 [29:38<01:17, 1.03it/s]
92%|█████████▏| 920/1000 [29:38<01:17, 1.03it/s]
92%|█████████▏| 921/1000 [29:39<01:15, 1.04it/s]
92%|█████████▏| 921/1000 [29:39<01:15, 1.04it/s]
92%|█████████▏| 922/1000 [29:40<01:10, 1.10it/s]
92%|█████████▏| 922/1000 [29:40<01:10, 1.10it/s]
92%|█████████▏| 923/1000 [29:41<01:04, 1.20it/s]
92%|█████████▏| 923/1000 [29:41<01:04, 1.20it/s]
92%|█████████▏| 924/1000 [29:41<00:59, 1.27it/s]
92%|█████████▏| 924/1000 [29:41<00:59, 1.27it/s]
92%|█████████▎| 925/1000 [29:44<01:36, 1.28s/it]
92%|█████████▎| 925/1000 [29:44<01:36, 1.28s/it]
93%|█████████▎| 926/1000 [29:50<03:28, 2.81s/it]
93%|█████████▎| 926/1000 [29:50<03:28, 2.81s/it]
93%|█████████▎| 927/1000 [29:55<04:00, 3.30s/it]
93%|█████████▎| 927/1000 [29:55<04:00, 3.30s/it]
93%|█████████▎| 928/1000 [29:59<04:10, 3.48s/it]
93%|█████████▎| 928/1000 [29:59<04:10, 3.48s/it]
93%|█████████▎| 929/1000 [30:02<04:08, 3.50s/it]
93%|█████████▎| 929/1000 [30:02<04:08, 3.50s/it]
93%|█████████▎| 930/1000 [30:05<03:58, 3.40s/it]
93%|█████████▎| 930/1000 [30:05<03:58, 3.40s/it]
93%|█████████▎| 931/1000 [30:08<03:45, 3.27s/it]
93%|█████████▎| 931/1000 [30:08<03:45, 3.27s/it]
93%|█████████▎| 932/1000 [30:11<03:34, 3.15s/it]
93%|█████████▎| 932/1000 [30:11<03:34, 3.15s/it]
93%|█████████▎| 933/1000 [30:14<03:22, 3.02s/it]
93%|█████████▎| 933/1000 [30:14<03:22, 3.02s/it]
93%|█████████▎| 934/1000 [30:17<03:12, 2.92s/it]
93%|█████████▎| 934/1000 [30:17<03:12, 2.92s/it]
94%|█████████▎| 935/1000 [30:19<03:01, 2.79s/it]
94%|█████████▎| 935/1000 [30:19<03:01, 2.79s/it]
94%|█████████▎| 936/1000 [30:21<02:50, 2.66s/it]
94%|█████████▎| 936/1000 [30:21<02:50, 2.66s/it]
94%|█████████▎| 937/1000 [30:24<02:42, 2.58s/it]
94%|█████████▎| 937/1000 [30:24<02:42, 2.58s/it]
94%|█████████▍| 938/1000 [30:26<02:30, 2.43s/it]
94%|█████████▍| 938/1000 [30:26<02:30, 2.43s/it]
94%|█████████▍| 939/1000 [30:28<02:21, 2.32s/it]
94%|█████████▍| 939/1000 [30:28<02:21, 2.32s/it]
94%|█████████▍| 940/1000 [30:30<02:14, 2.24s/it]
94%|█████████▍| 940/1000 [30:30<02:14, 2.24s/it]
94%|█████████▍| 941/1000 [30:32<02:08, 2.18s/it]
94%|█████████▍| 941/1000 [30:32<02:08, 2.18s/it]
94%|█████████▍| 942/1000 [30:34<02:04, 2.15s/it]
94%|█████████▍| 942/1000 [30:34<02:04, 2.15s/it]
94%|█████████▍| 943/1000 [30:36<01:56, 2.05s/it]
94%|█████████▍| 943/1000 [30:36<01:56, 2.05s/it]
94%|█████████▍| 944/1000 [30:38<01:49, 1.96s/it]
94%|█████████▍| 944/1000 [30:38<01:49, 1.96s/it]
94%|█████████▍| 945/1000 [30:39<01:44, 1.89s/it]
94%|█████████▍| 945/1000 [30:39<01:44, 1.89s/it]
95%|█████████▍| 946/1000 [30:41<01:40, 1.85s/it]
95%|█████████▍| 946/1000 [30:41<01:40, 1.85s/it]
95%|█████████▍| 947/1000 [30:43<01:36, 1.82s/it]
95%|█████████▍| 947/1000 [30:43<01:36, 1.82s/it]
95%|█████████▍| 948/1000 [30:45<01:33, 1.80s/it]
95%|█████████▍| 948/1000 [30:45<01:33, 1.80s/it]
95%|█████████▍| 949/1000 [30:46<01:31, 1.79s/it]
95%|█████████▍| 949/1000 [30:46<01:31, 1.79s/it]
95%|█████████▌| 950/1000 [30:48<01:27, 1.75s/it]
95%|█████████▌| 950/1000 [30:48<01:27, 1.75s/it]
95%|█████████▌| 951/1000 [30:50<01:21, 1.67s/it]
95%|█████████▌| 951/1000 [30:50<01:21, 1.67s/it]
95%|█████████▌| 952/1000 [30:51<01:17, 1.62s/it]
95%|█████████▌| 952/1000 [30:51<01:17, 1.62s/it]
95%|█████████▌| 953/1000 [30:53<01:14, 1.58s/it]
95%|█████████▌| 953/1000 [30:53<01:14, 1.58s/it]
95%|█████████▌| 954/1000 [30:54<01:11, 1.55s/it]
95%|█████████▌| 954/1000 [30:54<01:11, 1.55s/it]
96%|█████████▌| 955/1000 [30:55<01:08, 1.53s/it]
96%|█████████▌| 955/1000 [30:56<01:08, 1.53s/it]
96%|█████████▌| 956/1000 [30:57<01:06, 1.52s/it]
96%|█████████▌| 956/1000 [30:57<01:06, 1.52s/it]
96%|█████████▌| 957/1000 [30:59<01:05, 1.52s/it]
96%|█████████▌| 957/1000 [30:59<01:05, 1.52s/it]
96%|█████████▌| 958/1000 [31:00<01:02, 1.48s/it]
96%|█████████▌| 958/1000 [31:00<01:02, 1.48s/it]
96%|█████████▌| 959/1000 [31:01<00:57, 1.40s/it]
96%|█████████▌| 959/1000 [31:01<00:57, 1.40s/it]
96%|█████████▌| 960/1000 [31:02<00:54, 1.36s/it]
96%|█████████▌| 960/1000 [31:02<00:54, 1.36s/it]
96%|█████████▌| 961/1000 [31:04<00:51, 1.33s/it]
96%|█████████▌| 961/1000 [31:04<00:51, 1.33s/it]
96%|█████████▌| 962/1000 [31:05<00:49, 1.30s/it]
96%|█████████▌| 962/1000 [31:05<00:49, 1.30s/it]
96%|█████████▋| 963/1000 [31:06<00:47, 1.27s/it]
96%|█████████▋| 963/1000 [31:06<00:47, 1.27s/it]
96%|█████████▋| 964/1000 [31:07<00:45, 1.25s/it]
96%|█████████▋| 964/1000 [31:07<00:45, 1.25s/it]
96%|█████████▋| 965/1000 [31:09<00:43, 1.25s/it]
96%|█████████▋| 965/1000 [31:09<00:43, 1.25s/it]
97%|█████████▋| 966/1000 [31:10<00:40, 1.20s/it]
97%|█████████▋| 966/1000 [31:10<00:40, 1.20s/it]
97%|█████████▋| 967/1000 [31:11<00:36, 1.11s/it]
97%|█████████▋| 967/1000 [31:11<00:36, 1.11s/it]
97%|█████████▋| 968/1000 [31:11<00:33, 1.06s/it]
97%|█████████▋| 968/1000 [31:11<00:33, 1.06s/it]
97%|█████████▋| 969/1000 [31:12<00:31, 1.02s/it]
97%|█████████▋| 969/1000 [31:12<00:31, 1.02s/it]
97%|█████████▋| 970/1000 [31:13<00:29, 1.01it/s]
97%|█████████▋| 970/1000 [31:13<00:29, 1.01it/s]
97%|█████████▋| 971/1000 [31:14<00:28, 1.03it/s]
97%|█████████▋| 971/1000 [31:14<00:28, 1.03it/s]
97%|█████████▋| 972/1000 [31:15<00:25, 1.10it/s]
97%|█████���███▋| 972/1000 [31:15<00:25, 1.10it/s]
97%|█████████▋| 973/1000 [31:16<00:22, 1.19it/s]
97%|█████████▋| 973/1000 [31:16<00:22, 1.19it/s]
97%|█████████▋| 974/1000 [31:16<00:20, 1.26it/s]
97%|█████████▋| 974/1000 [31:16<00:20, 1.26it/s]
98%|█████████▊| 975/1000 [31:19<00:33, 1.34s/it]
98%|█████████▊| 975/1000 [31:19<00:33, 1.34s/it]
98%|█████████▊| 976/1000 [31:26<01:14, 3.09s/it]
98%|█████████▊| 976/1000 [31:26<01:14, 3.09s/it]
98%|█████████▊| 977/1000 [31:30<01:17, 3.36s/it]
98%|█████████▊| 977/1000 [31:30<01:17, 3.36s/it]
98%|█████████▊| 978/1000 [31:34<01:15, 3.45s/it]
98%|█████████▊| 978/1000 [31:34<01:15, 3.45s/it]
98%|█████████▊| 979/1000 [31:37<01:11, 3.42s/it]
98%|█████████▊| 979/1000 [31:37<01:11, 3.42s/it]
98%|█████████▊| 980/1000 [31:40<01:06, 3.33s/it]
98%|█████████▊| 980/1000 [31:40<01:06, 3.33s/it]
98%|█████████▊| 981/1000 [31:43<01:00, 3.20s/it]
98%|█████████▊| 981/1000 [31:43<01:00, 3.20s/it]
98%|█████████▊| 982/1000 [31:46<00:54, 3.04s/it]
98%|█████████▊| 982/1000 [31:46<00:54, 3.04s/it]
98%|█████████▊| 983/1000 [31:48<00:49, 2.92s/it]
98%|█████████▊| 983/1000 [31:49<00:49, 2.92s/it]
98%|█████████▊| 984/1000 [31:51<00:44, 2.80s/it]
98%|█████████▊| 984/1000 [31:51<00:44, 2.80s/it]
98%|█████████▊| 985/1000 [31:53<00:39, 2.66s/it]
98%|█████████▊| 985/1000 [31:53<00:39, 2.66s/it]
99%|█████████▊| 986/1000 [31:56<00:35, 2.57s/it]
99%|█████████▊| 986/1000 [31:56<00:35, 2.57s/it]
99%|█████████▊| 987/1000 [31:58<00:32, 2.46s/it]
99%|█████████▊| 987/1000 [31:58<00:32, 2.46s/it]
99%|█████████▉| 988/1000 [32:00<00:28, 2.34s/it]
99%|█████████▉| 988/1000 [32:00<00:28, 2.34s/it]
99%|█████████▉| 989/1000 [32:02<00:24, 2.26s/it]
99%|█████████▉| 989/1000 [32:02<00:24, 2.26s/it]
99%|█████████▉| 990/1000 [32:04<00:22, 2.20s/it]
99%|█████████▉| 990/1000 [32:04<00:22, 2.20s/it]
99%|█████████▉| 991/1000 [32:06<00:19, 2.15s/it]
99%|█████████▉| 991/1000 [32:06<00:19, 2.15s/it]
99%|█████████▉| 992/1000 [32:08<00:16, 2.11s/it]
99%|█████████▉| 992/1000 [32:08<00:16, 2.11s/it]
99%|█████████▉| 993/1000 [32:10<00:14, 2.03s/it]
99%|█████████▉| 993/1000 [32:10<00:14, 2.03s/it]
99%|█████████▉| 994/1000 [32:12<00:11, 1.95s/it]
99%|█████████▉| 994/1000 [32:12<00:11, 1.95s/it]
100%|█████████▉| 995/1000 [32:13<00:09, 1.89s/it]
100%|█████████▉| 995/1000 [32:14<00:09, 1.89s/it]
100%|█████████▉| 996/1000 [32:15<00:07, 1.84s/it]
100%|█████████▉| 996/1000 [32:15<00:07, 1.84s/it]
100%|█████████▉| 997/1000 [32:17<00:05, 1.82s/it]
100%|█████████▉| 997/1000 [32:17<00:05, 1.82s/it]
100%|█████████▉| 998/1000 [32:19<00:03, 1.81s/it]
100%|█████████▉| 998/1000 [32:19<00:03, 1.81s/it]
100%|█████████▉| 999/1000 [32:20<00:01, 1.75s/it]
100%|█████████▉| 999/1000 [32:20<00:01, 1.75s/it]
100%|██████████| 1000/1000 [32:22<00:00, 1.67s/it]
100%|██████████| 1000/1000 [32:22<00:00, 1.67s/it]{'loss': 65.7309, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 40.497, 'grad_norm': 19.431121826171875, 'learning_rate': 1.2e-06, 'epoch': 0.0}
+{'loss': 36.2325, 'grad_norm': 20.21518898010254, 'learning_rate': 2.4e-06, 'epoch': 0.0}
+{'loss': 27.9292, 'grad_norm': 11.604636192321777, 'learning_rate': 3.6e-06, 'epoch': 0.01}
+{'loss': 27.842, 'grad_norm': nan, 'learning_rate': 3.6e-06, 'epoch': 0.01}
+{'loss': 28.3298, 'grad_norm': 13.326777458190918, 'learning_rate': 4.8e-06, 'epoch': 0.01}
+{'loss': 28.7461, 'grad_norm': 12.479119300842285, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.01}
+{'loss': 26.4075, 'grad_norm': 11.469672203063965, 'learning_rate': 7.2e-06, 'epoch': 0.01}
+{'loss': 23.0338, 'grad_norm': 10.416142463684082, 'learning_rate': 8.4e-06, 'epoch': 0.01}
+{'loss': 25.844, 'grad_norm': 10.866898536682129, 'learning_rate': 9.6e-06, 'epoch': 0.02}
+{'loss': 24.9471, 'grad_norm': 11.97667121887207, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.02}
+{'loss': 24.6028, 'grad_norm': 10.51934814453125, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.02}
+{'loss': 23.1144, 'grad_norm': 10.643861770629883, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.02}
+{'loss': 23.0041, 'grad_norm': 11.642038345336914, 'learning_rate': 1.44e-05, 'epoch': 0.02}
+{'loss': 22.1151, 'grad_norm': 10.239847183227539, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.02}
+{'loss': 20.955, 'grad_norm': 10.31641960144043, 'learning_rate': 1.68e-05, 'epoch': 0.03}
+{'loss': 20.0026, 'grad_norm': 10.14737606048584, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.03}
+{'loss': 20.053, 'grad_norm': 10.14389419555664, 'learning_rate': 1.92e-05, 'epoch': 0.03}
+{'loss': 23.2289, 'grad_norm': 13.049298286437988, 'learning_rate': 2.04e-05, 'epoch': 0.03}
+{'loss': 20.6362, 'grad_norm': 10.918747901916504, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.03}
+{'loss': 19.6928, 'grad_norm': 10.782907485961914, 'learning_rate': 2.28e-05, 'epoch': 0.03}
+{'loss': 22.1249, 'grad_norm': 13.15986156463623, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.04}
+{'loss': 20.4745, 'grad_norm': 11.684220314025879, 'learning_rate': 2.52e-05, 'epoch': 0.04}
+{'loss': 20.3504, 'grad_norm': 11.818272590637207, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.04}
+{'loss': 21.0093, 'grad_norm': 12.81021499633789, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.04}
+{'loss': 22.1517, 'grad_norm': 14.015459060668945, 'learning_rate': 2.88e-05, 'epoch': 0.04}
+{'loss': 18.2946, 'grad_norm': 11.829425811767578, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.04}
+{'loss': 22.9019, 'grad_norm': 15.79493236541748, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.04}
+{'loss': 20.221, 'grad_norm': 14.349289894104004, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.05}
+{'loss': 18.9742, 'grad_norm': 14.111164093017578, 'learning_rate': 3.36e-05, 'epoch': 0.05}
+{'loss': 20.2483, 'grad_norm': 15.603620529174805, 'learning_rate': 3.48e-05, 'epoch': 0.05}
+{'loss': 19.9449, 'grad_norm': 16.44049072265625, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.05}
+{'loss': 21.1125, 'grad_norm': 18.68276596069336, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.05}
+{'loss': 17.0528, 'grad_norm': 14.831990242004395, 'learning_rate': 3.84e-05, 'epoch': 0.05}
+{'loss': 18.3324, 'grad_norm': 16.635009765625, 'learning_rate': 3.96e-05, 'epoch': 0.06}
+{'loss': 18.495, 'grad_norm': 18.090103149414062, 'learning_rate': 4.08e-05, 'epoch': 0.06}
+{'loss': 18.7353, 'grad_norm': 19.209562301635742, 'learning_rate': 4.2e-05, 'epoch': 0.06}
+{'loss': 17.8893, 'grad_norm': 19.63134765625, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.06}
+{'loss': 17.9679, 'grad_norm': 20.713550567626953, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.06}
+{'loss': 19.6261, 'grad_norm': 25.246625900268555, 'learning_rate': 4.56e-05, 'epoch': 0.06}
+{'loss': 20.795, 'grad_norm': 28.108665466308594, 'learning_rate': 4.68e-05, 'epoch': 0.07}
+{'loss': 19.3122, 'grad_norm': 26.678646087646484, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.07}
+{'loss': 19.0949, 'grad_norm': 28.03876304626465, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.07}
+{'loss': 18.7253, 'grad_norm': 28.40298080444336, 'learning_rate': 5.04e-05, 'epoch': 0.07}
+{'loss': 18.9767, 'grad_norm': 30.833574295043945, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.07}
+{'loss': 16.0377, 'grad_norm': 25.621904373168945, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.07}
+{'loss': 15.6131, 'grad_norm': 26.582237243652344, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.08}
+{'loss': 17.8755, 'grad_norm': 34.89401626586914, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.08}
+{'loss': 16.0825, 'grad_norm': 32.71629333496094, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.08}
+{'loss': 13.6992, 'grad_norm': 27.743824005126953, 'learning_rate': 5.76e-05, 'epoch': 0.08}
+{'loss': 30.6838, 'grad_norm': inf, 'learning_rate': 5.76e-05, 'epoch': 0.08}
+{'loss': 26.4379, 'grad_norm': 85.50408935546875, 'learning_rate': 5.88e-05, 'epoch': 0.08}
+{'loss': 27.0726, 'grad_norm': inf, 'learning_rate': 5.88e-05, 'epoch': 0.08}
+{'loss': 18.3707, 'grad_norm': 50.16768264770508, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.09}
+{'loss': 23.1862, 'grad_norm': 131.34494018554688, 'learning_rate': 6.12e-05, 'epoch': 0.09}
+{'loss': 14.7586, 'grad_norm': 44.524417877197266, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.09}
+{'loss': 19.4668, 'grad_norm': 71.3255615234375, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.09}
+{'loss': 13.1064, 'grad_norm': 43.701072692871094, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.09}
+{'loss': 12.3225, 'grad_norm': 45.97714614868164, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.09}
+{'loss': 12.3515, 'grad_norm': 49.00947952270508, 'learning_rate': 6.72e-05, 'epoch': 0.1}
+{'loss': 12.8657, 'grad_norm': 54.81338119506836, 'learning_rate': 6.84e-05, 'epoch': 0.1}
+{'loss': 10.2856, 'grad_norm': 44.2459831237793, 'learning_rate': 6.96e-05, 'epoch': 0.1}
+{'loss': 9.7418, 'grad_norm': 73.28941345214844, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.1}
+{'loss': 8.9116, 'grad_norm': 40.017478942871094, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.1}
+{'loss': 7.9677, 'grad_norm': 35.54833221435547, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.1}
+{'loss': 8.5134, 'grad_norm': 42.94904708862305, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.11}
+{'loss': 7.7674, 'grad_norm': 38.947715759277344, 'learning_rate': 7.56e-05, 'epoch': 0.11}
+{'loss': 7.2294, 'grad_norm': 35.40559768676758, 'learning_rate': 7.68e-05, 'epoch': 0.11}
+{'loss': 6.7146, 'grad_norm': 31.678964614868164, 'learning_rate': 7.8e-05, 'epoch': 0.11}
+{'loss': 6.5397, 'grad_norm': 31.80811309814453, 'learning_rate': 7.92e-05, 'epoch': 0.11}
+{'loss': 6.0079, 'grad_norm': 25.740388870239258, 'learning_rate': 8.04e-05, 'epoch': 0.11}
+{'loss': 5.7781, 'grad_norm': 23.663726806640625, 'learning_rate': 8.16e-05, 'epoch': 0.12}
+{'loss': 5.5184, 'grad_norm': 20.862640380859375, 'learning_rate': 8.28e-05, 'epoch': 0.12}
+{'loss': 5.3262, 'grad_norm': 17.784168243408203, 'learning_rate': 8.4e-05, 'epoch': 0.12}
+{'loss': 5.2462, 'grad_norm': 16.173917770385742, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.12}
+{'loss': 4.989, 'grad_norm': 11.109197616577148, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.12}
+{'loss': 4.9122, 'grad_norm': 9.369626998901367, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.12}
+{'loss': 4.9956, 'grad_norm': 9.535905838012695, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.12}
+{'loss': 4.7227, 'grad_norm': 3.752645969390869, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.13}
+{'loss': 4.7404, 'grad_norm': 4.03261137008667, 'learning_rate': 9.12e-05, 'epoch': 0.13}
+{'loss': 4.6154, 'grad_norm': 3.3785626888275146, 'learning_rate': 9.24e-05, 'epoch': 0.13}
+{'loss': 4.6707, 'grad_norm': 3.4677908420562744, 'learning_rate': 9.36e-05, 'epoch': 0.13}
+{'loss': 4.5489, 'grad_norm': 4.760728359222412, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.13}
+{'loss': 4.5604, 'grad_norm': 2.995011329650879, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.13}
+{'loss': 4.4197, 'grad_norm': 3.4023890495300293, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.14}
+{'loss': 4.3887, 'grad_norm': 3.294135570526123, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.14}
+{'loss': 4.3751, 'grad_norm': 2.753955841064453, 'learning_rate': 9.96e-05, 'epoch': 0.14}
+{'loss': 4.2838, 'grad_norm': 3.3620405197143555, 'learning_rate': 0.0001008, 'epoch': 0.14}
+{'loss': 4.183, 'grad_norm': 2.385225534439087, 'learning_rate': 0.000102, 'epoch': 0.14}
+{'loss': 4.1382, 'grad_norm': 2.7207183837890625, 'learning_rate': 0.00010319999999999999, 'epoch': 0.14}
+{'loss': 4.1519, 'grad_norm': 2.0092227458953857, 'learning_rate': 0.00010439999999999999, 'epoch': 0.15}
+{'loss': 4.136, 'grad_norm': 1.8385318517684937, 'learning_rate': 0.00010559999999999998, 'epoch': 0.15}
+{'loss': 4.084, 'grad_norm': 1.3982303142547607, 'learning_rate': 0.00010679999999999998, 'epoch': 0.15}
+{'loss': 4.0993, 'grad_norm': 1.4304462671279907, 'learning_rate': 0.00010799999999999998, 'epoch': 0.15}
+{'loss': 4.1147, 'grad_norm': 5.04845666885376, 'learning_rate': 0.00010919999999999998, 'epoch': 0.15}
+{'loss': 4.0138, 'grad_norm': 1.1188616752624512, 'learning_rate': 0.00011039999999999999, 'epoch': 0.15}
+{'loss': 4.0886, 'grad_norm': 2.9660868644714355, 'learning_rate': 0.00011159999999999999, 'epoch': 0.16}
+{'loss': 4.0743, 'grad_norm': 2.909925699234009, 'learning_rate': 0.00011279999999999999, 'epoch': 0.16}
+{'loss': 4.0643, 'grad_norm': 2.233374834060669, 'learning_rate': 0.00011399999999999999, 'epoch': 0.16}
+{'loss': 4.1569, 'grad_norm': 1.9833197593688965, 'learning_rate': 0.0001152, 'epoch': 0.16}
+{'loss': 4.756, 'grad_norm': 31.450782775878906, 'learning_rate': 0.0001164, 'epoch': 0.16}
+{'loss': 4.0323, 'grad_norm': 11.571601867675781, 'learning_rate': 0.0001176, 'epoch': 0.16}
+{'loss': 3.9735, 'grad_norm': 9.144487380981445, 'learning_rate': 0.0001188, 'epoch': 0.16}
+{'loss': 4.218, 'grad_norm': 16.850412368774414, 'learning_rate': 0.00011999999999999999, 'epoch': 0.17}
+{'loss': 3.9086, 'grad_norm': 2.83750319480896, 'learning_rate': 0.00012119999999999999, 'epoch': 0.17}
+{'loss': 3.8875, 'grad_norm': 1.1910499334335327, 'learning_rate': 0.0001224, 'epoch': 0.17}
+{'loss': 3.9357, 'grad_norm': 1.7703046798706055, 'learning_rate': 0.0001236, 'epoch': 0.17}
+{'loss': 3.8306, 'grad_norm': 4.045347690582275, 'learning_rate': 0.00012479999999999997, 'epoch': 0.17}
+{'loss': 3.8273, 'grad_norm': 3.414834499359131, 'learning_rate': 0.00012599999999999997, 'epoch': 0.17}
+{'loss': 3.8331, 'grad_norm': 5.279017925262451, 'learning_rate': 0.00012719999999999997, 'epoch': 0.18}
+{'loss': 3.8236, 'grad_norm': 2.1371779441833496, 'learning_rate': 0.00012839999999999998, 'epoch': 0.18}
+{'loss': 3.7802, 'grad_norm': 0.6024636030197144, 'learning_rate': 0.00012959999999999998, 'epoch': 0.18}
+{'loss': 3.837, 'grad_norm': 3.284954786300659, 'learning_rate': 0.00013079999999999998, 'epoch': 0.18}
+{'loss': 3.8099, 'grad_norm': 3.2697064876556396, 'learning_rate': 0.00013199999999999998, 'epoch': 0.18}
+{'loss': 3.7916, 'grad_norm': 2.267110824584961, 'learning_rate': 0.00013319999999999999, 'epoch': 0.18}
+{'loss': 3.7612, 'grad_norm': 0.9686329364776611, 'learning_rate': 0.0001344, 'epoch': 0.19}
+{'loss': 3.817, 'grad_norm': 1.1181795597076416, 'learning_rate': 0.0001356, 'epoch': 0.19}
+{'loss': 3.75, 'grad_norm': 4.291112899780273, 'learning_rate': 0.0001368, 'epoch': 0.19}
+{'loss': 3.8755, 'grad_norm': 1.1991240978240967, 'learning_rate': 0.000138, 'epoch': 0.19}
+{'loss': 3.7636, 'grad_norm': 1.800611138343811, 'learning_rate': 0.0001392, 'epoch': 0.19}
+{'loss': 3.8781, 'grad_norm': 0.6300956606864929, 'learning_rate': 0.0001404, 'epoch': 0.19}
+{'loss': 3.758, 'grad_norm': 1.9492263793945312, 'learning_rate': 0.00014159999999999997, 'epoch': 0.2}
+{'loss': 3.7344, 'grad_norm': 1.5942705869674683, 'learning_rate': 0.00014279999999999997, 'epoch': 0.2}
+{'loss': 3.7535, 'grad_norm': 1.0828086137771606, 'learning_rate': 0.00014399999999999998, 'epoch': 0.2}
+{'loss': 3.7764, 'grad_norm': 1.54654860496521, 'learning_rate': 0.00014519999999999998, 'epoch': 0.2}
+{'loss': 3.8125, 'grad_norm': 3.488430976867676, 'learning_rate': 0.00014639999999999998, 'epoch': 0.2}
+{'loss': 3.8042, 'grad_norm': 1.4746885299682617, 'learning_rate': 0.00014759999999999998, 'epoch': 0.2}
+{'loss': 3.7654, 'grad_norm': 2.114961862564087, 'learning_rate': 0.00014879999999999998, 'epoch': 0.2}
+{'loss': 3.797, 'grad_norm': 1.086930751800537, 'learning_rate': 0.00015, 'epoch': 0.21}
+{'loss': 3.7507, 'grad_norm': 0.5767809152603149, 'learning_rate': 0.0001512, 'epoch': 0.21}
+{'loss': 3.7508, 'grad_norm': 2.0122199058532715, 'learning_rate': 0.0001524, 'epoch': 0.21}
+{'loss': 3.8003, 'grad_norm': 3.8814480304718018, 'learning_rate': 0.0001536, 'epoch': 0.21}
+{'loss': 3.8009, 'grad_norm': 1.92637038230896, 'learning_rate': 0.0001548, 'epoch': 0.21}
+{'loss': 3.7989, 'grad_norm': 0.7897951006889343, 'learning_rate': 0.000156, 'epoch': 0.21}
+{'loss': 3.7605, 'grad_norm': 4.2987751960754395, 'learning_rate': 0.0001572, 'epoch': 0.22}
+{'loss': 3.8734, 'grad_norm': 1.7444305419921875, 'learning_rate': 0.0001584, 'epoch': 0.22}
+{'loss': 3.7828, 'grad_norm': 3.6664788722991943, 'learning_rate': 0.0001596, 'epoch': 0.22}
+{'loss': 3.9124, 'grad_norm': 1.8154056072235107, 'learning_rate': 0.0001608, 'epoch': 0.22}
+{'loss': 3.7861, 'grad_norm': 0.8211868405342102, 'learning_rate': 0.000162, 'epoch': 0.22}
+{'loss': 3.787, 'grad_norm': 1.5533865690231323, 'learning_rate': 0.0001632, 'epoch': 0.22}
+{'loss': 3.7569, 'grad_norm': 2.957888603210449, 'learning_rate': 0.0001644, 'epoch': 0.23}
+{'loss': 3.854, 'grad_norm': 3.3956074714660645, 'learning_rate': 0.0001656, 'epoch': 0.23}
+{'loss': 3.8498, 'grad_norm': 4.3899993896484375, 'learning_rate': 0.0001668, 'epoch': 0.23}
+{'loss': 3.7483, 'grad_norm': 2.408184051513672, 'learning_rate': 0.000168, 'epoch': 0.23}
+{'loss': 3.7817, 'grad_norm': 2.7876155376434326, 'learning_rate': 0.00016919999999999997, 'epoch': 0.23}
+{'loss': 3.7676, 'grad_norm': 2.2329955101013184, 'learning_rate': 0.00017039999999999997, 'epoch': 0.23}
+{'loss': 3.811, 'grad_norm': 1.5696635246276855, 'learning_rate': 0.00017159999999999997, 'epoch': 0.24}
+{'loss': 3.8107, 'grad_norm': 2.209275007247925, 'learning_rate': 0.00017279999999999997, 'epoch': 0.24}
+{'loss': 3.8716, 'grad_norm': 1.1010030508041382, 'learning_rate': 0.00017399999999999997, 'epoch': 0.24}
+{'loss': 3.9153, 'grad_norm': 3.2085022926330566, 'learning_rate': 0.00017519999999999998, 'epoch': 0.24}
+{'loss': 4.6372, 'grad_norm': 27.279512405395508, 'learning_rate': 0.00017639999999999998, 'epoch': 0.24}
+{'loss': 3.8794, 'grad_norm': 6.734384536743164, 'learning_rate': 0.00017759999999999998, 'epoch': 0.24}
+{'loss': 3.9047, 'grad_norm': 8.395252227783203, 'learning_rate': 0.00017879999999999998, 'epoch': 0.24}
+{'loss': 3.8455, 'grad_norm': 2.386127471923828, 'learning_rate': 0.00017999999999999998, 'epoch': 0.25}
+{'loss': 4.004, 'grad_norm': 5.339539051055908, 'learning_rate': 0.00018119999999999999, 'epoch': 0.25}
+{'loss': 3.8299, 'grad_norm': 6.078152179718018, 'learning_rate': 0.0001824, 'epoch': 0.25}
+{'loss': 3.863, 'grad_norm': 6.789322853088379, 'learning_rate': 0.0001836, 'epoch': 0.25}
+{'loss': 3.8967, 'grad_norm': 6.238964557647705, 'learning_rate': 0.0001848, 'epoch': 0.25}
+{'loss': 3.8696, 'grad_norm': 4.713714122772217, 'learning_rate': 0.000186, 'epoch': 0.25}
+{'loss': 3.752, 'grad_norm': 2.388154983520508, 'learning_rate': 0.0001872, 'epoch': 0.26}
+{'loss': 3.7579, 'grad_norm': 3.3313629627227783, 'learning_rate': 0.00018839999999999997, 'epoch': 0.26}
+{'loss': 3.7794, 'grad_norm': 5.692492485046387, 'learning_rate': 0.00018959999999999997, 'epoch': 0.26}
+{'loss': 3.8021, 'grad_norm': 5.304704189300537, 'learning_rate': 0.00019079999999999998, 'epoch': 0.26}
+{'loss': 3.7633, 'grad_norm': 5.1804118156433105, 'learning_rate': 0.00019199999999999998, 'epoch': 0.26}
+{'loss': 3.802, 'grad_norm': 3.4341394901275635, 'learning_rate': 0.00019319999999999998, 'epoch': 0.26}
+{'loss': 3.7327, 'grad_norm': 0.7816358804702759, 'learning_rate': 0.00019439999999999998, 'epoch': 0.27}
+{'loss': 3.7701, 'grad_norm': 3.8968913555145264, 'learning_rate': 0.00019559999999999998, 'epoch': 0.27}
+{'loss': 3.7651, 'grad_norm': 6.041684150695801, 'learning_rate': 0.00019679999999999999, 'epoch': 0.27}
+{'loss': 3.9153, 'grad_norm': 1.5194474458694458, 'learning_rate': 0.000198, 'epoch': 0.27}
+{'loss': 3.7799, 'grad_norm': 5.066249847412109, 'learning_rate': 0.0001992, 'epoch': 0.27}
+{'loss': 3.7326, 'grad_norm': 2.518998146057129, 'learning_rate': 0.0002004, 'epoch': 0.27}
+{'loss': 3.7889, 'grad_norm': 0.759394645690918, 'learning_rate': 0.0002016, 'epoch': 0.28}
+{'loss': 3.709, 'grad_norm': 3.221085786819458, 'learning_rate': 0.0002028, 'epoch': 0.28}
+{'loss': 3.8104, 'grad_norm': 5.799932956695557, 'learning_rate': 0.000204, 'epoch': 0.28}
+{'loss': 3.7602, 'grad_norm': 4.494676113128662, 'learning_rate': 0.0002052, 'epoch': 0.28}
+{'loss': 3.6961, 'grad_norm': 1.4825067520141602, 'learning_rate': 0.00020639999999999998, 'epoch': 0.28}
+{'loss': 3.7053, 'grad_norm': 1.2989227771759033, 'learning_rate': 0.00020759999999999998, 'epoch': 0.28}
+{'loss': 3.7072, 'grad_norm': 2.4774816036224365, 'learning_rate': 0.00020879999999999998, 'epoch': 0.28}
+{'loss': 3.7205, 'grad_norm': 0.7821967005729675, 'learning_rate': 0.00020999999999999998, 'epoch': 0.29}
+{'loss': 3.7218, 'grad_norm': 2.0641937255859375, 'learning_rate': 0.00021119999999999996, 'epoch': 0.29}
+{'loss': 3.7159, 'grad_norm': 0.7465824484825134, 'learning_rate': 0.00021239999999999996, 'epoch': 0.29}
+{'loss': 3.7154, 'grad_norm': 1.9227252006530762, 'learning_rate': 0.00021359999999999996, 'epoch': 0.29}
+{'loss': 3.7532, 'grad_norm': 2.588310480117798, 'learning_rate': 0.00021479999999999996, 'epoch': 0.29}
+{'loss': 3.7199, 'grad_norm': 0.8672159314155579, 'learning_rate': 0.00021599999999999996, 'epoch': 0.29}
+{'loss': 3.7661, 'grad_norm': 2.015648365020752, 'learning_rate': 0.00021719999999999997, 'epoch': 0.3}
+{'loss': 3.7427, 'grad_norm': 1.280931830406189, 'learning_rate': 0.00021839999999999997, 'epoch': 0.3}
+{'loss': 3.8019, 'grad_norm': 1.2730371952056885, 'learning_rate': 0.00021959999999999997, 'epoch': 0.3}
+{'loss': 3.7265, 'grad_norm': 0.9145507216453552, 'learning_rate': 0.00022079999999999997, 'epoch': 0.3}
+{'loss': 3.6761, 'grad_norm': 1.7408198118209839, 'learning_rate': 0.00022199999999999998, 'epoch': 0.3}
+{'loss': 3.7797, 'grad_norm': 4.375244140625, 'learning_rate': 0.00022319999999999998, 'epoch': 0.3}
+{'loss': 3.7509, 'grad_norm': 2.859325647354126, 'learning_rate': 0.00022439999999999998, 'epoch': 0.31}
+{'loss': 3.7396, 'grad_norm': 2.0287702083587646, 'learning_rate': 0.00022559999999999998, 'epoch': 0.31}
+{'loss': 3.7297, 'grad_norm': 0.7529137134552002, 'learning_rate': 0.00022679999999999998, 'epoch': 0.31}
+{'loss': 3.758, 'grad_norm': 0.8018739223480225, 'learning_rate': 0.00022799999999999999, 'epoch': 0.31}
+{'loss': 3.7313, 'grad_norm': 1.8517733812332153, 'learning_rate': 0.0002292, 'epoch': 0.31}
+{'loss': 3.726, 'grad_norm': 1.8108242750167847, 'learning_rate': 0.0002304, 'epoch': 0.31}
+{'loss': 3.6929, 'grad_norm': 1.7063705921173096, 'learning_rate': 0.0002316, 'epoch': 0.32}
+{'loss': 3.7741, 'grad_norm': 1.4768927097320557, 'learning_rate': 0.0002328, 'epoch': 0.32}
+{'loss': 3.8361, 'grad_norm': 2.0207772254943848, 'learning_rate': 0.000234, 'epoch': 0.32}
+{'loss': 3.9766, 'grad_norm': nan, 'learning_rate': 0.000234, 'epoch': 0.32}
+{'loss': 4.9473, 'grad_norm': 28.53923797607422, 'learning_rate': 0.0002352, 'epoch': 0.32}
+{'loss': 3.8604, 'grad_norm': 19.729700088500977, 'learning_rate': 0.0002364, 'epoch': 0.32}
+{'loss': 4.1119, 'grad_norm': 15.63243293762207, 'learning_rate': 0.0002376, 'epoch': 0.32}
+{'loss': 3.7548, 'grad_norm': 4.515649795532227, 'learning_rate': 0.0002388, 'epoch': 0.33}
+{'loss': 3.7632, 'grad_norm': 3.835597038269043, 'learning_rate': 0.00023999999999999998, 'epoch': 0.33}
+{'loss': 3.9366, 'grad_norm': 3.379566192626953, 'learning_rate': 0.00024119999999999998, 'epoch': 0.33}
+{'loss': 3.7263, 'grad_norm': 1.9478070735931396, 'learning_rate': 0.00024239999999999998, 'epoch': 0.33}
+{'loss': 3.6968, 'grad_norm': 2.06083083152771, 'learning_rate': 0.00024359999999999999, 'epoch': 0.33}
+{'loss': 3.7776, 'grad_norm': 3.923818826675415, 'learning_rate': 0.0002448, 'epoch': 0.33}
+{'loss': 3.7088, 'grad_norm': 3.4094479084014893, 'learning_rate': 0.00024599999999999996, 'epoch': 0.34}
+{'loss': 3.7462, 'grad_norm': 4.099003314971924, 'learning_rate': 0.0002472, 'epoch': 0.34}
+{'loss': 3.7051, 'grad_norm': 0.9599695205688477, 'learning_rate': 0.00024839999999999997, 'epoch': 0.34}
+{'loss': 3.6189, 'grad_norm': 3.5445761680603027, 'learning_rate': 0.00024959999999999994, 'epoch': 0.34}
+{'loss': 3.5834, 'grad_norm': 3.2550857067108154, 'learning_rate': 0.00025079999999999997, 'epoch': 0.34}
+{'loss': 3.5801, 'grad_norm': 1.9503517150878906, 'learning_rate': 0.00025199999999999995, 'epoch': 0.34}
+{'loss': 3.7169, 'grad_norm': 4.3856520652771, 'learning_rate': 0.0002532, 'epoch': 0.35}
+{'loss': 3.5968, 'grad_norm': 1.5111596584320068, 'learning_rate': 0.00025439999999999995, 'epoch': 0.35}
+{'loss': 3.5628, 'grad_norm': 1.61884605884552, 'learning_rate': 0.0002556, 'epoch': 0.35}
+{'loss': 3.6218, 'grad_norm': 0.7278621792793274, 'learning_rate': 0.00025679999999999995, 'epoch': 0.35}
+{'loss': 3.4842, 'grad_norm': 0.9155241847038269, 'learning_rate': 0.000258, 'epoch': 0.35}
+{'loss': 3.4532, 'grad_norm': 1.681706428527832, 'learning_rate': 0.00025919999999999996, 'epoch': 0.35}
+{'loss': 3.529, 'grad_norm': 2.0195343494415283, 'learning_rate': 0.0002604, 'epoch': 0.36}
+{'loss': 3.5834, 'grad_norm': 2.215996026992798, 'learning_rate': 0.00026159999999999996, 'epoch': 0.36}
+{'loss': 3.5076, 'grad_norm': 3.6210215091705322, 'learning_rate': 0.0002628, 'epoch': 0.36}
+{'loss': 3.5052, 'grad_norm': 3.3881304264068604, 'learning_rate': 0.00026399999999999997, 'epoch': 0.36}
+{'loss': 3.4167, 'grad_norm': 1.2712512016296387, 'learning_rate': 0.0002652, 'epoch': 0.36}
+{'loss': 3.4773, 'grad_norm': 2.784555435180664, 'learning_rate': 0.00026639999999999997, 'epoch': 0.36}
+{'loss': 3.4792, 'grad_norm': 3.9173593521118164, 'learning_rate': 0.0002676, 'epoch': 0.36}
+{'loss': 3.581, 'grad_norm': 5.97532844543457, 'learning_rate': 0.0002688, 'epoch': 0.37}
+{'loss': 3.4026, 'grad_norm': 1.1036829948425293, 'learning_rate': 0.00027, 'epoch': 0.37}
+{'loss': 3.3855, 'grad_norm': 2.0570623874664307, 'learning_rate': 0.0002712, 'epoch': 0.37}
+{'loss': 3.3493, 'grad_norm': 2.33469295501709, 'learning_rate': 0.0002724, 'epoch': 0.37}
+{'loss': 3.4412, 'grad_norm': 1.7420787811279297, 'learning_rate': 0.0002736, 'epoch': 0.37}
+{'loss': 3.4772, 'grad_norm': 1.597578525543213, 'learning_rate': 0.0002748, 'epoch': 0.37}
+{'loss': 3.2345, 'grad_norm': 1.469741702079773, 'learning_rate': 0.000276, 'epoch': 0.38}
+{'loss': 3.2449, 'grad_norm': 1.8439031839370728, 'learning_rate': 0.0002772, 'epoch': 0.38}
+{'loss': 3.0865, 'grad_norm': 1.8763359785079956, 'learning_rate': 0.0002784, 'epoch': 0.38}
+{'loss': 3.2648, 'grad_norm': 1.3372673988342285, 'learning_rate': 0.00027959999999999997, 'epoch': 0.38}
+{'loss': 3.1095, 'grad_norm': 1.0363004207611084, 'learning_rate': 0.0002808, 'epoch': 0.38}
+{'loss': 3.1516, 'grad_norm': 1.2411675453186035, 'learning_rate': 0.00028199999999999997, 'epoch': 0.38}
+{'loss': 3.1162, 'grad_norm': 1.1692326068878174, 'learning_rate': 0.00028319999999999994, 'epoch': 0.39}
+{'loss': 3.1885, 'grad_norm': 1.514488697052002, 'learning_rate': 0.0002844, 'epoch': 0.39}
+{'loss': 2.9995, 'grad_norm': 1.0548737049102783, 'learning_rate': 0.00028559999999999995, 'epoch': 0.39}
+{'loss': 3.1228, 'grad_norm': 1.435293436050415, 'learning_rate': 0.0002868, 'epoch': 0.39}
+{'loss': 3.523, 'grad_norm': 4.880733966827393, 'learning_rate': 0.00028799999999999995, 'epoch': 0.39}
+{'loss': 2.9433, 'grad_norm': 2.134737730026245, 'learning_rate': 0.0002892, 'epoch': 0.39}
+{'loss': 3.0941, 'grad_norm': 1.4167667627334595, 'learning_rate': 0.00029039999999999996, 'epoch': 0.4}
+{'loss': 3.076, 'grad_norm': 1.7885382175445557, 'learning_rate': 0.0002916, 'epoch': 0.4}
+{'loss': 3.1318, 'grad_norm': 2.0048017501831055, 'learning_rate': 0.00029279999999999996, 'epoch': 0.4}
+{'loss': 3.437, 'grad_norm': 2.751702070236206, 'learning_rate': 0.000294, 'epoch': 0.4}
+{'loss': 6.7094, 'grad_norm': 60.15131759643555, 'learning_rate': 0.00029519999999999997, 'epoch': 0.4}
+{'loss': 3.3368, 'grad_norm': 11.904341697692871, 'learning_rate': 0.0002964, 'epoch': 0.4}
+{'loss': 3.084, 'grad_norm': 5.927310943603516, 'learning_rate': 0.00029759999999999997, 'epoch': 0.4}
+{'loss': 2.8328, 'grad_norm': 1.259347915649414, 'learning_rate': 0.0002988, 'epoch': 0.41}
+{'loss': 2.9085, 'grad_norm': 2.5598220825195312, 'learning_rate': 0.0003, 'epoch': 0.41}
+{'loss': 2.8637, 'grad_norm': 1.866328239440918, 'learning_rate': 0.00030119999999999995, 'epoch': 0.41}
+{'loss': 2.6899, 'grad_norm': 1.2088593244552612, 'learning_rate': 0.0003024, 'epoch': 0.41}
+{'loss': 2.9239, 'grad_norm': 4.605785369873047, 'learning_rate': 0.00030359999999999995, 'epoch': 0.41}
+{'loss': 2.5301, 'grad_norm': 1.7429507970809937, 'learning_rate': 0.0003048, 'epoch': 0.41}
+{'loss': 2.4356, 'grad_norm': 2.9041364192962646, 'learning_rate': 0.00030599999999999996, 'epoch': 0.42}
+{'loss': 2.523, 'grad_norm': 2.5931711196899414, 'learning_rate': 0.0003072, 'epoch': 0.42}
+{'loss': 2.2468, 'grad_norm': 1.1678705215454102, 'learning_rate': 0.00030839999999999996, 'epoch': 0.42}
+{'loss': 2.5393, 'grad_norm': 1.711000680923462, 'learning_rate': 0.0003096, 'epoch': 0.42}
+{'loss': 2.4138, 'grad_norm': 1.8182960748672485, 'learning_rate': 0.00031079999999999997, 'epoch': 0.42}
+{'loss': 2.2623, 'grad_norm': 1.3307945728302002, 'learning_rate': 0.000312, 'epoch': 0.42}
+{'loss': 2.1209, 'grad_norm': 1.9444172382354736, 'learning_rate': 0.00031319999999999997, 'epoch': 0.43}
+{'loss': 1.9432, 'grad_norm': 2.1593079566955566, 'learning_rate': 0.0003144, 'epoch': 0.43}
+{'loss': 2.1439, 'grad_norm': 2.1220879554748535, 'learning_rate': 0.0003156, 'epoch': 0.43}
+{'loss': 2.1583, 'grad_norm': 0.8869176506996155, 'learning_rate': 0.0003168, 'epoch': 0.43}
+{'loss': 1.8846, 'grad_norm': 1.2422492504119873, 'learning_rate': 0.000318, 'epoch': 0.43}
+{'loss': 1.9293, 'grad_norm': 0.8885542154312134, 'learning_rate': 0.0003192, 'epoch': 0.43}
+{'loss': 2.1379, 'grad_norm': 1.3430697917938232, 'learning_rate': 0.0003204, 'epoch': 0.44}
+{'loss': 2.311, 'grad_norm': 2.2559776306152344, 'learning_rate': 0.0003216, 'epoch': 0.44}
+{'loss': 1.8522, 'grad_norm': 1.0061554908752441, 'learning_rate': 0.0003228, 'epoch': 0.44}
+{'loss': 1.9418, 'grad_norm': 0.9519514441490173, 'learning_rate': 0.000324, 'epoch': 0.44}
+{'loss': 2.1713, 'grad_norm': 1.034746527671814, 'learning_rate': 0.0003252, 'epoch': 0.44}
+{'loss': 2.2635, 'grad_norm': 1.4670822620391846, 'learning_rate': 0.0003264, 'epoch': 0.44}
+{'loss': 2.447, 'grad_norm': 1.1949667930603027, 'learning_rate': 0.0003276, 'epoch': 0.44}
+{'loss': 1.9578, 'grad_norm': 2.0934438705444336, 'learning_rate': 0.0003288, 'epoch': 0.45}
+{'loss': 2.3822, 'grad_norm': 1.7934505939483643, 'learning_rate': 0.00033, 'epoch': 0.45}
+{'loss': 1.8567, 'grad_norm': 1.0247673988342285, 'learning_rate': 0.0003312, 'epoch': 0.45}
+{'loss': 1.964, 'grad_norm': 2.136781692504883, 'learning_rate': 0.0003324, 'epoch': 0.45}
+{'loss': 1.8132, 'grad_norm': 0.8177749514579773, 'learning_rate': 0.0003336, 'epoch': 0.45}
+{'loss': 1.8668, 'grad_norm': 1.0221589803695679, 'learning_rate': 0.0003348, 'epoch': 0.45}
+{'loss': 2.1496, 'grad_norm': 1.517808198928833, 'learning_rate': 0.000336, 'epoch': 0.46}
+{'loss': 2.3953, 'grad_norm': 1.5944926738739014, 'learning_rate': 0.0003372, 'epoch': 0.46}
+{'loss': 1.9663, 'grad_norm': 2.405046224594116, 'learning_rate': 0.00033839999999999993, 'epoch': 0.46}
+{'loss': 1.7194, 'grad_norm': 1.6332200765609741, 'learning_rate': 0.00033959999999999996, 'epoch': 0.46}
+{'loss': 1.9922, 'grad_norm': 1.463877558708191, 'learning_rate': 0.00034079999999999994, 'epoch': 0.46}
+{'loss': 1.9758, 'grad_norm': 1.3162888288497925, 'learning_rate': 0.00034199999999999996, 'epoch': 0.46}
+{'loss': 2.2791, 'grad_norm': 1.7767980098724365, 'learning_rate': 0.00034319999999999994, 'epoch': 0.47}
+{'loss': 1.5986, 'grad_norm': 1.7777577638626099, 'learning_rate': 0.00034439999999999997, 'epoch': 0.47}
+{'loss': 1.7837, 'grad_norm': 1.4968204498291016, 'learning_rate': 0.00034559999999999994, 'epoch': 0.47}
+{'loss': 2.1542, 'grad_norm': 1.639837384223938, 'learning_rate': 0.0003467999999999999, 'epoch': 0.47}
+{'loss': 2.1574, 'grad_norm': 2.0573577880859375, 'learning_rate': 0.00034799999999999995, 'epoch': 0.47}
+{'loss': 2.0754, 'grad_norm': 2.6885788440704346, 'learning_rate': 0.0003491999999999999, 'epoch': 0.47}
+{'loss': 2.3191, 'grad_norm': 2.3689215183258057, 'learning_rate': 0.00035039999999999995, 'epoch': 0.48}
+{'loss': 2.1903, 'grad_norm': 1.4669629335403442, 'learning_rate': 0.0003515999999999999, 'epoch': 0.48}
+{'loss': 2.4098, 'grad_norm': 6.631944179534912, 'learning_rate': 0.00035279999999999996, 'epoch': 0.48}
+{'loss': 2.8155, 'grad_norm': 3.869600296020508, 'learning_rate': 0.00035399999999999993, 'epoch': 0.48}
+{'loss': 4.0821, 'grad_norm': 18.670400619506836, 'learning_rate': 0.00035519999999999996, 'epoch': 0.48}
+{'loss': 2.6903, 'grad_norm': 6.5373640060424805, 'learning_rate': 0.00035639999999999994, 'epoch': 0.48}
+{'loss': 1.715, 'grad_norm': 1.8103080987930298, 'learning_rate': 0.00035759999999999996, 'epoch': 0.48}
+{'loss': 2.2299, 'grad_norm': 2.0340678691864014, 'learning_rate': 0.00035879999999999994, 'epoch': 0.49}
+{'loss': 2.0269, 'grad_norm': 2.8201074600219727, 'learning_rate': 0.00035999999999999997, 'epoch': 0.49}
+{'loss': 2.0192, 'grad_norm': 3.9219393730163574, 'learning_rate': 0.00036119999999999994, 'epoch': 0.49}
+{'loss': 2.2065, 'grad_norm': 2.1272470951080322, 'learning_rate': 0.00036239999999999997, 'epoch': 0.49}
+{'loss': 1.6669, 'grad_norm': 1.2031842470169067, 'learning_rate': 0.00036359999999999995, 'epoch': 0.49}
+{'loss': 1.9611, 'grad_norm': 2.6753766536712646, 'learning_rate': 0.0003648, 'epoch': 0.49}
+{'loss': 1.8961, 'grad_norm': 3.980130672454834, 'learning_rate': 0.00036599999999999995, 'epoch': 0.5}
+{'loss': 1.6241, 'grad_norm': 3.4683375358581543, 'learning_rate': 0.0003672, 'epoch': 0.5}
+{'loss': 1.8472, 'grad_norm': 3.478597402572632, 'learning_rate': 0.00036839999999999996, 'epoch': 0.5}
+{'loss': 1.7252, 'grad_norm': 1.360845923423767, 'learning_rate': 0.0003696, 'epoch': 0.5}
+{'loss': 1.4792, 'grad_norm': 0.9226222634315491, 'learning_rate': 0.00037079999999999996, 'epoch': 0.5}
+{'loss': 1.5637, 'grad_norm': 1.2864586114883423, 'learning_rate': 0.000372, 'epoch': 0.5}
+{'loss': 1.41, 'grad_norm': 1.395561695098877, 'learning_rate': 0.00037319999999999996, 'epoch': 0.51}
+{'loss': 1.8221, 'grad_norm': 1.9199680089950562, 'learning_rate': 0.0003744, 'epoch': 0.51}
+{'loss': 1.9545, 'grad_norm': 1.2985516786575317, 'learning_rate': 0.00037559999999999997, 'epoch': 0.51}
+{'loss': 1.2, 'grad_norm': 0.861045777797699, 'learning_rate': 0.00037679999999999994, 'epoch': 0.51}
+{'loss': 1.9655, 'grad_norm': 1.4724054336547852, 'learning_rate': 0.00037799999999999997, 'epoch': 0.51}
+{'loss': 1.6427, 'grad_norm': 1.121520757675171, 'learning_rate': 0.00037919999999999995, 'epoch': 0.51}
+{'loss': 1.8193, 'grad_norm': 0.8945459127426147, 'learning_rate': 0.0003804, 'epoch': 0.52}
+{'loss': 1.7606, 'grad_norm': 1.510231614112854, 'learning_rate': 0.00038159999999999995, 'epoch': 0.52}
+{'loss': 1.8403, 'grad_norm': 1.2624521255493164, 'learning_rate': 0.0003828, 'epoch': 0.52}
+{'loss': 1.5676, 'grad_norm': 1.1738777160644531, 'learning_rate': 0.00038399999999999996, 'epoch': 0.52}
+{'loss': 1.3816, 'grad_norm': 1.4238841533660889, 'learning_rate': 0.0003852, 'epoch': 0.52}
+{'loss': 1.4629, 'grad_norm': 0.9597876667976379, 'learning_rate': 0.00038639999999999996, 'epoch': 0.52}
+{'loss': 1.4452, 'grad_norm': 1.1177942752838135, 'learning_rate': 0.0003876, 'epoch': 0.52}
+{'loss': 1.6668, 'grad_norm': 1.0831985473632812, 'learning_rate': 0.00038879999999999996, 'epoch': 0.53}
+{'loss': 1.5963, 'grad_norm': 1.1985876560211182, 'learning_rate': 0.00039, 'epoch': 0.53}
+{'loss': 1.6768, 'grad_norm': 1.4813580513000488, 'learning_rate': 0.00039119999999999997, 'epoch': 0.53}
+{'loss': 1.6633, 'grad_norm': 1.4565857648849487, 'learning_rate': 0.0003924, 'epoch': 0.53}
+{'loss': 1.4567, 'grad_norm': 1.1487796306610107, 'learning_rate': 0.00039359999999999997, 'epoch': 0.53}
+{'loss': 1.8923, 'grad_norm': 1.2718472480773926, 'learning_rate': 0.0003948, 'epoch': 0.53}
+{'loss': 1.1306, 'grad_norm': 1.393419623374939, 'learning_rate': 0.000396, 'epoch': 0.54}
+{'loss': 1.6447, 'grad_norm': 2.660311222076416, 'learning_rate': 0.0003972, 'epoch': 0.54}
+{'loss': 1.6307, 'grad_norm': 1.1137669086456299, 'learning_rate': 0.0003984, 'epoch': 0.54}
+{'loss': 1.6008, 'grad_norm': 1.1761451959609985, 'learning_rate': 0.0003996, 'epoch': 0.54}
+{'loss': 1.523, 'grad_norm': 1.350234866142273, 'learning_rate': 0.0004008, 'epoch': 0.54}
+{'loss': 1.2526, 'grad_norm': 1.166507601737976, 'learning_rate': 0.000402, 'epoch': 0.54}
+{'loss': 1.7568, 'grad_norm': 1.3881250619888306, 'learning_rate': 0.0004032, 'epoch': 0.55}
+{'loss': 2.0863, 'grad_norm': 3.9268593788146973, 'learning_rate': 0.0004044, 'epoch': 0.55}
+{'loss': 1.5831, 'grad_norm': 1.7067468166351318, 'learning_rate': 0.0004056, 'epoch': 0.55}
+{'loss': 1.7429, 'grad_norm': 1.4713155031204224, 'learning_rate': 0.00040679999999999997, 'epoch': 0.55}
+{'loss': 1.6922, 'grad_norm': 1.212177038192749, 'learning_rate': 0.000408, 'epoch': 0.55}
+{'loss': 1.818, 'grad_norm': 1.6186903715133667, 'learning_rate': 0.00040919999999999997, 'epoch': 0.55}
+{'loss': 2.4012, 'grad_norm': 2.359452247619629, 'learning_rate': 0.0004104, 'epoch': 0.56}
+{'loss': 2.296, 'grad_norm': 2.3700032234191895, 'learning_rate': 0.0004116, 'epoch': 0.56}
+{'loss': 2.0039, 'grad_norm': 1.8284653425216675, 'learning_rate': 0.00041279999999999995, 'epoch': 0.56}
+{'loss': 2.089, 'grad_norm': 2.491885185241699, 'learning_rate': 0.0004139999999999999, 'epoch': 0.56}
+{'loss': 1.6711, 'grad_norm': 2.3013062477111816, 'learning_rate': 0.00041519999999999995, 'epoch': 0.56}
+{'loss': 1.6065, 'grad_norm': 1.9905917644500732, 'learning_rate': 0.00041639999999999993, 'epoch': 0.56}
+{'loss': 2.2154, 'grad_norm': 1.480592966079712, 'learning_rate': 0.00041759999999999996, 'epoch': 0.56}
+{'loss': 1.9469, 'grad_norm': 2.0091054439544678, 'learning_rate': 0.00041879999999999993, 'epoch': 0.57}
+{'loss': 2.159, 'grad_norm': 4.029331207275391, 'learning_rate': 0.00041999999999999996, 'epoch': 0.57}
+{'loss': 1.9669, 'grad_norm': 3.835162401199341, 'learning_rate': 0.00042119999999999994, 'epoch': 0.57}
+{'loss': 1.9169, 'grad_norm': 3.283651828765869, 'learning_rate': 0.0004223999999999999, 'epoch': 0.57}
+{'loss': 1.9569, 'grad_norm': 2.7341041564941406, 'learning_rate': 0.00042359999999999994, 'epoch': 0.57}
+{'loss': 1.9345, 'grad_norm': 3.72660231590271, 'learning_rate': 0.0004247999999999999, 'epoch': 0.57}
+{'loss': 1.6209, 'grad_norm': 1.2118239402770996, 'learning_rate': 0.00042599999999999995, 'epoch': 0.58}
+{'loss': 1.7308, 'grad_norm': 2.773261547088623, 'learning_rate': 0.0004271999999999999, 'epoch': 0.58}
+{'loss': 1.5566, 'grad_norm': 1.5158611536026, 'learning_rate': 0.00042839999999999995, 'epoch': 0.58}
+{'loss': 1.517, 'grad_norm': 1.7444158792495728, 'learning_rate': 0.0004295999999999999, 'epoch': 0.58}
+{'loss': 1.3961, 'grad_norm': 2.0275840759277344, 'learning_rate': 0.00043079999999999995, 'epoch': 0.58}
+{'loss': 1.3833, 'grad_norm': 1.0864077806472778, 'learning_rate': 0.00043199999999999993, 'epoch': 0.58}
+{'loss': 1.2144, 'grad_norm': 1.5802364349365234, 'learning_rate': 0.00043319999999999996, 'epoch': 0.59}
+{'loss': 1.4435, 'grad_norm': 1.1365376710891724, 'learning_rate': 0.00043439999999999993, 'epoch': 0.59}
+{'loss': 1.8125, 'grad_norm': 2.001816511154175, 'learning_rate': 0.00043559999999999996, 'epoch': 0.59}
+{'loss': 2.3917, 'grad_norm': 3.9782650470733643, 'learning_rate': 0.00043679999999999994, 'epoch': 0.59}
+{'loss': 1.4065, 'grad_norm': 2.559185743331909, 'learning_rate': 0.00043799999999999997, 'epoch': 0.59}
+{'loss': 1.3286, 'grad_norm': 1.531436562538147, 'learning_rate': 0.00043919999999999994, 'epoch': 0.59}
+{'loss': 1.3389, 'grad_norm': 2.1857967376708984, 'learning_rate': 0.00044039999999999997, 'epoch': 0.6}
+{'loss': 1.305, 'grad_norm': 1.2437169551849365, 'learning_rate': 0.00044159999999999995, 'epoch': 0.6}
+{'loss': 1.6173, 'grad_norm': 1.8238170146942139, 'learning_rate': 0.0004428, 'epoch': 0.6}
+{'loss': 1.2818, 'grad_norm': 0.9433510303497314, 'learning_rate': 0.00044399999999999995, 'epoch': 0.6}
+{'loss': 1.3214, 'grad_norm': 1.7307677268981934, 'learning_rate': 0.0004452, 'epoch': 0.6}
+{'loss': 1.6527, 'grad_norm': 1.2876639366149902, 'learning_rate': 0.00044639999999999995, 'epoch': 0.6}
+{'loss': 1.4502, 'grad_norm': 1.0600067377090454, 'learning_rate': 0.0004476, 'epoch': 0.6}
+{'loss': 1.2737, 'grad_norm': 1.1501784324645996, 'learning_rate': 0.00044879999999999996, 'epoch': 0.61}
+{'loss': 1.7977, 'grad_norm': 0.959336519241333, 'learning_rate': 0.00045, 'epoch': 0.61}
+{'loss': 1.4758, 'grad_norm': 1.1226460933685303, 'learning_rate': 0.00045119999999999996, 'epoch': 0.61}
+{'loss': 1.5619, 'grad_norm': 0.9224548935890198, 'learning_rate': 0.00045239999999999994, 'epoch': 0.61}
+{'loss': 1.3943, 'grad_norm': 0.814278244972229, 'learning_rate': 0.00045359999999999997, 'epoch': 0.61}
+{'loss': 1.5962, 'grad_norm': 0.9084352850914001, 'learning_rate': 0.00045479999999999994, 'epoch': 0.61}
+{'loss': 1.3404, 'grad_norm': 1.4289610385894775, 'learning_rate': 0.00045599999999999997, 'epoch': 0.62}
+{'loss': 1.4539, 'grad_norm': 1.2523407936096191, 'learning_rate': 0.00045719999999999995, 'epoch': 0.62}
+{'loss': 1.2913, 'grad_norm': 1.1009465456008911, 'learning_rate': 0.0004584, 'epoch': 0.62}
+{'loss': 1.7786, 'grad_norm': 1.369174838066101, 'learning_rate': 0.00045959999999999995, 'epoch': 0.62}
+{'loss': 1.5913, 'grad_norm': 1.6469858884811401, 'learning_rate': 0.0004608, 'epoch': 0.62}
+{'loss': 1.4396, 'grad_norm': 1.0242924690246582, 'learning_rate': 0.00046199999999999995, 'epoch': 0.62}
+{'loss': 1.3629, 'grad_norm': 1.0944545269012451, 'learning_rate': 0.0004632, 'epoch': 0.63}
+{'loss': 1.4899, 'grad_norm': 1.2820014953613281, 'learning_rate': 0.00046439999999999996, 'epoch': 0.63}
+{'loss': 1.3476, 'grad_norm': 1.1084744930267334, 'learning_rate': 0.0004656, 'epoch': 0.63}
+{'loss': 1.6783, 'grad_norm': 1.2067919969558716, 'learning_rate': 0.00046679999999999996, 'epoch': 0.63}
+{'loss': 1.8544, 'grad_norm': 1.3350406885147095, 'learning_rate': 0.000468, 'epoch': 0.63}
+{'loss': 1.6983, 'grad_norm': 2.817788600921631, 'learning_rate': 0.00046919999999999997, 'epoch': 0.63}
+{'loss': 1.9165, 'grad_norm': 1.577996850013733, 'learning_rate': 0.0004704, 'epoch': 0.64}
+{'loss': 2.2309, 'grad_norm': 1.992092251777649, 'learning_rate': 0.00047159999999999997, 'epoch': 0.64}
+{'loss': 1.977, 'grad_norm': 1.5959856510162354, 'learning_rate': 0.0004728, 'epoch': 0.64}
+{'loss': 1.9346, 'grad_norm': 2.959681510925293, 'learning_rate': 0.000474, 'epoch': 0.64}
+{'loss': 1.9946, 'grad_norm': 3.0177066326141357, 'learning_rate': 0.0004752, 'epoch': 0.64}
+{'loss': 1.861, 'grad_norm': 3.2861762046813965, 'learning_rate': 0.0004764, 'epoch': 0.64}
+{'loss': 7.6541, 'grad_norm': 33.552921295166016, 'learning_rate': 0.0004776, 'epoch': 0.64}
+{'loss': 1.7211, 'grad_norm': 1.975786566734314, 'learning_rate': 0.0004788, 'epoch': 0.65}
+{'loss': 1.8209, 'grad_norm': 3.4860012531280518, 'learning_rate': 0.00047999999999999996, 'epoch': 0.65}
+{'loss': 1.7063, 'grad_norm': 3.5102968215942383, 'learning_rate': 0.0004812, 'epoch': 0.65}
+{'loss': 1.4615, 'grad_norm': 4.879241943359375, 'learning_rate': 0.00048239999999999996, 'epoch': 0.65}
+{'loss': 1.6937, 'grad_norm': 2.7851948738098145, 'learning_rate': 0.0004836, 'epoch': 0.65}
+{'loss': 1.6795, 'grad_norm': 0.9268562197685242, 'learning_rate': 0.00048479999999999997, 'epoch': 0.65}
+{'loss': 1.433, 'grad_norm': 1.127549409866333, 'learning_rate': 0.000486, 'epoch': 0.66}
+{'loss': 1.501, 'grad_norm': 2.1968774795532227, 'learning_rate': 0.00048719999999999997, 'epoch': 0.66}
+{'loss': 1.4432, 'grad_norm': 3.553457260131836, 'learning_rate': 0.0004883999999999999, 'epoch': 0.66}
+{'loss': 1.3622, 'grad_norm': 1.8429263830184937, 'learning_rate': 0.0004896, 'epoch': 0.66}
+{'loss': 1.157, 'grad_norm': 0.8631522059440613, 'learning_rate': 0.0004907999999999999, 'epoch': 0.66}
+{'loss': 1.03, 'grad_norm': 0.8570797443389893, 'learning_rate': 0.0004919999999999999, 'epoch': 0.66}
+{'loss': 1.5622, 'grad_norm': 1.2855173349380493, 'learning_rate': 0.0004932, 'epoch': 0.67}
+{'loss': 1.0664, 'grad_norm': 1.406083106994629, 'learning_rate': 0.0004944, 'epoch': 0.67}
+{'loss': 1.5327, 'grad_norm': 1.5346801280975342, 'learning_rate': 0.0004955999999999999, 'epoch': 0.67}
+{'loss': 1.6197, 'grad_norm': 1.3836517333984375, 'learning_rate': 0.0004967999999999999, 'epoch': 0.67}
+{'loss': 1.2376, 'grad_norm': 1.7024117708206177, 'learning_rate': 0.000498, 'epoch': 0.67}
+{'loss': 1.5432, 'grad_norm': 1.5172358751296997, 'learning_rate': 0.0004991999999999999, 'epoch': 0.67}
+{'loss': 1.2484, 'grad_norm': 1.142734408378601, 'learning_rate': 0.0005003999999999999, 'epoch': 0.68}
+{'loss': 1.3032, 'grad_norm': 0.8977586030960083, 'learning_rate': 0.0005015999999999999, 'epoch': 0.68}
+{'loss': 1.4404, 'grad_norm': 1.1880444288253784, 'learning_rate': 0.0005028, 'epoch': 0.68}
+{'loss': 1.2976, 'grad_norm': 1.214245080947876, 'learning_rate': 0.0005039999999999999, 'epoch': 0.68}
+{'loss': 1.418, 'grad_norm': 0.9443445801734924, 'learning_rate': 0.0005051999999999999, 'epoch': 0.68}
+{'loss': 1.3793, 'grad_norm': 1.4814517498016357, 'learning_rate': 0.0005064, 'epoch': 0.68}
+{'loss': 1.1823, 'grad_norm': 1.3838948011398315, 'learning_rate': 0.0005076, 'epoch': 0.68}
+{'loss': 1.108, 'grad_norm': 0.9880338311195374, 'learning_rate': 0.0005087999999999999, 'epoch': 0.69}
+{'loss': 1.3633, 'grad_norm': 1.0871669054031372, 'learning_rate': 0.0005099999999999999, 'epoch': 0.69}
+{'loss': 1.3324, 'grad_norm': 1.2696417570114136, 'learning_rate': 0.0005112, 'epoch': 0.69}
+{'loss': 0.9689, 'grad_norm': 1.4589694738388062, 'learning_rate': 0.0005124, 'epoch': 0.69}
+{'loss': 1.2153, 'grad_norm': 0.948417603969574, 'learning_rate': 0.0005135999999999999, 'epoch': 0.69}
+{'loss': 1.7676, 'grad_norm': 1.4363794326782227, 'learning_rate': 0.0005147999999999999, 'epoch': 0.69}
+{'loss': 1.247, 'grad_norm': 0.8274084329605103, 'learning_rate': 0.000516, 'epoch': 0.7}
+{'loss': 1.9134, 'grad_norm': 1.2022773027420044, 'learning_rate': 0.0005172, 'epoch': 0.7}
+{'loss': 1.5249, 'grad_norm': 1.0256644487380981, 'learning_rate': 0.0005183999999999999, 'epoch': 0.7}
+{'loss': 1.4572, 'grad_norm': 1.2487961053848267, 'learning_rate': 0.0005195999999999999, 'epoch': 0.7}
+{'loss': 1.2583, 'grad_norm': 1.103989601135254, 'learning_rate': 0.0005208, 'epoch': 0.7}
+{'loss': 1.249, 'grad_norm': 1.1899611949920654, 'learning_rate': 0.000522, 'epoch': 0.7}
+{'loss': 1.3384, 'grad_norm': 1.1985859870910645, 'learning_rate': 0.0005231999999999999, 'epoch': 0.71}
+{'loss': 1.6037, 'grad_norm': 1.278523325920105, 'learning_rate': 0.0005244, 'epoch': 0.71}
+{'loss': 1.7037, 'grad_norm': 2.5164453983306885, 'learning_rate': 0.0005256, 'epoch': 0.71}
+{'loss': 1.3628, 'grad_norm': 1.4125896692276, 'learning_rate': 0.0005267999999999999, 'epoch': 0.71}
+{'loss': 1.8712, 'grad_norm': 1.4269789457321167, 'learning_rate': 0.0005279999999999999, 'epoch': 0.71}
+{'loss': 1.4942, 'grad_norm': 1.321560263633728, 'learning_rate': 0.0005292, 'epoch': 0.71}
+{'loss': 1.9359, 'grad_norm': 1.5753790140151978, 'learning_rate': 0.0005304, 'epoch': 0.72}
+{'loss': 1.745, 'grad_norm': 2.2859463691711426, 'learning_rate': 0.0005315999999999999, 'epoch': 0.72}
+{'loss': 1.8343, 'grad_norm': 2.0483174324035645, 'learning_rate': 0.0005327999999999999, 'epoch': 0.72}
+{'loss': 2.2459, 'grad_norm': 3.6337218284606934, 'learning_rate': 0.000534, 'epoch': 0.72}
+{'loss': 3.3534, 'grad_norm': 13.555660247802734, 'learning_rate': 0.0005352, 'epoch': 0.72}
+{'loss': 2.7515, 'grad_norm': 6.6364850997924805, 'learning_rate': 0.0005363999999999999, 'epoch': 0.72}
+{'loss': 2.012, 'grad_norm': 3.817852258682251, 'learning_rate': 0.0005376, 'epoch': 0.72}
+{'loss': 1.9942, 'grad_norm': 1.707593560218811, 'learning_rate': 0.0005388, 'epoch': 0.73}
+{'loss': 1.6863, 'grad_norm': 2.77917218208313, 'learning_rate': 0.00054, 'epoch': 0.73}
+{'loss': 1.4779, 'grad_norm': 2.7656164169311523, 'learning_rate': 0.0005411999999999999, 'epoch': 0.73}
+{'loss': 1.8024, 'grad_norm': 1.720285177230835, 'learning_rate': 0.0005424, 'epoch': 0.73}
+{'loss': 1.6034, 'grad_norm': 3.847505807876587, 'learning_rate': 0.0005436, 'epoch': 0.73}
+{'loss': 1.3834, 'grad_norm': 2.7850637435913086, 'learning_rate': 0.0005448, 'epoch': 0.73}
+{'loss': 1.6495, 'grad_norm': 1.2482507228851318, 'learning_rate': 0.0005459999999999999, 'epoch': 0.74}
+{'loss': 1.3752, 'grad_norm': 1.2714293003082275, 'learning_rate': 0.0005472, 'epoch': 0.74}
+{'loss': 1.4186, 'grad_norm': 1.8939746618270874, 'learning_rate': 0.0005484, 'epoch': 0.74}
+{'loss': 1.2681, 'grad_norm': 2.5669922828674316, 'learning_rate': 0.0005496, 'epoch': 0.74}
+{'loss': 1.3308, 'grad_norm': 1.9449177980422974, 'learning_rate': 0.0005507999999999999, 'epoch': 0.74}
+{'loss': 1.2645, 'grad_norm': 0.872009813785553, 'learning_rate': 0.000552, 'epoch': 0.74}
+{'loss': 1.0258, 'grad_norm': 0.8539568185806274, 'learning_rate': 0.0005532, 'epoch': 0.75}
+{'loss': 1.38, 'grad_norm': 1.0018901824951172, 'learning_rate': 0.0005544, 'epoch': 0.75}
+{'loss': 1.3214, 'grad_norm': 0.9926770329475403, 'learning_rate': 0.0005556, 'epoch': 0.75}
+{'loss': 1.3013, 'grad_norm': 1.80833101272583, 'learning_rate': 0.0005568, 'epoch': 0.75}
+{'loss': 1.3652, 'grad_norm': 1.4460201263427734, 'learning_rate': 0.000558, 'epoch': 0.75}
+{'loss': 1.1968, 'grad_norm': 1.0537903308868408, 'learning_rate': 0.0005591999999999999, 'epoch': 0.75}
+{'loss': 1.2747, 'grad_norm': 1.0886517763137817, 'learning_rate': 0.0005604, 'epoch': 0.76}
+{'loss': 1.2078, 'grad_norm': 1.2867629528045654, 'learning_rate': 0.0005616, 'epoch': 0.76}
+{'loss': 1.0753, 'grad_norm': 1.7365913391113281, 'learning_rate': 0.0005627999999999999, 'epoch': 0.76}
+{'loss': 1.2664, 'grad_norm': 1.7022826671600342, 'learning_rate': 0.0005639999999999999, 'epoch': 0.76}
+{'loss': 1.3553, 'grad_norm': 1.3423399925231934, 'learning_rate': 0.0005652, 'epoch': 0.76}
+{'loss': 1.4162, 'grad_norm': 1.3367669582366943, 'learning_rate': 0.0005663999999999999, 'epoch': 0.76}
+{'loss': 1.2366, 'grad_norm': 0.9925369024276733, 'learning_rate': 0.0005675999999999999, 'epoch': 0.76}
+{'loss': 1.2624, 'grad_norm': 1.741668939590454, 'learning_rate': 0.0005688, 'epoch': 0.77}
+{'loss': 1.0515, 'grad_norm': 1.771984577178955, 'learning_rate': 0.00057, 'epoch': 0.77}
+{'loss': 1.2872, 'grad_norm': 1.5952296257019043, 'learning_rate': 0.0005711999999999999, 'epoch': 0.77}
+{'loss': 1.0806, 'grad_norm': 1.2628203630447388, 'learning_rate': 0.0005723999999999999, 'epoch': 0.77}
+{'loss': 1.962, 'grad_norm': 1.4792985916137695, 'learning_rate': 0.0005736, 'epoch': 0.77}
+{'loss': 1.4523, 'grad_norm': 2.177412509918213, 'learning_rate': 0.0005747999999999999, 'epoch': 0.77}
+{'loss': 1.401, 'grad_norm': 1.865964412689209, 'learning_rate': 0.0005759999999999999, 'epoch': 0.78}
+{'loss': 1.3322, 'grad_norm': 1.4428671598434448, 'learning_rate': 0.0005771999999999999, 'epoch': 0.78}
+{'loss': 1.4704, 'grad_norm': 0.9237609505653381, 'learning_rate': 0.0005784, 'epoch': 0.78}
+{'loss': 1.6074, 'grad_norm': 2.0012426376342773, 'learning_rate': 0.0005795999999999999, 'epoch': 0.78}
+{'loss': 1.4989, 'grad_norm': 1.1296131610870361, 'learning_rate': 0.0005807999999999999, 'epoch': 0.78}
+{'loss': 1.4049, 'grad_norm': 1.091180682182312, 'learning_rate': 0.0005819999999999999, 'epoch': 0.78}
+{'loss': 1.8097, 'grad_norm': 1.2416259050369263, 'learning_rate': 0.0005832, 'epoch': 0.79}
+{'loss': 1.5731, 'grad_norm': 0.9992501139640808, 'learning_rate': 0.0005843999999999999, 'epoch': 0.79}
+{'loss': 1.2349, 'grad_norm': 1.1882905960083008, 'learning_rate': 0.0005855999999999999, 'epoch': 0.79}
+{'loss': 1.749, 'grad_norm': 1.3324135541915894, 'learning_rate': 0.0005868, 'epoch': 0.79}
+{'loss': 1.3155, 'grad_norm': 1.3113425970077515, 'learning_rate': 0.000588, 'epoch': 0.79}
+{'loss': 1.0152, 'grad_norm': 1.333341121673584, 'learning_rate': 0.0005891999999999999, 'epoch': 0.79}
+{'loss': 1.5642, 'grad_norm': 1.886502742767334, 'learning_rate': 0.0005903999999999999, 'epoch': 0.8}
+{'loss': 1.6069, 'grad_norm': 2.012117385864258, 'learning_rate': 0.0005916, 'epoch': 0.8}
+{'loss': 2.0689, 'grad_norm': 2.344853401184082, 'learning_rate': 0.0005928, 'epoch': 0.8}
+{'loss': 2.81, 'grad_norm': 2.7430222034454346, 'learning_rate': 0.0005939999999999999, 'epoch': 0.8}
+{'loss': 1.8218, 'grad_norm': 2.373655319213867, 'learning_rate': 0.0005951999999999999, 'epoch': 0.8}
+{'loss': 1.343, 'grad_norm': 1.2365477085113525, 'learning_rate': 0.0005964, 'epoch': 0.8}
+{'loss': 2.0204, 'grad_norm': 2.100356101989746, 'learning_rate': 0.0005976, 'epoch': 0.8}
+{'loss': 1.8366, 'grad_norm': 1.6222838163375854, 'learning_rate': 0.0005987999999999999, 'epoch': 0.81}
+{'loss': 1.6686, 'grad_norm': 3.295870542526245, 'learning_rate': 0.0006, 'epoch': 0.81}
+{'loss': 1.958, 'grad_norm': 3.5636391639709473, 'learning_rate': 0.0005987999999999999, 'epoch': 0.81}
+{'loss': 1.4633, 'grad_norm': 4.600498199462891, 'learning_rate': 0.0005976, 'epoch': 0.81}
+{'loss': 1.591, 'grad_norm': 3.999089241027832, 'learning_rate': 0.0005964, 'epoch': 0.81}
+{'loss': 1.4589, 'grad_norm': 2.074601173400879, 'learning_rate': 0.0005951999999999999, 'epoch': 0.81}
+{'loss': 1.517, 'grad_norm': 1.2597025632858276, 'learning_rate': 0.0005939999999999999, 'epoch': 0.82}
+{'loss': 1.1305, 'grad_norm': 1.491461157798767, 'learning_rate': 0.0005928, 'epoch': 0.82}
+{'loss': 1.2055, 'grad_norm': 2.2012178897857666, 'learning_rate': 0.0005916, 'epoch': 0.82}
+{'loss': 1.4843, 'grad_norm': 2.303264617919922, 'learning_rate': 0.0005903999999999999, 'epoch': 0.82}
+{'loss': 1.1635, 'grad_norm': 1.3678765296936035, 'learning_rate': 0.0005891999999999999, 'epoch': 0.82}
+{'loss': 1.1574, 'grad_norm': 1.7093764543533325, 'learning_rate': 0.000588, 'epoch': 0.82}
+{'loss': 1.1366, 'grad_norm': 1.2002806663513184, 'learning_rate': 0.0005868, 'epoch': 0.83}
+{'loss': 1.1778, 'grad_norm': 1.1055371761322021, 'learning_rate': 0.0005855999999999999, 'epoch': 0.83}
+{'loss': 0.8233, 'grad_norm': 0.9321176409721375, 'learning_rate': 0.0005843999999999999, 'epoch': 0.83}
+{'loss': 1.2463, 'grad_norm': 1.3442676067352295, 'learning_rate': 0.0005832, 'epoch': 0.83}
+{'loss': 1.3646, 'grad_norm': 0.9121391177177429, 'learning_rate': 0.0005819999999999999, 'epoch': 0.83}
+{'loss': 1.4225, 'grad_norm': 1.1537225246429443, 'learning_rate': 0.0005807999999999999, 'epoch': 0.83}
+{'loss': 1.0161, 'grad_norm': 1.0641944408416748, 'learning_rate': 0.0005795999999999999, 'epoch': 0.84}
+{'loss': 1.1851, 'grad_norm': 0.7178429961204529, 'learning_rate': 0.0005784, 'epoch': 0.84}
+{'loss': 1.8398, 'grad_norm': 1.4418388605117798, 'learning_rate': 0.0005771999999999999, 'epoch': 0.84}
+{'loss': 1.4898, 'grad_norm': 1.382843255996704, 'learning_rate': 0.0005759999999999999, 'epoch': 0.84}
+{'loss': 1.2898, 'grad_norm': 1.0729074478149414, 'learning_rate': 0.0005747999999999999, 'epoch': 0.84}
+{'loss': 1.1974, 'grad_norm': 0.9983257055282593, 'learning_rate': 0.0005736, 'epoch': 0.84}
+{'loss': 1.1169, 'grad_norm': 1.1875462532043457, 'learning_rate': 0.0005723999999999999, 'epoch': 0.84}
+{'loss': 1.1376, 'grad_norm': 1.318334698677063, 'learning_rate': 0.0005711999999999999, 'epoch': 0.85}
+{'loss': 1.2072, 'grad_norm': 1.537840485572815, 'learning_rate': 0.00057, 'epoch': 0.85}
+{'loss': 1.373, 'grad_norm': 1.4589056968688965, 'learning_rate': 0.0005688, 'epoch': 0.85}
+{'loss': 1.0613, 'grad_norm': 1.019971251487732, 'learning_rate': 0.0005675999999999999, 'epoch': 0.85}
+{'loss': 0.9874, 'grad_norm': 1.0122156143188477, 'learning_rate': 0.0005663999999999999, 'epoch': 0.85}
+{'loss': 1.2304, 'grad_norm': 1.1434595584869385, 'learning_rate': 0.0005652, 'epoch': 0.85}
+{'loss': 1.6633, 'grad_norm': 1.2336163520812988, 'learning_rate': 0.0005639999999999999, 'epoch': 0.86}
+{'loss': 1.7359, 'grad_norm': 1.306872844696045, 'learning_rate': 0.0005627999999999999, 'epoch': 0.86}
+{'loss': 1.2328, 'grad_norm': 1.2644526958465576, 'learning_rate': 0.0005616, 'epoch': 0.86}
+{'loss': 1.0457, 'grad_norm': 1.262831449508667, 'learning_rate': 0.0005604, 'epoch': 0.86}
+{'loss': 1.2251, 'grad_norm': 0.9390996098518372, 'learning_rate': 0.0005591999999999999, 'epoch': 0.86}
+{'loss': 1.3572, 'grad_norm': 1.208268165588379, 'learning_rate': 0.000558, 'epoch': 0.86}
+{'loss': 1.1701, 'grad_norm': 1.0636659860610962, 'learning_rate': 0.0005568, 'epoch': 0.87}
+{'loss': 1.5845, 'grad_norm': 0.9668271541595459, 'learning_rate': 0.0005556, 'epoch': 0.87}
+{'loss': 1.3511, 'grad_norm': 0.9891708493232727, 'learning_rate': 0.0005544, 'epoch': 0.87}
+{'loss': 1.2839, 'grad_norm': 1.7175298929214478, 'learning_rate': 0.0005532, 'epoch': 0.87}
+{'loss': 1.5042, 'grad_norm': 0.9767908453941345, 'learning_rate': 0.000552, 'epoch': 0.87}
+{'loss': 1.6681, 'grad_norm': 1.3343541622161865, 'learning_rate': 0.0005507999999999999, 'epoch': 0.87}
+{'loss': 1.9624, 'grad_norm': 1.3749518394470215, 'learning_rate': 0.0005496, 'epoch': 0.88}
+{'loss': 1.895, 'grad_norm': 2.514359712600708, 'learning_rate': 0.0005484, 'epoch': 0.88}
+{'loss': 1.7603, 'grad_norm': 1.514849066734314, 'learning_rate': 0.0005472, 'epoch': 0.88}
+{'loss': 1.9368, 'grad_norm': 1.4065580368041992, 'learning_rate': 0.0005459999999999999, 'epoch': 0.88}
+{'loss': 1.9927, 'grad_norm': 4.109616756439209, 'learning_rate': 0.0005448, 'epoch': 0.88}
+{'loss': 2.4962, 'grad_norm': 5.660764694213867, 'learning_rate': 0.0005436, 'epoch': 0.88}
+{'loss': 1.6865, 'grad_norm': 2.027193307876587, 'learning_rate': 0.0005424, 'epoch': 0.88}
+{'loss': 2.1457, 'grad_norm': 4.918600559234619, 'learning_rate': 0.0005411999999999999, 'epoch': 0.89}
+{'loss': 1.5093, 'grad_norm': 2.522416114807129, 'learning_rate': 0.00054, 'epoch': 0.89}
+{'loss': 1.1618, 'grad_norm': 1.574242353439331, 'learning_rate': 0.0005388, 'epoch': 0.89}
+{'loss': 1.2351, 'grad_norm': 2.081839084625244, 'learning_rate': 0.0005376, 'epoch': 0.89}
+{'loss': 1.6881, 'grad_norm': 2.582669734954834, 'learning_rate': 0.0005363999999999999, 'epoch': 0.89}
+{'loss': 1.3369, 'grad_norm': 2.058865785598755, 'learning_rate': 0.0005352, 'epoch': 0.89}
+{'loss': 1.7725, 'grad_norm': 5.098209381103516, 'learning_rate': 0.000534, 'epoch': 0.9}
+{'loss': 1.9443, 'grad_norm': 4.526047229766846, 'learning_rate': 0.0005327999999999999, 'epoch': 0.9}
+{'loss': 1.5399, 'grad_norm': 3.9119491577148438, 'learning_rate': 0.0005315999999999999, 'epoch': 0.9}
+{'loss': 1.1211, 'grad_norm': 0.8436188101768494, 'learning_rate': 0.0005304, 'epoch': 0.9}
+{'loss': 1.2774, 'grad_norm': 0.8627029061317444, 'learning_rate': 0.0005292, 'epoch': 0.9}
+{'loss': 1.2342, 'grad_norm': 1.1870328187942505, 'learning_rate': 0.0005279999999999999, 'epoch': 0.9}
+{'loss': 1.0405, 'grad_norm': 1.0261473655700684, 'learning_rate': 0.0005267999999999999, 'epoch': 0.91}
+{'loss': 1.0547, 'grad_norm': 0.6334408521652222, 'learning_rate': 0.0005256, 'epoch': 0.91}
+{'loss': 0.9138, 'grad_norm': 0.7928243279457092, 'learning_rate': 0.0005244, 'epoch': 0.91}
+{'loss': 1.0988, 'grad_norm': 0.9043545126914978, 'learning_rate': 0.0005231999999999999, 'epoch': 0.91}
+{'loss': 1.0209, 'grad_norm': 0.9109718203544617, 'learning_rate': 0.000522, 'epoch': 0.91}
+{'loss': 1.2233, 'grad_norm': 0.8105588555335999, 'learning_rate': 0.0005208, 'epoch': 0.91}
+{'loss': 1.4025, 'grad_norm': 2.0293259620666504, 'learning_rate': 0.0005195999999999999, 'epoch': 0.92}
+{'loss': 1.481, 'grad_norm': 1.1730594635009766, 'learning_rate': 0.0005183999999999999, 'epoch': 0.92}
+{'loss': 1.1333, 'grad_norm': 0.8027293086051941, 'learning_rate': 0.0005172, 'epoch': 0.92}
+{'loss': 1.4056, 'grad_norm': 0.8858001828193665, 'learning_rate': 0.000516, 'epoch': 0.92}
+{'loss': 1.212, 'grad_norm': 1.3030261993408203, 'learning_rate': 0.0005147999999999999, 'epoch': 0.92}
+{'loss': 1.6681, 'grad_norm': 0.9441176652908325, 'learning_rate': 0.0005135999999999999, 'epoch': 0.92}
+{'loss': 1.2352, 'grad_norm': 0.9312158226966858, 'learning_rate': 0.0005124, 'epoch': 0.92}
+{'loss': 1.1658, 'grad_norm': 1.1646393537521362, 'learning_rate': 0.0005112, 'epoch': 0.93}
+{'loss': 1.0198, 'grad_norm': 1.2840147018432617, 'learning_rate': 0.0005099999999999999, 'epoch': 0.93}
+{'loss': 1.0831, 'grad_norm': 1.2597519159317017, 'learning_rate': 0.0005087999999999999, 'epoch': 0.93}
+{'loss': 1.0068, 'grad_norm': 0.7873828411102295, 'learning_rate': 0.0005076, 'epoch': 0.93}
+{'loss': 1.3783, 'grad_norm': 1.5674644708633423, 'learning_rate': 0.0005064, 'epoch': 0.93}
+{'loss': 0.9963, 'grad_norm': 0.9917027354240417, 'learning_rate': 0.0005051999999999999, 'epoch': 0.93}
+{'loss': 0.9023, 'grad_norm': 0.9538294672966003, 'learning_rate': 0.0005039999999999999, 'epoch': 0.94}
+{'loss': 1.0699, 'grad_norm': 1.1332108974456787, 'learning_rate': 0.0005028, 'epoch': 0.94}
+{'loss': 1.0387, 'grad_norm': 1.0121673345565796, 'learning_rate': 0.0005015999999999999, 'epoch': 0.94}
+{'loss': 1.1858, 'grad_norm': 1.13718581199646, 'learning_rate': 0.0005003999999999999, 'epoch': 0.94}
+{'loss': 1.0405, 'grad_norm': 1.2693606615066528, 'learning_rate': 0.0004991999999999999, 'epoch': 0.94}
+{'loss': 1.326, 'grad_norm': 1.4965566396713257, 'learning_rate': 0.000498, 'epoch': 0.94}
+{'loss': 1.2337, 'grad_norm': 1.2708925008773804, 'learning_rate': 0.0004967999999999999, 'epoch': 0.95}
+{'loss': 1.5223, 'grad_norm': 2.260007858276367, 'learning_rate': 0.0004955999999999999, 'epoch': 0.95}
+{'loss': 1.4486, 'grad_norm': 1.3588523864746094, 'learning_rate': 0.0004944, 'epoch': 0.95}
+{'loss': 1.5663, 'grad_norm': 3.3943569660186768, 'learning_rate': 0.0004932, 'epoch': 0.95}
+{'loss': 1.3337, 'grad_norm': 1.5709065198898315, 'learning_rate': 0.0004919999999999999, 'epoch': 0.95}
+{'loss': 1.4023, 'grad_norm': 1.6011497974395752, 'learning_rate': 0.0004907999999999999, 'epoch': 0.95}
+{'loss': 1.0934, 'grad_norm': 1.2253276109695435, 'learning_rate': 0.0004896, 'epoch': 0.96}
+{'loss': 2.9201, 'grad_norm': 9.454032897949219, 'learning_rate': 0.0004883999999999999, 'epoch': 0.96}
+{'loss': 1.5261, 'grad_norm': 1.7915419340133667, 'learning_rate': 0.00048719999999999997, 'epoch': 0.96}
+{'loss': 1.3199, 'grad_norm': nan, 'learning_rate': 0.00048719999999999997, 'epoch': 0.96}
+{'loss': 4.1466, 'grad_norm': 18.144990921020508, 'learning_rate': 0.000486, 'epoch': 0.96}
+{'loss': 1.6238, 'grad_norm': 1.2664769887924194, 'learning_rate': 0.00048479999999999997, 'epoch': 0.96}
+{'loss': 1.5469, 'grad_norm': 2.453564405441284, 'learning_rate': 0.0004836, 'epoch': 0.96}
+{'loss': 1.3178, 'grad_norm': 2.737936496734619, 'learning_rate': 0.00048239999999999996, 'epoch': 0.97}
+{'loss': 1.4034, 'grad_norm': 2.828806161880493, 'learning_rate': 0.0004812, 'epoch': 0.97}
+{'loss': 1.0615, 'grad_norm': 1.4219012260437012, 'learning_rate': 0.00047999999999999996, 'epoch': 0.97}
+{'loss': 1.19, 'grad_norm': 2.025907039642334, 'learning_rate': 0.0004788, 'epoch': 0.97}
+{'loss': 1.1638, 'grad_norm': 0.9138876795768738, 'learning_rate': 0.0004776, 'epoch': 0.97}
+{'loss': 1.2678, 'grad_norm': 0.7301196455955505, 'learning_rate': 0.0004764, 'epoch': 0.97}
+{'loss': 1.1815, 'grad_norm': 1.6543656587600708, 'learning_rate': 0.0004752, 'epoch': 0.98}
+{'loss': 1.0917, 'grad_norm': 1.8122645616531372, 'learning_rate': 0.000474, 'epoch': 0.98}
+{'loss': 1.1377, 'grad_norm': 1.609754204750061, 'learning_rate': 0.0004728, 'epoch': 0.98}
+{'loss': 0.9748, 'grad_norm': 1.2491132020950317, 'learning_rate': 0.00047159999999999997, 'epoch': 0.98}
+{'loss': 1.1825, 'grad_norm': 1.6153700351715088, 'learning_rate': 0.0004704, 'epoch': 0.98}
+{'loss': 1.1472, 'grad_norm': 2.4447743892669678, 'learning_rate': 0.00046919999999999997, 'epoch': 0.98}
+{'loss': 0.9327, 'grad_norm': 0.93949294090271, 'learning_rate': 0.000468, 'epoch': 0.99}
+{'loss': 1.3792, 'grad_norm': 1.0353221893310547, 'learning_rate': 0.00046679999999999996, 'epoch': 0.99}
+{'loss': 1.4076, 'grad_norm': 1.5396970510482788, 'learning_rate': 0.0004656, 'epoch': 0.99}
+{'loss': 1.2042, 'grad_norm': 2.1144979000091553, 'learning_rate': 0.00046439999999999996, 'epoch': 0.99}
+{'loss': 1.033, 'grad_norm': 1.649453043937683, 'learning_rate': 0.0004632, 'epoch': 0.99}
+{'loss': 1.4478, 'grad_norm': 1.555721640586853, 'learning_rate': 0.00046199999999999995, 'epoch': 0.99}
+{'loss': 1.427, 'grad_norm': 2.0463335514068604, 'learning_rate': 0.0004608, 'epoch': 1.0}
+{'loss': 1.4215, 'grad_norm': 1.6396963596343994, 'learning_rate': 0.00045959999999999995, 'epoch': 1.0}
+{'loss': 1.2777, 'grad_norm': 1.0603671073913574, 'learning_rate': 0.0004584, 'epoch': 1.0}
+{'loss': 1.5985, 'grad_norm': 2.150242328643799, 'learning_rate': 0.00045719999999999995, 'epoch': 1.0}
+{'loss': 3.3297, 'grad_norm': 13.092059135437012, 'learning_rate': 0.00045599999999999997, 'epoch': 1.0}
+{'loss': 1.8506, 'grad_norm': 5.357777118682861, 'learning_rate': 0.00045479999999999994, 'epoch': 1.0}
+{'loss': 1.4082, 'grad_norm': 3.857879400253296, 'learning_rate': 0.00045359999999999997, 'epoch': 1.0}
+{'loss': 2.445, 'grad_norm': 5.025846004486084, 'learning_rate': 0.00045239999999999994, 'epoch': 1.01}
+{'loss': 2.0449, 'grad_norm': 3.71512508392334, 'learning_rate': 0.00045119999999999996, 'epoch': 1.01}
+{'loss': 1.9927, 'grad_norm': 4.47951078414917, 'learning_rate': 0.00045, 'epoch': 1.01}
+{'loss': 1.4958, 'grad_norm': 2.713778257369995, 'learning_rate': 0.00044879999999999996, 'epoch': 1.01}
+{'loss': 1.3756, 'grad_norm': 2.6333401203155518, 'learning_rate': 0.0004476, 'epoch': 1.01}
+{'loss': 1.6268, 'grad_norm': 3.1156418323516846, 'learning_rate': 0.00044639999999999995, 'epoch': 1.01}
+{'loss': 1.8211, 'grad_norm': 2.78902268409729, 'learning_rate': 0.0004452, 'epoch': 1.02}
+{'loss': 1.1757, 'grad_norm': 3.0045857429504395, 'learning_rate': 0.00044399999999999995, 'epoch': 1.02}
+{'loss': 1.2811, 'grad_norm': 1.4704291820526123, 'learning_rate': 0.0004428, 'epoch': 1.02}
+{'loss': 1.0086, 'grad_norm': 1.3432084321975708, 'learning_rate': 0.00044159999999999995, 'epoch': 1.02}
+{'loss': 1.3255, 'grad_norm': 0.842569887638092, 'learning_rate': 0.00044039999999999997, 'epoch': 1.02}
+{'loss': 1.1076, 'grad_norm': 0.8691660761833191, 'learning_rate': 0.00043919999999999994, 'epoch': 1.02}
+{'loss': 1.0929, 'grad_norm': 1.083778738975525, 'learning_rate': 0.00043799999999999997, 'epoch': 1.03}
+{'loss': 1.2497, 'grad_norm': 1.1408025026321411, 'learning_rate': 0.00043679999999999994, 'epoch': 1.03}
+{'loss': 1.2853, 'grad_norm': 0.8224440217018127, 'learning_rate': 0.00043559999999999996, 'epoch': 1.03}
+{'loss': 1.187, 'grad_norm': 0.7420323491096497, 'learning_rate': 0.00043439999999999993, 'epoch': 1.03}
+{'loss': 1.0613, 'grad_norm': 0.7818359732627869, 'learning_rate': 0.00043319999999999996, 'epoch': 1.03}
+{'loss': 1.0593, 'grad_norm': 1.2085120677947998, 'learning_rate': 0.00043199999999999993, 'epoch': 1.03}
+{'loss': 0.9878, 'grad_norm': 0.6779820322990417, 'learning_rate': 0.00043079999999999995, 'epoch': 1.04}
+{'loss': 1.0076, 'grad_norm': 1.1257340908050537, 'learning_rate': 0.0004295999999999999, 'epoch': 1.04}
+{'loss': 1.1204, 'grad_norm': 0.6911525726318359, 'learning_rate': 0.00042839999999999995, 'epoch': 1.04}
+{'loss': 1.217, 'grad_norm': 1.0192064046859741, 'learning_rate': 0.0004271999999999999, 'epoch': 1.04}
+{'loss': 1.1124, 'grad_norm': 0.8528116345405579, 'learning_rate': 0.00042599999999999995, 'epoch': 1.04}
+{'loss': 1.0387, 'grad_norm': 0.8429757356643677, 'learning_rate': 0.0004247999999999999, 'epoch': 1.04}
+{'loss': 1.1567, 'grad_norm': 1.0031050443649292, 'learning_rate': 0.00042359999999999994, 'epoch': 1.04}
+{'loss': 1.3264, 'grad_norm': 1.1668227910995483, 'learning_rate': 0.0004223999999999999, 'epoch': 1.05}
+{'loss': 0.8013, 'grad_norm': 0.8505134582519531, 'learning_rate': 0.00042119999999999994, 'epoch': 1.05}
+{'loss': 1.0249, 'grad_norm': 0.7736939191818237, 'learning_rate': 0.00041999999999999996, 'epoch': 1.05}
+{'loss': 1.0062, 'grad_norm': 1.082900047302246, 'learning_rate': 0.00041879999999999993, 'epoch': 1.05}
+{'loss': 1.4081, 'grad_norm': 1.9835671186447144, 'learning_rate': 0.00041759999999999996, 'epoch': 1.05}
+{'loss': 0.8602, 'grad_norm': 0.9174219965934753, 'learning_rate': 0.00041639999999999993, 'epoch': 1.05}
+{'loss': 1.0813, 'grad_norm': 0.8988387584686279, 'learning_rate': 0.00041519999999999995, 'epoch': 1.06}
+{'loss': 0.9137, 'grad_norm': 0.9161027669906616, 'learning_rate': 0.0004139999999999999, 'epoch': 1.06}
+{'loss': 0.9526, 'grad_norm': 1.0347057580947876, 'learning_rate': 0.00041279999999999995, 'epoch': 1.06}
+{'loss': 1.2357, 'grad_norm': 0.9697722792625427, 'learning_rate': 0.0004116, 'epoch': 1.06}
+{'loss': 1.2324, 'grad_norm': 1.1263432502746582, 'learning_rate': 0.0004104, 'epoch': 1.06}
+{'loss': 1.2418, 'grad_norm': 1.4703420400619507, 'learning_rate': 0.00040919999999999997, 'epoch': 1.06}
+{'loss': 1.5181, 'grad_norm': 1.2557834386825562, 'learning_rate': 0.000408, 'epoch': 1.07}
+{'loss': 1.5552, 'grad_norm': 1.1496392488479614, 'learning_rate': 0.00040679999999999997, 'epoch': 1.07}
+{'loss': 1.3242, 'grad_norm': 1.0062506198883057, 'learning_rate': 0.0004056, 'epoch': 1.07}
+{'loss': 1.3264, 'grad_norm': 0.8978244066238403, 'learning_rate': 0.0004044, 'epoch': 1.07}
+{'loss': 1.3077, 'grad_norm': 1.2901413440704346, 'learning_rate': 0.0004032, 'epoch': 1.07}
+{'loss': 1.1621, 'grad_norm': 1.202578067779541, 'learning_rate': 0.000402, 'epoch': 1.07}
+{'loss': 1.5065, 'grad_norm': 1.4110441207885742, 'learning_rate': 0.0004008, 'epoch': 1.08}
+{'loss': 1.5376, 'grad_norm': 1.0681021213531494, 'learning_rate': 0.0003996, 'epoch': 1.08}
+{'loss': 1.7659, 'grad_norm': 1.355599045753479, 'learning_rate': 0.0003984, 'epoch': 1.08}
+{'loss': 1.6335, 'grad_norm': 1.245712161064148, 'learning_rate': 0.0003972, 'epoch': 1.08}
+{'loss': 2.7562, 'grad_norm': 10.161030769348145, 'learning_rate': 0.000396, 'epoch': 1.08}
+{'loss': 2.2905, 'grad_norm': 5.946995735168457, 'learning_rate': 0.0003948, 'epoch': 1.08}
+{'loss': 1.8719, 'grad_norm': 3.535452365875244, 'learning_rate': 0.00039359999999999997, 'epoch': 1.08}
+{'loss': 1.3978, 'grad_norm': 1.3516403436660767, 'learning_rate': 0.0003924, 'epoch': 1.09}
+{'loss': 1.2273, 'grad_norm': 1.6472234725952148, 'learning_rate': 0.00039119999999999997, 'epoch': 1.09}
+{'loss': 1.4096, 'grad_norm': 3.0599803924560547, 'learning_rate': 0.00039, 'epoch': 1.09}
+{'loss': 1.2859, 'grad_norm': 3.078174352645874, 'learning_rate': 0.00038879999999999996, 'epoch': 1.09}
+{'loss': 1.4634, 'grad_norm': 3.5751090049743652, 'learning_rate': 0.0003876, 'epoch': 1.09}
+{'loss': 1.6292, 'grad_norm': 2.058401584625244, 'learning_rate': 0.00038639999999999996, 'epoch': 1.09}
+{'loss': 1.1733, 'grad_norm': 1.8631670475006104, 'learning_rate': 0.0003852, 'epoch': 1.1}
+{'loss': 1.0265, 'grad_norm': 1.9622036218643188, 'learning_rate': 0.00038399999999999996, 'epoch': 1.1}
+{'loss': 0.9263, 'grad_norm': 1.0497528314590454, 'learning_rate': 0.0003828, 'epoch': 1.1}
+{'loss': 1.0379, 'grad_norm': 1.0042531490325928, 'learning_rate': 0.00038159999999999995, 'epoch': 1.1}
+{'loss': 0.8909, 'grad_norm': 0.7379323244094849, 'learning_rate': 0.0003804, 'epoch': 1.1}
+{'loss': 0.9649, 'grad_norm': 0.9978313446044922, 'learning_rate': 0.00037919999999999995, 'epoch': 1.1}
+{'loss': 0.8303, 'grad_norm': 1.4265302419662476, 'learning_rate': 0.00037799999999999997, 'epoch': 1.11}
+{'loss': 1.0412, 'grad_norm': 1.609402060508728, 'learning_rate': 0.00037679999999999994, 'epoch': 1.11}
+{'loss': 1.2652, 'grad_norm': 1.7801131010055542, 'learning_rate': 0.00037559999999999997, 'epoch': 1.11}
+{'loss': 1.2096, 'grad_norm': 0.9285919666290283, 'learning_rate': 0.0003744, 'epoch': 1.11}
+{'loss': 1.1913, 'grad_norm': 0.9512993693351746, 'learning_rate': 0.00037319999999999996, 'epoch': 1.11}
+{'loss': 1.1681, 'grad_norm': 0.9945847392082214, 'learning_rate': 0.000372, 'epoch': 1.11}
+{'loss': 1.2373, 'grad_norm': 0.8993807435035706, 'learning_rate': 0.00037079999999999996, 'epoch': 1.12}
+{'loss': 1.0773, 'grad_norm': 1.0664983987808228, 'learning_rate': 0.0003696, 'epoch': 1.12}
+{'loss': 1.4875, 'grad_norm': 1.7917791604995728, 'learning_rate': 0.00036839999999999996, 'epoch': 1.12}
+{'loss': 1.1206, 'grad_norm': 0.8973643183708191, 'learning_rate': 0.0003672, 'epoch': 1.12}
+{'loss': 0.9865, 'grad_norm': 1.2886801958084106, 'learning_rate': 0.00036599999999999995, 'epoch': 1.12}
+{'loss': 1.388, 'grad_norm': 1.4595153331756592, 'learning_rate': 0.0003648, 'epoch': 1.12}
+{'loss': 0.9407, 'grad_norm': 1.1467390060424805, 'learning_rate': 0.00036359999999999995, 'epoch': 1.12}
+{'loss': 1.0897, 'grad_norm': 1.0743904113769531, 'learning_rate': 0.00036239999999999997, 'epoch': 1.13}
+{'loss': 0.9555, 'grad_norm': 0.9008836150169373, 'learning_rate': 0.00036119999999999994, 'epoch': 1.13}
+{'loss': 1.0143, 'grad_norm': 1.016830325126648, 'learning_rate': 0.00035999999999999997, 'epoch': 1.13}
+{'loss': 1.4681, 'grad_norm': 1.8725807666778564, 'learning_rate': 0.00035879999999999994, 'epoch': 1.13}
+{'loss': 1.0107, 'grad_norm': 1.0106738805770874, 'learning_rate': 0.00035759999999999996, 'epoch': 1.13}
+{'loss': 0.8917, 'grad_norm': 1.0680439472198486, 'learning_rate': 0.00035639999999999994, 'epoch': 1.13}
+{'loss': 1.1333, 'grad_norm': 0.9104785323143005, 'learning_rate': 0.00035519999999999996, 'epoch': 1.14}
+{'loss': 0.9465, 'grad_norm': 1.0638065338134766, 'learning_rate': 0.00035399999999999993, 'epoch': 1.14}
+{'loss': 0.7617, 'grad_norm': 0.7474643588066101, 'learning_rate': 0.00035279999999999996, 'epoch': 1.14}
+{'loss': 1.0069, 'grad_norm': 0.8218055963516235, 'learning_rate': 0.0003515999999999999, 'epoch': 1.14}
+{'loss': 1.0228, 'grad_norm': 1.1213569641113281, 'learning_rate': 0.00035039999999999995, 'epoch': 1.14}
+{'loss': 1.2662, 'grad_norm': 1.0540097951889038, 'learning_rate': 0.0003491999999999999, 'epoch': 1.14}
+{'loss': 1.2725, 'grad_norm': 1.019623875617981, 'learning_rate': 0.00034799999999999995, 'epoch': 1.15}
+{'loss': 0.8269, 'grad_norm': 0.9017633199691772, 'learning_rate': 0.0003467999999999999, 'epoch': 1.15}
+{'loss': 2.0837, 'grad_norm': 3.7017982006073, 'learning_rate': 0.00034559999999999994, 'epoch': 1.15}
+{'loss': 1.0984, 'grad_norm': 1.0694856643676758, 'learning_rate': 0.00034439999999999997, 'epoch': 1.15}
+{'loss': 1.1509, 'grad_norm': 1.0227575302124023, 'learning_rate': 0.00034319999999999994, 'epoch': 1.15}
+{'loss': 0.8165, 'grad_norm': 0.8948163390159607, 'learning_rate': 0.00034199999999999996, 'epoch': 1.15}
+{'loss': 1.4505, 'grad_norm': 1.575053334236145, 'learning_rate': 0.00034079999999999994, 'epoch': 1.16}
+{'loss': 1.5606, 'grad_norm': 1.6160234212875366, 'learning_rate': 0.00033959999999999996, 'epoch': 1.16}
+{'loss': 1.3345, 'grad_norm': 1.469820499420166, 'learning_rate': 0.00033839999999999993, 'epoch': 1.16}
+{'loss': 1.9885, 'grad_norm': 2.6582064628601074, 'learning_rate': 0.0003372, 'epoch': 1.16}
+{'loss': 2.7075, 'grad_norm': 8.827315330505371, 'learning_rate': 0.000336, 'epoch': 1.16}
+{'loss': 2.0887, 'grad_norm': 5.201417922973633, 'learning_rate': 0.0003348, 'epoch': 1.16}
+{'loss': 1.3964, 'grad_norm': 2.5593836307525635, 'learning_rate': 0.0003336, 'epoch': 1.16}
+{'loss': 1.6703, 'grad_norm': 2.476527452468872, 'learning_rate': 0.0003324, 'epoch': 1.17}
+{'loss': 1.4116, 'grad_norm': 1.3854165077209473, 'learning_rate': 0.0003312, 'epoch': 1.17}
+{'loss': 1.7663, 'grad_norm': 1.7695822715759277, 'learning_rate': 0.00033, 'epoch': 1.17}
+{'loss': 2.2482, 'grad_norm': 1.7809518575668335, 'learning_rate': 0.0003288, 'epoch': 1.17}
+{'loss': 1.0389, 'grad_norm': 1.5759507417678833, 'learning_rate': 0.0003276, 'epoch': 1.17}
+{'loss': 1.1723, 'grad_norm': 3.968517780303955, 'learning_rate': 0.0003264, 'epoch': 1.17}
+{'loss': 1.1122, 'grad_norm': 3.551710367202759, 'learning_rate': 0.0003252, 'epoch': 1.18}
+{'loss': 1.3001, 'grad_norm': 3.917438507080078, 'learning_rate': 0.000324, 'epoch': 1.18}
+{'loss': 1.3047, 'grad_norm': 2.960092306137085, 'learning_rate': 0.0003228, 'epoch': 1.18}
+{'loss': 1.0372, 'grad_norm': 2.588700532913208, 'learning_rate': 0.0003216, 'epoch': 1.18}
+{'loss': 1.2321, 'grad_norm': 2.2377519607543945, 'learning_rate': 0.0003204, 'epoch': 1.18}
+{'loss': 1.2945, 'grad_norm': 1.3439960479736328, 'learning_rate': 0.0003192, 'epoch': 1.18}
+{'loss': 1.085, 'grad_norm': 0.8878504037857056, 'learning_rate': 0.000318, 'epoch': 1.19}
+{'loss': 1.1087, 'grad_norm': 0.8282541632652283, 'learning_rate': 0.0003168, 'epoch': 1.19}
+{'loss': 0.9878, 'grad_norm': 0.8017875552177429, 'learning_rate': 0.0003156, 'epoch': 1.19}
+{'loss': 1.0613, 'grad_norm': 1.347516655921936, 'learning_rate': 0.0003144, 'epoch': 1.19}
+{'loss': 1.0696, 'grad_norm': 1.9655871391296387, 'learning_rate': 0.00031319999999999997, 'epoch': 1.19}
+{'loss': 1.2005, 'grad_norm': 1.588913083076477, 'learning_rate': 0.000312, 'epoch': 1.19}
+{'loss': 0.904, 'grad_norm': 1.29644775390625, 'learning_rate': 0.00031079999999999997, 'epoch': 1.2}
+{'loss': 1.5441, 'grad_norm': 2.8275885581970215, 'learning_rate': 0.0003096, 'epoch': 1.2}
+{'loss': 0.9999, 'grad_norm': 1.0542739629745483, 'learning_rate': 0.00030839999999999996, 'epoch': 1.2}
+{'loss': 0.8393, 'grad_norm': 0.7280116677284241, 'learning_rate': 0.0003072, 'epoch': 1.2}
+{'loss': 1.1939, 'grad_norm': 0.7934659123420715, 'learning_rate': 0.00030599999999999996, 'epoch': 1.2}
+{'loss': 0.9562, 'grad_norm': 0.8406733274459839, 'learning_rate': 0.0003048, 'epoch': 1.2}
+{'loss': 1.2521, 'grad_norm': 1.0488728284835815, 'learning_rate': 0.00030359999999999995, 'epoch': 1.2}
+{'loss': 0.7971, 'grad_norm': 0.8879828453063965, 'learning_rate': 0.0003024, 'epoch': 1.21}
+{'loss': 1.2188, 'grad_norm': 1.3260725736618042, 'learning_rate': 0.00030119999999999995, 'epoch': 1.21}
+{'loss': 0.9387, 'grad_norm': 1.1654318571090698, 'learning_rate': 0.0003, 'epoch': 1.21}
+{'loss': 1.0464, 'grad_norm': 1.351473093032837, 'learning_rate': 0.0002988, 'epoch': 1.21}
+{'loss': 0.9436, 'grad_norm': 0.9511071443557739, 'learning_rate': 0.00029759999999999997, 'epoch': 1.21}
+{'loss': 1.1701, 'grad_norm': 1.179603934288025, 'learning_rate': 0.0002964, 'epoch': 1.21}
+{'loss': 1.3787, 'grad_norm': 0.8080942034721375, 'learning_rate': 0.00029519999999999997, 'epoch': 1.22}
+{'loss': 1.2793, 'grad_norm': 0.7412335872650146, 'learning_rate': 0.000294, 'epoch': 1.22}
+{'loss': 1.117, 'grad_norm': 0.9035298824310303, 'learning_rate': 0.00029279999999999996, 'epoch': 1.22}
+{'loss': 1.0756, 'grad_norm': 1.026508092880249, 'learning_rate': 0.0002916, 'epoch': 1.22}
+{'loss': 1.0611, 'grad_norm': 1.2814981937408447, 'learning_rate': 0.00029039999999999996, 'epoch': 1.22}
+{'loss': 1.1253, 'grad_norm': 1.475760579109192, 'learning_rate': 0.0002892, 'epoch': 1.22}
+{'loss': 1.585, 'grad_norm': 1.2571303844451904, 'learning_rate': 0.00028799999999999995, 'epoch': 1.23}
+{'loss': 1.3838, 'grad_norm': 1.2124806642532349, 'learning_rate': 0.0002868, 'epoch': 1.23}
+{'loss': 1.7297, 'grad_norm': 2.581066131591797, 'learning_rate': 0.00028559999999999995, 'epoch': 1.23}
+{'loss': 1.0821, 'grad_norm': 1.0715489387512207, 'learning_rate': 0.0002844, 'epoch': 1.23}
+{'loss': 1.5755, 'grad_norm': 1.242422342300415, 'learning_rate': 0.00028319999999999994, 'epoch': 1.23}
+{'loss': 1.4446, 'grad_norm': 1.0124776363372803, 'learning_rate': 0.00028199999999999997, 'epoch': 1.23}
+{'loss': 1.1064, 'grad_norm': 1.3531243801116943, 'learning_rate': 0.0002808, 'epoch': 1.24}
+{'loss': 1.9305, 'grad_norm': 2.615983724594116, 'learning_rate': 0.00027959999999999997, 'epoch': 1.24}
+{'loss': 1.2717, 'grad_norm': 1.1576447486877441, 'learning_rate': 0.0002784, 'epoch': 1.24}
+{'loss': 1.9539, 'grad_norm': 1.79608154296875, 'learning_rate': 0.0002772, 'epoch': 1.24}
+{'loss': 3.4927, 'grad_norm': 14.315869331359863, 'learning_rate': 0.000276, 'epoch': 1.24}
+{'loss': 1.8021, 'grad_norm': 4.236233234405518, 'learning_rate': 0.0002748, 'epoch': 1.24}
+{'loss': 1.5814, 'grad_norm': 1.4815818071365356, 'learning_rate': 0.0002736, 'epoch': 1.24}
+{'loss': 2.2016, 'grad_norm': 3.584576368331909, 'learning_rate': 0.0002724, 'epoch': 1.25}
+{'loss': 2.1992, 'grad_norm': 5.444706916809082, 'learning_rate': 0.0002712, 'epoch': 1.25}
+{'loss': 1.603, 'grad_norm': 1.9935747385025024, 'learning_rate': 0.00027, 'epoch': 1.25}
+{'loss': 1.2715, 'grad_norm': 1.7511041164398193, 'learning_rate': 0.0002688, 'epoch': 1.25}
+{'loss': 1.2038, 'grad_norm': 3.652242422103882, 'learning_rate': 0.0002676, 'epoch': 1.25}
+{'loss': 1.1785, 'grad_norm': 4.156230449676514, 'learning_rate': 0.00026639999999999997, 'epoch': 1.25}
+{'loss': 1.2539, 'grad_norm': 3.3570737838745117, 'learning_rate': 0.0002652, 'epoch': 1.26}
+{'loss': 1.1734, 'grad_norm': 2.836935043334961, 'learning_rate': 0.00026399999999999997, 'epoch': 1.26}
+{'loss': 1.2193, 'grad_norm': 2.9423153400421143, 'learning_rate': 0.0002628, 'epoch': 1.26}
+{'loss': 1.291, 'grad_norm': 2.4489452838897705, 'learning_rate': 0.00026159999999999996, 'epoch': 1.26}
+{'loss': 0.8955, 'grad_norm': 1.2637799978256226, 'learning_rate': 0.0002604, 'epoch': 1.26}
+{'loss': 1.0469, 'grad_norm': 0.8530015349388123, 'learning_rate': 0.00025919999999999996, 'epoch': 1.26}
+{'loss': 0.8632, 'grad_norm': 0.9832066297531128, 'learning_rate': 0.000258, 'epoch': 1.27}
+{'loss': 0.9851, 'grad_norm': 0.5436220765113831, 'learning_rate': 0.00025679999999999995, 'epoch': 1.27}
+{'loss': 1.4339, 'grad_norm': 1.093661904335022, 'learning_rate': 0.0002556, 'epoch': 1.27}
+{'loss': 1.1739, 'grad_norm': 0.7037041187286377, 'learning_rate': 0.00025439999999999995, 'epoch': 1.27}
+{'loss': 0.9546, 'grad_norm': 0.6901881098747253, 'learning_rate': 0.0002532, 'epoch': 1.27}
+{'loss': 1.336, 'grad_norm': 1.5446933507919312, 'learning_rate': 0.00025199999999999995, 'epoch': 1.27}
+{'loss': 0.8747, 'grad_norm': 1.7216750383377075, 'learning_rate': 0.00025079999999999997, 'epoch': 1.28}
+{'loss': 0.969, 'grad_norm': 1.2335959672927856, 'learning_rate': 0.00024959999999999994, 'epoch': 1.28}
+{'loss': 0.8357, 'grad_norm': 1.483788251876831, 'learning_rate': 0.00024839999999999997, 'epoch': 1.28}
+{'loss': 1.2983, 'grad_norm': 2.874842882156372, 'learning_rate': 0.0002472, 'epoch': 1.28}
+{'loss': 1.2608, 'grad_norm': 0.7263085246086121, 'learning_rate': 0.00024599999999999996, 'epoch': 1.28}
+{'loss': 1.117, 'grad_norm': 1.0308623313903809, 'learning_rate': 0.0002448, 'epoch': 1.28}
+{'loss': 1.0626, 'grad_norm': 0.9009158611297607, 'learning_rate': 0.00024359999999999999, 'epoch': 1.28}
+{'loss': 0.9173, 'grad_norm': 1.3145204782485962, 'learning_rate': 0.00024239999999999998, 'epoch': 1.29}
+{'loss': 1.1901, 'grad_norm': 1.034488320350647, 'learning_rate': 0.00024119999999999998, 'epoch': 1.29}
+{'loss': 0.6968, 'grad_norm': 0.8789196610450745, 'learning_rate': 0.00023999999999999998, 'epoch': 1.29}
+{'loss': 1.0333, 'grad_norm': 0.9626047015190125, 'learning_rate': 0.0002388, 'epoch': 1.29}
+{'loss': 0.8452, 'grad_norm': 0.7256068587303162, 'learning_rate': 0.0002376, 'epoch': 1.29}
+{'loss': 1.2869, 'grad_norm': 0.8389018774032593, 'learning_rate': 0.0002364, 'epoch': 1.29}
+{'loss': 1.1781, 'grad_norm': 0.7672526836395264, 'learning_rate': 0.0002352, 'epoch': 1.3}
+{'loss': 1.2095, 'grad_norm': 0.9246567487716675, 'learning_rate': 0.000234, 'epoch': 1.3}
+{'loss': 1.2276, 'grad_norm': 0.7383604049682617, 'learning_rate': 0.0002328, 'epoch': 1.3}
+{'loss': 1.0281, 'grad_norm': 1.0119376182556152, 'learning_rate': 0.0002316, 'epoch': 1.3}
+{'loss': 1.3149, 'grad_norm': 1.0825129747390747, 'learning_rate': 0.0002304, 'epoch': 1.3}
+{'loss': 1.2918, 'grad_norm': 0.8355119824409485, 'learning_rate': 0.0002292, 'epoch': 1.3}
+{'loss': 0.936, 'grad_norm': 0.6260655522346497, 'learning_rate': 0.00022799999999999999, 'epoch': 1.31}
+{'loss': 1.2178, 'grad_norm': 1.1685816049575806, 'learning_rate': 0.00022679999999999998, 'epoch': 1.31}
+{'loss': 1.1981, 'grad_norm': 1.188957691192627, 'learning_rate': 0.00022559999999999998, 'epoch': 1.31}
+{'loss': 1.247, 'grad_norm': 1.8030787706375122, 'learning_rate': 0.00022439999999999998, 'epoch': 1.31}
+{'loss': 1.0994, 'grad_norm': 1.1914401054382324, 'learning_rate': 0.00022319999999999998, 'epoch': 1.31}
+{'loss': 1.3633, 'grad_norm': 1.3656498193740845, 'learning_rate': 0.00022199999999999998, 'epoch': 1.31}
+{'loss': 1.2058, 'grad_norm': 1.4209223985671997, 'learning_rate': 0.00022079999999999997, 'epoch': 1.32}
+{'loss': 1.6574, 'grad_norm': 1.3564426898956299, 'learning_rate': 0.00021959999999999997, 'epoch': 1.32}
+{'loss': 1.9215, 'grad_norm': 2.096992015838623, 'learning_rate': 0.00021839999999999997, 'epoch': 1.32}
+{'loss': 1.8319, 'grad_norm': 1.984554409980774, 'learning_rate': 0.00021719999999999997, 'epoch': 1.32}
+{'loss': 4.94, 'grad_norm': 24.8841495513916, 'learning_rate': 0.00021599999999999996, 'epoch': 1.32}
+{'loss': 1.9233, 'grad_norm': 3.756709575653076, 'learning_rate': 0.00021479999999999996, 'epoch': 1.32}
+{'loss': 1.2712, 'grad_norm': 1.6268775463104248, 'learning_rate': 0.00021359999999999996, 'epoch': 1.32}
+{'loss': 1.7201, 'grad_norm': 3.466218948364258, 'learning_rate': 0.00021239999999999996, 'epoch': 1.33}
+{'loss': 1.3709, 'grad_norm': 1.621490716934204, 'learning_rate': 0.00021119999999999996, 'epoch': 1.33}
+{'loss': 1.4106, 'grad_norm': 1.1984294652938843, 'learning_rate': 0.00020999999999999998, 'epoch': 1.33}
+{'loss': 1.1315, 'grad_norm': 2.042137384414673, 'learning_rate': 0.00020879999999999998, 'epoch': 1.33}
+{'loss': 1.0351, 'grad_norm': 1.9946519136428833, 'learning_rate': 0.00020759999999999998, 'epoch': 1.33}
+{'loss': 1.2888, 'grad_norm': 2.1006603240966797, 'learning_rate': 0.00020639999999999998, 'epoch': 1.33}
+{'loss': 1.224, 'grad_norm': 1.6302366256713867, 'learning_rate': 0.0002052, 'epoch': 1.34}
+{'loss': 1.0775, 'grad_norm': 2.526308059692383, 'learning_rate': 0.000204, 'epoch': 1.34}
+{'loss': 1.2341, 'grad_norm': 2.1584436893463135, 'learning_rate': 0.0002028, 'epoch': 1.34}
+{'loss': 1.0818, 'grad_norm': 1.6390632390975952, 'learning_rate': 0.0002016, 'epoch': 1.34}
+{'loss': 0.9795, 'grad_norm': 1.6563626527786255, 'learning_rate': 0.0002004, 'epoch': 1.34}
+{'loss': 1.0898, 'grad_norm': 0.9004166126251221, 'learning_rate': 0.0001992, 'epoch': 1.34}
+{'loss': 0.9329, 'grad_norm': 0.8950443863868713, 'learning_rate': 0.000198, 'epoch': 1.35}
+{'loss': 0.9925, 'grad_norm': 0.8782767057418823, 'learning_rate': 0.00019679999999999999, 'epoch': 1.35}
+{'loss': 1.0908, 'grad_norm': 0.851058304309845, 'learning_rate': 0.00019559999999999998, 'epoch': 1.35}
+{'loss': 1.6817, 'grad_norm': 5.08306360244751, 'learning_rate': 0.00019439999999999998, 'epoch': 1.35}
+{'loss': 0.9395, 'grad_norm': 1.4701097011566162, 'learning_rate': 0.00019319999999999998, 'epoch': 1.35}
+{'loss': 1.0193, 'grad_norm': 0.7278363704681396, 'learning_rate': 0.00019199999999999998, 'epoch': 1.35}
+{'loss': 0.7025, 'grad_norm': 0.9397822618484497, 'learning_rate': 0.00019079999999999998, 'epoch': 1.36}
+{'loss': 0.9564, 'grad_norm': 1.3745059967041016, 'learning_rate': 0.00018959999999999997, 'epoch': 1.36}
+{'loss': 1.1551, 'grad_norm': 1.193011999130249, 'learning_rate': 0.00018839999999999997, 'epoch': 1.36}
+{'loss': 0.9999, 'grad_norm': 0.889456570148468, 'learning_rate': 0.0001872, 'epoch': 1.36}
+{'loss': 0.8591, 'grad_norm': 1.0669219493865967, 'learning_rate': 0.000186, 'epoch': 1.36}
+{'loss': 0.9345, 'grad_norm': 0.9589920043945312, 'learning_rate': 0.0001848, 'epoch': 1.36}
+{'loss': 0.7226, 'grad_norm': 0.7081511616706848, 'learning_rate': 0.0001836, 'epoch': 1.36}
+{'loss': 1.0986, 'grad_norm': 0.7487833499908447, 'learning_rate': 0.0001824, 'epoch': 1.37}
+{'loss': 0.8951, 'grad_norm': 0.9651376605033875, 'learning_rate': 0.00018119999999999999, 'epoch': 1.37}
+{'loss': 1.0129, 'grad_norm': 0.9545527100563049, 'learning_rate': 0.00017999999999999998, 'epoch': 1.37}
+{'loss': 1.0022, 'grad_norm': 1.016617774963379, 'learning_rate': 0.00017879999999999998, 'epoch': 1.37}
+{'loss': 1.317, 'grad_norm': 1.4556984901428223, 'learning_rate': 0.00017759999999999998, 'epoch': 1.37}
+{'loss': 1.2533, 'grad_norm': 0.790810763835907, 'learning_rate': 0.00017639999999999998, 'epoch': 1.37}
+{'loss': 0.9896, 'grad_norm': 0.9381358027458191, 'learning_rate': 0.00017519999999999998, 'epoch': 1.38}
+{'loss': 0.9845, 'grad_norm': 0.8054640889167786, 'learning_rate': 0.00017399999999999997, 'epoch': 1.38}
+{'loss': 1.4839, 'grad_norm': 0.8973929286003113, 'learning_rate': 0.00017279999999999997, 'epoch': 1.38}
+{'loss': 1.0332, 'grad_norm': 1.5383504629135132, 'learning_rate': 0.00017159999999999997, 'epoch': 1.38}
+{'loss': 1.3733, 'grad_norm': 0.842438817024231, 'learning_rate': 0.00017039999999999997, 'epoch': 1.38}
+{'loss': 1.3423, 'grad_norm': 1.3562208414077759, 'learning_rate': 0.00016919999999999997, 'epoch': 1.38}
+{'loss': 1.0022, 'grad_norm': 0.8287788033485413, 'learning_rate': 0.000168, 'epoch': 1.39}
+{'loss': 1.2173, 'grad_norm': 1.4219720363616943, 'learning_rate': 0.0001668, 'epoch': 1.39}
+{'loss': 1.3067, 'grad_norm': 1.0144832134246826, 'learning_rate': 0.0001656, 'epoch': 1.39}
+{'loss': 1.4451, 'grad_norm': 1.1086362600326538, 'learning_rate': 0.0001644, 'epoch': 1.39}
+{'loss': 1.4588, 'grad_norm': 1.1874333620071411, 'learning_rate': 0.0001632, 'epoch': 1.39}
+{'loss': 1.564, 'grad_norm': 1.2281416654586792, 'learning_rate': 0.000162, 'epoch': 1.39}
+{'loss': 1.3052, 'grad_norm': 1.024274468421936, 'learning_rate': 0.0001608, 'epoch': 1.4}
+{'loss': 1.4589, 'grad_norm': 1.0952630043029785, 'learning_rate': 0.0001596, 'epoch': 1.4}
+{'loss': 1.8693, 'grad_norm': 1.3578640222549438, 'learning_rate': 0.0001584, 'epoch': 1.4}
+{'loss': 2.0153, 'grad_norm': 1.3908575773239136, 'learning_rate': 0.0001572, 'epoch': 1.4}
+{'loss': 1.6021, 'grad_norm': 3.5373663902282715, 'learning_rate': 0.000156, 'epoch': 1.4}
+{'loss': 1.6701, 'grad_norm': 4.33758020401001, 'learning_rate': 0.0001548, 'epoch': 1.4}
+{'loss': 1.1137, 'grad_norm': 0.7620241641998291, 'learning_rate': 0.0001536, 'epoch': 1.4}
+{'loss': 1.7832, 'grad_norm': 3.931720733642578, 'learning_rate': 0.0001524, 'epoch': 1.41}
+{'loss': 1.9583, 'grad_norm': 4.786645412445068, 'learning_rate': 0.0001512, 'epoch': 1.41}
+{'loss': 1.0819, 'grad_norm': 1.036521553993225, 'learning_rate': 0.00015, 'epoch': 1.41}
+{'loss': 2.0566, 'grad_norm': 4.162290096282959, 'learning_rate': 0.00014879999999999998, 'epoch': 1.41}
+{'loss': 1.6004, 'grad_norm': 2.359104633331299, 'learning_rate': 0.00014759999999999998, 'epoch': 1.41}
+{'loss': 1.3709, 'grad_norm': 1.0020617246627808, 'learning_rate': 0.00014639999999999998, 'epoch': 1.41}
+{'loss': 1.2331, 'grad_norm': 1.8424478769302368, 'learning_rate': 0.00014519999999999998, 'epoch': 1.42}
+{'loss': 1.0713, 'grad_norm': 1.1963813304901123, 'learning_rate': 0.00014399999999999998, 'epoch': 1.42}
+{'loss': 1.0691, 'grad_norm': 1.5633505582809448, 'learning_rate': 0.00014279999999999997, 'epoch': 1.42}
+{'loss': 0.9451, 'grad_norm': 1.1638294458389282, 'learning_rate': 0.00014159999999999997, 'epoch': 1.42}
+{'loss': 0.8284, 'grad_norm': 1.7012614011764526, 'learning_rate': 0.0001404, 'epoch': 1.42}
+{'loss': 0.8185, 'grad_norm': 1.2200738191604614, 'learning_rate': 0.0001392, 'epoch': 1.42}
+{'loss': 0.9226, 'grad_norm': 1.1766223907470703, 'learning_rate': 0.000138, 'epoch': 1.43}
+{'loss': 0.8685, 'grad_norm': 0.9217773675918579, 'learning_rate': 0.0001368, 'epoch': 1.43}
+{'loss': 0.7968, 'grad_norm': 0.8851170539855957, 'learning_rate': 0.0001356, 'epoch': 1.43}
+{'loss': 0.9926, 'grad_norm': 0.8986585140228271, 'learning_rate': 0.0001344, 'epoch': 1.43}
+{'loss': 0.761, 'grad_norm': 0.760133683681488, 'learning_rate': 0.00013319999999999999, 'epoch': 1.43}
+{'loss': 1.3453, 'grad_norm': 1.3854573965072632, 'learning_rate': 0.00013199999999999998, 'epoch': 1.43}
+{'loss': 1.405, 'grad_norm': 2.538731098175049, 'learning_rate': 0.00013079999999999998, 'epoch': 1.44}
+{'loss': 1.0013, 'grad_norm': 0.9111962914466858, 'learning_rate': 0.00012959999999999998, 'epoch': 1.44}
+{'loss': 1.0312, 'grad_norm': 0.9045060873031616, 'learning_rate': 0.00012839999999999998, 'epoch': 1.44}
+{'loss': 1.1871, 'grad_norm': 0.8330265879631042, 'learning_rate': 0.00012719999999999997, 'epoch': 1.44}
+{'loss': 1.4302, 'grad_norm': 0.8071021437644958, 'learning_rate': 0.00012599999999999997, 'epoch': 1.44}
+{'loss': 1.2347, 'grad_norm': 1.5638083219528198, 'learning_rate': 0.00012479999999999997, 'epoch': 1.44}
+{'loss': 1.197, 'grad_norm': 1.674561619758606, 'learning_rate': 0.0001236, 'epoch': 1.44}
+{'loss': 0.8886, 'grad_norm': 1.1858874559402466, 'learning_rate': 0.0001224, 'epoch': 1.45}
+{'loss': 0.8166, 'grad_norm': 0.8216437101364136, 'learning_rate': 0.00012119999999999999, 'epoch': 1.45}
+{'loss': 1.0883, 'grad_norm': 0.7633309364318848, 'learning_rate': 0.00011999999999999999, 'epoch': 1.45}
+{'loss': 1.1526, 'grad_norm': 0.7902513742446899, 'learning_rate': 0.0001188, 'epoch': 1.45}
+{'loss': 0.8232, 'grad_norm': 0.6996155381202698, 'learning_rate': 0.0001176, 'epoch': 1.45}
+{'loss': 1.5505, 'grad_norm': 1.0348126888275146, 'learning_rate': 0.0001164, 'epoch': 1.45}
+{'loss': 1.1751, 'grad_norm': 0.9336599707603455, 'learning_rate': 0.0001152, 'epoch': 1.46}
+{'loss': 1.1737, 'grad_norm': 0.8460116386413574, 'learning_rate': 0.00011399999999999999, 'epoch': 1.46}
+{'loss': 1.0484, 'grad_norm': 0.8113738894462585, 'learning_rate': 0.00011279999999999999, 'epoch': 1.46}
+{'loss': 0.7955, 'grad_norm': 0.8300177454948425, 'learning_rate': 0.00011159999999999999, 'epoch': 1.46}
+{'loss': 1.3775, 'grad_norm': 1.2062090635299683, 'learning_rate': 0.00011039999999999999, 'epoch': 1.46}
+{'loss': 1.3335, 'grad_norm': 1.4255359172821045, 'learning_rate': 0.00010919999999999998, 'epoch': 1.46}
+{'loss': 1.1146, 'grad_norm': 1.0286868810653687, 'learning_rate': 0.00010799999999999998, 'epoch': 1.47}
+{'loss': 1.0296, 'grad_norm': 1.0137372016906738, 'learning_rate': 0.00010679999999999998, 'epoch': 1.47}
+{'loss': 1.0707, 'grad_norm': 0.9231035113334656, 'learning_rate': 0.00010559999999999998, 'epoch': 1.47}
+{'loss': 0.8588, 'grad_norm': 0.7874758839607239, 'learning_rate': 0.00010439999999999999, 'epoch': 1.47}
+{'loss': 1.3255, 'grad_norm': 0.9133099913597107, 'learning_rate': 0.00010319999999999999, 'epoch': 1.47}
+{'loss': 1.5101, 'grad_norm': 1.030543565750122, 'learning_rate': 0.000102, 'epoch': 1.47}
+{'loss': 0.9935, 'grad_norm': 0.9055063724517822, 'learning_rate': 0.0001008, 'epoch': 1.48}
+{'loss': 1.5182, 'grad_norm': 1.4548567533493042, 'learning_rate': 9.96e-05, 'epoch': 1.48}
+{'loss': 1.5844, 'grad_norm': 1.2355753183364868, 'learning_rate': 9.839999999999999e-05, 'epoch': 1.48}
+{'loss': 1.9339, 'grad_norm': 2.3780314922332764, 'learning_rate': 9.719999999999999e-05, 'epoch': 1.48}
+{'loss': 1.1195, 'grad_norm': 1.8571350574493408, 'learning_rate': 9.599999999999999e-05, 'epoch': 1.48}
+{'loss': 1.4374, 'grad_norm': 3.069366455078125, 'learning_rate': 9.479999999999999e-05, 'epoch': 1.48}
+{'loss': 1.0552, 'grad_norm': 1.4385106563568115, 'learning_rate': 9.36e-05, 'epoch': 1.48}
+{'loss': 1.7314, 'grad_norm': 2.345099449157715, 'learning_rate': 9.24e-05, 'epoch': 1.49}
+{'loss': 0.8883, 'grad_norm': 0.7494111657142639, 'learning_rate': 9.12e-05, 'epoch': 1.49}
+{'loss': 0.9971, 'grad_norm': 0.8890445232391357, 'learning_rate': 8.999999999999999e-05, 'epoch': 1.49}
+{'loss': 0.9844, 'grad_norm': 0.8567062616348267, 'learning_rate': 8.879999999999999e-05, 'epoch': 1.49}
+{'loss': 1.2059, 'grad_norm': 2.1418657302856445, 'learning_rate': 8.759999999999999e-05, 'epoch': 1.49}
+{'loss': 1.2171, 'grad_norm': 0.9829572439193726, 'learning_rate': 8.639999999999999e-05, 'epoch': 1.49}
+{'loss': 0.9593, 'grad_norm': 0.8156057000160217, 'learning_rate': 8.519999999999998e-05, 'epoch': 1.5}
+{'loss': 0.9601, 'grad_norm': 1.4363347291946411, 'learning_rate': 8.4e-05, 'epoch': 1.5}
+{'loss': 1.0812, 'grad_norm': 1.0625683069229126, 'learning_rate': 8.28e-05, 'epoch': 1.5}
+{'loss': 0.9473, 'grad_norm': 0.9699941873550415, 'learning_rate': 8.16e-05, 'epoch': 1.5}
+{'loss': 0.7998, 'grad_norm': 0.772868812084198, 'learning_rate': 8.04e-05, 'epoch': 1.5}
+{'loss': 0.9162, 'grad_norm': 0.9699268341064453, 'learning_rate': 7.92e-05, 'epoch': 1.5}
+{'loss': 0.7546, 'grad_norm': 0.9714852571487427, 'learning_rate': 7.8e-05, 'epoch': 1.51}
+{'loss': 0.9188, 'grad_norm': 0.7131572365760803, 'learning_rate': 7.68e-05, 'epoch': 1.51}
+{'loss': 1.0208, 'grad_norm': 0.855786919593811, 'learning_rate': 7.56e-05, 'epoch': 1.51}
+{'loss': 0.9603, 'grad_norm': 0.8761354684829712, 'learning_rate': 7.439999999999999e-05, 'epoch': 1.51}
+{'loss': 1.0588, 'grad_norm': 0.8056983351707458, 'learning_rate': 7.319999999999999e-05, 'epoch': 1.51}
+{'loss': 0.8915, 'grad_norm': 1.0384901762008667, 'learning_rate': 7.199999999999999e-05, 'epoch': 1.51}
+{'loss': 0.7157, 'grad_norm': 0.6739591956138611, 'learning_rate': 7.079999999999999e-05, 'epoch': 1.52}
+{'loss': 0.733, 'grad_norm': 0.7567741274833679, 'learning_rate': 6.96e-05, 'epoch': 1.52}
+{'loss': 1.2629, 'grad_norm': 1.2941476106643677, 'learning_rate': 6.84e-05, 'epoch': 1.52}
+{'loss': 1.0687, 'grad_norm': 0.7849064469337463, 'learning_rate': 6.72e-05, 'epoch': 1.52}
+{'loss': 0.9125, 'grad_norm': 0.7167961001396179, 'learning_rate': 6.599999999999999e-05, 'epoch': 1.52}
+{'loss': 1.0419, 'grad_norm': 1.4623581171035767, 'learning_rate': 6.479999999999999e-05, 'epoch': 1.52}
+{'loss': 0.759, 'grad_norm': 1.0260752439498901, 'learning_rate': 6.359999999999999e-05, 'epoch': 1.52}
+{'loss': 1.1125, 'grad_norm': 0.6854276657104492, 'learning_rate': 6.239999999999999e-05, 'epoch': 1.53}
+{'loss': 0.7962, 'grad_norm': 0.776077151298523, 'learning_rate': 6.12e-05, 'epoch': 1.53}
+{'loss': 1.0421, 'grad_norm': 0.7898908257484436, 'learning_rate': 5.9999999999999995e-05, 'epoch': 1.53}
+{'loss': 0.8491, 'grad_norm': 0.7632326483726501, 'learning_rate': 5.88e-05, 'epoch': 1.53}
+{'loss': 0.9336, 'grad_norm': 0.7451068162918091, 'learning_rate': 5.76e-05, 'epoch': 1.53}
+{'loss': 0.9, 'grad_norm': 0.7700297832489014, 'learning_rate': 5.6399999999999995e-05, 'epoch': 1.53}
+{'loss': 1.1537, 'grad_norm': 0.879389762878418, 'learning_rate': 5.519999999999999e-05, 'epoch': 1.54}
+{'loss': 0.9058, 'grad_norm': 0.9828069806098938, 'learning_rate': 5.399999999999999e-05, 'epoch': 1.54}
+{'loss': 1.1331, 'grad_norm': 0.9066524505615234, 'learning_rate': 5.279999999999999e-05, 'epoch': 1.54}
+{'loss': 0.9451, 'grad_norm': 0.7387616038322449, 'learning_rate': 5.1599999999999994e-05, 'epoch': 1.54}
+{'loss': 1.1639, 'grad_norm': 1.3451749086380005, 'learning_rate': 5.04e-05, 'epoch': 1.54}
+{'loss': 1.4125, 'grad_norm': 1.0739102363586426, 'learning_rate': 4.9199999999999997e-05, 'epoch': 1.54}
+{'loss': 1.1883, 'grad_norm': 0.9140891432762146, 'learning_rate': 4.7999999999999994e-05, 'epoch': 1.55}
+{'loss': 1.1692, 'grad_norm': 1.1968399286270142, 'learning_rate': 4.68e-05, 'epoch': 1.55}
+{'loss': 0.9939, 'grad_norm': 0.9506883025169373, 'learning_rate': 4.56e-05, 'epoch': 1.55}
+{'loss': 0.9103, 'grad_norm': 1.3204574584960938, 'learning_rate': 4.4399999999999995e-05, 'epoch': 1.55}
+{'loss': 1.279, 'grad_norm': 1.3693453073501587, 'learning_rate': 4.319999999999999e-05, 'epoch': 1.55}
+{'loss': 1.2637, 'grad_norm': 1.286435842514038, 'learning_rate': 4.2e-05, 'epoch': 1.55}
+{'loss': 1.5989, 'grad_norm': 1.6549150943756104, 'learning_rate': 4.08e-05, 'epoch': 1.56}
+{'loss': 1.5587, 'grad_norm': 1.1446410417556763, 'learning_rate': 3.96e-05, 'epoch': 1.56}
+{'loss': 1.5915, 'grad_norm': 1.1329030990600586, 'learning_rate': 3.84e-05, 'epoch': 1.56}
+{'loss': 3.078, 'grad_norm': 6.757206916809082, 'learning_rate': 3.7199999999999996e-05, 'epoch': 1.56}
+{'loss': 1.5766, 'grad_norm': 3.0250446796417236, 'learning_rate': 3.5999999999999994e-05, 'epoch': 1.56}
+{'loss': 1.4036, 'grad_norm': 1.796055793762207, 'learning_rate': 3.48e-05, 'epoch': 1.56}
+{'loss': 1.4255, 'grad_norm': 2.8835206031799316, 'learning_rate': 3.36e-05, 'epoch': 1.56}
+{'loss': 1.5776, 'grad_norm': 3.2792022228240967, 'learning_rate': 3.2399999999999995e-05, 'epoch': 1.57}
+{'loss': 1.1509, 'grad_norm': 0.9129714369773865, 'learning_rate': 3.119999999999999e-05, 'epoch': 1.57}
+{'loss': 1.3454, 'grad_norm': 1.325767993927002, 'learning_rate': 2.9999999999999997e-05, 'epoch': 1.57}
+{'loss': 0.8939, 'grad_norm': 0.8600112795829773, 'learning_rate': 2.88e-05, 'epoch': 1.57}
+{'loss': 0.7801, 'grad_norm': 0.6780167818069458, 'learning_rate': 2.7599999999999997e-05, 'epoch': 1.57}
+{'loss': 1.0117, 'grad_norm': 1.1986228227615356, 'learning_rate': 2.6399999999999995e-05, 'epoch': 1.57}
+{'loss': 1.0323, 'grad_norm': 1.3320322036743164, 'learning_rate': 2.52e-05, 'epoch': 1.58}
+{'loss': 1.1191, 'grad_norm': 0.6832807064056396, 'learning_rate': 2.3999999999999997e-05, 'epoch': 1.58}
+{'loss': 1.7286, 'grad_norm': 3.410607099533081, 'learning_rate': 2.28e-05, 'epoch': 1.58}
+{'loss': 0.7245, 'grad_norm': 0.7802388668060303, 'learning_rate': 2.1599999999999996e-05, 'epoch': 1.58}
+{'loss': 0.8384, 'grad_norm': 0.8889452815055847, 'learning_rate': 2.04e-05, 'epoch': 1.58}
+{'loss': 1.0049, 'grad_norm': 0.7941523194313049, 'learning_rate': 1.92e-05, 'epoch': 1.58}
+{'loss': 0.7337, 'grad_norm': 0.8905624747276306, 'learning_rate': 1.7999999999999997e-05, 'epoch': 1.59}
+{'loss': 0.8216, 'grad_norm': 1.1984586715698242, 'learning_rate': 1.68e-05, 'epoch': 1.59}
+{'loss': 0.807, 'grad_norm': 0.8467238545417786, 'learning_rate': 1.5599999999999996e-05, 'epoch': 1.59}
+{'loss': 1.1562, 'grad_norm': 1.230843424797058, 'learning_rate': 1.44e-05, 'epoch': 1.59}
+{'loss': 0.971, 'grad_norm': 1.0017879009246826, 'learning_rate': 1.3199999999999997e-05, 'epoch': 1.59}
+{'loss': 0.8834, 'grad_norm': 1.124283790588379, 'learning_rate': 1.1999999999999999e-05, 'epoch': 1.59}
+{'loss': 1.0106, 'grad_norm': 0.9626112580299377, 'learning_rate': 1.0799999999999998e-05, 'epoch': 1.6}
+{'loss': 0.9121, 'grad_norm': 1.2808488607406616, 'learning_rate': 9.6e-06, 'epoch': 1.6}
+{'loss': 0.8199, 'grad_norm': 0.904681921005249, 'learning_rate': 8.4e-06, 'epoch': 1.6}
+{'loss': 0.972, 'grad_norm': 0.8806717395782471, 'learning_rate': 7.2e-06, 'epoch': 1.6}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<01:18, 2.48it/s][A
+
2%|▏ | 3/196 [00:01<01:39, 1.95it/s][A
+
2%|▏ | 4/196 [00:02<01:57, 1.64it/s][A
+
3%|▎ | 5/196 [00:03<02:09, 1.48it/s][A
+
3%|▎ | 6/196 [00:04<02:28, 1.28it/s][A
+
4%|▎ | 7/196 [00:04<02:29, 1.26it/s][A
+
4%|▍ | 8/196 [00:05<02:39, 1.18it/s][A
+
5%|▍ | 9/196 [00:07<03:31, 1.13s/it][A
+
5%|▌ | 10/196 [00:09<04:06, 1.33s/it][A
+
6%|▌ | 11/196 [00:11<04:47, 1.55s/it][A
+
6%|▌ | 12/196 [00:13<04:49, 1.57s/it][A
+
7%|▋ | 13/196 [00:13<04:11, 1.37s/it][A
+
7%|▋ | 14/196 [00:14<03:31, 1.16s/it][A
+
8%|▊ | 15/196 [00:15<02:59, 1.01it/s][A
+
8%|▊ | 16/196 [00:15<02:46, 1.08it/s][A
+
9%|▊ | 17/196 [00:16<02:45, 1.08it/s][A
+
9%|▉ | 18/196 [00:18<03:09, 1.07s/it][A
+
10%|▉ | 19/196 [00:20<03:58, 1.35s/it][A
+
10%|█ | 20/196 [00:21<04:10, 1.42s/it][A
+
11%|█ | 21/196 [00:23<04:19, 1.48s/it][A
+
11%|█ | 22/196 [00:24<04:05, 1.41s/it][A
+
12%|█▏ | 23/196 [00:25<03:35, 1.25s/it][A
+
12%|█▏ | 24/196 [00:26<02:54, 1.01s/it][A
+
13%|█▎ | 25/196 [00:26<02:30, 1.13it/s][A
+
13%|█▎ | 26/196 [00:27<02:13, 1.28it/s][A
+
14%|█▍ | 27/196 [00:27<02:02, 1.38it/s][A
+
14%|█▍ | 28/196 [00:28<01:58, 1.42it/s][A
+
15%|█▍ | 29/196 [00:29<01:58, 1.41it/s][A
+
15%|█▌ | 30/196 [00:29<01:56, 1.43it/s][A
+
16%|█▌ | 31/196 [00:30<01:44, 1.57it/s][A
+
16%|█▋ | 32/196 [00:31<01:47, 1.53it/s][A
+
17%|█▋ | 33/196 [00:32<02:02, 1.33it/s][A
+
17%|█▋ | 34/196 [00:33<02:29, 1.09it/s][A
+
18%|█▊ | 35/196 [00:34<02:41, 1.00s/it][A
+
18%|█▊ | 36/196 [00:35<02:58, 1.12s/it][A
+
19%|█▉ | 37/196 [00:36<02:50, 1.07s/it][A
+
19%|█▉ | 38/196 [00:37<02:39, 1.01s/it][A
+
20%|█▉ | 39/196 [00:38<02:25, 1.08it/s][A
+
20%|██ | 40/196 [00:39<02:15, 1.15it/s][A
+
21%|██ | 41/196 [00:39<02:03, 1.25it/s][A
+
21%|██▏ | 42/196 [00:40<01:58, 1.30it/s][A
+
22%|██▏ | 43/196 [00:41<01:55, 1.32it/s][A
+
22%|██▏ | 44/196 [00:41<01:50, 1.37it/s][A
+
23%|██▎ | 45/196 [00:42<01:42, 1.47it/s][A
+
23%|██▎ | 46/196 [00:43<01:38, 1.53it/s][A
+
24%|██▍ | 47/196 [00:43<01:37, 1.53it/s][A
+
24%|██▍ | 48/196 [00:44<01:34, 1.57it/s][A
+
25%|██▌ | 49/196 [00:44<01:32, 1.58it/s][A
+
26%|██▌ | 50/196 [00:45<01:31, 1.60it/s][A
+
26%|██▌ | 51/196 [00:46<01:29, 1.62it/s][A
+
27%|██▋ | 52/196 [00:46<01:30, 1.59it/s][A
+
27%|██▋ | 53/196 [00:47<01:30, 1.57it/s][A
+
28%|██▊ | 54/196 [00:48<01:32, 1.54it/s][A
+
28%|██▊ | 55/196 [00:49<01:40, 1.40it/s][A
+
29%|██▊ | 56/196 [00:49<01:48, 1.29it/s][A
+
29%|██▉ | 57/196 [00:50<01:54, 1.21it/s][A
+
30%|██▉ | 58/196 [00:51<01:55, 1.20it/s][A
+
30%|███ | 59/196 [00:52<01:52, 1.22it/s][A
+
31%|███ | 60/196 [00:53<01:40, 1.36it/s][A
+
31%|███ | 61/196 [00:53<01:33, 1.44it/s][A
+
32%|███▏ | 62/196 [00:54<01:42, 1.31it/s][A
+
32%|███▏ | 63/196 [00:55<01:41, 1.32it/s][A
+
33%|███▎ | 64/196 [00:56<01:38, 1.34it/s][A
+
33%|███▎ | 65/196 [00:56<01:35, 1.37it/s][A
+
34%|███▎ | 66/196 [00:57<01:40, 1.30it/s][A
+
34%|███▍ | 67/196 [00:58<01:43, 1.25it/s][A
+
35%|███▍ | 68/196 [00:59<01:54, 1.11it/s][A
+
35%|███▌ | 69/196 [01:00<01:51, 1.13it/s][A
+
36%|███▌ | 70/196 [01:01<01:43, 1.21it/s][A
+
36%|███▌ | 71/196 [01:01<01:36, 1.29it/s][A
+
37%|███▋ | 72/196 [01:02<01:30, 1.37it/s][A
+
37%|███▋ | 73/196 [01:03<01:23, 1.48it/s][A
+
38%|███▊ | 74/196 [01:03<01:18, 1.55it/s][A
+
38%|███▊ | 75/196 [01:04<01:16, 1.58it/s][A
+
39%|███▉ | 76/196 [01:04<01:14, 1.61it/s][A
+
39%|███▉ | 77/196 [01:05<01:18, 1.52it/s][A
+
40%|███▉ | 78/196 [01:06<01:19, 1.48it/s][A
+
40%|████ | 79/196 [01:06<01:17, 1.50it/s][A
+
41%|████ | 80/196 [01:07<01:22, 1.41it/s][A
+
41%|████▏ | 81/196 [01:08<01:22, 1.39it/s][A
+
42%|████▏ | 82/196 [01:09<01:21, 1.40it/s][A
+
42%|████▏ | 83/196 [01:09<01:23, 1.36it/s][A
+
43%|████▎ | 84/196 [01:10<01:23, 1.34it/s][A
+
43%|████▎ | 85/196 [01:11<01:22, 1.34it/s][A
+
44%|████▍ | 86/196 [01:12<01:24, 1.31it/s][A
+
44%|████▍ | 87/196 [01:12<01:22, 1.32it/s][A
+
45%|████▍ | 88/196 [01:13<01:24, 1.29it/s][A
+
45%|████▌ | 89/196 [01:14<01:25, 1.26it/s][A
+
46%|████▌ | 90/196 [01:15<01:23, 1.27it/s][A
+
46%|████▋ | 91/196 [01:16<01:18, 1.33it/s][A
+
47%|████▋ | 92/196 [01:16<01:15, 1.38it/s][A
+
47%|████▋ | 93/196 [01:17<01:18, 1.31it/s][A
+
48%|████▊ | 94/196 [01:18<01:16, 1.32it/s][A
+
48%|████▊ | 95/196 [01:19<01:16, 1.32it/s][A
+
49%|████▉ | 96/196 [01:19<01:18, 1.27it/s][A
+
49%|████▉ | 97/196 [01:20<01:15, 1.31it/s][A
+
50%|█████ | 98/196 [01:21<01:16, 1.28it/s][A
+
51%|█████ | 99/196 [01:22<01:10, 1.37it/s][A
+
51%|█████ | 100/196 [01:22<01:02, 1.54it/s][A
+
52%|█████▏ | 101/196 [01:23<01:00, 1.57it/s][A
+
52%|█████▏ | 102/196 [01:23<01:04, 1.46it/s][A
+
53%|█████▎ | 103/196 [01:24<01:12, 1.29it/s][A
+
53%|█████▎ | 104/196 [01:25<01:17, 1.18it/s][A
+
54%|█████▎ | 105/196 [01:26<01:17, 1.17it/s][A
+
54%|█████▍ | 106/196 [01:27<01:14, 1.20it/s][A
+
55%|█████▍ | 107/196 [01:28<01:09, 1.29it/s][A
+
55%|█████▌ | 108/196 [01:28<01:01, 1.43it/s][A
+
56%|█████▌ | 109/196 [01:29<00:58, 1.49it/s][A
+
56%|█████▌ | 110/196 [01:30<00:57, 1.51it/s][A
+
57%|█████▋ | 111/196 [01:30<00:56, 1.49it/s][A
+
57%|█████▋ | 112/196 [01:31<00:58, 1.43it/s][A
+
58%|█████▊ | 113/196 [01:32<00:57, 1.45it/s][A
+
58%|█████▊ | 114/196 [01:32<00:53, 1.54it/s][A
+
59%|█████▊ | 115/196 [01:33<00:51, 1.57it/s][A
+
59%|█████▉ | 116/196 [01:33<00:50, 1.57it/s][A
+
60%|█████▉ | 117/196 [01:34<00:47, 1.67it/s][A
+
60%|██████ | 118/196 [01:34<00:42, 1.84it/s][A
+
61%|██████ | 119/196 [01:35<00:45, 1.69it/s][A
+
61%|██████ | 120/196 [01:36<00:46, 1.64it/s][A
+
62%|██████▏ | 121/196 [01:36<00:46, 1.61it/s][A
+
62%|██████▏ | 122/196 [01:37<00:47, 1.57it/s][A
+
63%|██████▎ | 123/196 [01:38<00:45, 1.60it/s][A
+
63%|██████▎ | 124/196 [01:38<00:46, 1.56it/s][A
+
64%|██████▍ | 125/196 [01:39<00:48, 1.47it/s][A
+
64%|██████▍ | 126/196 [01:40<00:53, 1.31it/s][A
+
65%|██████▍ | 127/196 [01:41<00:50, 1.37it/s][A
+
65%|██████▌ | 128/196 [01:41<00:47, 1.44it/s][A
+
66%|██████▌ | 129/196 [01:42<00:45, 1.46it/s][A
+
66%|██████▋ | 130/196 [01:43<00:46, 1.43it/s][A
+
67%|██████▋ | 131/196 [01:43<00:44, 1.46it/s][A
+
67%|██████▋ | 132/196 [01:44<00:41, 1.55it/s][A
+
68%|██████▊ | 133/196 [01:45<00:40, 1.55it/s][A
+
68%|██████▊ | 134/196 [01:45<00:41, 1.51it/s][A
+
69%|██████▉ | 135/196 [01:46<00:39, 1.53it/s][A
+
69%|██████▉ | 136/196 [01:47<00:39, 1.53it/s][A
+
70%|██████▉ | 137/196 [01:47<00:38, 1.54it/s][A
+
70%|███████ | 138/196 [01:48<00:37, 1.56it/s][A
+
71%|███████ | 139/196 [01:49<00:37, 1.51it/s][A
+
71%|███████▏ | 140/196 [01:49<00:35, 1.56it/s][A
+
72%|███████▏ | 141/196 [01:50<00:34, 1.60it/s][A
+
72%|███████▏ | 142/196 [01:50<00:35, 1.53it/s][A
+
73%|███████▎ | 143/196 [01:51<00:35, 1.47it/s][A
+
73%|███████▎ | 144/196 [01:52<00:33, 1.54it/s][A
+
74%|███████▍ | 145/196 [01:52<00:30, 1.66it/s][A
+
74%|███████▍ | 146/196 [01:53<00:29, 1.71it/s][A
+
75%|███████▌ | 147/196 [01:53<00:28, 1.72it/s][A
+
76%|███████▌ | 148/196 [01:54<00:28, 1.66it/s][A
+
76%|███████▌ | 149/196 [01:55<00:26, 1.76it/s][A
+
77%|███████▋ | 150/196 [01:55<00:28, 1.63it/s][A
+
77%|███████▋ | 151/196 [01:56<00:28, 1.57it/s][A
+
78%|███████▊ | 152/196 [01:57<00:27, 1.58it/s][A
+
78%|███████▊ | 153/196 [01:57<00:27, 1.57it/s][A
+
79%|███████▊ | 154/196 [01:58<00:26, 1.58it/s][A
+
79%|███████▉ | 155/196 [01:59<00:28, 1.46it/s][A
+
80%|███████▉ | 156/196 [02:00<00:29, 1.34it/s][A
+
80%|████████ | 157/196 [02:00<00:30, 1.28it/s][A
+
81%|████████ | 158/196 [02:01<00:26, 1.42it/s][A
+
81%|████████ | 159/196 [02:01<00:24, 1.52it/s][A
+
82%|████████▏ | 160/196 [02:02<00:23, 1.55it/s][A
+
82%|████████▏ | 161/196 [02:03<00:23, 1.51it/s][A
+
83%|████████▎ | 162/196 [02:03<00:22, 1.53it/s][A
+
83%|████████▎ | 163/196 [02:04<00:21, 1.55it/s][A
+
84%|████████▎ | 164/196 [02:05<00:20, 1.54it/s][A
+
84%|████████▍ | 165/196 [02:05<00:20, 1.50it/s][A
+
85%|████████▍ | 166/196 [02:06<00:19, 1.54it/s][A
+
85%|████████▌ | 167/196 [02:07<00:18, 1.58it/s][A
+
86%|████████▌ | 168/196 [02:07<00:16, 1.67it/s][A
+
86%|████████▌ | 169/196 [02:08<00:16, 1.59it/s][A
+
87%|████████▋ | 170/196 [02:09<00:17, 1.49it/s][A
+
87%|████████▋ | 171/196 [02:09<00:16, 1.51it/s][A
+
88%|████████▊ | 172/196 [02:10<00:16, 1.49it/s][A
+
88%|████████▊ | 173/196 [02:11<00:15, 1.49it/s][A
+
89%|████████▉ | 174/196 [02:11<00:15, 1.42it/s][A
+
89%|████████▉ | 175/196 [02:13<00:18, 1.11it/s][A
+
90%|████████▉ | 176/196 [02:15<00:26, 1.33s/it][A
+
90%|█████████ | 177/196 [02:17<00:28, 1.50s/it][A
+
91%|█████████ | 178/196 [02:19<00:30, 1.68s/it][A
+
91%|█████████▏| 179/196 [02:21<00:28, 1.67s/it][A
+
92%|█████████▏| 180/196 [02:21<00:21, 1.37s/it][A
+
92%|█████████▏| 181/196 [02:22<00:17, 1.16s/it][A
+
93%|█████████▎| 182/196 [02:23<00:14, 1.01s/it][A
+
93%|█████████▎| 183/196 [02:24<00:12, 1.01it/s][A
+
94%|█████████▍| 184/196 [02:24<00:10, 1.10it/s][A
+
94%|█████████▍| 185/196 [02:25<00:09, 1.15it/s][A
+
95%|█████████▍| 186/196 [02:26<00:08, 1.14it/s][A
+
95%|█████████▌| 187/196 [02:27<00:07, 1.18it/s][A
+
96%|█████████▌| 188/196 [02:28<00:06, 1.23it/s][A
+
96%|█████████▋| 189/196 [02:28<00:05, 1.29it/s][A
+
97%|█████████▋| 190/196 [02:29<00:04, 1.38it/s][A
+
97%|█████████▋| 191/196 [02:29<00:03, 1.47it/s][A
+
98%|█████████▊| 192/196 [02:30<00:02, 1.45it/s][A
+
98%|█████████▊| 193/196 [02:31<00:02, 1.45it/s][A
+
99%|█████████▉| 194/196 [02:31<00:01, 1.49it/s][A
+
99%|█████████▉| 195/196 [02:32<00:00, 1.54it/s][A
+
100%|██████████| 196/196 [02:32<00:00, 1.92it/s][A
+
[A
100%|██████████| 1000/1000 [35:04<00:00, 1.67s/it]
+
100%|██████████| 196/196 [02:40<00:00, 1.92it/s][A
+
[A
100%|██████████| 1000/1000 [35:12<00:00, 1.67s/it]
100%|██████████| 1000/1000 [35:12<00:00, 2.11s/it]