wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_145052-jw39kyll
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run eval_pd2000_s300_shuff100_hindi
wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
wandb: ๐ View run at https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐ค Transformers. Use `eval_strategy` instead
warnings.warn(
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 572 examples [00:00, 1536.67 examples/s]
Generating train split: 572 examples [00:00, 1460.76 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.0, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.0, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
preprocess datasets: 0%| | 0/572 [00:00, ? examples/s]
preprocess datasets: 0%| | 1/572 [00:05<55:39, 5.85s/ examples]
preprocess datasets: 2%|โ | 10/572 [00:05<04:03, 2.31 examples/s]
preprocess datasets: 3%|โ | 18/572 [00:06<01:54, 4.83 examples/s]
preprocess datasets: 4%|โ | 25/572 [00:06<01:11, 7.65 examples/s]
preprocess datasets: 6%|โ | 34/572 [00:06<00:43, 12.27 examples/s]
preprocess datasets: 8%|โ | 43/572 [00:06<00:29, 17.91 examples/s]
preprocess datasets: 9%|โ | 50/572 [00:06<00:23, 22.51 examples/s]
preprocess datasets: 10%|โ | 60/572 [00:06<00:17, 29.51 examples/s]
preprocess datasets: 12%|โโ | 67/572 [00:06<00:14, 34.02 examples/s]
preprocess datasets: 13%|โโ | 74/572 [00:06<00:12, 39.27 examples/s]
preprocess datasets: 15%|โโ | 84/572 [00:07<00:11, 43.57 examples/s]
preprocess datasets: 16%|โโ | 92/572 [00:07<00:10, 46.59 examples/s]
preprocess datasets: 18%|โโ | 104/572 [00:07<00:08, 58.16 examples/s]
preprocess datasets: 20%|โโ | 114/572 [00:07<00:07, 64.61 examples/s]
preprocess datasets: 22%|โโโ | 126/572 [00:07<00:05, 74.45 examples/s]
preprocess datasets: 25%|โโโ | 144/572 [00:07<00:04, 98.88 examples/s]
preprocess datasets: 28%|โโโ | 159/572 [00:07<00:04, 97.80 examples/s]
preprocess datasets: 30%|โโโ | 174/572 [00:08<00:03, 106.33 examples/s]
preprocess datasets: 33%|โโโโ | 188/572 [00:08<00:03, 98.01 examples/s]
preprocess datasets: 35%|โโโโ | 203/572 [00:08<00:03, 97.05 examples/s]
preprocess datasets: 37%|โโโโ | 214/572 [00:08<00:03, 97.14 examples/s]
preprocess datasets: 40%|โโโโ | 231/572 [00:08<00:03, 111.06 examples/s]
preprocess datasets: 43%|โโโโโ | 246/572 [00:08<00:02, 119.38 examples/s]
preprocess datasets: 46%|โโโโโ | 262/572 [00:08<00:02, 128.50 examples/s]
preprocess datasets: 49%|โโโโโ | 282/572 [00:08<00:02, 127.17 examples/s]
preprocess datasets: 52%|โโโโโโ | 299/572 [00:09<00:02, 118.30 examples/s]
preprocess datasets: 55%|โโโโโโ | 314/572 [00:09<00:02, 108.79 examples/s]
preprocess datasets: 57%|โโโโโโ | 326/572 [00:09<00:02, 108.63 examples/s]
preprocess datasets: 59%|โโโโโโ | 338/572 [00:09<00:02, 109.62 examples/s]
preprocess datasets: 62%|โโโโโโโ | 353/572 [00:09<00:01, 116.64 examples/s]
preprocess datasets: 64%|โโโโโโโ | 368/572 [00:09<00:01, 120.91 examples/s]
preprocess datasets: 67%|โโโโโโโ | 385/572 [00:09<00:01, 125.42 examples/s]
preprocess datasets: 70%|โโโโโโโ | 403/572 [00:10<00:01, 118.61 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 421/572 [00:10<00:01, 112.82 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 436/572 [00:10<00:01, 118.26 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 453/572 [00:10<00:00, 128.77 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 468/572 [00:10<00:01, 96.66 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 481/572 [00:10<00:01, 79.29 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 497/572 [00:11<00:00, 83.74 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 509/572 [00:11<00:00, 85.20 examples/s]
preprocess datasets: 91%|โโโโโโโโโโ| 522/572 [00:11<00:00, 90.09 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 535/572 [00:11<00:00, 95.84 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 549/572 [00:11<00:00, 92.40 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 559/572 [00:11<00:00, 91.95 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 571/572 [00:11<00:00, 88.74 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 572/572 [00:12<00:00, 45.64 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
08/22/2024 14:51:18 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/36 [00:00, ?it/s]
6%|โ | 2/36 [00:01<00:27, 1.23it/s]
8%|โ | 3/36 [00:02<00:34, 1.04s/it]
11%|โ | 4/36 [00:04<00:42, 1.33s/it]
14%|โโ | 5/36 [00:06<00:44, 1.42s/it]
17%|โโ | 6/36 [00:07<00:42, 1.41s/it]
19%|โโ | 7/36 [00:08<00:35, 1.24s/it]
22%|โโโ | 8/36 [00:09<00:27, 1.01it/s]
25%|โโโ | 9/36 [00:09<00:22, 1.18it/s]
28%|โโโ | 10/36 [00:10<00:21, 1.23it/s]
31%|โโโ | 11/36 [00:11<00:20, 1.19it/s]
33%|โโโโ | 12/36 [00:12<00:19, 1.21it/s]
36%|โโโโ | 13/36 [00:12<00:18, 1.27it/s]
39%|โโโโ | 14/36 [00:13<00:15, 1.46it/s]
42%|โโโโโ | 15/36 [00:13<00:12, 1.65it/s]
44%|โโโโโ | 16/36 [00:14<00:11, 1.81it/s]
47%|โโโโโ | 17/36 [00:14<00:09, 1.91it/s]
50%|โโโโโ | 18/36 [00:15<00:09, 1.85it/s]
53%|โโโโโโ | 19/36 [00:15<00:09, 1.75it/s]
56%|โโโโโโ | 20/36 [00:16<00:08, 1.81it/s]
58%|โโโโโโ | 21/36 [00:16<00:07, 1.95it/s]
61%|โโโโโโ | 22/36 [00:17<00:07, 1.96it/s]
64%|โโโโโโโ | 23/36 [00:17<00:06, 1.92it/s]
67%|โโโโโโโ | 24/36 [00:18<00:06, 1.92it/s]
69%|โโโโโโโ | 25/36 [00:18<00:06, 1.81it/s]
72%|โโโโโโโโ | 26/36 [00:19<00:05, 1.84it/s]
75%|โโโโโโโโ | 27/36 [00:19<00:04, 1.94it/s]
78%|โโโโโโโโ | 28/36 [00:20<00:05, 1.59it/s]
81%|โโโโโโโโ | 29/36 [00:22<00:06, 1.06it/s]
83%|โโโโโโโโโ | 30/36 [00:23<00:06, 1.11s/it]
86%|โโโโโโโโโ | 31/36 [00:25<00:06, 1.38s/it]
89%|โโโโโโโโโ | 32/36 [00:26<00:04, 1.15s/it]
92%|โโโโโโโโโโ| 33/36 [00:27<00:02, 1.02it/s]
94%|โโโโโโโโโโ| 34/36 [00:27<00:01, 1.18it/s]
97%|โโโโโโโโโโ| 35/36 [00:28<00:00, 1.34it/s]
100%|โโโโโโโโโโ| 36/36 [00:28<00:00, 1.65it/s]
100%|โโโโโโโโโโ| 36/36 [00:30<00:00, 1.20it/s]
Printing predictions for a few samples:
Sample 1:
Reference: เคนเคฎ เคเคจเคเคพ เคเคชเคฏเฅเค เคเคธเฅ เคนเฅ เคเคฐ เคธเคเคคเฅ เคนเฅเค เคฏเคพ เคเคตเคถเฅเคฏเคเคคเคพ เค
เคจเฅเคธเคพเคฐ เคเฅเค เคฌเคฆเคฒเคพเคต เคเคฐเคเฅ เคเคชเคฏเฅเค เคเคฐ เคธเคเคคเฅ เคนเฅเค
######
Prediction:
Sample 2:
Reference: เค
เคคเค เคถเฅเคฐเฅเคทเค เคเคธ เคคเคฐเคน เคธเฅ เคเฅเคกเคผ เคธเคเคคเฅ เคนเฅเค
######
Prediction:
Sample 3:
Reference: เคชเฅเคฐเฅเคธเฅเคเคเฅเคถเคจ เคเฅ เค
เคเคค เคฎเฅเค เคเคชเคจเฅ เคธเฅเคฒเคพเคเคก เคเฅ เคเค เคเฅเคชเฅ เคฌเคจเคพ เคฒเฅ เคนเฅ
######
Prediction:
Sample 4:
Reference: เคเคฒเคฟเค เค
เคฌ เคซเฅเคเคเฅเคธ เคเคฐ เคซเฅเคเคเฅเคธ เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเฅ เคเฅ เคเฅเค เคคเคฐเฅเคเฅ เคฆเฅเคเคคเฅ เคนเฅเค
######
Prediction:
Sample 5:
Reference: เคฏเคน เคเค เคกเคพเคฏเคฒเฅเค เคฌเฅเคเฅเคธ เคเฅเคฒเฅเคเคพ เคเคฟเคธเคฎเฅเค เคนเคฎ เค
เคชเคจเฅ เคเคตเคถเฅเคฏเคเคคเคพเคจเฅเคธเคพเคฐ เคซเฅเคจเฅเค เคธเฅเคเคพเคเคฒ เคเคฐ เคธเคพเคเคเคผ เคธเฅเค เคเคฐ เคธเคเคคเฅ เคนเฅเค
######
Prediction:
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string
***** eval metrics *****
eval_cer = 1.0
eval_loss = nan
eval_model_preparation_time = 0.0044
eval_runtime = 0:00:40.62
eval_samples = 572
eval_samples_per_second = 14.081
eval_steps_per_second = 0.886
eval_wer = 1.0
json-train.arrow: 0%| | 0.00/161k [00:00, ?B/s]
Upload 3 LFS files: 0%| | 0/3 [00:00, ?it/s][A
model.safetensors: 0%| | 0.00/1.26G [00:00, ?B/s][A[A
training_args.bin: 0%| | 0.00/5.43k [00:00, ?B/s][A[A[A
model.safetensors: 0%| | 918k/1.26G [00:00<02:29, 8.42MB/s][A[A
model.safetensors: 0%| | 1.77M/1.26G [00:00<04:36, 4.55MB/s][A[A
model.safetensors: 0%| | 3.93M/1.26G [00:00<02:09, 9.73MB/s][A[A
training_args.bin: 100%|โโโโโโโโโโ| 5.43k/5.43k [00:00<00:00, 10.7kB/s]
json-train.arrow: 100%|โโโโโโโโโโ| 161k/161k [00:00<00:00, 304kB/s]
model.safetensors: 0%| | 5.47M/1.26G [00:00<02:13, 9.40MB/s][A[A
Upload 3 LFS files: 33%|โโโโ | 1/3 [00:00<00:01, 1.32it/s][A
model.safetensors: 1%| | 7.14M/1.26G [00:00<02:13, 9.44MB/s][A[A
model.safetensors: 1%| | 9.32M/1.26G [00:00<01:50, 11.3MB/s][A[A
model.safetensors: 1%| | 12.0M/1.26G [00:01<01:26, 14.5MB/s][A[A
model.safetensors: 1%|โ | 16.0M/1.26G [00:01<02:02, 10.2MB/s][A[A
model.safetensors: 2%|โ | 20.6M/1.26G [00:01<01:21, 15.2MB/s][A[A
model.safetensors: 2%|โ | 22.8M/1.26G [00:01<01:17, 16.0MB/s][A[A
model.safetensors: 2%|โ | 25.9M/1.26G [00:02<01:16, 16.2MB/s][A[A
model.safetensors: 2%|โ | 28.0M/1.26G [00:02<01:20, 15.4MB/s][A[A
model.safetensors: 2%|โ | 29.8M/1.26G [00:02<01:17, 15.9MB/s][A[A
model.safetensors: 3%|โ | 32.0M/1.26G [00:02<02:28, 8.29MB/s][A[A
model.safetensors: 3%|โ | 36.2M/1.26G [00:02<01:40, 12.2MB/s][A[A
model.safetensors: 3%|โ | 39.7M/1.26G [00:03<01:26, 14.1MB/s][A[A
model.safetensors: 3%|โ | 43.7M/1.26G [00:03<02:06, 9.63MB/s][A[A
model.safetensors: 4%|โ | 45.3M/1.26G [00:03<01:58, 10.3MB/s][A[A
model.safetensors: 4%|โ | 48.0M/1.26G [00:04<02:35, 7.81MB/s][A[A
model.safetensors: 5%|โ | 62.3M/1.26G [00:04<00:54, 22.1MB/s][A[A
model.safetensors: 5%|โ | 67.3M/1.26G [00:04<01:00, 19.7MB/s][A[A
model.safetensors: 6%|โ | 74.7M/1.26G [00:05<00:45, 26.4MB/s][A[A
model.safetensors: 6%|โ | 80.0M/1.26G [00:05<00:53, 22.2MB/s][A[A
model.safetensors: 7%|โ | 84.2M/1.26G [00:05<01:03, 18.6MB/s][A[A
model.safetensors: 7%|โ | 87.3M/1.26G [00:06<01:39, 11.8MB/s][A[A
model.safetensors: 7%|โ | 90.0M/1.26G [00:06<01:29, 13.1MB/s][A[A
model.safetensors: 8%|โ | 96.0M/1.26G [00:06<01:31, 12.8MB/s][A[A
model.safetensors: 9%|โ | 110M/1.26G [00:07<00:45, 25.2MB/s] [A[A
model.safetensors: 9%|โ | 115M/1.26G [00:07<00:51, 22.5MB/s][A[A
model.safetensors: 10%|โ | 126M/1.26G [00:07<00:33, 33.8MB/s][A[A
model.safetensors: 10%|โ | 132M/1.26G [00:07<00:38, 29.7MB/s][A[A
model.safetensors: 11%|โโ | 144M/1.26G [00:07<00:26, 41.9MB/s][A[A
model.safetensors: 12%|โโ | 150M/1.26G [00:08<00:36, 30.8MB/s][A[A
model.safetensors: 13%|โโ | 160M/1.26G [00:08<00:36, 30.6MB/s][A[A
model.safetensors: 14%|โโ | 175M/1.26G [00:08<00:23, 46.3MB/s][A[A
model.safetensors: 14%|โโ | 183M/1.26G [00:09<00:40, 26.9MB/s][A[A
model.safetensors: 15%|โโ | 188M/1.26G [00:10<00:57, 18.8MB/s][A[A
model.safetensors: 15%|โโ | 192M/1.26G [00:10<01:15, 14.2MB/s][A[A
model.safetensors: 16%|โโ | 207M/1.26G [00:10<00:42, 24.7MB/s][A[A
model.safetensors: 17%|โโ | 214M/1.26G [00:11<00:42, 24.4MB/s][A[A
model.safetensors: 18%|โโ | 224M/1.26G [00:11<00:38, 27.1MB/s][A[A
model.safetensors: 19%|โโ | 239M/1.26G [00:11<00:24, 41.1MB/s][A[A
model.safetensors: 20%|โโ | 247M/1.26G [00:11<00:28, 35.3MB/s][A[A
model.safetensors: 20%|โโ | 256M/1.26G [00:12<00:31, 32.2MB/s][A[A
model.safetensors: 21%|โโโ | 271M/1.26G [00:12<00:21, 46.9MB/s][A[A
model.safetensors: 22%|โโโ | 279M/1.26G [00:12<00:28, 34.7MB/s][A[A
model.safetensors: 23%|โโโ | 288M/1.26G [00:12<00:31, 31.0MB/s][A[A
model.safetensors: 24%|โโโ | 303M/1.26G [00:13<00:21, 45.1MB/s][A[A
model.safetensors: 25%|โโโ | 311M/1.26G [00:13<00:23, 40.8MB/s][A[A
model.safetensors: 25%|โโโ | 320M/1.26G [00:13<00:27, 34.4MB/s][A[A
model.safetensors: 27%|โโโ | 336M/1.26G [00:13<00:18, 49.4MB/s][A[A
model.safetensors: 27%|โโโ | 343M/1.26G [00:14<00:22, 40.7MB/s][A[A
model.safetensors: 28%|โโโ | 352M/1.26G [00:14<00:28, 31.6MB/s][A[A
model.safetensors: 29%|โโโ | 367M/1.26G [00:14<00:19, 45.7MB/s][A[A
model.safetensors: 30%|โโโ | 375M/1.26G [00:14<00:22, 39.3MB/s][A[A
model.safetensors: 30%|โโโ | 384M/1.26G [00:15<00:26, 33.7MB/s][A[A
model.safetensors: 32%|โโโโ | 399M/1.26G [00:15<00:17, 48.2MB/s][A[A
model.safetensors: 32%|โโโโ | 407M/1.26G [00:15<00:26, 32.8MB/s][A[A
model.safetensors: 33%|โโโโ | 416M/1.26G [00:16<00:26, 32.1MB/s][A[A
model.safetensors: 34%|โโโโ | 431M/1.26G [00:16<00:17, 46.2MB/s][A[A
model.safetensors: 35%|โโโโ | 439M/1.26G [00:16<00:20, 40.1MB/s][A[A
model.safetensors: 35%|โโโโ | 448M/1.26G [00:17<00:24, 33.9MB/s][A[A
model.safetensors: 37%|โโโโ | 462M/1.26G [00:17<00:16, 47.5MB/s][A[A
model.safetensors: 37%|โโโโ | 470M/1.26G [00:17<00:20, 39.1MB/s][A[A
model.safetensors: 38%|โโโโ | 480M/1.26G [00:17<00:20, 37.4MB/s][A[A
model.safetensors: 39%|โโโโ | 495M/1.26G [00:17<00:14, 52.3MB/s][A[A
model.safetensors: 40%|โโโโ | 503M/1.26G [00:18<00:18, 40.4MB/s][A[A
model.safetensors: 40%|โโโโ | 509M/1.26G [00:18<00:18, 41.1MB/s][A[A
model.safetensors: 41%|โโโโ | 515M/1.26G [00:18<00:22, 32.6MB/s][A[A
model.safetensors: 41%|โโโโ | 521M/1.26G [00:18<00:22, 33.7MB/s][A[A
model.safetensors: 42%|โโโโโ | 528M/1.26G [00:19<00:26, 27.6MB/s][A[A
model.safetensors: 43%|โโโโโ | 540M/1.26G [00:19<00:19, 36.7MB/s][A[A
model.safetensors: 43%|โโโโโ | 545M/1.26G [00:19<00:25, 27.8MB/s][A[A
model.safetensors: 44%|โโโโโ | 554M/1.26G [00:19<00:19, 36.2MB/s][A[A
model.safetensors: 44%|โโโโโ | 560M/1.26G [00:20<00:25, 27.4MB/s][A[A
model.safetensors: 45%|โโโโโ | 569M/1.26G [00:20<00:19, 35.3MB/s][A[A
model.safetensors: 45%|โโโโโ | 574M/1.26G [00:20<00:18, 38.0MB/s][A[A
model.safetensors: 46%|โโโโโ | 579M/1.26G [00:20<00:21, 31.6MB/s][A[A
model.safetensors: 47%|โโโโโ | 591M/1.26G [00:20<00:14, 46.7MB/s][A[A
model.safetensors: 47%|โโโโโ | 598M/1.26G [00:21<00:18, 36.1MB/s][A[A
model.safetensors: 48%|โโโโโ | 608M/1.26G [00:21<00:25, 25.2MB/s][A[A
model.safetensors: 49%|โโโโโ | 622M/1.26G [00:21<00:16, 37.8MB/s][A[A
model.safetensors: 50%|โโโโโ | 629M/1.26G [00:22<00:19, 32.0MB/s][A[A
model.safetensors: 51%|โโโโโ | 640M/1.26G [00:22<00:19, 32.0MB/s][A[A
model.safetensors: 52%|โโโโโโ | 655M/1.26G [00:22<00:13, 46.6MB/s][A[A
model.safetensors: 53%|โโโโโโ | 663M/1.26G [00:23<00:19, 30.6MB/s][A[A
model.safetensors: 53%|โโโโโโ | 672M/1.26G [00:23<00:20, 29.4MB/s][A[A
model.safetensors: 54%|โโโโโโ | 687M/1.26G [00:23<00:13, 43.0MB/s][A[A
model.safetensors: 55%|โโโโโโ | 695M/1.26G [00:23<00:17, 33.2MB/s][A[A
model.safetensors: 56%|โโโโโโ | 704M/1.26G [00:24<00:20, 27.7MB/s][A[A
model.safetensors: 57%|โโโโโโ | 719M/1.26G [00:24<00:13, 40.5MB/s][A[A
model.safetensors: 58%|โโโโโโ | 727M/1.26G [00:24<00:15, 35.1MB/s][A[A
model.safetensors: 58%|โโโโโโ | 736M/1.26G [00:25<00:16, 31.8MB/s][A[A
model.safetensors: 60%|โโโโโโ | 751M/1.26G [00:25<00:11, 45.8MB/s][A[A
model.safetensors: 60%|โโโโโโ | 759M/1.26G [00:25<00:12, 41.2MB/s][A[A
model.safetensors: 61%|โโโโโโ | 768M/1.26G [00:25<00:13, 35.5MB/s][A[A
model.safetensors: 62%|โโโโโโโ | 783M/1.26G [00:26<00:09, 50.5MB/s][A[A
model.safetensors: 63%|โโโโโโโ | 791M/1.26G [00:26<00:12, 36.9MB/s][A[A
model.safetensors: 63%|โโโโโโโ | 800M/1.26G [00:26<00:14, 32.2MB/s][A[A
model.safetensors: 64%|โโโโโโโ | 814M/1.26G [00:26<00:09, 45.0MB/s][A[A
model.safetensors: 65%|โโโโโโโ | 822M/1.26G [00:27<00:11, 37.1MB/s][A[A
model.safetensors: 66%|โโโโโโโ | 832M/1.26G [00:27<00:12, 33.4MB/s][A[A
model.safetensors: 67%|โโโโโโโ | 848M/1.26G [00:27<00:08, 47.8MB/s][A[A
model.safetensors: 68%|โโโโโโโ | 855M/1.26G [00:28<00:10, 39.9MB/s][A[A
model.safetensors: 68%|โโโโโโโ | 864M/1.26G [00:28<00:11, 33.4MB/s][A[A
model.safetensors: 70%|โโโโโโโ | 879M/1.26G [00:28<00:07, 47.9MB/s][A[A
model.safetensors: 70%|โโโโโโโ | 887M/1.26G [00:28<00:10, 35.7MB/s][A[A
model.safetensors: 71%|โโโโโโโ | 896M/1.26G [00:29<00:11, 33.0MB/s][A[A
model.safetensors: 72%|โโโโโโโโ | 911M/1.26G [00:29<00:07, 47.5MB/s][A[A
model.safetensors: 73%|โโโโโโโโ | 919M/1.26G [00:29<00:09, 37.9MB/s][A[A
model.safetensors: 74%|โโโโโโโโ | 928M/1.26G [00:30<00:10, 33.3MB/s][A[A
model.safetensors: 75%|โโโโโโโโ | 943M/1.26G [00:30<00:06, 47.8MB/s][A[A
model.safetensors: 75%|โโโโโโโโ | 951M/1.26G [00:30<00:08, 35.1MB/s][A[A
model.safetensors: 76%|โโโโโโโโ | 960M/1.26G [00:31<00:09, 31.4MB/s][A[A
model.safetensors: 77%|โโโโโโโโ | 975M/1.26G [00:31<00:06, 45.5MB/s][A[A
model.safetensors: 78%|โโโโโโโโ | 983M/1.26G [00:31<00:06, 40.1MB/s][A[A
model.safetensors: 79%|โโโโโโโโ | 992M/1.26G [00:31<00:05, 46.2MB/s][A[A
model.safetensors: 79%|โโโโโโโโ | 998M/1.26G [00:31<00:08, 32.3MB/s][A[A
model.safetensors: 80%|โโโโโโโโ | 1.00G/1.26G [00:32<00:07, 34.4MB/s][A[A
model.safetensors: 80%|โโโโโโโโ | 1.01G/1.26G [00:32<00:10, 24.8MB/s][A[A
model.safetensors: 80%|โโโโโโโโ | 1.01G/1.26G [00:32<00:08, 28.0MB/s][A[A
model.safetensors: 81%|โโโโโโโโ | 1.02G/1.26G [00:32<00:08, 30.3MB/s][A[A
model.safetensors: 81%|โโโโโโโโ | 1.02G/1.26G [00:32<00:07, 30.7MB/s][A[A
model.safetensors: 81%|โโโโโโโโโ | 1.03G/1.26G [00:33<00:10, 22.7MB/s][A[A
model.safetensors: 82%|โโโโโโโโโ | 1.03G/1.26G [00:33<00:08, 25.7MB/s][A[A
model.safetensors: 82%|โโโโโโโโโ | 1.04G/1.26G [00:33<00:07, 31.2MB/s][A[A
model.safetensors: 82%|โโโโโโโโโ | 1.04G/1.26G [00:33<00:09, 22.9MB/s][A[A
model.safetensors: 83%|โโโโโโโโโ | 1.05G/1.26G [00:33<00:07, 28.7MB/s][A[A
model.safetensors: 84%|โโโโโโโโโ | 1.06G/1.26G [00:34<00:07, 27.6MB/s][A[A
model.safetensors: 85%|โโโโโโโโโ | 1.07G/1.26G [00:34<00:04, 46.4MB/s][A[A
model.safetensors: 85%|โโโโโโโโโ | 1.08G/1.26G [00:34<00:04, 37.0MB/s][A[A
model.safetensors: 86%|โโโโโโโโโ | 1.09G/1.26G [00:34<00:05, 32.8MB/s][A[A
model.safetensors: 87%|โโโโโโโโโ | 1.10G/1.26G [00:34<00:03, 48.8MB/s][A[A
model.safetensors: 88%|โโโโโโโโโ | 1.11G/1.26G [00:35<00:04, 37.8MB/s][A[A
model.safetensors: 89%|โโโโโโโโโ | 1.12G/1.26G [00:35<00:04, 32.2MB/s][A[A
model.safetensors: 90%|โโโโโโโโโ | 1.13G/1.26G [00:35<00:02, 45.2MB/s][A[A
model.safetensors: 90%|โโโโโโโโโ | 1.14G/1.26G [00:36<00:03, 38.3MB/s][A[A
model.safetensors: 91%|โโโโโโโโโโ| 1.15G/1.26G [00:36<00:02, 37.2MB/s][A[A
model.safetensors: 92%|โโโโโโโโโโ| 1.17G/1.26G [00:36<00:01, 52.4MB/s][A[A
model.safetensors: 93%|โโโโโโโโโโ| 1.18G/1.26G [00:36<00:02, 40.8MB/s][A[A
model.safetensors: 94%|โโโโโโโโโโ| 1.18G/1.26G [00:37<00:02, 32.8MB/s][A[A
model.safetensors: 95%|โโโโโโโโโโ| 1.20G/1.26G [00:37<00:01, 47.1MB/s][A[A
model.safetensors: 96%|โโโโโโโโโโ| 1.21G/1.26G [00:37<00:01, 39.0MB/s][A[A
model.safetensors: 96%|โโโโโโโโโโ| 1.22G/1.26G [00:38<00:01, 32.3MB/s][A[A
model.safetensors: 98%|โโโโโโโโโโ| 1.23G/1.26G [00:38<00:00, 46.9MB/s][A[A
model.safetensors: 98%|โโโโโโโโโโ| 1.24G/1.26G [00:38<00:00, 41.9MB/s][A[A
model.safetensors: 99%|โโโโโโโโโโ| 1.25G/1.26G [00:38<00:00, 35.7MB/s][A[A
model.safetensors: 100%|โโโโโโโโโโ| 1.26G/1.26G [00:39<00:00, 32.2MB/s]
Upload 3 LFS files: 67%|โโโโโโโ | 2/3 [00:39<00:23, 23.09s/it][A
Upload 3 LFS files: 100%|โโโโโโโโโโ| 3/3 [00:39<00:00, 13.16s/it]
wandb: - 0.007 MB of 0.007 MB uploaded
wandb: \ 0.039 MB of 0.039 MB uploaded
wandb:
wandb: Run history:
wandb: eval/cer โ
wandb: eval/model_preparation_time โ
wandb: eval/runtime โ
wandb: eval/samples_per_second โ
wandb: eval/steps_per_second โ
wandb: eval/wer โ
wandb: eval_cer โ
wandb: eval_model_preparation_time โ
wandb: eval_runtime โ
wandb: eval_samples โ
wandb: eval_samples_per_second โ
wandb: eval_steps_per_second โ
wandb: eval_wer โ
wandb: train/global_step โโ
wandb:
wandb: Run summary:
wandb: eval/cer 1.0
wandb: eval/loss nan
wandb: eval/model_preparation_time 0.0044
wandb: eval/runtime 40.6214
wandb: eval/samples_per_second 14.081
wandb: eval/steps_per_second 0.886
wandb: eval/wer 1.0
wandb: eval_cer 1.0
wandb: eval_loss nan
wandb: eval_model_preparation_time 0.0044
wandb: eval_runtime 40.6214
wandb: eval_samples 572
wandb: eval_samples_per_second 14.081
wandb: eval_steps_per_second 0.886
wandb: eval_wer 1.0
wandb: train/global_step 0
wandb:
wandb: ๐ View run eval_pd2000_s300_shuff100_hindi at: https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll
wandb: โญ๏ธ View project at: https://wandb.ai/priyanshipal/huggingface
wandb: Synced 6 W&B file(s), 0 media file(s), 1 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240822_145052-jw39kyll/logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.