wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin wandb: wandb version 0.17.7 is available! To upgrade, please run: wandb: $ pip install wandb --upgrade wandb: Tracking run with wandb version 0.17.6 wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_145052-jw39kyll wandb: Run `wandb offline` to turn off syncing. wandb: Syncing run eval_pd2000_s300_shuff100_hindi wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface wandb: ๐Ÿš€ View run at https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐Ÿค— Transformers. Use `eval_strategy` instead warnings.warn( Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 572 examples [00:00, 1536.67 examples/s] Generating train split: 572 examples [00:00, 1460.76 examples/s] /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead. warnings.warn( /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`. warnings.warn( /scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead. warnings.warn( Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False), 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False), 149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), } CHECK MODEL PARAMS Wav2Vec2ForCTC( (wav2vec2): Wav2Vec2Model( (feature_extractor): Wav2Vec2FeatureEncoder( (conv_layers): ModuleList( (0): Wav2Vec2LayerNormConvLayer( (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,)) (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (activation): GELUActivation() ) (1-4): 4 x Wav2Vec2LayerNormConvLayer( (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,)) (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (activation): GELUActivation() ) (5-6): 2 x Wav2Vec2LayerNormConvLayer( (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,)) (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (activation): GELUActivation() ) ) ) (feature_projection): Wav2Vec2FeatureProjection( (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (projection): Linear(in_features=512, out_features=1024, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) (encoder): Wav2Vec2EncoderStableLayerNorm( (pos_conv_embed): Wav2Vec2PositionalConvEmbedding( (conv): ParametrizedConv1d( 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): _WeightNorm() ) ) ) (padding): Wav2Vec2SamePadLayer() (activation): GELUActivation() ) (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.0, inplace=False) (layers): ModuleList( (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm( (attention): Wav2Vec2SdpaAttention( (k_proj): Linear(in_features=1024, out_features=1024, bias=True) (v_proj): Linear(in_features=1024, out_features=1024, bias=True) (q_proj): Linear(in_features=1024, out_features=1024, bias=True) (out_proj): Linear(in_features=1024, out_features=1024, bias=True) ) (dropout): Dropout(p=0.0, inplace=False) (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (feed_forward): Wav2Vec2FeedForward( (intermediate_dropout): Dropout(p=0.0, inplace=False) (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True) (intermediate_act_fn): GELUActivation() (output_dense): Linear(in_features=4096, out_features=1024, bias=True) (output_dropout): Dropout(p=0.0, inplace=False) ) (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ) ) ) (dropout): Dropout(p=0.0, inplace=False) (lm_head): Linear(in_features=1024, out_features=151, bias=True) ) preprocess datasets: 0%| | 0/572 [00:00