wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240821_155449-0evkescz
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run elated-pine-27
wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
wandb: ๐ View run at https://wandb.ai/priyanshipal/huggingface/runs/0evkescz
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐ค Transformers. Use `eval_strategy` instead
warnings.warn(
08/21/2024 15:54:52 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:508: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.3, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.2, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.2, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
0%| | 0/1000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
0%| | 1/1000 [00:17<4:43:30, 17.03s/it]
0%| | 1/1000 [00:17<4:43:30, 17.03s/it]
0%| | 2/1000 [00:21<2:35:47, 9.37s/it]
0%| | 2/1000 [00:21<2:35:47, 9.37s/it]
0%| | 3/1000 [00:24<1:51:58, 6.74s/it]
0%| | 3/1000 [00:24<1:51:58, 6.74s/it]
0%| | 4/1000 [00:28<1:29:49, 5.41s/it]
0%| | 4/1000 [00:28<1:29:49, 5.41s/it]
0%| | 5/1000 [00:31<1:15:47, 4.57s/it]
0%| | 5/1000 [00:31<1:15:47, 4.57s/it]
1%| | 6/1000 [00:34<1:06:25, 4.01s/it]
1%| | 6/1000 [00:34<1:06:25, 4.01s/it]
1%| | 7/1000 [00:36<59:46, 3.61s/it]
1%| | 7/1000 [00:36<59:46, 3.61s/it]
1%| | 8/1000 [00:39<55:34, 3.36s/it]
1%| | 8/1000 [00:39<55:34, 3.36s/it]
1%| | 9/1000 [00:42<51:14, 3.10s/it]
1%| | 9/1000 [00:42<51:14, 3.10s/it]
1%| | 10/1000 [00:44<47:56, 2.91s/it]
1%| | 10/1000 [00:44<47:56, 2.91s/it]
1%| | 11/1000 [00:47<45:32, 2.76s/it]
1%| | 11/1000 [00:47<45:32, 2.76s/it]
1%| | 12/1000 [00:49<43:20, 2.63s/it]
1%| | 12/1000 [00:49<43:20, 2.63s/it]
1%|โ | 13/1000 [00:51<40:54, 2.49s/it]
1%|โ | 13/1000 [00:51<40:54, 2.49s/it]
1%|โ | 14/1000 [00:53<39:16, 2.39s/it]
1%|โ | 14/1000 [00:53<39:16, 2.39s/it]
2%|โ | 15/1000 [00:55<38:05, 2.32s/it]
2%|โ | 15/1000 [00:55<38:05, 2.32s/it]
2%|โ | 16/1000 [00:58<37:12, 2.27s/it]
2%|โ | 16/1000 [00:58<37:12, 2.27s/it]
2%|โ | 17/1000 [01:00<36:32, 2.23s/it]
2%|โ | 17/1000 [01:00<36:32, 2.23s/it]
2%|โ | 18/1000 [01:02<35:28, 2.17s/it]
2%|โ | 18/1000 [01:02<35:28, 2.17s/it]
2%|โ | 19/1000 [01:03<33:38, 2.06s/it]
2%|โ | 19/1000 [01:04<33:38, 2.06s/it]
2%|โ | 20/1000 [01:05<32:19, 1.98s/it]
2%|โ | 20/1000 [01:05<32:19, 1.98s/it]
2%|โ | 21/1000 [01:07<31:29, 1.93s/it]
2%|โ | 21/1000 [01:07<31:29, 1.93s/it]
2%|โ | 22/1000 [01:09<30:43, 1.89s/it]
2%|โ | 22/1000 [01:09<30:43, 1.89s/it]
2%|โ | 23/1000 [01:11<30:13, 1.86s/it]
2%|โ | 23/1000 [01:11<30:13, 1.86s/it]
2%|โ | 24/1000 [01:12<29:20, 1.80s/it]
2%|โ | 24/1000 [01:12<29:20, 1.80s/it]
2%|โ | 25/1000 [01:14<27:52, 1.72s/it]
2%|โ | 25/1000 [01:14<27:52, 1.72s/it]
3%|โ | 26/1000 [01:15<26:46, 1.65s/it]
3%|โ | 26/1000 [01:15<26:46, 1.65s/it]
3%|โ | 27/1000 [01:17<26:02, 1.61s/it]
3%|โ | 27/1000 [01:17<26:02, 1.61s/it]
3%|โ | 28/1000 [01:18<25:30, 1.57s/it]
3%|โ | 28/1000 [01:18<25:30, 1.57s/it]
3%|โ | 29/1000 [01:20<25:13, 1.56s/it]
3%|โ | 29/1000 [01:20<25:13, 1.56s/it]
3%|โ | 30/1000 [01:21<24:58, 1.54s/it]
3%|โ | 30/1000 [01:21<24:58, 1.54s/it]
3%|โ | 31/1000 [01:23<24:45, 1.53s/it]
3%|โ | 31/1000 [01:23<24:45, 1.53s/it]
3%|โ | 32/1000 [01:24<24:21, 1.51s/it]
3%|โ | 32/1000 [01:24<24:21, 1.51s/it]
3%|โ | 33/1000 [01:26<23:27, 1.46s/it]
3%|โ | 33/1000 [01:26<23:27, 1.46s/it]
3%|โ | 34/1000 [01:27<22:21, 1.39s/it]
3%|โ | 34/1000 [01:27<22:21, 1.39s/it]
4%|โ | 35/1000 [01:28<21:31, 1.34s/it]
4%|โ | 35/1000 [01:28<21:31, 1.34s/it]
4%|โ | 36/1000 [01:29<20:57, 1.30s/it]
4%|โ | 36/1000 [01:29<20:57, 1.30s/it]
4%|โ | 37/1000 [01:31<20:35, 1.28s/it]
4%|โ | 37/1000 [01:31<20:35, 1.28s/it]
4%|โ | 38/1000 [01:32<20:20, 1.27s/it]
4%|โ | 38/1000 [01:32<20:20, 1.27s/it]
4%|โ | 39/1000 [01:33<20:10, 1.26s/it]
4%|โ | 39/1000 [01:33<20:10, 1.26s/it]
4%|โ | 40/1000 [01:34<19:53, 1.24s/it]
4%|โ | 40/1000 [01:34<19:53, 1.24s/it]
4%|โ | 41/1000 [01:35<18:45, 1.17s/it]
4%|โ | 41/1000 [01:35<18:45, 1.17s/it]
4%|โ | 42/1000 [01:36<17:36, 1.10s/it]
4%|โ | 42/1000 [01:36<17:36, 1.10s/it]
4%|โ | 43/1000 [01:37<16:49, 1.06s/it]
4%|โ | 43/1000 [01:37<16:49, 1.06s/it]
4%|โ | 44/1000 [01:38<16:15, 1.02s/it]
4%|โ | 44/1000 [01:38<16:15, 1.02s/it]
4%|โ | 45/1000 [01:39<15:49, 1.01it/s]
4%|โ | 45/1000 [01:39<15:49, 1.01it/s]
5%|โ | 46/1000 [01:40<15:31, 1.02it/s]
5%|โ | 46/1000 [01:40<15:31, 1.02it/s]
5%|โ | 47/1000 [01:41<14:41, 1.08it/s]
5%|โ | 47/1000 [01:41<14:41, 1.08it/s]
5%|โ | 48/1000 [01:42<13:50, 1.15it/s]
5%|โ | 48/1000 [01:42<13:50, 1.15it/s]
5%|โ | 49/1000 [01:42<12:52, 1.23it/s]
5%|โ | 49/1000 [01:42<12:52, 1.23it/s]
5%|โ | 50/1000 [01:45<21:55, 1.38s/it]
5%|โ | 50/1000 [01:45<21:55, 1.38s/it]
5%|โ | 51/1000 [01:52<49:42, 3.14s/it]
5%|โ | 51/1000 [01:52<49:42, 3.14s/it]
5%|โ | 52/1000 [01:57<56:07, 3.55s/it]
5%|โ | 52/1000 [01:57<56:07, 3.55s/it]
5%|โ | 53/1000 [02:01<57:28, 3.64s/it]
5%|โ | 53/1000 [02:01<57:28, 3.64s/it]
5%|โ | 54/1000 [02:04<56:36, 3.59s/it]
5%|โ | 54/1000 [02:04<56:36, 3.59s/it]
6%|โ | 55/1000 [02:07<54:54, 3.49s/it]
6%|โ | 55/1000 [02:07<54:54, 3.49s/it]
6%|โ | 56/1000 [02:10<52:14, 3.32s/it]
6%|โ | 56/1000 [02:10<52:14, 3.32s/it]
6%|โ | 57/1000 [02:13<49:40, 3.16s/it]
6%|โ | 57/1000 [02:13<49:40, 3.16s/it]
6%|โ | 58/1000 [02:16<47:36, 3.03s/it]
6%|โ | 58/1000 [02:16<47:36, 3.03s/it]
6%|โ | 59/1000 [02:18<45:03, 2.87s/it]
6%|โ | 59/1000 [02:18<45:03, 2.87s/it]
6%|โ | 60/1000 [02:21<43:00, 2.75s/it]
6%|โ | 60/1000 [02:21<43:00, 2.75s/it]
6%|โ | 61/1000 [02:23<41:31, 2.65s/it]
6%|โ | 61/1000 [02:23<41:31, 2.65s/it]
6%|โ | 62/1000 [02:25<39:18, 2.51s/it]
6%|โ | 62/1000 [02:25<39:18, 2.51s/it]
6%|โ | 63/1000 [02:27<37:39, 2.41s/it]
6%|โ | 63/1000 [02:27<37:39, 2.41s/it]
6%|โ | 64/1000 [02:30<36:17, 2.33s/it]
6%|โ | 64/1000 [02:30<36:17, 2.33s/it]
6%|โ | 65/1000 [02:32<35:20, 2.27s/it]
6%|โ | 65/1000 [02:32<35:20, 2.27s/it]
7%|โ | 66/1000 [02:34<34:40, 2.23s/it]
7%|โ | 66/1000 [02:34<34:40, 2.23s/it]
7%|โ | 67/1000 [02:36<33:53, 2.18s/it]
7%|โ | 67/1000 [02:36<33:53, 2.18s/it]
7%|โ | 68/1000 [02:38<32:20, 2.08s/it]
7%|โ | 68/1000 [02:38<32:20, 2.08s/it]
7%|โ | 69/1000 [02:40<30:53, 1.99s/it]
7%|โ | 69/1000 [02:40<30:53, 1.99s/it]
7%|โ | 70/1000 [02:41<29:52, 1.93s/it]
7%|โ | 70/1000 [02:41<29:52, 1.93s/it]
7%|โ | 71/1000 [02:43<29:10, 1.88s/it]
7%|โ | 71/1000 [02:43<29:10, 1.88s/it]
7%|โ | 72/1000 [02:45<28:41, 1.86s/it]
7%|โ | 72/1000 [02:45<28:41, 1.86s/it]
7%|โ | 73/1000 [02:47<28:22, 1.84s/it]
7%|โ | 73/1000 [02:47<28:22, 1.84s/it]
7%|โ | 74/1000 [02:48<27:26, 1.78s/it]
7%|โ | 74/1000 [02:48<27:26, 1.78s/it]
8%|โ | 75/1000 [02:50<26:13, 1.70s/it]
8%|โ | 75/1000 [02:50<26:13, 1.70s/it]
8%|โ | 76/1000 [02:51<25:15, 1.64s/it]
8%|โ | 76/1000 [02:51<25:15, 1.64s/it]
8%|โ | 77/1000 [02:53<24:36, 1.60s/it]
8%|โ | 77/1000 [02:53<24:36, 1.60s/it]
8%|โ | 78/1000 [02:54<24:08, 1.57s/it]
8%|โ | 78/1000 [02:54<24:08, 1.57s/it]
8%|โ | 79/1000 [02:56<23:47, 1.55s/it]
8%|โ | 79/1000 [02:56<23:47, 1.55s/it]
8%|โ | 80/1000 [02:57<23:29, 1.53s/it]
8%|โ | 80/1000 [02:57<23:29, 1.53s/it]
8%|โ | 81/1000 [02:59<23:23, 1.53s/it]
8%|โ | 81/1000 [02:59<23:23, 1.53s/it]
8%|โ | 82/1000 [03:00<23:07, 1.51s/it]
8%|โ | 82/1000 [03:00<23:07, 1.51s/it]
8%|โ | 83/1000 [03:02<22:05, 1.45s/it]
8%|โ | 83/1000 [03:02<22:05, 1.45s/it]
8%|โ | 84/1000 [03:03<21:10, 1.39s/it]
8%|โ | 84/1000 [03:03<21:10, 1.39s/it]
8%|โ | 85/1000 [03:04<20:24, 1.34s/it]
8%|โ | 85/1000 [03:04<20:24, 1.34s/it]
9%|โ | 86/1000 [03:05<19:52, 1.30s/it]
9%|โ | 86/1000 [03:05<19:52, 1.30s/it]
9%|โ | 87/1000 [03:07<19:29, 1.28s/it]
9%|โ | 87/1000 [03:07<19:29, 1.28s/it]
9%|โ | 88/1000 [03:08<19:10, 1.26s/it]
9%|โ | 88/1000 [03:08<19:10, 1.26s/it]
9%|โ | 89/1000 [03:09<19:02, 1.25s/it]
9%|โ | 89/1000 [03:09<19:02, 1.25s/it]
9%|โ | 90/1000 [03:10<18:48, 1.24s/it]
9%|โ | 90/1000 [03:10<18:48, 1.24s/it]
9%|โ | 91/1000 [03:11<17:39, 1.17s/it]
9%|โ | 91/1000 [03:11<17:39, 1.17s/it]
9%|โ | 92/1000 [03:12<16:35, 1.10s/it]
9%|โ | 92/1000 [03:12<16:35, 1.10s/it]
9%|โ | 93/1000 [03:13<15:51, 1.05s/it]
9%|โ | 93/1000 [03:13<15:51, 1.05s/it]
9%|โ | 94/1000 [03:14<15:19, 1.01s/it]
9%|โ | 94/1000 [03:14<15:19, 1.01s/it]
10%|โ | 95/1000 [03:15<14:58, 1.01it/s]
10%|โ | 95/1000 [03:15<14:58, 1.01it/s]
10%|โ | 96/1000 [03:16<14:43, 1.02it/s]
10%|โ | 96/1000 [03:16<14:43, 1.02it/s]
10%|โ | 97/1000 [03:17<13:56, 1.08it/s]
10%|โ | 97/1000 [03:17<13:56, 1.08it/s]
10%|โ | 98/1000 [03:17<12:47, 1.18it/s]
10%|โ | 98/1000 [03:17<12:47, 1.18it/s]
10%|โ | 99/1000 [03:18<11:59, 1.25it/s]
10%|โ | 99/1000 [03:18<11:59, 1.25it/s]
10%|โ | 100/1000 [03:21<20:46, 1.39s/it]
10%|โ | 100/1000 [03:21<20:46, 1.39s/it]
10%|โ | 101/1000 [03:28<46:41, 3.12s/it]
10%|โ | 101/1000 [03:28<46:41, 3.12s/it]
10%|โ | 102/1000 [03:32<51:46, 3.46s/it]
10%|โ | 102/1000 [03:32<51:46, 3.46s/it]
10%|โ | 103/1000 [03:36<52:45, 3.53s/it]
10%|โ | 103/1000 [03:36<52:45, 3.53s/it]
10%|โ | 104/1000 [03:39<51:53, 3.48s/it]
10%|โ | 104/1000 [03:39<51:53, 3.48s/it]
10%|โ | 105/1000 [03:42<50:17, 3.37s/it]
10%|โ | 105/1000 [03:42<50:17, 3.37s/it]
11%|โ | 106/1000 [03:45<48:20, 3.24s/it]
11%|โ | 106/1000 [03:45<48:20, 3.24s/it]
11%|โ | 107/1000 [03:48<46:04, 3.10s/it]
11%|โ | 107/1000 [03:48<46:04, 3.10s/it]
11%|โ | 108/1000 [03:51<44:09, 2.97s/it]
11%|โ | 108/1000 [03:51<44:09, 2.97s/it]
11%|โ | 109/1000 [03:53<41:59, 2.83s/it]
11%|โ | 109/1000 [03:53<41:59, 2.83s/it]
11%|โ | 110/1000 [03:56<40:02, 2.70s/it]
11%|โ | 110/1000 [03:56<40:02, 2.70s/it]
11%|โ | 111/1000 [03:58<38:54, 2.63s/it]
11%|โ | 111/1000 [03:58<38:54, 2.63s/it]
11%|โ | 112/1000 [04:01<37:47, 2.55s/it]
11%|โ | 112/1000 [04:01<37:47, 2.55s/it]
11%|โโ | 113/1000 [04:03<36:00, 2.44s/it]
11%|โโ | 113/1000 [04:03<36:00, 2.44s/it]
11%|โโ | 114/1000 [04:05<34:26, 2.33s/it]
11%|โโ | 114/1000 [04:05<34:26, 2.33s/it]
12%|โโ | 115/1000 [04:07<33:21, 2.26s/it]
12%|โโ | 115/1000 [04:07<33:21, 2.26s/it]
12%|โโ | 116/1000 [04:09<32:35, 2.21s/it]
12%|โโ | 116/1000 [04:09<32:35, 2.21s/it]
12%|โโ | 117/1000 [04:11<31:37, 2.15s/it]
12%|โโ | 117/1000 [04:11<31:37, 2.15s/it]
12%|โโ | 118/1000 [04:13<30:00, 2.04s/it]
12%|โโ | 118/1000 [04:13<30:00, 2.04s/it]
12%|โโ | 119/1000 [04:15<28:50, 1.96s/it]
12%|โโ | 119/1000 [04:15<28:50, 1.96s/it]
12%|โโ | 120/1000 [04:16<27:57, 1.91s/it]
12%|โโ | 120/1000 [04:16<27:57, 1.91s/it]
12%|โโ | 121/1000 [04:18<27:21, 1.87s/it]
12%|โโ | 121/1000 [04:18<27:21, 1.87s/it]
12%|โโ | 122/1000 [04:20<26:54, 1.84s/it]
12%|โโ | 122/1000 [04:20<26:54, 1.84s/it]
12%|โโ | 123/1000 [04:22<26:37, 1.82s/it]
12%|โโ | 123/1000 [04:22<26:37, 1.82s/it]
12%|โโ | 124/1000 [04:23<25:59, 1.78s/it]
12%|โโ | 124/1000 [04:23<25:59, 1.78s/it]
12%|โโ | 125/1000 [04:25<24:50, 1.70s/it]
12%|โโ | 125/1000 [04:25<24:50, 1.70s/it]
13%|โโ | 126/1000 [04:26<24:04, 1.65s/it]
13%|โโ | 126/1000 [04:26<24:04, 1.65s/it]
13%|โโ | 127/1000 [04:28<23:25, 1.61s/it]
13%|โโ | 127/1000 [04:28<23:25, 1.61s/it]
13%|โโ | 128/1000 [04:29<22:58, 1.58s/it]
13%|โโ | 128/1000 [04:29<22:58, 1.58s/it]
13%|โโ | 129/1000 [04:31<22:38, 1.56s/it]
13%|โโ | 129/1000 [04:31<22:38, 1.56s/it]
13%|โโ | 130/1000 [04:32<22:20, 1.54s/it]
13%|โโ | 130/1000 [04:32<22:20, 1.54s/it]
13%|โโ | 131/1000 [04:34<22:09, 1.53s/it]
13%|โโ | 131/1000 [04:34<22:09, 1.53s/it]
13%|โโ | 132/1000 [04:35<21:25, 1.48s/it]
13%|โโ | 132/1000 [04:35<21:25, 1.48s/it]
13%|โโ | 133/1000 [04:37<20:18, 1.41s/it]
13%|โโ | 133/1000 [04:37<20:18, 1.41s/it]
13%|โโ | 134/1000 [04:38<19:31, 1.35s/it]
13%|โโ | 134/1000 [04:38<19:31, 1.35s/it]
14%|โโ | 135/1000 [04:39<18:58, 1.32s/it]
14%|โโ | 135/1000 [04:39<18:58, 1.32s/it]
14%|โโ | 136/1000 [04:40<18:34, 1.29s/it]
14%|โโ | 136/1000 [04:40<18:34, 1.29s/it]
14%|โโ | 137/1000 [04:41<18:23, 1.28s/it]
14%|โโ | 137/1000 [04:41<18:23, 1.28s/it]
14%|โโ | 138/1000 [04:43<18:11, 1.27s/it]
14%|โโ | 138/1000 [04:43<18:11, 1.27s/it]
14%|โโ | 139/1000 [04:44<18:01, 1.26s/it]
14%|โโ | 139/1000 [04:44<18:01, 1.26s/it]
14%|โโ | 140/1000 [04:45<17:22, 1.21s/it]
14%|โโ | 140/1000 [04:45<17:22, 1.21s/it]
14%|โโ | 141/1000 [04:46<16:10, 1.13s/it]
14%|โโ | 141/1000 [04:46<16:10, 1.13s/it]
14%|โโ | 142/1000 [04:47<15:18, 1.07s/it]
14%|โโ | 142/1000 [04:47<15:18, 1.07s/it]
14%|โโ | 143/1000 [04:48<14:43, 1.03s/it]
14%|โโ | 143/1000 [04:48<14:43, 1.03s/it]
14%|โโ | 144/1000 [04:49<14:17, 1.00s/it]
14%|โโ | 144/1000 [04:49<14:17, 1.00s/it]
14%|โโ | 145/1000 [04:50<13:59, 1.02it/s]
14%|โโ | 145/1000 [04:50<13:59, 1.02it/s]
15%|โโ | 146/1000 [04:51<13:34, 1.05it/s]
15%|โโ | 146/1000 [04:51<13:34, 1.05it/s]
15%|โโ | 147/1000 [04:51<12:35, 1.13it/s]
15%|โโ | 147/1000 [04:51<12:35, 1.13it/s]
15%|โโ | 148/1000 [04:52<11:41, 1.21it/s]
15%|โโ | 148/1000 [04:52<11:41, 1.21it/s]
15%|โโ | 149/1000 [04:53<11:06, 1.28it/s]
15%|โโ | 149/1000 [04:53<11:06, 1.28it/s]
15%|โโ | 150/1000 [04:55<19:03, 1.35s/it]
15%|โโ | 150/1000 [04:55<19:03, 1.35s/it]
15%|โโ | 151/1000 [05:03<46:44, 3.30s/it]
15%|โโ | 151/1000 [05:03<46:44, 3.30s/it]
15%|โโ | 152/1000 [05:08<52:14, 3.70s/it]
15%|โโ | 152/1000 [05:08<52:14, 3.70s/it]
15%|โโ | 153/1000 [05:12<53:48, 3.81s/it]
15%|โโ | 153/1000 [05:12<53:48, 3.81s/it]
15%|โโ | 154/1000 [05:16<53:02, 3.76s/it]
15%|โโ | 154/1000 [05:16<53:02, 3.76s/it]
16%|โโ | 155/1000 [05:19<51:32, 3.66s/it]
16%|โโ | 155/1000 [05:19<51:32, 3.66s/it]
16%|โโ | 156/1000 [05:22<49:16, 3.50s/it]
16%|โโ | 156/1000 [05:22<49:16, 3.50s/it]
16%|โโ | 157/1000 [05:25<46:55, 3.34s/it]
16%|โโ | 157/1000 [05:25<46:55, 3.34s/it]
16%|โโ | 158/1000 [05:28<44:34, 3.18s/it]
16%|โโ | 158/1000 [05:28<44:34, 3.18s/it]
16%|โโ | 159/1000 [05:31<42:32, 3.04s/it]
16%|โโ | 159/1000 [05:31<42:32, 3.04s/it]
16%|โโ | 160/1000 [05:33<40:12, 2.87s/it]
16%|โโ | 160/1000 [05:33<40:12, 2.87s/it]
16%|โโ | 161/1000 [05:35<38:08, 2.73s/it]
16%|โโ | 161/1000 [05:35<38:08, 2.73s/it]
16%|โโ | 162/1000 [05:38<36:44, 2.63s/it]
16%|โโ | 162/1000 [05:38<36:44, 2.63s/it]
16%|โโ | 163/1000 [05:40<34:45, 2.49s/it]
16%|โโ | 163/1000 [05:40<34:45, 2.49s/it]
16%|โโ | 164/1000 [05:42<33:03, 2.37s/it]
16%|โโ | 164/1000 [05:42<33:03, 2.37s/it]
16%|โโ | 165/1000 [05:44<31:49, 2.29s/it]
16%|โโ | 165/1000 [05:44<31:49, 2.29s/it]
17%|โโ | 166/1000 [05:46<31:01, 2.23s/it]
17%|โโ | 166/1000 [05:46<31:01, 2.23s/it]
17%|โโ | 167/1000 [05:48<30:26, 2.19s/it]
17%|โโ | 167/1000 [05:48<30:26, 2.19s/it]
17%|โโ | 168/1000 [05:50<29:38, 2.14s/it]
17%|โโ | 168/1000 [05:50<29:38, 2.14s/it]
17%|โโ | 169/1000 [05:52<28:10, 2.03s/it]
17%|โโ | 169/1000 [05:52<28:10, 2.03s/it]
17%|โโ | 170/1000 [05:54<27:08, 1.96s/it]
17%|โโ | 170/1000 [05:54<27:08, 1.96s/it]
17%|โโ | 171/1000 [05:56<26:20, 1.91s/it]
17%|โโ | 171/1000 [05:56<26:20, 1.91s/it]
17%|โโ | 172/1000 [05:58<25:46, 1.87s/it]
17%|โโ | 172/1000 [05:58<25:46, 1.87s/it]
17%|โโ | 173/1000 [05:59<25:22, 1.84s/it]
17%|โโ | 173/1000 [05:59<25:22, 1.84s/it]
17%|โโ | 174/1000 [06:01<24:58, 1.81s/it]
17%|โโ | 174/1000 [06:01<24:58, 1.81s/it]
18%|โโ | 175/1000 [06:03<23:48, 1.73s/it]
18%|โโ | 175/1000 [06:03<23:48, 1.73s/it]
18%|โโ | 176/1000 [06:04<22:53, 1.67s/it]
18%|โโ | 176/1000 [06:04<22:53, 1.67s/it]
18%|โโ | 177/1000 [06:06<22:10, 1.62s/it]
18%|โโ | 177/1000 [06:06<22:10, 1.62s/it]
18%|โโ | 178/1000 [06:07<21:48, 1.59s/it]
18%|โโ | 178/1000 [06:07<21:48, 1.59s/it]
18%|โโ | 179/1000 [06:09<21:24, 1.56s/it]
18%|โโ | 179/1000 [06:09<21:24, 1.56s/it]
18%|โโ | 180/1000 [06:10<21:07, 1.55s/it]
18%|โโ | 180/1000 [06:10<21:07, 1.55s/it]
18%|โโ | 181/1000 [06:12<20:56, 1.53s/it]
18%|โโ | 181/1000 [06:12<20:56, 1.53s/it]
18%|โโ | 182/1000 [06:13<20:16, 1.49s/it]
18%|โโ | 182/1000 [06:13<20:16, 1.49s/it]
18%|โโ | 183/1000 [06:14<19:10, 1.41s/it]
18%|โโ | 183/1000 [06:14<19:10, 1.41s/it]
18%|โโ | 184/1000 [06:16<18:25, 1.35s/it]
18%|โโ | 184/1000 [06:16<18:25, 1.35s/it]
18%|โโ | 185/1000 [06:17<17:55, 1.32s/it]
18%|โโ | 185/1000 [06:17<17:55, 1.32s/it]
19%|โโ | 186/1000 [06:18<17:33, 1.29s/it]
19%|โโ | 186/1000 [06:18<17:33, 1.29s/it]
19%|โโ | 187/1000 [06:19<17:18, 1.28s/it]
19%|โโ | 187/1000 [06:19<17:18, 1.28s/it]
19%|โโ | 188/1000 [06:20<17:10, 1.27s/it]
19%|โโ | 188/1000 [06:21<17:10, 1.27s/it]
19%|โโ | 189/1000 [06:22<17:00, 1.26s/it]
19%|โโ | 189/1000 [06:22<17:00, 1.26s/it]
19%|โโ | 190/1000 [06:23<15:59, 1.18s/it]
19%|โโ | 190/1000 [06:23<15:59, 1.18s/it]
19%|โโ | 191/1000 [06:24<14:58, 1.11s/it]
19%|โโ | 191/1000 [06:24<14:58, 1.11s/it]
19%|โโ | 192/1000 [06:25<14:14, 1.06s/it]
19%|โโ | 192/1000 [06:25<14:14, 1.06s/it]
19%|โโ | 193/1000 [06:26<13:44, 1.02s/it]
19%|โโ | 193/1000 [06:26<13:44, 1.02s/it]
19%|โโ | 194/1000 [06:26<13:22, 1.00it/s]
19%|โโ | 194/1000 [06:26<13:22, 1.00it/s]
20%|โโ | 195/1000 [06:27<13:17, 1.01it/s]
20%|โโ | 195/1000 [06:27<13:17, 1.01it/s]
20%|โโ | 196/1000 [06:28<13:01, 1.03it/s]
20%|โโ | 196/1000 [06:28<13:01, 1.03it/s]
20%|โโ | 197/1000 [06:29<12:01, 1.11it/s]
20%|โโ | 197/1000 [06:29<12:01, 1.11it/s]
20%|โโ | 198/1000 [06:30<11:07, 1.20it/s]
20%|โโ | 198/1000 [06:30<11:07, 1.20it/s]
20%|โโ | 199/1000 [06:30<10:29, 1.27it/s]
20%|โโ | 199/1000 [06:30<10:29, 1.27it/s]
20%|โโ | 200/1000 [06:33<17:49, 1.34s/it]
20%|โโ | 200/1000 [06:33<17:49, 1.34s/it]
20%|โโ | 201/1000 [06:40<41:53, 3.15s/it]
20%|โโ | 201/1000 [06:40<41:53, 3.15s/it]
20%|โโ | 202/1000 [06:45<46:38, 3.51s/it]
20%|โโ | 202/1000 [06:45<46:38, 3.51s/it]
20%|โโ | 203/1000 [06:49<47:48, 3.60s/it]
20%|โโ | 203/1000 [06:49<47:48, 3.60s/it]
20%|โโ | 204/1000 [06:52<47:39, 3.59s/it]
20%|โโ | 204/1000 [06:52<47:39, 3.59s/it]
20%|โโ | 205/1000 [06:55<46:26, 3.50s/it]
20%|โโ | 205/1000 [06:56<46:26, 3.50s/it]
21%|โโ | 206/1000 [06:59<44:31, 3.36s/it]
21%|โโ | 206/1000 [06:59<44:31, 3.36s/it]
21%|โโ | 207/1000 [07:01<42:40, 3.23s/it]
21%|โโ | 207/1000 [07:01<42:40, 3.23s/it]
21%|โโ | 208/1000 [07:04<40:48, 3.09s/it]
21%|โโ | 208/1000 [07:04<40:48, 3.09s/it]
21%|โโ | 209/1000 [07:07<39:11, 2.97s/it]
21%|โโ | 209/1000 [07:07<39:11, 2.97s/it]
21%|โโ | 210/1000 [07:09<37:14, 2.83s/it]
21%|โโ | 210/1000 [07:09<37:14, 2.83s/it]
21%|โโ | 211/1000 [07:12<35:34, 2.71s/it]
21%|โโ | 211/1000 [07:12<35:34, 2.71s/it]
21%|โโ | 212/1000 [07:14<34:19, 2.61s/it]
21%|โโ | 212/1000 [07:14<34:19, 2.61s/it]
21%|โโโ | 213/1000 [07:16<32:50, 2.50s/it]
21%|โโโ | 213/1000 [07:16<32:50, 2.50s/it]
21%|โโโ | 214/1000 [07:19<31:16, 2.39s/it]
21%|โโโ | 214/1000 [07:19<31:16, 2.39s/it]
22%|โโโ | 215/1000 [07:21<30:03, 2.30s/it]
22%|โโโ | 215/1000 [07:21<30:03, 2.30s/it]
22%|โโโ | 216/1000 [07:23<29:13, 2.24s/it]
22%|โโโ | 216/1000 [07:23<29:13, 2.24s/it]
22%|โโโ | 217/1000 [07:25<28:35, 2.19s/it]
22%|โโโ | 217/1000 [07:25<28:35, 2.19s/it]
22%|โโโ | 218/1000 [07:27<27:14, 2.09s/it]
22%|โโโ | 218/1000 [07:27<27:14, 2.09s/it]
22%|โโโ | 219/1000 [07:29<26:13, 2.01s/it]
22%|โโโ | 219/1000 [07:29<26:13, 2.01s/it]
22%|โโโ | 220/1000 [07:30<25:19, 1.95s/it]
22%|โโโ | 220/1000 [07:30<25:19, 1.95s/it]
22%|โโโ | 221/1000 [07:32<24:37, 1.90s/it]
22%|โโโ | 221/1000 [07:32<24:37, 1.90s/it]
22%|โโโ | 222/1000 [07:34<24:14, 1.87s/it]
22%|โโโ | 222/1000 [07:34<24:14, 1.87s/it]
22%|โโโ | 223/1000 [07:36<23:51, 1.84s/it]
22%|โโโ | 223/1000 [07:36<23:51, 1.84s/it]
22%|โโโ | 224/1000 [07:37<23:36, 1.83s/it]
22%|โโโ | 224/1000 [07:38<23:36, 1.83s/it]
22%|โโโ | 225/1000 [07:39<22:46, 1.76s/it]
22%|โโโ | 225/1000 [07:39<22:46, 1.76s/it]
23%|โโโ | 226/1000 [07:41<21:44, 1.69s/it]
23%|โโโ | 226/1000 [07:41<21:44, 1.69s/it]
23%|โโโ | 227/1000 [07:42<21:00, 1.63s/it]
23%|โโโ | 227/1000 [07:42<21:00, 1.63s/it]
23%|โโโ | 228/1000 [07:44<20:30, 1.59s/it]
23%|โโโ | 228/1000 [07:44<20:30, 1.59s/it]
23%|โโโ | 229/1000 [07:45<20:10, 1.57s/it]
23%|โโโ | 229/1000 [07:45<20:10, 1.57s/it]
23%|โโโ | 230/1000 [07:47<19:56, 1.55s/it]
23%|โโโ | 230/1000 [07:47<19:56, 1.55s/it]
23%|โโโ | 231/1000 [07:48<19:43, 1.54s/it]
23%|โโโ | 231/1000 [07:48<19:43, 1.54s/it]
23%|โโโ | 232/1000 [07:50<19:36, 1.53s/it]
23%|โโโ | 232/1000 [07:50<19:36, 1.53s/it]
23%|โโโ | 233/1000 [07:51<19:15, 1.51s/it]
23%|โโโ | 233/1000 [07:51<19:15, 1.51s/it]
23%|โโโ | 234/1000 [07:52<18:24, 1.44s/it]
23%|โโโ | 234/1000 [07:52<18:24, 1.44s/it]
24%|โโโ | 235/1000 [07:54<17:35, 1.38s/it]
24%|โโโ | 235/1000 [07:54<17:35, 1.38s/it]
24%|โโโ | 236/1000 [07:55<16:59, 1.33s/it]
24%|โโโ | 236/1000 [07:55<16:59, 1.33s/it]
24%|โโโ | 237/1000 [07:56<16:35, 1.30s/it]
24%|โโโ | 237/1000 [07:56<16:35, 1.30s/it]
24%|โโโ | 238/1000 [07:57<16:16, 1.28s/it]
24%|โโโ | 238/1000 [07:57<16:16, 1.28s/it]
24%|โโโ | 239/1000 [07:59<16:06, 1.27s/it]
24%|โโโ | 239/1000 [07:59<16:06, 1.27s/it]
24%|โโโ | 240/1000 [08:00<16:03, 1.27s/it]
24%|โโโ | 240/1000 [08:00<16:03, 1.27s/it]
24%|โโโ | 241/1000 [08:01<15:03, 1.19s/it]
24%|โโโ | 241/1000 [08:01<15:03, 1.19s/it]
24%|โโโ | 242/1000 [08:02<14:05, 1.12s/it]
24%|โโโ | 242/1000 [08:02<14:05, 1.12s/it]
24%|โโโ | 243/1000 [08:03<13:26, 1.06s/it]
24%|โโโ | 243/1000 [08:03<13:26, 1.06s/it]
24%|โโโ | 244/1000 [08:04<12:58, 1.03s/it]
24%|โโโ | 244/1000 [08:04<12:58, 1.03s/it]
24%|โโโ | 245/1000 [08:05<12:38, 1.00s/it]
24%|โโโ | 245/1000 [08:05<12:38, 1.00s/it]
25%|โโโ | 246/1000 [08:06<12:24, 1.01it/s]
25%|โโโ | 246/1000 [08:06<12:24, 1.01it/s]
25%|โโโ | 247/1000 [08:06<11:45, 1.07it/s]
25%|โโโ | 247/1000 [08:06<11:45, 1.07it/s]
25%|โโโ | 248/1000 [08:07<10:49, 1.16it/s]
25%|โโโ | 248/1000 [08:07<10:49, 1.16it/s]
25%|โโโ | 249/1000 [08:08<10:08, 1.23it/s]
25%|โโโ | 249/1000 [08:08<10:08, 1.23it/s]
25%|โโโ | 250/1000 [08:10<16:35, 1.33s/it]
25%|โโโ | 250/1000 [08:10<16:35, 1.33s/it]
25%|โโโ | 251/1000 [08:18<39:22, 3.15s/it]
25%|โโโ | 251/1000 [08:18<39:22, 3.15s/it]
25%|โโโ | 252/1000 [08:22<43:21, 3.48s/it]
25%|โโโ | 252/1000 [08:22<43:21, 3.48s/it]
25%|โโโ | 253/1000 [08:26<44:37, 3.58s/it]
25%|โโโ | 253/1000 [08:26<44:37, 3.58s/it]
25%|โโโ | 254/1000 [08:29<44:06, 3.55s/it]
25%|โโโ | 254/1000 [08:29<44:06, 3.55s/it]
26%|โโโ | 255/1000 [08:33<43:11, 3.48s/it]
26%|โโโ | 255/1000 [08:33<43:11, 3.48s/it]
26%|โโโ | 256/1000 [08:36<41:34, 3.35s/it]
26%|โโโ | 256/1000 [08:36<41:34, 3.35s/it]
26%|โโโ | 257/1000 [08:39<39:57, 3.23s/it]
26%|โโโ | 257/1000 [08:39<39:57, 3.23s/it]
26%|โโโ | 258/1000 [08:41<38:03, 3.08s/it]
26%|โโโ | 258/1000 [08:41<38:03, 3.08s/it]
26%|โโโ | 259/1000 [08:44<36:49, 2.98s/it]
26%|โโโ | 259/1000 [08:44<36:49, 2.98s/it]
26%|โโโ | 260/1000 [08:47<34:58, 2.84s/it]
26%|โโโ | 260/1000 [08:47<34:58, 2.84s/it]
26%|โโโ | 261/1000 [08:49<33:17, 2.70s/it]
26%|โโโ | 261/1000 [08:49<33:17, 2.70s/it]
26%|โโโ | 262/1000 [08:51<32:05, 2.61s/it]
26%|โโโ | 262/1000 [08:51<32:05, 2.61s/it]
26%|โโโ | 263/1000 [08:54<31:16, 2.55s/it]
26%|โโโ | 263/1000 [08:54<31:16, 2.55s/it]
26%|โโโ | 264/1000 [08:56<30:13, 2.46s/it]
26%|โโโ | 264/1000 [08:56<30:13, 2.46s/it]
26%|โโโ | 265/1000 [08:58<29:07, 2.38s/it]
26%|โโโ | 265/1000 [08:58<29:07, 2.38s/it]
27%|โโโ | 266/1000 [09:00<28:05, 2.30s/it]
27%|โโโ | 266/1000 [09:00<28:05, 2.30s/it]
27%|โโโ | 267/1000 [09:02<27:19, 2.24s/it]
27%|โโโ | 267/1000 [09:02<27:19, 2.24s/it]
27%|โโโ | 268/1000 [09:04<26:43, 2.19s/it]
27%|โโโ | 268/1000 [09:04<26:43, 2.19s/it]
27%|โโโ | 269/1000 [09:06<25:25, 2.09s/it]
27%|โโโ | 269/1000 [09:06<25:25, 2.09s/it]
27%|โโโ | 270/1000 [09:08<24:15, 1.99s/it]
27%|โโโ | 270/1000 [09:08<24:15, 1.99s/it]
27%|โโโ | 271/1000 [09:10<23:26, 1.93s/it]
27%|โโโ | 271/1000 [09:10<23:26, 1.93s/it]
27%|โโโ | 272/1000 [09:12<22:49, 1.88s/it]
27%|โโโ | 272/1000 [09:12<22:49, 1.88s/it]
27%|โโโ | 273/1000 [09:13<22:26, 1.85s/it]
27%|โโโ | 273/1000 [09:13<22:26, 1.85s/it]
27%|โโโ | 274/1000 [09:15<22:09, 1.83s/it]
27%|โโโ | 274/1000 [09:15<22:09, 1.83s/it]
28%|โโโ | 275/1000 [09:17<21:53, 1.81s/it]
28%|โโโ | 275/1000 [09:17<21:53, 1.81s/it]
28%|โโโ | 276/1000 [09:19<20:56, 1.74s/it]
28%|โโโ | 276/1000 [09:19<20:56, 1.74s/it]
28%|โโโ | 277/1000 [09:20<20:04, 1.67s/it]
28%|โโโ | 277/1000 [09:20<20:04, 1.67s/it]
28%|โโโ | 278/1000 [09:22<19:25, 1.61s/it]
28%|โโโ | 278/1000 [09:22<19:25, 1.61s/it]
28%|โโโ | 279/1000 [09:23<18:59, 1.58s/it]
28%|โโโ | 279/1000 [09:23<18:59, 1.58s/it]
28%|โโโ | 280/1000 [09:25<18:43, 1.56s/it]
28%|โโโ | 280/1000 [09:25<18:43, 1.56s/it]
28%|โโโ | 281/1000 [09:26<18:34, 1.55s/it]
28%|โโโ | 281/1000 [09:26<18:34, 1.55s/it]
28%|โโโ | 282/1000 [09:28<18:22, 1.54s/it]
28%|โโโ | 282/1000 [09:28<18:22, 1.54s/it]
28%|โโโ | 283/1000 [09:29<18:09, 1.52s/it]
28%|โโโ | 283/1000 [09:29<18:09, 1.52s/it]
28%|โโโ | 284/1000 [09:30<17:17, 1.45s/it]
28%|โโโ | 284/1000 [09:30<17:17, 1.45s/it]
28%|โโโ | 285/1000 [09:32<16:28, 1.38s/it]
28%|โโโ | 285/1000 [09:32<16:28, 1.38s/it]
29%|โโโ | 286/1000 [09:33<15:55, 1.34s/it]
29%|โโโ | 286/1000 [09:33<15:55, 1.34s/it]
29%|โโโ | 287/1000 [09:34<15:31, 1.31s/it]
29%|โโโ | 287/1000 [09:34<15:31, 1.31s/it]
29%|โโโ | 288/1000 [09:35<15:12, 1.28s/it]
29%|โโโ | 288/1000 [09:35<15:12, 1.28s/it]
29%|โโโ | 289/1000 [09:36<15:00, 1.27s/it]
29%|โโโ | 289/1000 [09:37<15:00, 1.27s/it]
29%|โโโ | 290/1000 [09:38<14:42, 1.24s/it]
29%|โโโ | 290/1000 [09:38<14:42, 1.24s/it]
29%|โโโ | 291/1000 [09:39<13:50, 1.17s/it]
29%|โโโ | 291/1000 [09:39<13:50, 1.17s/it]
29%|โโโ | 292/1000 [09:40<13:00, 1.10s/it]
29%|โโโ | 292/1000 [09:40<13:00, 1.10s/it]
29%|โโโ | 293/1000 [09:41<12:28, 1.06s/it]
29%|โโโ | 293/1000 [09:41<12:28, 1.06s/it]
29%|โโโ | 294/1000 [09:42<12:00, 1.02s/it]
29%|โโโ | 294/1000 [09:42<12:00, 1.02s/it]
30%|โโโ | 295/1000 [09:42<11:42, 1.00it/s]
30%|โโโ | 295/1000 [09:42<11:42, 1.00it/s]
30%|โโโ | 296/1000 [09:43<11:28, 1.02it/s]
30%|โโโ | 296/1000 [09:43<11:28, 1.02it/s]
30%|โโโ | 297/1000 [09:44<10:47, 1.09it/s]
30%|โโโ | 297/1000 [09:44<10:47, 1.09it/s]
30%|โโโ | 298/1000 [09:45<09:55, 1.18it/s]
30%|โโโ | 298/1000 [09:45<09:55, 1.18it/s]
30%|โโโ | 299/1000 [09:46<09:18, 1.26it/s]
30%|โโโ | 299/1000 [09:46<09:18, 1.26it/s]
30%|โโโ | 300/1000 [09:48<15:25, 1.32s/it]
30%|โโโ | 300/1000 [09:48<15:25, 1.32s/it]
30%|โโโ | 301/1000 [09:56<36:46, 3.16s/it]
30%|โโโ | 301/1000 [09:56<36:46, 3.16s/it]
30%|โโโ | 302/1000 [10:00<40:48, 3.51s/it]
30%|โโโ | 302/1000 [10:00<40:48, 3.51s/it]
30%|โโโ | 303/1000 [10:04<41:33, 3.58s/it]
30%|โโโ | 303/1000 [10:04<41:33, 3.58s/it]
30%|โโโ | 304/1000 [10:07<41:05, 3.54s/it]
30%|โโโ | 304/1000 [10:07<41:05, 3.54s/it]
30%|โโโ | 305/1000 [10:10<40:06, 3.46s/it]
30%|โโโ | 305/1000 [10:10<40:06, 3.46s/it]
31%|โโโ | 306/1000 [10:13<38:25, 3.32s/it]
31%|โโโ | 306/1000 [10:13<38:25, 3.32s/it]
31%|โโโ | 307/1000 [10:16<36:30, 3.16s/it]
31%|โโโ | 307/1000 [10:16<36:30, 3.16s/it]
31%|โโโ | 308/1000 [10:19<34:58, 3.03s/it]
31%|โโโ | 308/1000 [10:19<34:58, 3.03s/it]
31%|โโโ | 309/1000 [10:21<33:01, 2.87s/it]
31%|โโโ | 309/1000 [10:21<33:01, 2.87s/it]
31%|โโโ | 310/1000 [10:24<31:21, 2.73s/it]
31%|โโโ | 310/1000 [10:24<31:21, 2.73s/it]
31%|โโโ | 311/1000 [10:26<30:16, 2.64s/it]
31%|โโโ | 311/1000 [10:26<30:16, 2.64s/it]
31%|โโโ | 312/1000 [10:28<28:42, 2.50s/it]
31%|โโโ | 312/1000 [10:28<28:42, 2.50s/it]
31%|โโโโ | 313/1000 [10:30<27:12, 2.38s/it]
31%|โโโโ | 313/1000 [10:30<27:12, 2.38s/it]
31%|โโโโ | 314/1000 [10:32<26:12, 2.29s/it]
31%|โโโโ | 314/1000 [10:33<26:12, 2.29s/it]
32%|โโโโ | 315/1000 [10:35<25:32, 2.24s/it]
32%|โโโโ | 315/1000 [10:35<25:32, 2.24s/it]
32%|โโโโ | 316/1000 [10:37<25:02, 2.20s/it]
32%|โโโโ | 316/1000 [10:37<25:02, 2.20s/it]
32%|โโโโ | 317/1000 [10:39<24:29, 2.15s/it]
32%|โโโโ | 317/1000 [10:39<24:29, 2.15s/it]
32%|โโโโ | 318/1000 [10:41<23:24, 2.06s/it]
32%|โโโโ | 318/1000 [10:41<23:24, 2.06s/it]
32%|โโโโ | 319/1000 [10:42<22:24, 1.97s/it]
32%|โโโโ | 319/1000 [10:42<22:24, 1.97s/it]
32%|โโโโ | 320/1000 [10:44<21:40, 1.91s/it]
32%|โโโโ | 320/1000 [10:44<21:40, 1.91s/it]
32%|โโโโ | 321/1000 [10:46<21:15, 1.88s/it]
32%|โโโโ | 321/1000 [10:46<21:15, 1.88s/it]
32%|โโโโ | 322/1000 [10:48<20:51, 1.85s/it]
32%|โโโโ | 322/1000 [10:48<20:51, 1.85s/it]
32%|โโโโ | 323/1000 [10:49<20:35, 1.83s/it]
32%|โโโโ | 323/1000 [10:50<20:35, 1.83s/it]
32%|โโโโ | 324/1000 [10:51<20:03, 1.78s/it]
32%|โโโโ | 324/1000 [10:51<20:03, 1.78s/it]
32%|โโโโ | 325/1000 [10:53<19:08, 1.70s/it]
32%|โโโโ | 325/1000 [10:53<19:08, 1.70s/it]
33%|โโโโ | 326/1000 [10:54<18:26, 1.64s/it]
33%|โโโโ | 326/1000 [10:54<18:26, 1.64s/it]
33%|โโโโ | 327/1000 [10:56<17:55, 1.60s/it]
33%|โโโโ | 327/1000 [10:56<17:55, 1.60s/it]
33%|โโโโ | 328/1000 [10:57<17:38, 1.57s/it]
33%|โโโโ | 328/1000 [10:57<17:38, 1.57s/it]
33%|โโโโ | 329/1000 [10:59<17:31, 1.57s/it]
33%|โโโโ | 329/1000 [10:59<17:31, 1.57s/it]
33%|โโโโ | 330/1000 [11:00<17:18, 1.55s/it]
33%|โโโโ | 330/1000 [11:00<17:18, 1.55s/it]
33%|โโโโ | 331/1000 [11:02<17:06, 1.53s/it]
33%|โโโโ | 331/1000 [11:02<17:06, 1.53s/it]
33%|โโโโ | 332/1000 [11:03<16:30, 1.48s/it]
33%|โโโโ | 332/1000 [11:03<16:30, 1.48s/it]
33%|โโโโ | 333/1000 [11:04<15:38, 1.41s/it]
33%|โโโโ | 333/1000 [11:04<15:38, 1.41s/it]
33%|โโโโ | 334/1000 [11:06<15:03, 1.36s/it]
33%|โโโโ | 334/1000 [11:06<15:03, 1.36s/it]
34%|โโโโ | 335/1000 [11:07<14:38, 1.32s/it]
34%|โโโโ | 335/1000 [11:07<14:38, 1.32s/it]
34%|โโโโ | 336/1000 [11:08<14:17, 1.29s/it]
34%|โโโโ | 336/1000 [11:08<14:17, 1.29s/it]
34%|โโโโ | 337/1000 [11:09<14:04, 1.27s/it]
34%|โโโโ | 337/1000 [11:09<14:04, 1.27s/it]
34%|โโโโ | 338/1000 [11:11<13:56, 1.26s/it]
34%|โโโโ | 338/1000 [11:11<13:56, 1.26s/it]
34%|โโโโ | 339/1000 [11:12<13:47, 1.25s/it]
34%|โโโโ | 339/1000 [11:12<13:47, 1.25s/it]
34%|โโโโ | 340/1000 [11:13<13:26, 1.22s/it]
34%|โโโโ | 340/1000 [11:13<13:26, 1.22s/it]
34%|โโโโ | 341/1000 [11:14<12:28, 1.14s/it]
34%|โโโโ | 341/1000 [11:14<12:28, 1.14s/it]
34%|โโโโ | 342/1000 [11:15<11:47, 1.08s/it]
34%|โโโโ | 342/1000 [11:15<11:47, 1.08s/it]
34%|โโโโ | 343/1000 [11:16<11:18, 1.03s/it]
34%|โโโโ | 343/1000 [11:16<11:18, 1.03s/it]
34%|โโโโ | 344/1000 [11:17<10:59, 1.00s/it]
34%|โโโโ | 344/1000 [11:17<10:59, 1.00s/it]
34%|โโโโ | 345/1000 [11:18<10:44, 1.02it/s]
34%|โโโโ | 345/1000 [11:18<10:44, 1.02it/s]
35%|โโโโ | 346/1000 [11:18<10:17, 1.06it/s]
35%|โโโโ | 346/1000 [11:18<10:17, 1.06it/s]
35%|โโโโ | 347/1000 [11:19<09:25, 1.15it/s]
35%|โโโโ | 347/1000 [11:19<09:25, 1.15it/s]
35%|โโโโ | 348/1000 [11:20<08:48, 1.23it/s]
35%|โโโโ | 348/1000 [11:20<08:48, 1.23it/s]
35%|โโโโ | 349/1000 [11:20<08:21, 1.30it/s]
35%|โโโโ | 349/1000 [11:20<08:21, 1.30it/s]
35%|โโโโ | 350/1000 [11:23<14:18, 1.32s/it]
35%|โโโโ | 350/1000 [11:23<14:18, 1.32s/it]
35%|โโโโ | 351/1000 [11:30<31:53, 2.95s/it]
35%|โโโโ | 351/1000 [11:30<31:53, 2.95s/it]
35%|โโโโ | 352/1000 [11:34<36:23, 3.37s/it]
35%|โโโโ | 352/1000 [11:34<36:23, 3.37s/it]
35%|โโโโ | 353/1000 [11:38<37:50, 3.51s/it]
35%|โโโโ | 353/1000 [11:38<37:50, 3.51s/it]
35%|โโโโ | 354/1000 [11:41<37:36, 3.49s/it]
35%|โโโโ | 354/1000 [11:41<37:36, 3.49s/it]
36%|โโโโ | 355/1000 [11:45<36:49, 3.43s/it]
36%|โโโโ | 355/1000 [11:45<36:49, 3.43s/it]
36%|โโโโ | 356/1000 [11:48<35:33, 3.31s/it]
36%|โโโโ | 356/1000 [11:48<35:33, 3.31s/it]
36%|โโโโ | 357/1000 [11:51<34:20, 3.20s/it]
36%|โโโโ | 357/1000 [11:51<34:20, 3.20s/it]
36%|โโโโ | 358/1000 [11:53<32:48, 3.07s/it]
36%|โโโโ | 358/1000 [11:54<32:48, 3.07s/it]
36%|โโโโ | 359/1000 [11:56<31:48, 2.98s/it]
36%|โโโโ | 359/1000 [11:56<31:48, 2.98s/it]
36%|โโโโ | 360/1000 [11:59<30:36, 2.87s/it]
36%|โโโโ | 360/1000 [11:59<30:36, 2.87s/it]
36%|โโโโ | 361/1000 [12:01<29:02, 2.73s/it]
36%|โโโโ | 361/1000 [12:01<29:02, 2.73s/it]
36%|โโโโ | 362/1000 [12:04<28:00, 2.63s/it]
36%|โโโโ | 362/1000 [12:04<28:00, 2.63s/it]
36%|โโโโ | 363/1000 [12:06<26:59, 2.54s/it]
36%|โโโโ | 363/1000 [12:06<26:59, 2.54s/it]
36%|โโโโ | 364/1000 [12:08<25:40, 2.42s/it]
36%|โโโโ | 364/1000 [12:08<25:40, 2.42s/it]
36%|โโโโ | 365/1000 [12:10<24:35, 2.32s/it]
36%|โโโโ | 365/1000 [12:10<24:35, 2.32s/it]
37%|โโโโ | 366/1000 [12:12<23:50, 2.26s/it]
37%|โโโโ | 366/1000 [12:12<23:50, 2.26s/it]
37%|โโโโ | 367/1000 [12:14<23:17, 2.21s/it]
37%|โโโโ | 367/1000 [12:14<23:17, 2.21s/it]
37%|โโโโ | 368/1000 [12:16<22:46, 2.16s/it]
37%|โโโโ | 368/1000 [12:17<22:46, 2.16s/it]
37%|โโโโ | 369/1000 [12:18<21:48, 2.07s/it]
37%|โโโโ | 369/1000 [12:18<21:48, 2.07s/it]
37%|โโโโ | 370/1000 [12:20<20:50, 1.98s/it]
37%|โโโโ | 370/1000 [12:20<20:50, 1.98s/it]
37%|โโโโ | 371/1000 [12:22<20:09, 1.92s/it]
37%|โโโโ | 371/1000 [12:22<20:09, 1.92s/it]
37%|โโโโ | 372/1000 [12:24<19:38, 1.88s/it]
37%|โโโโ | 372/1000 [12:24<19:38, 1.88s/it]
37%|โโโโ | 373/1000 [12:25<19:14, 1.84s/it]
37%|โโโโ | 373/1000 [12:25<19:14, 1.84s/it]
37%|โโโโ | 374/1000 [12:27<19:00, 1.82s/it]
37%|โโโโ | 374/1000 [12:27<19:00, 1.82s/it]
38%|โโโโ | 375/1000 [12:29<18:10, 1.75s/it]
38%|โโโโ | 375/1000 [12:29<18:10, 1.75s/it]
38%|โโโโ | 376/1000 [12:30<17:25, 1.68s/it]
38%|โโโโ | 376/1000 [12:30<17:25, 1.68s/it]
38%|โโโโ | 377/1000 [12:32<16:52, 1.63s/it]
38%|โโโโ | 377/1000 [12:32<16:52, 1.63s/it]
38%|โโโโ | 378/1000 [12:33<16:31, 1.59s/it]
38%|โโโโ | 378/1000 [12:33<16:31, 1.59s/it]
38%|โโโโ | 379/1000 [12:35<16:14, 1.57s/it]
38%|โโโโ | 379/1000 [12:35<16:14, 1.57s/it]
38%|โโโโ | 380/1000 [12:36<16:01, 1.55s/it]
38%|โโโโ | 380/1000 [12:36<16:01, 1.55s/it]
38%|โโโโ | 381/1000 [12:38<15:50, 1.54s/it]
38%|โโโโ | 381/1000 [12:38<15:50, 1.54s/it]
38%|โโโโ | 382/1000 [12:39<15:45, 1.53s/it]
38%|โโโโ | 382/1000 [12:39<15:45, 1.53s/it]
38%|โโโโ | 383/1000 [12:41<15:05, 1.47s/it]
38%|โโโโ | 383/1000 [12:41<15:05, 1.47s/it]
38%|โโโโ | 384/1000 [12:42<14:19, 1.40s/it]
38%|โโโโ | 384/1000 [12:42<14:19, 1.40s/it]
38%|โโโโ | 385/1000 [12:43<13:48, 1.35s/it]
38%|โโโโ | 385/1000 [12:43<13:48, 1.35s/it]
39%|โโโโ | 386/1000 [12:44<13:26, 1.31s/it]
39%|โโโโ | 386/1000 [12:44<13:26, 1.31s/it]
39%|โโโโ | 387/1000 [12:46<13:10, 1.29s/it]
39%|โโโโ | 387/1000 [12:46<13:10, 1.29s/it]
39%|โโโโ | 388/1000 [12:47<13:00, 1.28s/it]
39%|โโโโ | 388/1000 [12:47<13:00, 1.28s/it]
39%|โโโโ | 389/1000 [12:48<12:51, 1.26s/it]
39%|โโโโ | 389/1000 [12:48<12:51, 1.26s/it]
39%|โโโโ | 390/1000 [12:49<12:39, 1.24s/it]
39%|โโโโ | 390/1000 [12:49<12:39, 1.24s/it]
39%|โโโโ | 391/1000 [12:50<11:53, 1.17s/it]
39%|โโโโ | 391/1000 [12:50<11:53, 1.17s/it]
39%|โโโโ | 392/1000 [12:51<11:10, 1.10s/it]
39%|โโโโ | 392/1000 [12:51<11:10, 1.10s/it]
39%|โโโโ | 393/1000 [12:52<10:39, 1.05s/it]
39%|โโโโ | 393/1000 [12:52<10:39, 1.05s/it]
39%|โโโโ | 394/1000 [12:53<10:18, 1.02s/it]
39%|โโโโ | 394/1000 [12:53<10:18, 1.02s/it]
40%|โโโโ | 395/1000 [12:54<10:02, 1.00it/s]
40%|โโโโ | 395/1000 [12:54<10:02, 1.00it/s]
40%|โโโโ | 396/1000 [12:55<09:47, 1.03it/s]
40%|โโโโ | 396/1000 [12:55<09:47, 1.03it/s]
40%|โโโโ | 397/1000 [12:56<09:01, 1.11it/s]
40%|โโโโ | 397/1000 [12:56<09:01, 1.11it/s]
40%|โโโโ | 398/1000 [12:56<08:21, 1.20it/s]
40%|โโโโ | 398/1000 [12:56<08:21, 1.20it/s]
40%|โโโโ | 399/1000 [12:57<07:52, 1.27it/s]
40%|โโโโ | 399/1000 [12:57<07:52, 1.27it/s]
40%|โโโโ | 400/1000 [13:00<13:53, 1.39s/it]
40%|โโโโ | 400/1000 [13:00<13:53, 1.39s/it]
40%|โโโโ | 401/1000 [13:09<35:47, 3.58s/it]
40%|โโโโ | 401/1000 [13:09<35:47, 3.58s/it]
40%|โโโโ | 402/1000 [13:13<37:44, 3.79s/it]
40%|โโโโ | 402/1000 [13:13<37:44, 3.79s/it]
40%|โโโโ | 403/1000 [13:17<37:25, 3.76s/it]
40%|โโโโ | 403/1000 [13:17<37:25, 3.76s/it]
40%|โโโโ | 404/1000 [13:20<36:01, 3.63s/it]
40%|โโโโ | 404/1000 [13:20<36:01, 3.63s/it]
40%|โโโโ | 405/1000 [13:23<34:17, 3.46s/it]
40%|โโโโ | 405/1000 [13:23<34:17, 3.46s/it]
41%|โโโโ | 406/1000 [13:26<32:33, 3.29s/it]
41%|โโโโ | 406/1000 [13:26<32:33, 3.29s/it]
41%|โโโโ | 407/1000 [13:29<30:59, 3.14s/it]
41%|โโโโ | 407/1000 [13:29<30:59, 3.14s/it]
41%|โโโโ | 408/1000 [13:31<29:50, 3.02s/it]
41%|โโโโ | 408/1000 [13:31<29:50, 3.02s/it]
41%|โโโโ | 409/1000 [13:34<28:12, 2.86s/it]
41%|โโโโ | 409/1000 [13:34<28:12, 2.86s/it]
41%|โโโโ | 410/1000 [13:36<26:49, 2.73s/it]
41%|โโโโ | 410/1000 [13:36<26:49, 2.73s/it]
41%|โโโโ | 411/1000 [13:39<25:51, 2.63s/it]
41%|โโโโ | 411/1000 [13:39<25:51, 2.63s/it]
41%|โโโโ | 412/1000 [13:41<24:46, 2.53s/it]
41%|โโโโ | 412/1000 [13:41<24:46, 2.53s/it]
41%|โโโโโ | 413/1000 [13:43<23:30, 2.40s/it]
41%|โโโโโ | 413/1000 [13:43<23:30, 2.40s/it]
41%|โโโโโ | 414/1000 [13:45<22:38, 2.32s/it]
41%|โโโโโ | 414/1000 [13:45<22:38, 2.32s/it]
42%|โโโโโ | 415/1000 [13:47<21:58, 2.25s/it]
42%|โโโโโ | 415/1000 [13:47<21:58, 2.25s/it]
42%|โโโโโ | 416/1000 [13:49<21:28, 2.21s/it]
42%|โโโโโ | 416/1000 [13:49<21:28, 2.21s/it]
42%|โโโโโ | 417/1000 [13:51<20:47, 2.14s/it]
42%|โโโโโ | 417/1000 [13:51<20:47, 2.14s/it]
42%|โโโโโ | 418/1000 [13:53<19:42, 2.03s/it]
42%|โโโโโ | 418/1000 [13:53<19:42, 2.03s/it]
42%|โโโโโ | 419/1000 [13:55<18:54, 1.95s/it]
42%|โโโโโ | 419/1000 [13:55<18:54, 1.95s/it]
42%|โโโโโ | 420/1000 [13:57<18:23, 1.90s/it]
42%|โโโโโ | 420/1000 [13:57<18:23, 1.90s/it]
42%|โโโโโ | 421/1000 [13:58<18:04, 1.87s/it]
42%|โโโโโ | 421/1000 [13:59<18:04, 1.87s/it]
42%|โโโโโ | 422/1000 [14:00<17:51, 1.85s/it]
42%|โโโโโ | 422/1000 [14:00<17:51, 1.85s/it]
42%|โโโโโ | 423/1000 [14:02<17:36, 1.83s/it]
42%|โโโโโ | 423/1000 [14:02<17:36, 1.83s/it]
42%|โโโโโ | 424/1000 [14:04<17:13, 1.79s/it]
42%|โโโโโ | 424/1000 [14:04<17:13, 1.79s/it]
42%|โโโโโ | 425/1000 [14:05<16:27, 1.72s/it]
42%|โโโโโ | 425/1000 [14:05<16:27, 1.72s/it]
43%|โโโโโ | 426/1000 [14:07<15:47, 1.65s/it]
43%|โโโโโ | 426/1000 [14:07<15:47, 1.65s/it]
43%|โโโโโ | 427/1000 [14:08<15:22, 1.61s/it]
43%|โโโโโ | 427/1000 [14:08<15:22, 1.61s/it]
43%|โโโโโ | 428/1000 [14:10<15:05, 1.58s/it]
43%|โโโโโ | 428/1000 [14:10<15:05, 1.58s/it]
43%|โโโโโ | 429/1000 [14:11<14:54, 1.57s/it]
43%|โโโโโ | 429/1000 [14:11<14:54, 1.57s/it]
43%|โโโโโ | 430/1000 [14:13<14:46, 1.56s/it]
43%|โโโโโ | 430/1000 [14:13<14:46, 1.56s/it]
43%|โโโโโ | 431/1000 [14:14<14:38, 1.54s/it]
43%|โโโโโ | 431/1000 [14:14<14:38, 1.54s/it]
43%|โโโโโ | 432/1000 [14:16<14:27, 1.53s/it]
43%|โโโโโ | 432/1000 [14:16<14:27, 1.53s/it]
43%|โโโโโ | 433/1000 [14:17<13:45, 1.46s/it]
43%|โโโโโ | 433/1000 [14:17<13:45, 1.46s/it]
43%|โโโโโ | 434/1000 [14:18<13:06, 1.39s/it]
43%|โโโโโ | 434/1000 [14:18<13:06, 1.39s/it]
44%|โโโโโ | 435/1000 [14:20<12:38, 1.34s/it]
44%|โโโโโ | 435/1000 [14:20<12:38, 1.34s/it]
44%|โโโโโ | 436/1000 [14:21<12:26, 1.32s/it]
44%|โโโโโ | 436/1000 [14:21<12:26, 1.32s/it]
44%|โโโโโ | 437/1000 [14:22<12:09, 1.30s/it]
44%|โโโโโ | 437/1000 [14:22<12:09, 1.30s/it]
44%|โโโโโ | 438/1000 [14:23<11:58, 1.28s/it]
44%|โโโโโ | 438/1000 [14:23<11:58, 1.28s/it]
44%|โโโโโ | 439/1000 [14:25<11:50, 1.27s/it]
44%|โโโโโ | 439/1000 [14:25<11:50, 1.27s/it]
44%|โโโโโ | 440/1000 [14:26<11:40, 1.25s/it]
44%|โโโโโ | 440/1000 [14:26<11:40, 1.25s/it]
44%|โโโโโ | 441/1000 [14:27<11:00, 1.18s/it]
44%|โโโโโ | 441/1000 [14:27<11:00, 1.18s/it]
44%|โโโโโ | 442/1000 [14:28<10:19, 1.11s/it]
44%|โโโโโ | 442/1000 [14:28<10:19, 1.11s/it]
44%|โโโโโ | 443/1000 [14:29<09:52, 1.06s/it]
44%|โโโโโ | 443/1000 [14:29<09:52, 1.06s/it]
44%|โโโโโ | 444/1000 [14:30<09:29, 1.03s/it]
44%|โโโโโ | 444/1000 [14:30<09:29, 1.03s/it]
44%|โโโโโ | 445/1000 [14:31<09:14, 1.00it/s]
44%|โโโโโ | 445/1000 [14:31<09:14, 1.00it/s]
45%|โโโโโ | 446/1000 [14:32<09:02, 1.02it/s]
45%|โโโโโ | 446/1000 [14:32<09:02, 1.02it/s]
45%|โโโโโ | 447/1000 [14:32<08:19, 1.11it/s]
45%|โโโโโ | 447/1000 [14:32<08:19, 1.11it/s]
45%|โโโโโ | 448/1000 [14:33<07:41, 1.20it/s]
45%|โโโโโ | 448/1000 [14:33<07:41, 1.20it/s]
45%|โโโโโ | 449/1000 [14:34<07:15, 1.26it/s]
45%|โโโโโ | 449/1000 [14:34<07:15, 1.26it/s]
45%|โโโโโ | 450/1000 [14:36<12:36, 1.38s/it]
45%|โโโโโ | 450/1000 [14:36<12:36, 1.38s/it]
45%|โโโโโ | 451/1000 [14:44<28:52, 3.16s/it]
45%|โโโโโ | 451/1000 [14:44<28:52, 3.16s/it]
45%|โโโโโ | 452/1000 [14:48<32:13, 3.53s/it]
45%|โโโโโ | 452/1000 [14:48<32:13, 3.53s/it]
45%|โโโโโ | 453/1000 [14:52<32:43, 3.59s/it]
45%|โโโโโ | 453/1000 [14:52<32:43, 3.59s/it]
45%|โโโโโ | 454/1000 [14:55<32:23, 3.56s/it]
45%|โโโโโ | 454/1000 [14:55<32:23, 3.56s/it]
46%|โโโโโ | 455/1000 [14:59<31:34, 3.48s/it]
46%|โโโโโ | 455/1000 [14:59<31:34, 3.48s/it]
46%|โโโโโ | 456/1000 [15:02<30:33, 3.37s/it]
46%|โโโโโ | 456/1000 [15:02<30:33, 3.37s/it]
46%|โโโโโ | 457/1000 [15:05<29:00, 3.21s/it]
46%|โโโโโ | 457/1000 [15:05<29:00, 3.21s/it]
46%|โโโโโ | 458/1000 [15:07<27:46, 3.07s/it]
46%|โโโโโ | 458/1000 [15:07<27:46, 3.07s/it]
46%|โโโโโ | 459/1000 [15:10<26:37, 2.95s/it]
46%|โโโโโ | 459/1000 [15:10<26:37, 2.95s/it]
46%|โโโโโ | 460/1000 [15:12<25:07, 2.79s/it]
46%|โโโโโ | 460/1000 [15:12<25:07, 2.79s/it]
46%|โโโโโ | 461/1000 [15:15<24:02, 2.68s/it]
46%|โโโโโ | 461/1000 [15:15<24:02, 2.68s/it]
46%|โโโโโ | 462/1000 [15:17<23:14, 2.59s/it]
46%|โโโโโ | 462/1000 [15:17<23:14, 2.59s/it]
46%|โโโโโ | 463/1000 [15:19<22:00, 2.46s/it]
46%|โโโโโ | 463/1000 [15:19<22:00, 2.46s/it]
46%|โโโโโ | 464/1000 [15:21<20:56, 2.34s/it]
46%|โโโโโ | 464/1000 [15:21<20:56, 2.34s/it]
46%|โโโโโ | 465/1000 [15:24<20:15, 2.27s/it]
46%|โโโโโ | 465/1000 [15:24<20:15, 2.27s/it]
47%|โโโโโ | 466/1000 [15:26<19:47, 2.22s/it]
47%|โโโโโ | 466/1000 [15:26<19:47, 2.22s/it]
47%|โโโโโ | 467/1000 [15:28<19:07, 2.15s/it]
47%|โโโโโ | 467/1000 [15:28<19:07, 2.15s/it]
47%|โโโโโ | 468/1000 [15:29<18:05, 2.04s/it]
47%|โโโโโ | 468/1000 [15:29<18:05, 2.04s/it]
47%|โโโโโ | 469/1000 [15:31<17:27, 1.97s/it]
47%|โโโโโ | 469/1000 [15:31<17:27, 1.97s/it]
47%|โโโโโ | 470/1000 [15:33<16:53, 1.91s/it]
47%|โโโโโ | 470/1000 [15:33<16:53, 1.91s/it]
47%|โโโโโ | 471/1000 [15:35<16:28, 1.87s/it]
47%|โโโโโ | 471/1000 [15:35<16:28, 1.87s/it]
47%|โโโโโ | 472/1000 [15:37<16:10, 1.84s/it]
47%|โโโโโ | 472/1000 [15:37<16:10, 1.84s/it]
47%|โโโโโ | 473/1000 [15:38<16:03, 1.83s/it]
47%|โโโโโ | 473/1000 [15:38<16:03, 1.83s/it]
47%|โโโโโ | 474/1000 [15:40<15:38, 1.79s/it]
47%|โโโโโ | 474/1000 [15:40<15:38, 1.79s/it]
48%|โโโโโ | 475/1000 [15:42<14:54, 1.70s/it]
48%|โโโโโ | 475/1000 [15:42<14:54, 1.70s/it]
48%|โโโโโ | 476/1000 [15:43<14:20, 1.64s/it]
48%|โโโโโ | 476/1000 [15:43<14:20, 1.64s/it]
48%|โโโโโ | 477/1000 [15:45<13:58, 1.60s/it]
48%|โโโโโ | 477/1000 [15:45<13:58, 1.60s/it]
48%|โโโโโ | 478/1000 [15:46<13:41, 1.57s/it]
48%|โโโโโ | 478/1000 [15:46<13:41, 1.57s/it]
48%|โโโโโ | 479/1000 [15:48<13:28, 1.55s/it]
48%|โโโโโ | 479/1000 [15:48<13:28, 1.55s/it]
48%|โโโโโ | 480/1000 [15:49<13:20, 1.54s/it]
48%|โโโโโ | 480/1000 [15:49<13:20, 1.54s/it]
48%|โโโโโ | 481/1000 [15:51<13:15, 1.53s/it]
48%|โโโโโ | 481/1000 [15:51<13:15, 1.53s/it]
48%|โโโโโ | 482/1000 [15:52<13:08, 1.52s/it]
48%|โโโโโ | 482/1000 [15:52<13:08, 1.52s/it]
48%|โโโโโ | 483/1000 [15:53<12:29, 1.45s/it]
48%|โโโโโ | 483/1000 [15:53<12:29, 1.45s/it]
48%|โโโโโ | 484/1000 [15:55<11:56, 1.39s/it]
48%|โโโโโ | 484/1000 [15:55<11:56, 1.39s/it]
48%|โโโโโ | 485/1000 [15:56<11:34, 1.35s/it]
48%|โโโโโ | 485/1000 [15:56<11:34, 1.35s/it]
49%|โโโโโ | 486/1000 [15:57<11:16, 1.32s/it]
49%|โโโโโ | 486/1000 [15:57<11:16, 1.32s/it]
49%|โโโโโ | 487/1000 [15:58<11:02, 1.29s/it]
49%|โโโโโ | 487/1000 [15:58<11:02, 1.29s/it]
49%|โโโโโ | 488/1000 [16:00<10:51, 1.27s/it]
49%|โโโโโ | 488/1000 [16:00<10:51, 1.27s/it]
49%|โโโโโ | 489/1000 [16:01<10:52, 1.28s/it]
49%|โโโโโ | 489/1000 [16:01<10:52, 1.28s/it]
49%|โโโโโ | 490/1000 [16:02<10:44, 1.26s/it]
49%|โโโโโ | 490/1000 [16:02<10:44, 1.26s/it]
49%|โโโโโ | 491/1000 [16:03<10:14, 1.21s/it]
49%|โโโโโ | 491/1000 [16:03<10:14, 1.21s/it]
49%|โโโโโ | 492/1000 [16:04<09:35, 1.13s/it]
49%|โโโโโ | 492/1000 [16:04<09:35, 1.13s/it]
49%|โโโโโ | 493/1000 [16:05<09:04, 1.07s/it]
49%|โโโโโ | 493/1000 [16:05<09:04, 1.07s/it]
49%|โโโโโ | 494/1000 [16:06<08:43, 1.03s/it]
49%|โโโโโ | 494/1000 [16:06<08:43, 1.03s/it]
50%|โโโโโ | 495/1000 [16:07<08:32, 1.01s/it]
50%|โโโโโ | 495/1000 [16:07<08:32, 1.01s/it]
50%|โโโโโ | 496/1000 [16:08<08:20, 1.01it/s]
50%|โโโโโ | 496/1000 [16:08<08:20, 1.01it/s]
50%|โโโโโ | 497/1000 [16:09<07:51, 1.07it/s]
50%|โโโโโ | 497/1000 [16:09<07:51, 1.07it/s]
50%|โโโโโ | 498/1000 [16:09<07:12, 1.16it/s]
50%|โโโโโ | 498/1000 [16:09<07:12, 1.16it/s]
50%|โโโโโ | 499/1000 [16:10<06:43, 1.24it/s]
50%|โโโโโ | 499/1000 [16:10<06:43, 1.24it/s]
50%|โโโโโ | 500/1000 [16:13<11:01, 1.32s/it]
50%|โโโโโ | 500/1000 [16:13<11:01, 1.32s/it]
50%|โโโโโ | 501/1000 [16:19<24:08, 2.90s/it]
50%|โโโโโ | 501/1000 [16:19<24:08, 2.90s/it]
50%|โโโโโ | 502/1000 [16:24<27:41, 3.34s/it]
50%|โโโโโ | 502/1000 [16:24<27:41, 3.34s/it]
50%|โโโโโ | 503/1000 [16:27<28:30, 3.44s/it]
50%|โโโโโ | 503/1000 [16:27<28:30, 3.44s/it]
50%|โโโโโ | 504/1000 [16:31<28:27, 3.44s/it]
50%|โโโโโ | 504/1000 [16:31<28:27, 3.44s/it]
50%|โโโโโ | 505/1000 [16:34<27:41, 3.36s/it]
50%|โโโโโ | 505/1000 [16:34<27:41, 3.36s/it]
51%|โโโโโ | 506/1000 [16:37<26:40, 3.24s/it]
51%|โโโโโ | 506/1000 [16:37<26:40, 3.24s/it]
51%|โโโโโ | 507/1000 [16:40<25:28, 3.10s/it]
51%|โโโโโ | 507/1000 [16:40<25:28, 3.10s/it]
51%|โโโโโ | 508/1000 [16:42<24:21, 2.97s/it]
51%|โโโโโ | 508/1000 [16:42<24:21, 2.97s/it]
51%|โโโโโ | 509/1000 [16:45<22:52, 2.79s/it]
51%|โโโโโ | 509/1000 [16:45<22:52, 2.79s/it]
51%|โโโโโ | 510/1000 [16:47<21:51, 2.68s/it]
51%|โโโโโ | 510/1000 [16:47<21:51, 2.68s/it]
51%|โโโโโ | 511/1000 [16:49<21:06, 2.59s/it]
51%|โโโโโ | 511/1000 [16:49<21:06, 2.59s/it]
51%|โโโโโ | 512/1000 [16:52<20:03, 2.47s/it]
51%|โโโโโ | 512/1000 [16:52<20:03, 2.47s/it]
51%|โโโโโโ | 513/1000 [16:54<19:07, 2.36s/it]
51%|โโโโโโ | 513/1000 [16:54<19:07, 2.36s/it]
51%|โโโโโโ | 514/1000 [16:56<18:26, 2.28s/it]
51%|โโโโโโ | 514/1000 [16:56<18:26, 2.28s/it]
52%|โโโโโโ | 515/1000 [16:58<17:55, 2.22s/it]
52%|โโโโโโ | 515/1000 [16:58<17:55, 2.22s/it]
52%|โโโโโโ | 516/1000 [17:00<17:29, 2.17s/it]
52%|โโโโโโ | 516/1000 [17:00<17:29, 2.17s/it]
52%|โโโโโโ | 517/1000 [17:02<16:43, 2.08s/it]
52%|โโโโโโ | 517/1000 [17:02<16:43, 2.08s/it]
52%|โโโโโโ | 518/1000 [17:04<16:02, 2.00s/it]
52%|โโโโโโ | 518/1000 [17:04<16:02, 2.00s/it]
52%|โโโโโโ | 519/1000 [17:05<15:28, 1.93s/it]
52%|โโโโโโ | 519/1000 [17:05<15:28, 1.93s/it]
52%|โโโโโโ | 520/1000 [17:07<15:05, 1.89s/it]
52%|โโโโโโ | 520/1000 [17:07<15:05, 1.89s/it]
52%|โโโโโโ | 521/1000 [17:09<14:46, 1.85s/it]
52%|โโโโโโ | 521/1000 [17:09<14:46, 1.85s/it]
52%|โโโโโโ | 522/1000 [17:11<14:33, 1.83s/it]
52%|โโโโโโ | 522/1000 [17:11<14:33, 1.83s/it]
52%|โโโโโโ | 523/1000 [17:12<14:15, 1.79s/it]
52%|โโโโโโ | 523/1000 [17:12<14:15, 1.79s/it]
52%|โโโโโโ | 524/1000 [17:14<13:39, 1.72s/it]
52%|โโโโโโ | 524/1000 [17:14<13:39, 1.72s/it]
52%|โโโโโโ | 525/1000 [17:15<13:08, 1.66s/it]
52%|โโโโโโ | 525/1000 [17:16<13:08, 1.66s/it]
53%|โโโโโโ | 526/1000 [17:17<12:43, 1.61s/it]
53%|โโโโโโ | 526/1000 [17:17<12:43, 1.61s/it]
53%|โโโโโโ | 527/1000 [17:19<12:29, 1.59s/it]
53%|โโโโโโ | 527/1000 [17:19<12:29, 1.59s/it]
53%|โโโโโโ | 528/1000 [17:20<12:16, 1.56s/it]
53%|โโโโโโ | 528/1000 [17:20<12:16, 1.56s/it]
53%|โโโโโโ | 529/1000 [17:22<12:07, 1.54s/it]
53%|โโโโโโ | 529/1000 [17:22<12:07, 1.54s/it]
53%|โโโโโโ | 530/1000 [17:23<12:01, 1.54s/it]
53%|โโโโโโ | 530/1000 [17:23<12:01, 1.54s/it]
53%|โโโโโโ | 531/1000 [17:25<11:54, 1.52s/it]
53%|โโโโโโ | 531/1000 [17:25<11:54, 1.52s/it]
53%|โโโโโโ | 532/1000 [17:26<11:19, 1.45s/it]
53%|โโโโโโ | 532/1000 [17:26<11:19, 1.45s/it]
53%|โโโโโโ | 533/1000 [17:27<10:47, 1.39s/it]
53%|โโโโโโ | 533/1000 [17:27<10:47, 1.39s/it]
53%|โโโโโโ | 534/1000 [17:28<10:25, 1.34s/it]
53%|โโโโโโ | 534/1000 [17:28<10:25, 1.34s/it]
54%|โโโโโโ | 535/1000 [17:30<10:09, 1.31s/it]
54%|โโโโโโ | 535/1000 [17:30<10:09, 1.31s/it]
54%|โโโโโโ | 536/1000 [17:31<09:57, 1.29s/it]
54%|โโโโโโ | 536/1000 [17:31<09:57, 1.29s/it]
54%|โโโโโโ | 537/1000 [17:32<09:50, 1.28s/it]
54%|โโโโโโ | 537/1000 [17:32<09:50, 1.28s/it]
54%|โโโโโโ | 538/1000 [17:33<09:44, 1.26s/it]
54%|โโโโโโ | 538/1000 [17:33<09:44, 1.26s/it]
54%|โโโโโโ | 539/1000 [17:34<09:40, 1.26s/it]
54%|โโโโโโ | 539/1000 [17:35<09:40, 1.26s/it]
54%|โโโโโโ | 540/1000 [17:36<09:14, 1.20s/it]
54%|โโโโโโ | 540/1000 [17:36<09:14, 1.20s/it]
54%|โโโโโโ | 541/1000 [17:37<08:37, 1.13s/it]
54%|โโโโโโ | 541/1000 [17:37<08:37, 1.13s/it]
54%|โโโโโโ | 542/1000 [17:37<08:11, 1.07s/it]
54%|โโโโโโ | 542/1000 [17:37<08:11, 1.07s/it]
54%|โโโโโโ | 543/1000 [17:38<07:53, 1.04s/it]
54%|โโโโโโ | 543/1000 [17:38<07:53, 1.04s/it]
54%|โโโโโโ | 544/1000 [17:39<07:40, 1.01s/it]
54%|โโโโโโ | 544/1000 [17:39<07:40, 1.01s/it]
55%|โโโโโโ | 545/1000 [17:40<07:30, 1.01it/s]
55%|โโโโโโ | 545/1000 [17:40<07:30, 1.01it/s]
55%|โโโโโโ | 546/1000 [17:41<07:22, 1.03it/s]
55%|โโโโโโ | 546/1000 [17:41<07:22, 1.03it/s]
55%|โโโโโโ | 547/1000 [17:42<06:47, 1.11it/s]
55%|โโโโโโ | 547/1000 [17:42<06:47, 1.11it/s]
55%|โโโโโโ | 548/1000 [17:43<06:17, 1.20it/s]
55%|โโโโโโ | 548/1000 [17:43<06:17, 1.20it/s]
55%|โโโโโโ | 549/1000 [17:43<05:55, 1.27it/s]
55%|โโโโโโ | 549/1000 [17:43<05:55, 1.27it/s]
55%|โโโโโโ | 550/1000 [17:46<10:48, 1.44s/it]
55%|โโโโโโ | 550/1000 [17:46<10:48, 1.44s/it]
55%|โโโโโโ | 551/1000 [17:55<26:19, 3.52s/it]
55%|โโโโโโ | 551/1000 [17:55<26:19, 3.52s/it]
55%|โโโโโโ | 552/1000 [17:59<28:13, 3.78s/it]
55%|โโโโโโ | 552/1000 [17:59<28:13, 3.78s/it]
55%|โโโโโโ | 553/1000 [18:03<28:37, 3.84s/it]
55%|โโโโโโ | 553/1000 [18:03<28:37, 3.84s/it]
55%|โโโโโโ | 554/1000 [18:07<27:42, 3.73s/it]
55%|โโโโโโ | 554/1000 [18:07<27:42, 3.73s/it]
56%|โโโโโโ | 555/1000 [18:10<26:36, 3.59s/it]
56%|โโโโโโ | 555/1000 [18:10<26:36, 3.59s/it]
56%|โโโโโโ | 556/1000 [18:13<25:15, 3.41s/it]
56%|โโโโโโ | 556/1000 [18:13<25:15, 3.41s/it]
56%|โโโโโโ | 557/1000 [18:16<23:55, 3.24s/it]
56%|โโโโโโ | 557/1000 [18:16<23:55, 3.24s/it]
56%|โโโโโโ | 558/1000 [18:18<22:52, 3.11s/it]
56%|โโโโโโ | 558/1000 [18:18<22:52, 3.11s/it]
56%|โโโโโโ | 559/1000 [18:21<22:03, 3.00s/it]
56%|โโโโโโ | 559/1000 [18:21<22:03, 3.00s/it]
56%|โโโโโโ | 560/1000 [18:24<20:57, 2.86s/it]
56%|โโโโโโ | 560/1000 [18:24<20:57, 2.86s/it]
56%|โโโโโโ | 561/1000 [18:26<19:57, 2.73s/it]
56%|โโโโโโ | 561/1000 [18:26<19:57, 2.73s/it]
56%|โโโโโโ | 562/1000 [18:29<19:16, 2.64s/it]
56%|โโโโโโ | 562/1000 [18:29<19:16, 2.64s/it]
56%|โโโโโโ | 563/1000 [18:31<18:44, 2.57s/it]
56%|โโโโโโ | 563/1000 [18:31<18:44, 2.57s/it]
56%|โโโโโโ | 564/1000 [18:33<17:51, 2.46s/it]
56%|โโโโโโ | 564/1000 [18:33<17:51, 2.46s/it]
56%|โโโโโโ | 565/1000 [18:35<17:02, 2.35s/it]
56%|โโโโโโ | 565/1000 [18:35<17:02, 2.35s/it]
57%|โโโโโโ | 566/1000 [18:37<16:30, 2.28s/it]
57%|โโโโโโ | 566/1000 [18:37<16:30, 2.28s/it]
57%|โโโโโโ | 567/1000 [18:39<16:01, 2.22s/it]
57%|โโโโโโ | 567/1000 [18:39<16:01, 2.22s/it]
57%|โโโโโโ | 568/1000 [18:44<20:36, 2.86s/it]
57%|โโโโโโ | 568/1000 [18:44<20:36, 2.86s/it]
57%|โโโโโโ | 569/1000 [18:46<18:33, 2.58s/it]
57%|โโโโโโ | 569/1000 [18:46<18:33, 2.58s/it]
57%|โโโโโโ | 570/1000 [18:48<16:46, 2.34s/it]
57%|โโโโโโ | 570/1000 [18:48<16:46, 2.34s/it]
57%|โโโโโโ | 571/1000 [18:49<15:35, 2.18s/it]
57%|โโโโโโ | 571/1000 [18:49<15:35, 2.18s/it]
57%|โโโโโโ | 572/1000 [18:51<14:42, 2.06s/it]
57%|โโโโโโ | 572/1000 [18:51<14:42, 2.06s/it]
57%|โโโโโโ | 573/1000 [18:53<14:04, 1.98s/it]
57%|โโโโโโ | 573/1000 [18:53<14:04, 1.98s/it]
57%|โโโโโโ | 574/1000 [18:55<13:35, 1.92s/it]
57%|โโโโโโ | 574/1000 [18:55<13:35, 1.92s/it]
57%|โโโโโโ | 575/1000 [18:56<13:04, 1.85s/it]
57%|โโโโโโ | 575/1000 [18:56<13:04, 1.85s/it]
58%|โโโโโโ | 576/1000 [18:58<12:21, 1.75s/it]
58%|โโโโโโ | 576/1000 [18:58<12:21, 1.75s/it]
58%|โโโโโโ | 577/1000 [18:59<11:49, 1.68s/it]
58%|โโโโโโ | 577/1000 [18:59<11:49, 1.68s/it]
58%|โโโโโโ | 578/1000 [19:01<11:33, 1.64s/it]
58%|โโโโโโ | 578/1000 [19:01<11:33, 1.64s/it]
58%|โโโโโโ | 579/1000 [19:02<11:18, 1.61s/it]
58%|โโโโโโ | 579/1000 [19:02<11:18, 1.61s/it]
58%|โโโโโโ | 580/1000 [19:04<11:04, 1.58s/it]
58%|โโโโโโ | 580/1000 [19:04<11:04, 1.58s/it]
58%|โโโโโโ | 581/1000 [19:06<10:54, 1.56s/it]
58%|โโโโโโ | 581/1000 [19:06<10:54, 1.56s/it]
58%|โโโโโโ | 582/1000 [19:07<10:46, 1.55s/it]
58%|โโโโโโ | 582/1000 [19:07<10:46, 1.55s/it]
58%|โโโโโโ | 583/1000 [19:08<10:14, 1.47s/it]
58%|โโโโโโ | 583/1000 [19:08<10:14, 1.47s/it]
58%|โโโโโโ | 584/1000 [19:10<09:44, 1.40s/it]
58%|โโโโโโ | 584/1000 [19:10<09:44, 1.40s/it]
58%|โโโโโโ | 585/1000 [19:11<09:22, 1.36s/it]
58%|โโโโโโ | 585/1000 [19:11<09:22, 1.36s/it]
59%|โโโโโโ | 586/1000 [19:12<09:04, 1.32s/it]
59%|โโโโโโ | 586/1000 [19:12<09:04, 1.32s/it]
59%|โโโโโโ | 587/1000 [19:13<08:53, 1.29s/it]
59%|โโโโโโ | 587/1000 [19:13<08:53, 1.29s/it]
59%|โโโโโโ | 588/1000 [19:14<08:44, 1.27s/it]
59%|โโโโโโ | 588/1000 [19:15<08:44, 1.27s/it]
59%|โโโโโโ | 589/1000 [19:16<08:38, 1.26s/it]
59%|โโโโโโ | 589/1000 [19:16<08:38, 1.26s/it]
59%|โโโโโโ | 590/1000 [19:17<08:36, 1.26s/it]
59%|โโโโโโ | 590/1000 [19:17<08:36, 1.26s/it]
59%|โโโโโโ | 591/1000 [19:18<08:13, 1.21s/it]
59%|โโโโโโ | 591/1000 [19:18<08:13, 1.21s/it]
59%|โโโโโโ | 592/1000 [19:19<07:40, 1.13s/it]
59%|โโโโโโ | 592/1000 [19:19<07:40, 1.13s/it]
59%|โโโโโโ | 593/1000 [19:20<07:16, 1.07s/it]
59%|โโโโโโ | 593/1000 [19:20<07:16, 1.07s/it]
59%|โโโโโโ | 594/1000 [19:21<06:59, 1.03s/it]
59%|โโโโโโ | 594/1000 [19:21<06:59, 1.03s/it]
60%|โโโโโโ | 595/1000 [19:22<06:47, 1.01s/it]
60%|โโโโโโ | 595/1000 [19:22<06:47, 1.01s/it]
60%|โโโโโโ | 596/1000 [19:23<06:39, 1.01it/s]
60%|โโโโโโ | 596/1000 [19:23<06:39, 1.01it/s]
60%|โโโโโโ | 597/1000 [19:24<06:25, 1.05it/s]
60%|โโโโโโ | 597/1000 [19:24<06:25, 1.05it/s]
60%|โโโโโโ | 598/1000 [19:24<05:56, 1.13it/s]
60%|โโโโโโ | 598/1000 [19:24<05:56, 1.13it/s]
60%|โโโโโโ | 599/1000 [19:25<05:30, 1.21it/s]
60%|โโโโโโ | 599/1000 [19:25<05:30, 1.21it/s]
60%|โโโโโโ | 600/1000 [19:27<08:24, 1.26s/it]
60%|โโโโโโ | 600/1000 [19:27<08:24, 1.26s/it]
60%|โโโโโโ | 601/1000 [19:36<23:26, 3.52s/it]
60%|โโโโโโ | 601/1000 [19:36<23:26, 3.52s/it]
60%|โโโโโโ | 602/1000 [19:40<23:39, 3.57s/it]
60%|โโโโโโ | 602/1000 [19:40<23:39, 3.57s/it]
60%|โโโโโโ | 603/1000 [19:43<22:42, 3.43s/it]
60%|โโโโโโ | 603/1000 [19:43<22:42, 3.43s/it]
60%|โโโโโโ | 604/1000 [19:46<21:19, 3.23s/it]
60%|โโโโโโ | 604/1000 [19:46<21:19, 3.23s/it]
60%|โโโโโโ | 605/1000 [19:48<19:48, 3.01s/it]
60%|โโโโโโ | 605/1000 [19:48<19:48, 3.01s/it]
61%|โโโโโโ | 606/1000 [19:50<18:16, 2.78s/it]
61%|โโโโโโ | 606/1000 [19:50<18:16, 2.78s/it]
61%|โโโโโโ | 607/1000 [19:53<16:52, 2.58s/it]
61%|โโโโโโ | 607/1000 [19:53<16:52, 2.58s/it]
61%|โโโโโโ | 608/1000 [19:55<15:53, 2.43s/it]
61%|โโโโโโ | 608/1000 [19:55<15:53, 2.43s/it]
61%|โโโโโโ | 609/1000 [19:56<14:43, 2.26s/it]
61%|โโโโโโ | 609/1000 [19:57<14:43, 2.26s/it]
61%|โโโโโโ | 610/1000 [19:58<13:48, 2.12s/it]
61%|โโโโโโ | 610/1000 [19:58<13:48, 2.12s/it]
61%|โโโโโโ | 611/1000 [20:00<13:06, 2.02s/it]
61%|โโโโโโ | 611/1000 [20:00<13:06, 2.02s/it]
61%|โโโโโโ | 612/1000 [20:02<12:23, 1.92s/it]
61%|โโโโโโ | 612/1000 [20:02<12:23, 1.92s/it]
61%|โโโโโโโ | 613/1000 [20:03<11:35, 1.80s/it]
61%|โโโโโโโ | 613/1000 [20:03<11:35, 1.80s/it]
61%|โโโโโโโ | 614/1000 [20:05<11:00, 1.71s/it]
61%|โโโโโโโ | 614/1000 [20:05<11:00, 1.71s/it]
62%|โโโโโโโ | 615/1000 [20:06<10:35, 1.65s/it]
62%|โโโโโโโ | 615/1000 [20:06<10:35, 1.65s/it]
62%|โโโโโโโ | 616/1000 [20:08<10:16, 1.60s/it]
62%|โโโโโโโ | 616/1000 [20:08<10:16, 1.60s/it]
62%|โโโโโโโ | 617/1000 [20:09<09:37, 1.51s/it]
62%|โโโโโโโ | 617/1000 [20:09<09:37, 1.51s/it]
62%|โโโโโโโ | 618/1000 [20:10<09:06, 1.43s/it]
62%|โโโโโโโ | 618/1000 [20:10<09:06, 1.43s/it]
62%|โโโโโโโ | 619/1000 [20:12<08:45, 1.38s/it]
62%|โโโโโโโ | 619/1000 [20:12<08:45, 1.38s/it]
62%|โโโโโโโ | 620/1000 [20:13<08:25, 1.33s/it]
62%|โโโโโโโ | 620/1000 [20:13<08:25, 1.33s/it]
62%|โโโโโโโ | 621/1000 [20:14<07:49, 1.24s/it]
62%|โโโโโโโ | 621/1000 [20:14<07:49, 1.24s/it]
62%|โโโโโโโ | 622/1000 [20:15<07:14, 1.15s/it]
62%|โโโโโโโ | 622/1000 [20:15<07:14, 1.15s/it]
62%|โโโโโโโ | 623/1000 [20:16<06:45, 1.08s/it]
62%|โโโโโโโ | 623/1000 [20:16<06:45, 1.08s/it]
62%|โโโโโโโ | 624/1000 [20:16<06:05, 1.03it/s]
62%|โโโโโโโ | 624/1000 [20:16<06:05, 1.03it/s]
62%|โโโโโโโ | 625/1000 [20:17<05:08, 1.22it/s]
62%|โโโโโโโ | 625/1000 [20:17<05:08, 1.22it/s]
63%|โโโโโโโ | 626/1000 [20:31<29:09, 4.68s/it]
63%|โโโโโโโ | 626/1000 [20:31<29:09, 4.68s/it]
63%|โโโโโโโ | 627/1000 [20:35<28:41, 4.62s/it]
63%|โโโโโโโ | 627/1000 [20:35<28:41, 4.62s/it]
63%|โโโโโโโ | 628/1000 [20:39<27:02, 4.36s/it]
63%|โโโโโโโ | 628/1000 [20:39<27:02, 4.36s/it]
63%|โโโโโโโ | 629/1000 [20:42<25:20, 4.10s/it]
63%|โโโโโโโ | 629/1000 [20:42<25:20, 4.10s/it]
63%|โโโโโโโ | 630/1000 [20:46<23:44, 3.85s/it]
63%|โโโโโโโ | 630/1000 [20:46<23:44, 3.85s/it]
63%|โโโโโโโ | 631/1000 [20:49<22:11, 3.61s/it]
63%|โโโโโโโ | 631/1000 [20:49<22:11, 3.61s/it]
63%|โโโโโโโ | 632/1000 [20:51<20:44, 3.38s/it]
63%|โโโโโโโ | 632/1000 [20:51<20:44, 3.38s/it]
63%|โโโโโโโ | 633/1000 [20:54<19:37, 3.21s/it]
63%|โโโโโโโ | 633/1000 [20:54<19:37, 3.21s/it]
63%|โโโโโโโ | 634/1000 [20:57<18:30, 3.03s/it]
63%|โโโโโโโ | 634/1000 [20:57<18:30, 3.03s/it]
64%|โโโโโโโ | 635/1000 [20:59<17:17, 2.84s/it]
64%|โโโโโโโ | 635/1000 [20:59<17:17, 2.84s/it]
64%|โโโโโโโ | 636/1000 [21:02<16:35, 2.74s/it]
64%|โโโโโโโ | 636/1000 [21:02<16:35, 2.74s/it]
64%|โโโโโโโ | 637/1000 [21:04<15:45, 2.61s/it]
64%|โโโโโโโ | 637/1000 [21:04<15:45, 2.61s/it]
64%|โโโโโโโ | 638/1000 [21:06<14:50, 2.46s/it]
64%|โโโโโโโ | 638/1000 [21:06<14:50, 2.46s/it]
64%|โโโโโโโ | 639/1000 [21:08<14:09, 2.35s/it]
64%|โโโโโโโ | 639/1000 [21:08<14:09, 2.35s/it]
64%|โโโโโโโ | 640/1000 [21:10<13:42, 2.28s/it]
64%|โโโโโโโ | 640/1000 [21:10<13:42, 2.28s/it]
64%|โโโโโโโ | 641/1000 [21:13<13:21, 2.23s/it]
64%|โโโโโโโ | 641/1000 [21:13<13:21, 2.23s/it]
64%|โโโโโโโ | 642/1000 [21:15<13:00, 2.18s/it]
64%|โโโโโโโ | 642/1000 [21:15<13:00, 2.18s/it]
64%|โโโโโโโ | 643/1000 [21:16<12:22, 2.08s/it]
64%|โโโโโโโ | 643/1000 [21:16<12:22, 2.08s/it]
64%|โโโโโโโ | 644/1000 [21:18<11:47, 1.99s/it]
64%|โโโโโโโ | 644/1000 [21:18<11:47, 1.99s/it]
64%|โโโโโโโ | 645/1000 [21:20<11:22, 1.92s/it]
64%|โโโโโโโ | 645/1000 [21:20<11:22, 1.92s/it]
65%|โโโโโโโ | 646/1000 [21:22<11:06, 1.88s/it]
65%|โโโโโโโ | 646/1000 [21:22<11:06, 1.88s/it]
65%|โโโโโโโ | 647/1000 [21:24<11:00, 1.87s/it]
65%|โโโโโโโ | 647/1000 [21:24<11:00, 1.87s/it]
65%|โโโโโโโ | 648/1000 [21:25<10:48, 1.84s/it]
65%|โโโโโโโ | 648/1000 [21:25<10:48, 1.84s/it]
65%|โโโโโโโ | 649/1000 [21:27<10:37, 1.82s/it]
65%|โโโโโโโ | 649/1000 [21:27<10:37, 1.82s/it]
65%|โโโโโโโ | 650/1000 [21:29<10:08, 1.74s/it]
65%|โโโโโโโ | 650/1000 [21:29<10:08, 1.74s/it]
65%|โโโโโโโ | 651/1000 [21:30<09:43, 1.67s/it]
65%|โโโโโโโ | 651/1000 [21:30<09:43, 1.67s/it]
65%|โโโโโโโ | 652/1000 [21:32<09:30, 1.64s/it]
65%|โโโโโโโ | 652/1000 [21:32<09:30, 1.64s/it]
65%|โโโโโโโ | 653/1000 [21:33<09:14, 1.60s/it]
65%|โโโโโโโ | 653/1000 [21:33<09:14, 1.60s/it]
65%|โโโโโโโ | 654/1000 [21:35<09:04, 1.57s/it]
65%|โโโโโโโ | 654/1000 [21:35<09:04, 1.57s/it]
66%|โโโโโโโ | 655/1000 [21:36<08:56, 1.56s/it]
66%|โโโโโโโ | 655/1000 [21:36<08:56, 1.56s/it]
66%|โโโโโโโ | 656/1000 [21:38<08:53, 1.55s/it]
66%|โโโโโโโ | 656/1000 [21:38<08:53, 1.55s/it]
66%|โโโโโโโ | 657/1000 [21:39<08:47, 1.54s/it]
66%|โโโโโโโ | 657/1000 [21:39<08:47, 1.54s/it]
66%|โโโโโโโ | 658/1000 [21:41<08:21, 1.47s/it]
66%|โโโโโโโ | 658/1000 [21:41<08:21, 1.47s/it]
66%|โโโโโโโ | 659/1000 [21:42<07:57, 1.40s/it]
66%|โโโโโโโ | 659/1000 [21:42<07:57, 1.40s/it]
66%|โโโโโโโ | 660/1000 [21:43<07:38, 1.35s/it]
66%|โโโโโโโ | 660/1000 [21:43<07:38, 1.35s/it]
66%|โโโโโโโ | 661/1000 [21:44<07:26, 1.32s/it]
66%|โโโโโโโ | 661/1000 [21:44<07:26, 1.32s/it]
66%|โโโโโโโ | 662/1000 [21:46<07:16, 1.29s/it]
66%|โโโโโโโ | 662/1000 [21:46<07:16, 1.29s/it]
66%|โโโโโโโ | 663/1000 [21:47<07:09, 1.27s/it]
66%|โโโโโโโ | 663/1000 [21:47<07:09, 1.27s/it]
66%|โโโโโโโ | 664/1000 [21:48<07:04, 1.26s/it]
66%|โโโโโโโ | 664/1000 [21:48<07:04, 1.26s/it]
66%|โโโโโโโ | 665/1000 [21:49<06:57, 1.25s/it]
66%|โโโโโโโ | 665/1000 [21:49<06:57, 1.25s/it]
67%|โโโโโโโ | 666/1000 [21:50<06:31, 1.17s/it]
67%|โโโโโโโ | 666/1000 [21:50<06:31, 1.17s/it]
67%|โโโโโโโ | 667/1000 [21:51<06:08, 1.11s/it]
67%|โโโโโโโ | 667/1000 [21:51<06:08, 1.11s/it]
67%|โโโโโโโ | 668/1000 [21:52<05:52, 1.06s/it]
67%|โโโโโโโ | 668/1000 [21:52<05:52, 1.06s/it]
67%|โโโโโโโ | 669/1000 [21:53<05:39, 1.03s/it]
67%|โโโโโโโ | 669/1000 [21:53<05:39, 1.03s/it]
67%|โโโโโโโ | 670/1000 [21:54<05:31, 1.00s/it]
67%|โโโโโโโ | 670/1000 [21:54<05:31, 1.00s/it]
67%|โโโโโโโ | 671/1000 [21:55<05:23, 1.02it/s]
67%|โโโโโโโ | 671/1000 [21:55<05:23, 1.02it/s]
67%|โโโโโโโ | 672/1000 [21:56<05:05, 1.07it/s]
67%|โโโโโโโ | 672/1000 [21:56<05:05, 1.07it/s]
67%|โโโโโโโ | 673/1000 [21:56<04:40, 1.17it/s]
67%|โโโโโโโ | 673/1000 [21:57<04:40, 1.17it/s]
67%|โโโโโโโ | 674/1000 [21:57<04:22, 1.24it/s]
67%|โโโโโโโ | 674/1000 [21:57<04:22, 1.24it/s]
68%|โโโโโโโ | 675/1000 [22:00<07:04, 1.31s/it]
68%|โโโโโโโ | 675/1000 [22:00<07:04, 1.31s/it]
68%|โโโโโโโ | 676/1000 [22:06<15:16, 2.83s/it]
68%|โโโโโโโ | 676/1000 [22:06<15:16, 2.83s/it]
68%|โโโโโโโ | 677/1000 [22:10<17:22, 3.23s/it]
68%|โโโโโโโ | 677/1000 [22:10<17:22, 3.23s/it]
68%|โโโโโโโ | 678/1000 [22:14<17:57, 3.35s/it]
68%|โโโโโโโ | 678/1000 [22:14<17:57, 3.35s/it]
68%|โโโโโโโ | 679/1000 [22:17<17:57, 3.36s/it]
68%|โโโโโโโ | 679/1000 [22:17<17:57, 3.36s/it]
68%|โโโโโโโ | 680/1000 [22:20<17:31, 3.29s/it]
68%|โโโโโโโ | 680/1000 [22:20<17:31, 3.29s/it]
68%|โโโโโโโ | 681/1000 [22:23<16:56, 3.19s/it]
68%|โโโโโโโ | 681/1000 [22:23<16:56, 3.19s/it]
68%|โโโโโโโ | 682/1000 [22:26<16:14, 3.06s/it]
68%|โโโโโโโ | 682/1000 [22:26<16:14, 3.06s/it]
68%|โโโโโโโ | 683/1000 [22:29<15:40, 2.97s/it]
68%|โโโโโโโ | 683/1000 [22:29<15:40, 2.97s/it]
68%|โโโโโโโ | 684/1000 [22:31<14:52, 2.82s/it]
68%|โโโโโโโ | 684/1000 [22:31<14:52, 2.82s/it]
68%|โโโโโโโ | 685/1000 [22:34<14:12, 2.71s/it]
68%|โโโโโโโ | 685/1000 [22:34<14:12, 2.71s/it]
69%|โโโโโโโ | 686/1000 [22:36<13:40, 2.61s/it]
69%|โโโโโโโ | 686/1000 [22:36<13:40, 2.61s/it]
69%|โโโโโโโ | 687/1000 [22:38<13:11, 2.53s/it]
69%|โโโโโโโ | 687/1000 [22:38<13:11, 2.53s/it]
69%|โโโโโโโ | 688/1000 [22:41<12:29, 2.40s/it]
69%|โโโโโโโ | 688/1000 [22:41<12:29, 2.40s/it]
69%|โโโโโโโ | 689/1000 [22:43<11:59, 2.31s/it]
69%|โโโโโโโ | 689/1000 [22:43<11:59, 2.31s/it]
69%|โโโโโโโ | 690/1000 [22:45<11:38, 2.25s/it]
69%|โโโโโโโ | 690/1000 [22:45<11:38, 2.25s/it]
69%|โโโโโโโ | 691/1000 [22:47<11:22, 2.21s/it]
69%|โโโโโโโ | 691/1000 [22:47<11:22, 2.21s/it]
69%|โโโโโโโ | 692/1000 [22:49<10:47, 2.10s/it]
69%|โโโโโโโ | 692/1000 [22:49<10:47, 2.10s/it]
69%|โโโโโโโ | 693/1000 [22:51<10:17, 2.01s/it]
69%|โโโโโโโ | 693/1000 [22:51<10:17, 2.01s/it]
69%|โโโโโโโ | 694/1000 [22:52<09:54, 1.94s/it]
69%|โโโโโโโ | 694/1000 [22:52<09:54, 1.94s/it]
70%|โโโโโโโ | 695/1000 [22:54<09:36, 1.89s/it]
70%|โโโโโโโ | 695/1000 [22:54<09:36, 1.89s/it]
70%|โโโโโโโ | 696/1000 [22:56<09:24, 1.86s/it]
70%|โโโโโโโ | 696/1000 [22:56<09:24, 1.86s/it]
70%|โโโโโโโ | 697/1000 [22:58<09:14, 1.83s/it]
70%|โโโโโโโ | 697/1000 [22:58<09:14, 1.83s/it]
70%|โโโโโโโ | 698/1000 [22:59<09:05, 1.81s/it]
70%|โโโโโโโ | 698/1000 [22:59<09:05, 1.81s/it]
70%|โโโโโโโ | 699/1000 [23:01<08:42, 1.73s/it]
70%|โโโโโโโ | 699/1000 [23:01<08:42, 1.73s/it]
70%|โโโโโโโ | 700/1000 [23:02<08:23, 1.68s/it]
70%|โโโโโโโ | 700/1000 [23:03<08:23, 1.68s/it]
70%|โโโโโโโ | 701/1000 [23:04<08:06, 1.63s/it]
70%|โโโโโโโ | 701/1000 [23:04<08:06, 1.63s/it]
70%|โโโโโโโ | 702/1000 [23:06<07:55, 1.60s/it]
70%|โโโโโโโ | 702/1000 [23:06<07:55, 1.60s/it]
70%|โโโโโโโ | 703/1000 [23:07<07:48, 1.58s/it]
70%|โโโโโโโ | 703/1000 [23:07<07:48, 1.58s/it]
70%|โโโโโโโ | 704/1000 [23:09<07:40, 1.56s/it]
70%|โโโโโโโ | 704/1000 [23:09<07:40, 1.56s/it]
70%|โโโโโโโ | 705/1000 [23:10<07:35, 1.54s/it]
70%|โโโโโโโ | 705/1000 [23:10<07:35, 1.54s/it]
71%|โโโโโโโ | 706/1000 [23:12<07:29, 1.53s/it]
71%|โโโโโโโ | 706/1000 [23:12<07:29, 1.53s/it]
71%|โโโโโโโ | 707/1000 [23:13<07:06, 1.46s/it]
71%|โโโโโโโ | 707/1000 [23:13<07:06, 1.46s/it]
71%|โโโโโโโ | 708/1000 [23:14<06:45, 1.39s/it]
71%|โโโโโโโ | 708/1000 [23:14<06:45, 1.39s/it]
71%|โโโโโโโ | 709/1000 [23:15<06:30, 1.34s/it]
71%|โโโโโโโ | 709/1000 [23:15<06:30, 1.34s/it]
71%|โโโโโโโ | 710/1000 [23:17<06:20, 1.31s/it]
71%|โโโโโโโ | 710/1000 [23:17<06:20, 1.31s/it]
71%|โโโโโโโ | 711/1000 [23:18<06:13, 1.29s/it]
71%|โโโโโโโ | 711/1000 [23:18<06:13, 1.29s/it]
71%|โโโโโโโ | 712/1000 [23:19<06:09, 1.28s/it]
71%|โโโโโโโ | 712/1000 [23:19<06:09, 1.28s/it]
71%|โโโโโโโโ | 713/1000 [23:20<06:04, 1.27s/it]
71%|โโโโโโโโ | 713/1000 [23:20<06:04, 1.27s/it]
71%|โโโโโโโโ | 714/1000 [23:22<06:00, 1.26s/it]
71%|โโโโโโโโ | 714/1000 [23:22<06:00, 1.26s/it]
72%|โโโโโโโโ | 715/1000 [23:23<05:44, 1.21s/it]
72%|โโโโโโโโ | 715/1000 [23:23<05:44, 1.21s/it]
72%|โโโโโโโโ | 716/1000 [23:24<05:20, 1.13s/it]
72%|โโโโโโโโ | 716/1000 [23:24<05:20, 1.13s/it]
72%|โโโโโโโโ | 717/1000 [23:25<05:03, 1.07s/it]
72%|โโโโโโโโ | 717/1000 [23:25<05:03, 1.07s/it]
72%|โโโโโโโโ | 718/1000 [23:25<04:50, 1.03s/it]
72%|โโโโโโโโ | 718/1000 [23:25<04:50, 1.03s/it]
72%|โโโโโโโโ | 719/1000 [23:26<04:42, 1.01s/it]
72%|โโโโโโโโ | 719/1000 [23:26<04:42, 1.01s/it]
72%|โโโโโโโโ | 720/1000 [23:27<04:35, 1.01it/s]
72%|โโโโโโโโ | 720/1000 [23:27<04:35, 1.01it/s]
72%|โโโโโโโโ | 721/1000 [23:28<04:26, 1.04it/s]
72%|โโโโโโโโ | 721/1000 [23:28<04:26, 1.04it/s]
72%|โโโโโโโโ | 722/1000 [23:29<04:07, 1.13it/s]
72%|โโโโโโโโ | 722/1000 [23:29<04:07, 1.13it/s]
72%|โโโโโโโโ | 723/1000 [23:30<03:48, 1.21it/s]
72%|โโโโโโโโ | 723/1000 [23:30<03:48, 1.21it/s]
72%|โโโโโโโโ | 724/1000 [23:30<03:36, 1.28it/s]
72%|โโโโโโโโ | 724/1000 [23:30<03:36, 1.28it/s]
72%|โโโโโโโโ | 725/1000 [23:33<06:10, 1.35s/it]
72%|โโโโโโโโ | 725/1000 [23:33<06:10, 1.35s/it]
73%|โโโโโโโโ | 726/1000 [23:40<14:26, 3.16s/it]
73%|โโโโโโโโ | 726/1000 [23:40<14:26, 3.16s/it]
73%|โโโโโโโโ | 727/1000 [23:45<15:42, 3.45s/it]
73%|โโโโโโโโ | 727/1000 [23:45<15:42, 3.45s/it]
73%|โโโโโโโโ | 728/1000 [23:48<15:52, 3.50s/it]
73%|โโโโโโโโ | 728/1000 [23:48<15:52, 3.50s/it]
73%|โโโโโโโโ | 729/1000 [23:52<15:40, 3.47s/it]
73%|โโโโโโโโ | 729/1000 [23:52<15:40, 3.47s/it]
73%|โโโโโโโโ | 730/1000 [23:55<15:11, 3.38s/it]
73%|โโโโโโโโ | 730/1000 [23:55<15:11, 3.38s/it]
73%|โโโโโโโโ | 731/1000 [23:58<14:34, 3.25s/it]
73%|โโโโโโโโ | 731/1000 [23:58<14:34, 3.25s/it]
73%|โโโโโโโโ | 732/1000 [24:00<13:56, 3.12s/it]
73%|โโโโโโโโ | 732/1000 [24:00<13:56, 3.12s/it]
73%|โโโโโโโโ | 733/1000 [24:03<13:29, 3.03s/it]
73%|โโโโโโโโ | 733/1000 [24:03<13:29, 3.03s/it]
73%|โโโโโโโโ | 734/1000 [24:06<12:58, 2.93s/it]
73%|โโโโโโโโ | 734/1000 [24:06<12:58, 2.93s/it]
74%|โโโโโโโโ | 735/1000 [24:08<12:14, 2.77s/it]
74%|โโโโโโโโ | 735/1000 [24:08<12:14, 2.77s/it]
74%|โโโโโโโโ | 736/1000 [24:11<11:41, 2.66s/it]
74%|โโโโโโโโ | 736/1000 [24:11<11:41, 2.66s/it]
74%|โโโโโโโโ | 737/1000 [24:13<11:19, 2.58s/it]
74%|โโโโโโโโ | 737/1000 [24:13<11:19, 2.58s/it]
74%|โโโโโโโโ | 738/1000 [24:15<10:52, 2.49s/it]
74%|โโโโโโโโ | 738/1000 [24:15<10:52, 2.49s/it]
74%|โโโโโโโโ | 739/1000 [24:18<10:22, 2.39s/it]
74%|โโโโโโโโ | 739/1000 [24:18<10:22, 2.39s/it]
74%|โโโโโโโโ | 740/1000 [24:20<10:00, 2.31s/it]
74%|โโโโโโโโ | 740/1000 [24:20<10:00, 2.31s/it]
74%|โโโโโโโโ | 741/1000 [24:22<09:41, 2.25s/it]
74%|โโโโโโโโ | 741/1000 [24:22<09:41, 2.25s/it]
74%|โโโโโโโโ | 742/1000 [24:24<09:27, 2.20s/it]
74%|โโโโโโโโ | 742/1000 [24:24<09:27, 2.20s/it]
74%|โโโโโโโโ | 743/1000 [24:26<09:10, 2.14s/it]
74%|โโโโโโโโ | 743/1000 [24:26<09:10, 2.14s/it]
74%|โโโโโโโโ | 744/1000 [24:28<08:45, 2.05s/it]
74%|โโโโโโโโ | 744/1000 [24:28<08:45, 2.05s/it]
74%|โโโโโโโโ | 745/1000 [24:30<08:22, 1.97s/it]
74%|โโโโโโโโ | 745/1000 [24:30<08:22, 1.97s/it]
75%|โโโโโโโโ | 746/1000 [24:31<08:06, 1.91s/it]
75%|โโโโโโโโ | 746/1000 [24:31<08:06, 1.91s/it]
75%|โโโโโโโโ | 747/1000 [24:33<07:57, 1.89s/it]
75%|โโโโโโโโ | 747/1000 [24:33<07:57, 1.89s/it]
75%|โโโโโโโโ | 748/1000 [24:35<07:47, 1.85s/it]
75%|โโโโโโโโ | 748/1000 [24:35<07:47, 1.85s/it]
75%|โโโโโโโโ | 749/1000 [24:37<07:39, 1.83s/it]
75%|โโโโโโโโ | 749/1000 [24:37<07:39, 1.83s/it]
75%|โโโโโโโโ | 750/1000 [24:38<07:21, 1.77s/it]
75%|โโโโโโโโ | 750/1000 [24:38<07:21, 1.77s/it]
75%|โโโโโโโโ | 751/1000 [24:40<07:00, 1.69s/it]
75%|โโโโโโโโ | 751/1000 [24:40<07:00, 1.69s/it]
75%|โโโโโโโโ | 752/1000 [24:41<06:45, 1.64s/it]
75%|โโโโโโโโ | 752/1000 [24:41<06:45, 1.64s/it]
75%|โโโโโโโโ | 753/1000 [24:43<06:35, 1.60s/it]
75%|โโโโโโโโ | 753/1000 [24:43<06:35, 1.60s/it]
75%|โโโโโโโโ | 754/1000 [24:44<06:27, 1.58s/it]
75%|โโโโโโโโ | 754/1000 [24:44<06:27, 1.58s/it]
76%|โโโโโโโโ | 755/1000 [24:46<06:20, 1.55s/it]
76%|โโโโโโโโ | 755/1000 [24:46<06:20, 1.55s/it]
76%|โโโโโโโโ | 756/1000 [24:47<06:17, 1.55s/it]
76%|โโโโโโโโ | 756/1000 [24:47<06:17, 1.55s/it]
76%|โโโโโโโโ | 757/1000 [24:49<06:13, 1.54s/it]
76%|โโโโโโโโ | 757/1000 [24:49<06:13, 1.54s/it]
76%|โโโโโโโโ | 758/1000 [24:50<05:53, 1.46s/it]
76%|โโโโโโโโ | 758/1000 [24:50<05:53, 1.46s/it]
76%|โโโโโโโโ | 759/1000 [24:51<05:35, 1.39s/it]
76%|โโโโโโโโ | 759/1000 [24:51<05:35, 1.39s/it]
76%|โโโโโโโโ | 760/1000 [24:53<05:23, 1.35s/it]
76%|โโโโโโโโ | 760/1000 [24:53<05:23, 1.35s/it]
76%|โโโโโโโโ | 761/1000 [24:54<05:13, 1.31s/it]
76%|โโโโโโโโ | 761/1000 [24:54<05:13, 1.31s/it]
76%|โโโโโโโโ | 762/1000 [24:55<05:07, 1.29s/it]
76%|โโโโโโโโ | 762/1000 [24:55<05:07, 1.29s/it]
76%|โโโโโโโโ | 763/1000 [24:56<05:01, 1.27s/it]
76%|โโโโโโโโ | 763/1000 [24:56<05:01, 1.27s/it]
76%|โโโโโโโโ | 764/1000 [24:58<04:57, 1.26s/it]
76%|โโโโโโโโ | 764/1000 [24:58<04:57, 1.26s/it]
76%|โโโโโโโโ | 765/1000 [24:59<04:45, 1.21s/it]
76%|โโโโโโโโ | 765/1000 [24:59<04:45, 1.21s/it]
77%|โโโโโโโโ | 766/1000 [25:00<04:25, 1.13s/it]
77%|โโโโโโโโ | 766/1000 [25:00<04:25, 1.13s/it]
77%|โโโโโโโโ | 767/1000 [25:01<04:11, 1.08s/it]
77%|โโโโโโโโ | 767/1000 [25:01<04:11, 1.08s/it]
77%|โโโโโโโโ | 768/1000 [25:02<04:00, 1.04s/it]
77%|โโโโโโโโ | 768/1000 [25:02<04:00, 1.04s/it]
77%|โโโโโโโโ | 769/1000 [25:03<03:55, 1.02s/it]
77%|โโโโโโโโ | 769/1000 [25:03<03:55, 1.02s/it]
77%|โโโโโโโโ | 770/1000 [25:03<03:49, 1.00it/s]
77%|โโโโโโโโ | 770/1000 [25:03<03:49, 1.00it/s]
77%|โโโโโโโโ | 771/1000 [25:04<03:36, 1.06it/s]
77%|โโโโโโโโ | 771/1000 [25:04<03:36, 1.06it/s]
77%|โโโโโโโโ | 772/1000 [25:05<03:18, 1.15it/s]
77%|โโโโโโโโ | 772/1000 [25:05<03:18, 1.15it/s]
77%|โโโโโโโโ | 773/1000 [25:06<03:04, 1.23it/s]
77%|โโโโโโโโ | 773/1000 [25:06<03:04, 1.23it/s]
77%|โโโโโโโโ | 774/1000 [25:06<02:54, 1.29it/s]
77%|โโโโโโโโ | 774/1000 [25:06<02:54, 1.29it/s]
78%|โโโโโโโโ | 775/1000 [25:09<05:04, 1.35s/it]
78%|โโโโโโโโ | 775/1000 [25:09<05:04, 1.35s/it]
78%|โโโโโโโโ | 776/1000 [25:17<12:49, 3.44s/it]
78%|โโโโโโโโ | 776/1000 [25:17<12:49, 3.44s/it]
78%|โโโโโโโโ | 777/1000 [25:22<13:55, 3.75s/it]
78%|โโโโโโโโ | 777/1000 [25:22<13:55, 3.75s/it]
78%|โโโโโโโโ | 778/1000 [25:26<14:09, 3.83s/it]
78%|โโโโโโโโ | 778/1000 [25:26<14:09, 3.83s/it]
78%|โโโโโโโโ | 779/1000 [25:29<13:49, 3.75s/it]
78%|โโโโโโโโ | 779/1000 [25:29<13:49, 3.75s/it]
78%|โโโโโโโโ | 780/1000 [25:33<13:23, 3.65s/it]
78%|โโโโโโโโ | 780/1000 [25:33<13:23, 3.65s/it]
78%|โโโโโโโโ | 781/1000 [25:36<12:44, 3.49s/it]
78%|โโโโโโโโ | 781/1000 [25:36<12:44, 3.49s/it]
78%|โโโโโโโโ | 782/1000 [25:39<12:05, 3.33s/it]
78%|โโโโโโโโ | 782/1000 [25:39<12:05, 3.33s/it]
78%|โโโโโโโโ | 783/1000 [25:42<11:30, 3.18s/it]
78%|โโโโโโโโ | 783/1000 [25:42<11:30, 3.18s/it]
78%|โโโโโโโโ | 784/1000 [25:45<11:02, 3.07s/it]
78%|โโโโโโโโ | 784/1000 [25:45<11:02, 3.07s/it]
78%|โโโโโโโโ | 785/1000 [25:47<10:22, 2.90s/it]
78%|โโโโโโโโ | 785/1000 [25:47<10:22, 2.90s/it]
79%|โโโโโโโโ | 786/1000 [25:49<09:48, 2.75s/it]
79%|โโโโโโโโ | 786/1000 [25:49<09:48, 2.75s/it]
79%|โโโโโโโโ | 787/1000 [25:52<09:22, 2.64s/it]
79%|โโโโโโโโ | 787/1000 [25:52<09:22, 2.64s/it]
79%|โโโโโโโโ | 788/1000 [25:54<08:58, 2.54s/it]
79%|โโโโโโโโ | 788/1000 [25:54<08:58, 2.54s/it]
79%|โโโโโโโโ | 789/1000 [25:56<08:28, 2.41s/it]
79%|โโโโโโโโ | 789/1000 [25:56<08:28, 2.41s/it]
79%|โโโโโโโโ | 790/1000 [25:58<08:07, 2.32s/it]
79%|โโโโโโโโ | 790/1000 [25:58<08:07, 2.32s/it]
79%|โโโโโโโโ | 791/1000 [26:00<07:51, 2.25s/it]
79%|โโโโโโโโ | 791/1000 [26:00<07:51, 2.25s/it]
79%|โโโโโโโโ | 792/1000 [26:03<07:38, 2.20s/it]
79%|โโโโโโโโ | 792/1000 [26:03<07:38, 2.20s/it]
79%|โโโโโโโโ | 793/1000 [26:05<07:27, 2.16s/it]
79%|โโโโโโโโ | 793/1000 [26:05<07:27, 2.16s/it]
79%|โโโโโโโโ | 794/1000 [26:06<07:04, 2.06s/it]
79%|โโโโโโโโ | 794/1000 [26:06<07:04, 2.06s/it]
80%|โโโโโโโโ | 795/1000 [26:08<06:45, 1.98s/it]
80%|โโโโโโโโ | 795/1000 [26:08<06:45, 1.98s/it]
80%|โโโโโโโโ | 796/1000 [26:10<06:30, 1.92s/it]
80%|โโโโโโโโ | 796/1000 [26:10<06:30, 1.92s/it]
80%|โโโโโโโโ | 797/1000 [26:12<06:20, 1.87s/it]
80%|โโโโโโโโ | 797/1000 [26:12<06:20, 1.87s/it]
80%|โโโโโโโโ | 798/1000 [26:14<06:13, 1.85s/it]
80%|โโโโโโโโ | 798/1000 [26:14<06:13, 1.85s/it]
80%|โโโโโโโโ | 799/1000 [26:15<06:07, 1.83s/it]
80%|โโโโโโโโ | 799/1000 [26:15<06:07, 1.83s/it]
80%|โโโโโโโโ | 800/1000 [26:17<05:53, 1.77s/it]
80%|โโโโโโโโ | 800/1000 [26:17<05:53, 1.77s/it]
80%|โโโโโโโโ | 801/1000 [26:18<05:35, 1.69s/it]
80%|โโโโโโโโ | 801/1000 [26:18<05:35, 1.69s/it]
80%|โโโโโโโโ | 802/1000 [26:20<05:22, 1.63s/it]
80%|โโโโโโโโ | 802/1000 [26:20<05:22, 1.63s/it]
80%|โโโโโโโโ | 803/1000 [26:21<05:14, 1.59s/it]
80%|โโโโโโโโ | 803/1000 [26:22<05:14, 1.59s/it]
80%|โโโโโโโโ | 804/1000 [26:23<05:06, 1.57s/it]
80%|โโโโโโโโ | 804/1000 [26:23<05:06, 1.57s/it]
80%|โโโโโโโโ | 805/1000 [26:24<05:02, 1.55s/it]
80%|โโโโโโโโ | 805/1000 [26:25<05:02, 1.55s/it]
81%|โโโโโโโโ | 806/1000 [26:26<04:57, 1.54s/it]
81%|โโโโโโโโ | 806/1000 [26:26<04:57, 1.54s/it]
81%|โโโโโโโโ | 807/1000 [26:28<04:55, 1.53s/it]
81%|โโโโโโโโ | 807/1000 [26:28<04:55, 1.53s/it]
81%|โโโโโโโโ | 808/1000 [26:29<04:50, 1.51s/it]
81%|โโโโโโโโ | 808/1000 [26:29<04:50, 1.51s/it]
81%|โโโโโโโโ | 809/1000 [26:30<04:36, 1.45s/it]
81%|โโโโโโโโ | 809/1000 [26:30<04:36, 1.45s/it]
81%|โโโโโโโโ | 810/1000 [26:32<04:23, 1.39s/it]
81%|โโโโโโโโ | 810/1000 [26:32<04:23, 1.39s/it]
81%|โโโโโโโโ | 811/1000 [26:33<04:15, 1.35s/it]
81%|โโโโโโโโ | 811/1000 [26:33<04:15, 1.35s/it]
81%|โโโโโโโโ | 812/1000 [26:34<04:08, 1.32s/it]
81%|โโโโโโโโ | 812/1000 [26:34<04:08, 1.32s/it]
81%|โโโโโโโโโ | 813/1000 [26:35<04:02, 1.30s/it]
81%|โโโโโโโโโ | 813/1000 [26:35<04:02, 1.30s/it]
81%|โโโโโโโโโ | 814/1000 [26:37<03:57, 1.28s/it]
81%|โโโโโโโโโ | 814/1000 [26:37<03:57, 1.28s/it]
82%|โโโโโโโโโ | 815/1000 [26:38<03:54, 1.26s/it]
82%|โโโโโโโโโ | 815/1000 [26:38<03:54, 1.26s/it]
82%|โโโโโโโโโ | 816/1000 [26:39<03:43, 1.22s/it]
82%|โโโโโโโโโ | 816/1000 [26:39<03:43, 1.22s/it]
82%|โโโโโโโโโ | 817/1000 [26:40<03:27, 1.14s/it]
82%|โโโโโโโโโ | 817/1000 [26:40<03:27, 1.14s/it]
82%|โโโโโโโโโ | 818/1000 [26:41<03:16, 1.08s/it]
82%|โโโโโโโโโ | 818/1000 [26:41<03:16, 1.08s/it]
82%|โโโโโโโโโ | 819/1000 [26:42<03:08, 1.04s/it]
82%|โโโโโโโโโ | 819/1000 [26:42<03:08, 1.04s/it]
82%|โโโโโโโโโ | 820/1000 [26:43<03:02, 1.01s/it]
82%|โโโโโโโโโ | 820/1000 [26:43<03:02, 1.01s/it]
82%|โโโโโโโโโ | 821/1000 [26:44<02:57, 1.01it/s]
82%|โโโโโโโโโ | 821/1000 [26:44<02:57, 1.01it/s]
82%|โโโโโโโโโ | 822/1000 [26:44<02:45, 1.08it/s]
82%|โโโโโโโโโ | 822/1000 [26:44<02:45, 1.08it/s]
82%|โโโโโโโโโ | 823/1000 [26:45<02:31, 1.17it/s]
82%|โโโโโโโโโ | 823/1000 [26:45<02:31, 1.17it/s]
82%|โโโโโโโโโ | 824/1000 [26:46<02:21, 1.24it/s]
82%|โโโโโโโโโ | 824/1000 [26:46<02:21, 1.24it/s]
82%|โโโโโโโโโ | 825/1000 [26:48<04:00, 1.38s/it]
82%|โโโโโโโโโ | 825/1000 [26:48<04:00, 1.38s/it]
83%|โโโโโโโโโ | 826/1000 [26:56<09:29, 3.27s/it]
83%|โโโโโโโโโ | 826/1000 [26:56<09:29, 3.27s/it]
83%|โโโโโโโโโ | 827/1000 [27:00<10:16, 3.56s/it]
83%|โโโโโโโโโ | 827/1000 [27:00<10:16, 3.56s/it]
83%|โโโโโโโโโ | 828/1000 [27:04<10:22, 3.62s/it]
83%|โโโโโโโโโ | 828/1000 [27:04<10:22, 3.62s/it]
83%|โโโโโโโโโ | 829/1000 [27:08<10:06, 3.55s/it]
83%|โโโโโโโโโ | 829/1000 [27:08<10:06, 3.55s/it]
83%|โโโโโโโโโ | 830/1000 [27:11<09:40, 3.41s/it]
83%|โโโโโโโโโ | 830/1000 [27:11<09:40, 3.41s/it]
83%|โโโโโโโโโ | 831/1000 [27:14<09:14, 3.28s/it]
83%|โโโโโโโโโ | 831/1000 [27:14<09:14, 3.28s/it]
83%|โโโโโโโโโ | 832/1000 [27:16<08:44, 3.12s/it]
83%|โโโโโโโโโ | 832/1000 [27:16<08:44, 3.12s/it]
83%|โโโโโโโโโ | 833/1000 [27:19<08:20, 3.00s/it]
83%|โโโโโโโโโ | 833/1000 [27:19<08:20, 3.00s/it]
83%|โโโโโโโโโ | 834/1000 [27:22<07:57, 2.87s/it]
83%|โโโโโโโโโ | 834/1000 [27:22<07:57, 2.87s/it]
84%|โโโโโโโโโ | 835/1000 [27:24<07:31, 2.73s/it]
84%|โโโโโโโโโ | 835/1000 [27:24<07:31, 2.73s/it]
84%|โโโโโโโโโ | 836/1000 [27:26<07:13, 2.64s/it]
84%|โโโโโโโโโ | 836/1000 [27:27<07:13, 2.64s/it]
84%|โโโโโโโโโ | 837/1000 [27:29<06:57, 2.56s/it]
84%|โโโโโโโโโ | 837/1000 [27:29<06:57, 2.56s/it]
84%|โโโโโโโโโ | 838/1000 [27:31<06:34, 2.44s/it]
84%|โโโโโโโโโ | 838/1000 [27:31<06:34, 2.44s/it]
84%|โโโโโโโโโ | 839/1000 [27:33<06:15, 2.34s/it]
84%|โโโโโโโโโ | 839/1000 [27:33<06:15, 2.34s/it]
84%|โโโโโโโโโ | 840/1000 [27:35<06:03, 2.27s/it]
84%|โโโโโโโโโ | 840/1000 [27:35<06:03, 2.27s/it]
84%|โโโโโโโโโ | 841/1000 [27:37<05:52, 2.22s/it]
84%|โโโโโโโโโ | 841/1000 [27:37<05:52, 2.22s/it]
84%|โโโโโโโโโ | 842/1000 [27:39<05:45, 2.19s/it]
84%|โโโโโโโโโ | 842/1000 [27:39<05:45, 2.19s/it]
84%|โโโโโโโโโ | 843/1000 [27:41<05:34, 2.13s/it]
84%|โโโโโโโโโ | 843/1000 [27:41<05:34, 2.13s/it]
84%|โโโโโโโโโ | 844/1000 [27:43<05:16, 2.03s/it]
84%|โโโโโโโโโ | 844/1000 [27:43<05:16, 2.03s/it]
84%|โโโโโโโโโ | 845/1000 [27:45<05:02, 1.95s/it]
84%|โโโโโโโโโ | 845/1000 [27:45<05:02, 1.95s/it]
85%|โโโโโโโโโ | 846/1000 [27:47<04:52, 1.90s/it]
85%|โโโโโโโโโ | 846/1000 [27:47<04:52, 1.90s/it]
85%|โโโโโโโโโ | 847/1000 [27:49<04:45, 1.86s/it]
85%|โโโโโโโโโ | 847/1000 [27:49<04:45, 1.86s/it]
85%|โโโโโโโโโ | 848/1000 [27:50<04:38, 1.83s/it]
85%|โโโโโโโโโ | 848/1000 [27:50<04:38, 1.83s/it]
85%|โโโโโโโโโ | 849/1000 [27:52<04:35, 1.82s/it]
85%|โโโโโโโโโ | 849/1000 [27:52<04:35, 1.82s/it]
85%|โโโโโโโโโ | 850/1000 [27:54<04:26, 1.77s/it]
85%|โโโโโโโโโ | 850/1000 [27:54<04:26, 1.77s/it]
85%|โโโโโโโโโ | 851/1000 [27:55<04:12, 1.69s/it]
85%|โโโโโโโโโ | 851/1000 [27:55<04:12, 1.69s/it]
85%|โโโโโโโโโ | 852/1000 [27:57<04:01, 1.63s/it]
85%|โโโโโโโโโ | 852/1000 [27:57<04:01, 1.63s/it]
85%|โโโโโโโโโ | 853/1000 [27:58<03:54, 1.59s/it]
85%|โโโโโโโโโ | 853/1000 [27:58<03:54, 1.59s/it]
85%|โโโโโโโโโ | 854/1000 [28:00<03:48, 1.57s/it]
85%|โโโโโโโโโ | 854/1000 [28:00<03:48, 1.57s/it]
86%|โโโโโโโโโ | 855/1000 [28:01<03:44, 1.55s/it]
86%|โโโโโโโโโ | 855/1000 [28:01<03:44, 1.55s/it]
86%|โโโโโโโโโ | 856/1000 [28:03<03:41, 1.54s/it]
86%|โโโโโโโโโ | 856/1000 [28:03<03:41, 1.54s/it]
86%|โโโโโโโโโ | 857/1000 [28:04<03:40, 1.54s/it]
86%|โโโโโโโโโ | 857/1000 [28:04<03:40, 1.54s/it]
86%|โโโโโโโโโ | 858/1000 [28:06<03:31, 1.49s/it]
86%|โโโโโโโโโ | 858/1000 [28:06<03:31, 1.49s/it]
86%|โโโโโโโโโ | 859/1000 [28:07<03:19, 1.42s/it]
86%|โโโโโโโโโ | 859/1000 [28:07<03:19, 1.42s/it]
86%|โโโโโโโโโ | 860/1000 [28:08<03:10, 1.36s/it]
86%|โโโโโโโโโ | 860/1000 [28:08<03:10, 1.36s/it]
86%|โโโโโโโโโ | 861/1000 [28:09<03:04, 1.33s/it]
86%|โโโโโโโโโ | 861/1000 [28:09<03:04, 1.33s/it]
86%|โโโโโโโโโ | 862/1000 [28:11<02:59, 1.30s/it]
86%|โโโโโโโโโ | 862/1000 [28:11<02:59, 1.30s/it]
86%|โโโโโโโโโ | 863/1000 [28:12<02:55, 1.28s/it]
86%|โโโโโโโโโ | 863/1000 [28:12<02:55, 1.28s/it]
86%|โโโโโโโโโ | 864/1000 [28:13<02:52, 1.27s/it]
86%|โโโโโโโโโ | 864/1000 [28:13<02:52, 1.27s/it]
86%|โโโโโโโโโ | 865/1000 [28:14<02:49, 1.26s/it]
86%|โโโโโโโโโ | 865/1000 [28:14<02:49, 1.26s/it]
87%|โโโโโโโโโ | 866/1000 [28:15<02:41, 1.21s/it]
87%|โโโโโโโโโ | 866/1000 [28:15<02:41, 1.21s/it]
87%|โโโโโโโโโ | 867/1000 [28:16<02:29, 1.13s/it]
87%|โโโโโโโโโ | 867/1000 [28:16<02:29, 1.13s/it]
87%|โโโโโโโโโ | 868/1000 [28:17<02:21, 1.07s/it]
87%|โโโโโโโโโ | 868/1000 [28:17<02:21, 1.07s/it]
87%|โโโโโโโโโ | 869/1000 [28:18<02:15, 1.03s/it]
87%|โโโโโโโโโ | 869/1000 [28:18<02:15, 1.03s/it]
87%|โโโโโโโโโ | 870/1000 [28:19<02:10, 1.01s/it]
87%|โโโโโโโโโ | 870/1000 [28:19<02:10, 1.01s/it]
87%|โโโโโโโโโ | 871/1000 [28:20<02:07, 1.01it/s]
87%|โโโโโโโโโ | 871/1000 [28:20<02:07, 1.01it/s]
87%|โโโโโโโโโ | 872/1000 [28:21<02:00, 1.06it/s]
87%|โโโโโโโโโ | 872/1000 [28:21<02:00, 1.06it/s]
87%|โโโโโโโโโ | 873/1000 [28:22<01:49, 1.16it/s]
87%|โโโโโโโโโ | 873/1000 [28:22<01:49, 1.16it/s]
87%|โโโโโโโโโ | 874/1000 [28:22<01:41, 1.24it/s]
87%|โโโโโโโโโ | 874/1000 [28:22<01:41, 1.24it/s]
88%|โโโโโโโโโ | 875/1000 [28:25<02:48, 1.35s/it]
88%|โโโโโโโโโ | 875/1000 [28:25<02:48, 1.35s/it]
88%|โโโโโโโโโ | 876/1000 [28:32<06:07, 2.97s/it]
88%|โโโโโโโโโ | 876/1000 [28:32<06:07, 2.97s/it]
88%|โโโโโโโโโ | 877/1000 [28:36<06:55, 3.38s/it]
88%|โโโโโโโโโ | 877/1000 [28:36<06:55, 3.38s/it]
88%|โโโโโโโโโ | 878/1000 [28:40<07:05, 3.48s/it]
88%|โโโโโโโโโ | 878/1000 [28:40<07:05, 3.48s/it]
88%|โโโโโโโโโ | 879/1000 [28:43<06:58, 3.46s/it]
88%|โโโโโโโโโ | 879/1000 [28:43<06:58, 3.46s/it]
88%|โโโโโโโโโ | 880/1000 [28:46<06:46, 3.39s/it]
88%|โโโโโโโโโ | 880/1000 [28:46<06:46, 3.39s/it]
88%|โโโโโโโโโ | 881/1000 [28:49<06:28, 3.26s/it]
88%|โโโโโโโโโ | 881/1000 [28:49<06:28, 3.26s/it]
88%|โโโโโโโโโ | 882/1000 [28:52<06:09, 3.13s/it]
88%|โโโโโโโโโ | 882/1000 [28:52<06:09, 3.13s/it]
88%|โโโโโโโโโ | 883/1000 [28:55<05:51, 3.01s/it]
88%|โโโโโโโโโ | 883/1000 [28:55<05:51, 3.01s/it]
88%|โโโโโโโโโ | 884/1000 [28:58<05:33, 2.88s/it]
88%|โโโโโโโโโ | 884/1000 [28:58<05:33, 2.88s/it]
88%|โโโโโโโโโ | 885/1000 [29:00<05:14, 2.73s/it]
88%|โโโโโโโโโ | 885/1000 [29:00<05:14, 2.73s/it]
89%|โโโโโโโโโ | 886/1000 [29:02<05:00, 2.64s/it]
89%|โโโโโโโโโ | 886/1000 [29:02<05:00, 2.64s/it]
89%|โโโโโโโโโ | 887/1000 [29:05<04:50, 2.57s/it]
89%|โโโโโโโโโ | 887/1000 [29:05<04:50, 2.57s/it]
89%|โโโโโโโโโ | 888/1000 [29:07<04:33, 2.45s/it]
89%|โโโโโโโโโ | 888/1000 [29:07<04:33, 2.45s/it]
89%|โโโโโโโโโ | 889/1000 [29:09<04:19, 2.34s/it]
89%|โโโโโโโโโ | 889/1000 [29:09<04:19, 2.34s/it]
89%|โโโโโโโโโ | 890/1000 [29:11<04:08, 2.26s/it]
89%|โโโโโโโโโ | 890/1000 [29:11<04:08, 2.26s/it]
89%|โโโโโโโโโ | 891/1000 [29:13<04:01, 2.21s/it]
89%|โโโโโโโโโ | 891/1000 [29:13<04:01, 2.21s/it]
89%|โโโโโโโโโ | 892/1000 [29:15<03:54, 2.17s/it]
89%|โโโโโโโโโ | 892/1000 [29:15<03:54, 2.17s/it]
89%|โโโโโโโโโ | 893/1000 [29:17<03:42, 2.08s/it]
89%|โโโโโโโโโ | 893/1000 [29:17<03:42, 2.08s/it]
89%|โโโโโโโโโ | 894/1000 [29:19<03:31, 1.99s/it]
89%|โโโโโโโโโ | 894/1000 [29:19<03:31, 1.99s/it]
90%|โโโโโโโโโ | 895/1000 [29:21<03:22, 1.93s/it]
90%|โโโโโโโโโ | 895/1000 [29:21<03:22, 1.93s/it]
90%|โโโโโโโโโ | 896/1000 [29:22<03:15, 1.88s/it]
90%|โโโโโโโโโ | 896/1000 [29:22<03:15, 1.88s/it]
90%|โโโโโโโโโ | 897/1000 [29:24<03:11, 1.86s/it]
90%|โโโโโโโโโ | 897/1000 [29:24<03:11, 1.86s/it]
90%|โโโโโโโโโ | 898/1000 [29:26<03:06, 1.83s/it]
90%|โโโโโโโโโ | 898/1000 [29:26<03:06, 1.83s/it]
90%|โโโโโโโโโ | 899/1000 [29:28<03:01, 1.80s/it]
90%|โโโโโโโโโ | 899/1000 [29:28<03:01, 1.80s/it]
90%|โโโโโโโโโ | 900/1000 [29:29<02:52, 1.73s/it]
90%|โโโโโโโโโ | 900/1000 [29:29<02:52, 1.73s/it]
90%|โโโโโโโโโ | 901/1000 [29:31<02:44, 1.67s/it]
90%|โโโโโโโโโ | 901/1000 [29:31<02:44, 1.67s/it]
90%|โโโโโโโโโ | 902/1000 [29:32<02:39, 1.63s/it]
90%|โโโโโโโโโ | 902/1000 [29:32<02:39, 1.63s/it]
90%|โโโโโโโโโ | 903/1000 [29:34<02:34, 1.60s/it]
90%|โโโโโโโโโ | 903/1000 [29:34<02:34, 1.60s/it]
90%|โโโโโโโโโ | 904/1000 [29:35<02:30, 1.57s/it]
90%|โโโโโโโโโ | 904/1000 [29:35<02:30, 1.57s/it]
90%|โโโโโโโโโ | 905/1000 [29:37<02:27, 1.56s/it]
90%|โโโโโโโโโ | 905/1000 [29:37<02:27, 1.56s/it]
91%|โโโโโโโโโ | 906/1000 [29:38<02:24, 1.54s/it]
91%|โโโโโโโโโ | 906/1000 [29:38<02:24, 1.54s/it]
91%|โโโโโโโโโ | 907/1000 [29:40<02:21, 1.52s/it]
91%|โโโโโโโโโ | 907/1000 [29:40<02:21, 1.52s/it]
91%|โโโโโโโโโ | 908/1000 [29:41<02:13, 1.45s/it]
91%|โโโโโโโโโ | 908/1000 [29:41<02:13, 1.45s/it]
91%|โโโโโโโโโ | 909/1000 [29:42<02:06, 1.39s/it]
91%|โโโโโโโโโ | 909/1000 [29:42<02:06, 1.39s/it]
91%|โโโโโโโโโ | 910/1000 [29:44<02:01, 1.35s/it]
91%|โโโโโโโโโ | 910/1000 [29:44<02:01, 1.35s/it]
91%|โโโโโโโโโ | 911/1000 [29:45<01:57, 1.32s/it]
91%|โโโโโโโโโ | 911/1000 [29:45<01:57, 1.32s/it]
91%|โโโโโโโโโ | 912/1000 [29:46<01:54, 1.30s/it]
91%|โโโโโโโโโ | 912/1000 [29:46<01:54, 1.30s/it]
91%|โโโโโโโโโโ| 913/1000 [29:47<01:51, 1.28s/it]
91%|โโโโโโโโโโ| 913/1000 [29:47<01:51, 1.28s/it]
91%|โโโโโโโโโโ| 914/1000 [29:49<01:48, 1.26s/it]
91%|โโโโโโโโโโ| 914/1000 [29:49<01:48, 1.26s/it]
92%|โโโโโโโโโโ| 915/1000 [29:50<01:40, 1.18s/it]
92%|โโโโโโโโโโ| 915/1000 [29:50<01:40, 1.18s/it]
92%|โโโโโโโโโโ| 916/1000 [29:51<01:33, 1.11s/it]
92%|โโโโโโโโโโ| 916/1000 [29:51<01:33, 1.11s/it]
92%|โโโโโโโโโโ| 917/1000 [29:52<01:28, 1.06s/it]
92%|โโโโโโโโโโ| 917/1000 [29:52<01:28, 1.06s/it]
92%|โโโโโโโโโโ| 918/1000 [29:53<01:24, 1.03s/it]
92%|โโโโโโโโโโ| 918/1000 [29:53<01:24, 1.03s/it]
92%|โโโโโโโโโโ| 919/1000 [29:53<01:20, 1.00it/s]
92%|โโโโโโโโโโ| 919/1000 [29:53<01:20, 1.00it/s]
92%|โโโโโโโโโโ| 920/1000 [29:54<01:18, 1.02it/s]
92%|โโโโโโโโโโ| 920/1000 [29:54<01:18, 1.02it/s]
92%|โโโโโโโโโโ| 921/1000 [29:55<01:16, 1.03it/s]
92%|โโโโโโโโโโ| 921/1000 [29:55<01:16, 1.03it/s]
92%|โโโโโโโโโโ| 922/1000 [29:56<01:11, 1.09it/s]
92%|โโโโโโโโโโ| 922/1000 [29:56<01:11, 1.09it/s]
92%|โโโโโโโโโโ| 923/1000 [29:57<01:05, 1.18it/s]
92%|โโโโโโโโโโ| 923/1000 [29:57<01:05, 1.18it/s]
92%|โโโโโโโโโโ| 924/1000 [29:57<01:00, 1.25it/s]
92%|โโโโโโโโโโ| 924/1000 [29:58<01:00, 1.25it/s]
92%|โโโโโโโโโโ| 925/1000 [30:00<01:39, 1.32s/it]
92%|โโโโโโโโโโ| 925/1000 [30:00<01:39, 1.32s/it]
93%|โโโโโโโโโโ| 926/1000 [30:07<03:32, 2.87s/it]
93%|โโโโโโโโโโ| 926/1000 [30:07<03:32, 2.87s/it]
93%|โโโโโโโโโโ| 927/1000 [30:11<04:04, 3.36s/it]
93%|โโโโโโโโโโ| 927/1000 [30:11<04:04, 3.36s/it]
93%|โโโโโโโโโโ| 928/1000 [30:15<04:15, 3.55s/it]
93%|โโโโโโโโโโ| 928/1000 [30:15<04:15, 3.55s/it]
93%|โโโโโโโโโโ| 929/1000 [30:19<04:11, 3.55s/it]
93%|โโโโโโโโโโ| 929/1000 [30:19<04:11, 3.55s/it]
93%|โโโโโโโโโโ| 930/1000 [30:22<04:01, 3.46s/it]
93%|โโโโโโโโโโ| 930/1000 [30:22<04:01, 3.46s/it]
93%|โโโโโโโโโโ| 931/1000 [30:25<03:49, 3.32s/it]
93%|โโโโโโโโโโ| 931/1000 [30:25<03:49, 3.32s/it]
93%|โโโโโโโโโโ| 932/1000 [30:28<03:38, 3.21s/it]
93%|โโโโโโโโโโ| 932/1000 [30:28<03:38, 3.21s/it]
93%|โโโโโโโโโโ| 933/1000 [30:31<03:26, 3.09s/it]
93%|โโโโโโโโโโ| 933/1000 [30:31<03:26, 3.09s/it]
93%|โโโโโโโโโโ| 934/1000 [30:33<03:16, 2.98s/it]
93%|โโโโโโโโโโ| 934/1000 [30:33<03:16, 2.98s/it]
94%|โโโโโโโโโโ| 935/1000 [30:36<03:05, 2.85s/it]
94%|โโโโโโโโโโ| 935/1000 [30:36<03:05, 2.85s/it]
94%|โโโโโโโโโโ| 936/1000 [30:38<02:53, 2.71s/it]
94%|โโโโโโโโโโ| 936/1000 [30:38<02:53, 2.71s/it]
94%|โโโโโโโโโโ| 937/1000 [30:41<02:44, 2.60s/it]
94%|โโโโโโโโโโ| 937/1000 [30:41<02:44, 2.60s/it]
94%|โโโโโโโโโโ| 938/1000 [30:43<02:32, 2.47s/it]
94%|โโโโโโโโโโ| 938/1000 [30:43<02:32, 2.47s/it]
94%|โโโโโโโโโโ| 939/1000 [30:45<02:23, 2.36s/it]
94%|โโโโโโโโโโ| 939/1000 [30:45<02:23, 2.36s/it]
94%|โโโโโโโโโโ| 940/1000 [30:47<02:17, 2.29s/it]
94%|โโโโโโโโโโ| 940/1000 [30:47<02:17, 2.29s/it]
94%|โโโโโโโโโโ| 941/1000 [30:49<02:11, 2.23s/it]
94%|โโโโโโโโโโ| 941/1000 [30:49<02:11, 2.23s/it]
94%|โโโโโโโโโโ| 942/1000 [30:51<02:06, 2.18s/it]
94%|โโโโโโโโโโ| 942/1000 [30:51<02:06, 2.18s/it]
94%|โโโโโโโโโโ| 943/1000 [30:53<01:58, 2.08s/it]
94%|โโโโโโโโโโ| 943/1000 [30:53<01:58, 2.08s/it]
94%|โโโโโโโโโโ| 944/1000 [30:55<01:51, 1.99s/it]
94%|โโโโโโโโโโ| 944/1000 [30:55<01:51, 1.99s/it]
94%|โโโโโโโโโโ| 945/1000 [30:56<01:45, 1.92s/it]
94%|โโโโโโโโโโ| 945/1000 [30:57<01:45, 1.92s/it]
95%|โโโโโโโโโโ| 946/1000 [30:58<01:41, 1.88s/it]
95%|โโโโโโโโโโ| 946/1000 [30:58<01:41, 1.88s/it]
95%|โโโโโโโโโโ| 947/1000 [31:00<01:38, 1.86s/it]
95%|โโโโโโโโโโ| 947/1000 [31:00<01:38, 1.86s/it]
95%|โโโโโโโโโโ| 948/1000 [31:02<01:35, 1.84s/it]
95%|โโโโโโโโโโ| 948/1000 [31:02<01:35, 1.84s/it]
95%|โโโโโโโโโโ| 949/1000 [31:04<01:32, 1.82s/it]
95%|โโโโโโโโโโ| 949/1000 [31:04<01:32, 1.82s/it]
95%|โโโโโโโโโโ| 950/1000 [31:05<01:29, 1.78s/it]
95%|โโโโโโโโโโ| 950/1000 [31:05<01:29, 1.78s/it]
95%|โโโโโโโโโโ| 951/1000 [31:07<01:23, 1.70s/it]
95%|โโโโโโโโโโ| 951/1000 [31:07<01:23, 1.70s/it]
95%|โโโโโโโโโโ| 952/1000 [31:08<01:18, 1.64s/it]
95%|โโโโโโโโโโ| 952/1000 [31:08<01:18, 1.64s/it]
95%|โโโโโโโโโโ| 953/1000 [31:10<01:15, 1.61s/it]
95%|โโโโโโโโโโ| 953/1000 [31:10<01:15, 1.61s/it]
95%|โโโโโโโโโโ| 954/1000 [31:11<01:12, 1.58s/it]
95%|โโโโโโโโโโ| 954/1000 [31:11<01:12, 1.58s/it]
96%|โโโโโโโโโโ| 955/1000 [31:13<01:10, 1.56s/it]
96%|โโโโโโโโโโ| 955/1000 [31:13<01:10, 1.56s/it]
96%|โโโโโโโโโโ| 956/1000 [31:14<01:08, 1.55s/it]
96%|โโโโโโโโโโ| 956/1000 [31:14<01:08, 1.55s/it]
96%|โโโโโโโโโโ| 957/1000 [31:16<01:06, 1.54s/it]
96%|โโโโโโโโโโ| 957/1000 [31:16<01:06, 1.54s/it]
96%|โโโโโโโโโโ| 958/1000 [31:17<01:02, 1.49s/it]
96%|โโโโโโโโโโ| 958/1000 [31:17<01:02, 1.49s/it]
96%|โโโโโโโโโโ| 959/1000 [31:19<00:58, 1.42s/it]
96%|โโโโโโโโโโ| 959/1000 [31:19<00:58, 1.42s/it]
96%|โโโโโโโโโโ| 960/1000 [31:20<00:54, 1.37s/it]
96%|โโโโโโโโโโ| 960/1000 [31:20<00:54, 1.37s/it]
96%|โโโโโโโโโโ| 961/1000 [31:21<00:51, 1.33s/it]
96%|โโโโโโโโโโ| 961/1000 [31:21<00:51, 1.33s/it]
96%|โโโโโโโโโโ| 962/1000 [31:22<00:49, 1.30s/it]
96%|โโโโโโโโโโ| 962/1000 [31:22<00:49, 1.30s/it]
96%|โโโโโโโโโโ| 963/1000 [31:24<00:47, 1.28s/it]
96%|โโโโโโโโโโ| 963/1000 [31:24<00:47, 1.28s/it]
96%|โโโโโโโโโโ| 964/1000 [31:25<00:45, 1.27s/it]
96%|โโโโโโโโโโ| 964/1000 [31:25<00:45, 1.27s/it]
96%|โโโโโโโโโโ| 965/1000 [31:26<00:44, 1.26s/it]
96%|โโโโโโโโโโ| 965/1000 [31:26<00:44, 1.26s/it]
97%|โโโโโโโโโโ| 966/1000 [31:27<00:41, 1.21s/it]
97%|โโโโโโโโโโ| 966/1000 [31:27<00:41, 1.21s/it]
97%|โโโโโโโโโโ| 967/1000 [31:28<00:37, 1.13s/it]
97%|โโโโโโโโโโ| 967/1000 [31:28<00:37, 1.13s/it]
97%|โโโโโโโโโโ| 968/1000 [31:29<00:34, 1.08s/it]
97%|โโโโโโโโโโ| 968/1000 [31:29<00:34, 1.08s/it]
97%|โโโโโโโโโโ| 969/1000 [31:30<00:32, 1.04s/it]
97%|โโโโโโโโโโ| 969/1000 [31:30<00:32, 1.04s/it]
97%|โโโโโโโโโโ| 970/1000 [31:31<00:30, 1.01s/it]
97%|โโโโโโโโโโ| 970/1000 [31:31<00:30, 1.01s/it]
97%|โโโโโโโโโโ| 971/1000 [31:32<00:28, 1.01it/s]
97%|โโโโโโโโโโ| 971/1000 [31:32<00:28, 1.01it/s]
97%|โโโโโโโโโโ| 972/1000 [31:33<00:26, 1.08it/s]
97%|โโโโโโโโโโ| 972/1000 [31:33<00:26, 1.08it/s]
97%|โโโโโโโโโโ| 973/1000 [31:33<00:23, 1.17it/s]
97%|โโโโโโโโโโ| 973/1000 [31:33<00:23, 1.17it/s]
97%|โโโโโโโโโโ| 974/1000 [31:34<00:20, 1.25it/s]
97%|โโโโโโโโโโ| 974/1000 [31:34<00:20, 1.25it/s]
98%|โโโโโโโโโโ| 975/1000 [31:37<00:33, 1.35s/it]
98%|โโโโโโโโโโ| 975/1000 [31:37<00:33, 1.35s/it]
98%|โโโโโโโโโโ| 976/1000 [31:44<01:14, 3.09s/it]
98%|โโโโโโโโโโ| 976/1000 [31:44<01:14, 3.09s/it]
98%|โโโโโโโโโโ| 977/1000 [31:48<01:17, 3.38s/it]
98%|โโโโโโโโโโ| 977/1000 [31:48<01:17, 3.38s/it]
98%|โโโโโโโโโโ| 978/1000 [31:52<01:16, 3.49s/it]
98%|โโโโโโโโโโ| 978/1000 [31:52<01:16, 3.49s/it]
98%|โโโโโโโโโโ| 979/1000 [31:55<01:12, 3.46s/it]
98%|โโโโโโโโโโ| 979/1000 [31:55<01:12, 3.46s/it]
98%|โโโโโโโโโโ| 980/1000 [31:58<01:06, 3.35s/it]
98%|โโโโโโโโโโ| 980/1000 [31:58<01:06, 3.35s/it]
98%|โโโโโโโโโโ| 981/1000 [32:01<01:00, 3.21s/it]
98%|โโโโโโโโโโ| 981/1000 [32:01<01:00, 3.21s/it]
98%|โโโโโโโโโโ| 982/1000 [32:04<00:55, 3.06s/it]
98%|โโโโโโโโโโ| 982/1000 [32:04<00:55, 3.06s/it]
98%|โโโโโโโโโโ| 983/1000 [32:06<00:50, 2.96s/it]
98%|โโโโโโโโโโ| 983/1000 [32:06<00:50, 2.96s/it]
98%|โโโโโโโโโโ| 984/1000 [32:09<00:44, 2.81s/it]
98%|โโโโโโโโโโ| 984/1000 [32:09<00:44, 2.81s/it]
98%|โโโโโโโโโโ| 985/1000 [32:11<00:40, 2.69s/it]
98%|โโโโโโโโโโ| 985/1000 [32:11<00:40, 2.69s/it]
99%|โโโโโโโโโโ| 986/1000 [32:14<00:36, 2.60s/it]
99%|โโโโโโโโโโ| 986/1000 [32:14<00:36, 2.60s/it]
99%|โโโโโโโโโโ| 987/1000 [32:16<00:32, 2.50s/it]
99%|โโโโโโโโโโ| 987/1000 [32:16<00:32, 2.50s/it]
99%|โโโโโโโโโโ| 988/1000 [32:18<00:28, 2.38s/it]
99%|โโโโโโโโโโ| 988/1000 [32:18<00:28, 2.38s/it]
99%|โโโโโโโโโโ| 989/1000 [32:20<00:25, 2.30s/it]
99%|โโโโโโโโโโ| 989/1000 [32:20<00:25, 2.30s/it]
99%|โโโโโโโโโโ| 990/1000 [32:22<00:22, 2.24s/it]
99%|โโโโโโโโโโ| 990/1000 [32:22<00:22, 2.24s/it]
99%|โโโโโโโโโโ| 991/1000 [32:24<00:19, 2.20s/it]
99%|โโโโโโโโโโ| 991/1000 [32:24<00:19, 2.20s/it]
99%|โโโโโโโโโโ| 992/1000 [32:26<00:17, 2.15s/it]
99%|โโโโโโโโโโ| 992/1000 [32:26<00:17, 2.15s/it]
99%|โโโโโโโโโโ| 993/1000 [32:28<00:14, 2.06s/it]
99%|โโโโโโโโโโ| 993/1000 [32:28<00:14, 2.06s/it]
99%|โโโโโโโโโโ| 994/1000 [32:30<00:11, 1.97s/it]
99%|โโโโโโโโโโ| 994/1000 [32:30<00:11, 1.97s/it]
100%|โโโโโโโโโโ| 995/1000 [32:32<00:09, 1.92s/it]
100%|โโโโโโโโโโ| 995/1000 [32:32<00:09, 1.92s/it]
100%|โโโโโโโโโโ| 996/1000 [32:34<00:07, 1.87s/it]
100%|โโโโโโโโโโ| 996/1000 [32:34<00:07, 1.87s/it]
100%|โโโโโโโโโโ| 997/1000 [32:35<00:05, 1.86s/it]
100%|โโโโโโโโโโ| 997/1000 [32:35<00:05, 1.86s/it]
100%|โโโโโโโโโโ| 998/1000 [32:37<00:03, 1.84s/it]
100%|โโโโโโโโโโ| 998/1000 [32:37<00:03, 1.84s/it]
100%|โโโโโโโโโโ| 999/1000 [32:39<00:01, 1.79s/it]
100%|โโโโโโโโโโ| 999/1000 [32:39<00:01, 1.79s/it]
100%|โโโโโโโโโโ| 1000/1000 [32:40<00:00, 1.71s/it]
100%|โโโโโโโโโโ| 1000/1000 [32:40<00:00, 1.71s/it]{'loss': 65.7309, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
{'loss': 40.497, 'grad_norm': 19.42571258544922, 'learning_rate': 1.2e-06, 'epoch': 0.0}
{'loss': 36.2325, 'grad_norm': 20.210697174072266, 'learning_rate': 2.4e-06, 'epoch': 0.0}
{'loss': 27.9292, 'grad_norm': 11.6329984664917, 'learning_rate': 3.6e-06, 'epoch': 0.01}
{'loss': 27.8415, 'grad_norm': nan, 'learning_rate': 3.6e-06, 'epoch': 0.01}
{'loss': 28.3299, 'grad_norm': 13.364580154418945, 'learning_rate': 4.8e-06, 'epoch': 0.01}
{'loss': 28.7461, 'grad_norm': 12.661221504211426, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.01}
{'loss': 26.408, 'grad_norm': 11.256682395935059, 'learning_rate': 7.2e-06, 'epoch': 0.01}
{'loss': 23.0338, 'grad_norm': 10.342412948608398, 'learning_rate': 8.4e-06, 'epoch': 0.01}
{'loss': 25.8441, 'grad_norm': 10.92248249053955, 'learning_rate': 9.6e-06, 'epoch': 0.02}
{'loss': 24.947, 'grad_norm': 13.47874927520752, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.02}
{'loss': 24.6028, 'grad_norm': 10.545361518859863, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.02}
{'loss': 23.1144, 'grad_norm': 10.622969627380371, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.02}
{'loss': 23.0048, 'grad_norm': 11.04262638092041, 'learning_rate': 1.44e-05, 'epoch': 0.02}
{'loss': 22.1154, 'grad_norm': 10.24647045135498, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.02}
{'loss': 20.9556, 'grad_norm': 10.284615516662598, 'learning_rate': 1.68e-05, 'epoch': 0.03}
{'loss': 20.0034, 'grad_norm': 10.44240665435791, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.03}
{'loss': 20.0539, 'grad_norm': 10.120248794555664, 'learning_rate': 1.92e-05, 'epoch': 0.03}
{'loss': 23.2292, 'grad_norm': 12.67894458770752, 'learning_rate': 2.04e-05, 'epoch': 0.03}
{'loss': 20.6365, 'grad_norm': 10.929566383361816, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.03}
{'loss': 19.693, 'grad_norm': 11.65320873260498, 'learning_rate': 2.28e-05, 'epoch': 0.03}
{'loss': 22.1247, 'grad_norm': 13.149592399597168, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.04}
{'loss': 20.4746, 'grad_norm': 11.752509117126465, 'learning_rate': 2.52e-05, 'epoch': 0.04}
{'loss': 20.3509, 'grad_norm': 11.824477195739746, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.04}
{'loss': 21.0099, 'grad_norm': 12.82703971862793, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.04}
{'loss': 22.1527, 'grad_norm': 13.987628936767578, 'learning_rate': 2.88e-05, 'epoch': 0.04}
{'loss': 18.2953, 'grad_norm': 11.758602142333984, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.04}
{'loss': 22.904, 'grad_norm': 15.787925720214844, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.04}
{'loss': 20.2212, 'grad_norm': 14.345751762390137, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.05}
{'loss': 18.9764, 'grad_norm': 14.07507610321045, 'learning_rate': 3.36e-05, 'epoch': 0.05}
{'loss': 20.2486, 'grad_norm': 15.66192626953125, 'learning_rate': 3.48e-05, 'epoch': 0.05}
{'loss': 19.9455, 'grad_norm': 16.461139678955078, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.05}
{'loss': 21.1121, 'grad_norm': 28.457700729370117, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.05}
{'loss': 17.0574, 'grad_norm': 14.533676147460938, 'learning_rate': 3.84e-05, 'epoch': 0.05}
{'loss': 18.3383, 'grad_norm': 16.640933990478516, 'learning_rate': 3.96e-05, 'epoch': 0.06}
{'loss': 18.5058, 'grad_norm': 18.039518356323242, 'learning_rate': 4.08e-05, 'epoch': 0.06}
{'loss': 18.7482, 'grad_norm': 19.170076370239258, 'learning_rate': 4.2e-05, 'epoch': 0.06}
{'loss': 17.9028, 'grad_norm': 19.731523513793945, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.06}
{'loss': 17.9833, 'grad_norm': 22.30010986328125, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.06}
{'loss': 19.6469, 'grad_norm': 24.492427825927734, 'learning_rate': 4.56e-05, 'epoch': 0.06}
{'loss': 20.8223, 'grad_norm': 28.03135871887207, 'learning_rate': 4.68e-05, 'epoch': 0.07}
{'loss': 19.3428, 'grad_norm': 30.625825881958008, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.07}
{'loss': 19.125, 'grad_norm': 27.889801025390625, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.07}
{'loss': 18.7656, 'grad_norm': 28.31003761291504, 'learning_rate': 5.04e-05, 'epoch': 0.07}
{'loss': 19.0239, 'grad_norm': 30.75078773498535, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.07}
{'loss': 16.077, 'grad_norm': 25.573904037475586, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.07}
{'loss': 15.6551, 'grad_norm': 26.403629302978516, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.08}
{'loss': 17.9349, 'grad_norm': 34.77074432373047, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.08}
{'loss': 16.1467, 'grad_norm': 32.53125762939453, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.08}
{'loss': 13.7483, 'grad_norm': 27.667991638183594, 'learning_rate': 5.76e-05, 'epoch': 0.08}
{'loss': 30.8331, 'grad_norm': nan, 'learning_rate': 5.76e-05, 'epoch': 0.08}
{'loss': 26.5489, 'grad_norm': 88.7335433959961, 'learning_rate': 5.88e-05, 'epoch': 0.08}
{'loss': 27.1984, 'grad_norm': inf, 'learning_rate': 5.88e-05, 'epoch': 0.08}
{'loss': 18.4646, 'grad_norm': 50.00898361206055, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.09}
{'loss': 23.2742, 'grad_norm': nan, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.09}
{'loss': 15.4118, 'grad_norm': 45.58051300048828, 'learning_rate': 6.12e-05, 'epoch': 0.09}
{'loss': 20.4728, 'grad_norm': 72.71048736572266, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.09}
{'loss': 13.7603, 'grad_norm': 43.05719757080078, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.09}
{'loss': 12.9296, 'grad_norm': 44.19600296020508, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.09}
{'loss': 13.0066, 'grad_norm': 48.14889907836914, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.1}
{'loss': 13.5834, 'grad_norm': 54.60736846923828, 'learning_rate': 6.72e-05, 'epoch': 0.1}
{'loss': 10.8262, 'grad_norm': 43.944976806640625, 'learning_rate': 6.84e-05, 'epoch': 0.1}
{'loss': 10.2533, 'grad_norm': 43.75444030761719, 'learning_rate': 6.96e-05, 'epoch': 0.1}
{'loss': 9.3517, 'grad_norm': 40.64162063598633, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.1}
{'loss': 8.3473, 'grad_norm': 36.59080123901367, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.1}
{'loss': 8.9377, 'grad_norm': 44.07314682006836, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.11}
{'loss': 8.1454, 'grad_norm': 40.354000091552734, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.11}
{'loss': 7.5611, 'grad_norm': 36.78390121459961, 'learning_rate': 7.56e-05, 'epoch': 0.11}
{'loss': 7.0082, 'grad_norm': 33.47190475463867, 'learning_rate': 7.68e-05, 'epoch': 0.11}
{'loss': 6.8164, 'grad_norm': 32.52763366699219, 'learning_rate': 7.8e-05, 'epoch': 0.11}
{'loss': 6.245, 'grad_norm': 27.902698516845703, 'learning_rate': 7.92e-05, 'epoch': 0.11}
{'loss': 5.9886, 'grad_norm': 25.859025955200195, 'learning_rate': 8.04e-05, 'epoch': 0.12}
{'loss': 5.6987, 'grad_norm': 23.116735458374023, 'learning_rate': 8.16e-05, 'epoch': 0.12}
{'loss': 5.469, 'grad_norm': 19.784141540527344, 'learning_rate': 8.28e-05, 'epoch': 0.12}
{'loss': 5.3807, 'grad_norm': 18.456439971923828, 'learning_rate': 8.4e-05, 'epoch': 0.12}
{'loss': 5.0843, 'grad_norm': 13.152323722839355, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.12}
{'loss': 4.9951, 'grad_norm': 11.37484073638916, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.12}
{'loss': 5.0817, 'grad_norm': 11.618866920471191, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.12}
{'loss': 4.7628, 'grad_norm': 4.811398506164551, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.13}
{'loss': 4.7883, 'grad_norm': 5.922330856323242, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.13}
{'loss': 4.6528, 'grad_norm': 3.48164439201355, 'learning_rate': 9.12e-05, 'epoch': 0.13}
{'loss': 4.7193, 'grad_norm': 3.9609415531158447, 'learning_rate': 9.24e-05, 'epoch': 0.13}
{'loss': 4.5918, 'grad_norm': 4.551467418670654, 'learning_rate': 9.36e-05, 'epoch': 0.13}
{'loss': 4.6079, 'grad_norm': 3.0752663612365723, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.13}
{'loss': 4.4719, 'grad_norm': 3.7670302391052246, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.14}
{'loss': 4.4442, 'grad_norm': 3.8517978191375732, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.14}
{'loss': 4.4187, 'grad_norm': 2.6793251037597656, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.14}
{'loss': 4.3228, 'grad_norm': 2.919692039489746, 'learning_rate': 9.96e-05, 'epoch': 0.14}
{'loss': 4.2273, 'grad_norm': 2.4879136085510254, 'learning_rate': 0.0001008, 'epoch': 0.14}
{'loss': 4.1794, 'grad_norm': 2.8601455688476562, 'learning_rate': 0.000102, 'epoch': 0.14}
{'loss': 4.1889, 'grad_norm': 2.2963764667510986, 'learning_rate': 0.00010319999999999999, 'epoch': 0.15}
{'loss': 4.1709, 'grad_norm': 2.424469470977783, 'learning_rate': 0.00010439999999999999, 'epoch': 0.15}
{'loss': 4.1143, 'grad_norm': 1.8539401292800903, 'learning_rate': 0.00010559999999999998, 'epoch': 0.15}
{'loss': 4.1241, 'grad_norm': 1.346832513809204, 'learning_rate': 0.00010679999999999998, 'epoch': 0.15}
{'loss': 4.1348, 'grad_norm': 4.990406513214111, 'learning_rate': 0.00010799999999999998, 'epoch': 0.15}
{'loss': 4.0334, 'grad_norm': 2.1883411407470703, 'learning_rate': 0.00010919999999999998, 'epoch': 0.15}
{'loss': 4.1032, 'grad_norm': 2.394371509552002, 'learning_rate': 0.00011039999999999999, 'epoch': 0.16}
{'loss': 4.0986, 'grad_norm': 3.461583137512207, 'learning_rate': 0.00011159999999999999, 'epoch': 0.16}
{'loss': 4.0866, 'grad_norm': 2.766143560409546, 'learning_rate': 0.00011279999999999999, 'epoch': 0.16}
{'loss': 4.1731, 'grad_norm': 2.3883440494537354, 'learning_rate': 0.00011399999999999999, 'epoch': 0.16}
{'loss': 4.7046, 'grad_norm': 34.70329284667969, 'learning_rate': 0.0001152, 'epoch': 0.16}
{'loss': 4.0301, 'grad_norm': 10.834431648254395, 'learning_rate': 0.0001164, 'epoch': 0.16}
{'loss': 3.977, 'grad_norm': 8.418821334838867, 'learning_rate': 0.0001176, 'epoch': 0.16}
{'loss': 4.2047, 'grad_norm': 38.16987609863281, 'learning_rate': 0.0001188, 'epoch': 0.17}
{'loss': 3.9206, 'grad_norm': 2.9158382415771484, 'learning_rate': 0.00011999999999999999, 'epoch': 0.17}
{'loss': 3.8968, 'grad_norm': 1.6959060430526733, 'learning_rate': 0.00012119999999999999, 'epoch': 0.17}
{'loss': 3.9406, 'grad_norm': 0.9792259931564331, 'learning_rate': 0.0001224, 'epoch': 0.17}
{'loss': 3.8285, 'grad_norm': 3.0793938636779785, 'learning_rate': 0.0001236, 'epoch': 0.17}
{'loss': 3.826, 'grad_norm': 2.328721523284912, 'learning_rate': 0.00012479999999999997, 'epoch': 0.17}
{'loss': 3.8307, 'grad_norm': 2.0931191444396973, 'learning_rate': 0.00012599999999999997, 'epoch': 0.18}
{'loss': 3.8271, 'grad_norm': 0.8303073048591614, 'learning_rate': 0.00012719999999999997, 'epoch': 0.18}
{'loss': 3.785, 'grad_norm': 1.1904187202453613, 'learning_rate': 0.00012839999999999998, 'epoch': 0.18}
{'loss': 3.8386, 'grad_norm': 2.81880521774292, 'learning_rate': 0.00012959999999999998, 'epoch': 0.18}
{'loss': 3.8023, 'grad_norm': 1.530828833580017, 'learning_rate': 0.00013079999999999998, 'epoch': 0.18}
{'loss': 3.7904, 'grad_norm': 0.5159357786178589, 'learning_rate': 0.00013199999999999998, 'epoch': 0.18}
{'loss': 3.7615, 'grad_norm': 0.9115888476371765, 'learning_rate': 0.00013319999999999999, 'epoch': 0.19}
{'loss': 3.8158, 'grad_norm': 0.6996227502822876, 'learning_rate': 0.0001344, 'epoch': 0.19}
{'loss': 3.7404, 'grad_norm': 1.4346143007278442, 'learning_rate': 0.0001356, 'epoch': 0.19}
{'loss': 3.8989, 'grad_norm': 4.567806243896484, 'learning_rate': 0.0001368, 'epoch': 0.19}
{'loss': 3.7637, 'grad_norm': 2.4977810382843018, 'learning_rate': 0.000138, 'epoch': 0.19}
{'loss': 3.8816, 'grad_norm': 2.513010025024414, 'learning_rate': 0.0001392, 'epoch': 0.19}
{'loss': 3.7574, 'grad_norm': 2.067622661590576, 'learning_rate': 0.0001404, 'epoch': 0.2}
{'loss': 3.7346, 'grad_norm': 1.2072046995162964, 'learning_rate': 0.00014159999999999997, 'epoch': 0.2}
{'loss': 3.7583, 'grad_norm': 1.798423171043396, 'learning_rate': 0.00014279999999999997, 'epoch': 0.2}
{'loss': 3.7742, 'grad_norm': 1.2921236753463745, 'learning_rate': 0.00014399999999999998, 'epoch': 0.2}
{'loss': 3.8338, 'grad_norm': 5.594722747802734, 'learning_rate': 0.00014519999999999998, 'epoch': 0.2}
{'loss': 3.8055, 'grad_norm': 2.1912341117858887, 'learning_rate': 0.00014639999999999998, 'epoch': 0.2}
{'loss': 3.7557, 'grad_norm': 0.649720311164856, 'learning_rate': 0.00014759999999999998, 'epoch': 0.2}
{'loss': 3.7957, 'grad_norm': 1.1442673206329346, 'learning_rate': 0.00014879999999999998, 'epoch': 0.21}
{'loss': 3.7563, 'grad_norm': 1.6905125379562378, 'learning_rate': 0.00015, 'epoch': 0.21}
{'loss': 3.7466, 'grad_norm': 0.8160539269447327, 'learning_rate': 0.0001512, 'epoch': 0.21}
{'loss': 3.7962, 'grad_norm': 3.6465601921081543, 'learning_rate': 0.0001524, 'epoch': 0.21}
{'loss': 3.8113, 'grad_norm': 3.571312427520752, 'learning_rate': 0.0001536, 'epoch': 0.21}
{'loss': 3.8144, 'grad_norm': 3.5956647396087646, 'learning_rate': 0.0001548, 'epoch': 0.21}
{'loss': 3.7434, 'grad_norm': 1.7279173135757446, 'learning_rate': 0.000156, 'epoch': 0.22}
{'loss': 3.8826, 'grad_norm': 2.2562472820281982, 'learning_rate': 0.0001572, 'epoch': 0.22}
{'loss': 3.7794, 'grad_norm': 2.880986452102661, 'learning_rate': 0.0001584, 'epoch': 0.22}
{'loss': 3.9253, 'grad_norm': 1.1631349325180054, 'learning_rate': 0.0001596, 'epoch': 0.22}
{'loss': 3.7968, 'grad_norm': 1.680976152420044, 'learning_rate': 0.0001608, 'epoch': 0.22}
{'loss': 3.7905, 'grad_norm': 2.4712533950805664, 'learning_rate': 0.000162, 'epoch': 0.22}
{'loss': 3.7511, 'grad_norm': 2.6224172115325928, 'learning_rate': 0.0001632, 'epoch': 0.23}
{'loss': 3.875, 'grad_norm': 4.977555751800537, 'learning_rate': 0.0001644, 'epoch': 0.23}
{'loss': 3.8867, 'grad_norm': 6.903820991516113, 'learning_rate': 0.0001656, 'epoch': 0.23}
{'loss': 3.7438, 'grad_norm': 1.4294692277908325, 'learning_rate': 0.0001668, 'epoch': 0.23}
{'loss': 3.7809, 'grad_norm': 1.941949486732483, 'learning_rate': 0.000168, 'epoch': 0.23}
{'loss': 3.781, 'grad_norm': 3.570338487625122, 'learning_rate': 0.00016919999999999997, 'epoch': 0.23}
{'loss': 3.8269, 'grad_norm': 3.1902639865875244, 'learning_rate': 0.00017039999999999997, 'epoch': 0.24}
{'loss': 3.8133, 'grad_norm': 1.6526689529418945, 'learning_rate': 0.00017159999999999997, 'epoch': 0.24}
{'loss': 3.8751, 'grad_norm': 1.6518597602844238, 'learning_rate': 0.00017279999999999997, 'epoch': 0.24}
{'loss': 3.9036, 'grad_norm': 1.4060251712799072, 'learning_rate': 0.00017399999999999997, 'epoch': 0.24}
{'loss': 5.0266, 'grad_norm': 37.37709045410156, 'learning_rate': 0.00017519999999999998, 'epoch': 0.24}
{'loss': 3.963, 'grad_norm': 10.845247268676758, 'learning_rate': 0.00017639999999999998, 'epoch': 0.24}
{'loss': 3.9461, 'grad_norm': 6.687464237213135, 'learning_rate': 0.00017759999999999998, 'epoch': 0.24}
{'loss': 3.8473, 'grad_norm': 3.423074722290039, 'learning_rate': 0.00017879999999999998, 'epoch': 0.25}
{'loss': 4.0021, 'grad_norm': 4.235264778137207, 'learning_rate': 0.00017999999999999998, 'epoch': 0.25}
{'loss': 3.8892, 'grad_norm': 8.198822975158691, 'learning_rate': 0.00018119999999999999, 'epoch': 0.25}
{'loss': 3.9602, 'grad_norm': 9.825005531311035, 'learning_rate': 0.0001824, 'epoch': 0.25}
{'loss': 4.0213, 'grad_norm': 10.15653133392334, 'learning_rate': 0.0001836, 'epoch': 0.25}
{'loss': 4.0269, 'grad_norm': 9.970484733581543, 'learning_rate': 0.0001848, 'epoch': 0.25}
{'loss': 3.9019, 'grad_norm': 9.361249923706055, 'learning_rate': 0.000186, 'epoch': 0.26}
{'loss': 3.836, 'grad_norm': 7.055674076080322, 'learning_rate': 0.0001872, 'epoch': 0.26}
{'loss': 3.7777, 'grad_norm': 3.7005224227905273, 'learning_rate': 0.00018839999999999997, 'epoch': 0.26}
{'loss': 3.7756, 'grad_norm': 0.9284306168556213, 'learning_rate': 0.00018959999999999997, 'epoch': 0.26}
{'loss': 3.7814, 'grad_norm': 5.12371826171875, 'learning_rate': 0.00019079999999999998, 'epoch': 0.26}
{'loss': 3.8955, 'grad_norm': 9.114039421081543, 'learning_rate': 0.00019199999999999998, 'epoch': 0.26}
{'loss': 3.8841, 'grad_norm': 10.933822631835938, 'learning_rate': 0.00019319999999999998, 'epoch': 0.27}
{'loss': 3.8668, 'grad_norm': 8.974702835083008, 'learning_rate': 0.00019439999999999998, 'epoch': 0.27}
{'loss': 3.7561, 'grad_norm': 5.263654708862305, 'learning_rate': 0.00019559999999999998, 'epoch': 0.27}
{'loss': 4.0137, 'grad_norm': 10.367670059204102, 'learning_rate': 0.00019679999999999999, 'epoch': 0.27}
{'loss': 3.7523, 'grad_norm': 0.8031744360923767, 'learning_rate': 0.000198, 'epoch': 0.27}
{'loss': 3.7377, 'grad_norm': 1.581931233406067, 'learning_rate': 0.0001992, 'epoch': 0.27}
{'loss': 3.8019, 'grad_norm': 2.675785779953003, 'learning_rate': 0.0002004, 'epoch': 0.28}
{'loss': 3.7245, 'grad_norm': 3.0185678005218506, 'learning_rate': 0.0002016, 'epoch': 0.28}
{'loss': 3.7876, 'grad_norm': 2.201415538787842, 'learning_rate': 0.0002028, 'epoch': 0.28}
{'loss': 3.7508, 'grad_norm': 0.9955088496208191, 'learning_rate': 0.000204, 'epoch': 0.28}
{'loss': 3.6977, 'grad_norm': 0.9591023325920105, 'learning_rate': 0.0002052, 'epoch': 0.28}
{'loss': 3.7276, 'grad_norm': 2.9556283950805664, 'learning_rate': 0.00020639999999999998, 'epoch': 0.28}
{'loss': 3.7144, 'grad_norm': 3.5213005542755127, 'learning_rate': 0.00020759999999999998, 'epoch': 0.28}
{'loss': 3.7934, 'grad_norm': 7.510404109954834, 'learning_rate': 0.00020879999999999998, 'epoch': 0.29}
{'loss': 3.7563, 'grad_norm': 4.38034725189209, 'learning_rate': 0.00020999999999999998, 'epoch': 0.29}
{'loss': 3.7318, 'grad_norm': 2.290154218673706, 'learning_rate': 0.00021119999999999996, 'epoch': 0.29}
{'loss': 3.7221, 'grad_norm': 0.9388060569763184, 'learning_rate': 0.00021239999999999996, 'epoch': 0.29}
{'loss': 3.7479, 'grad_norm': 1.7844797372817993, 'learning_rate': 0.00021359999999999996, 'epoch': 0.29}
{'loss': 3.7539, 'grad_norm': 4.551971912384033, 'learning_rate': 0.00021479999999999996, 'epoch': 0.29}
{'loss': 3.7915, 'grad_norm': 2.2757790088653564, 'learning_rate': 0.00021599999999999996, 'epoch': 0.3}
{'loss': 3.7599, 'grad_norm': 2.8511180877685547, 'learning_rate': 0.00021719999999999997, 'epoch': 0.3}
{'loss': 3.8157, 'grad_norm': 1.2191888093948364, 'learning_rate': 0.00021839999999999997, 'epoch': 0.3}
{'loss': 3.7314, 'grad_norm': 1.2050197124481201, 'learning_rate': 0.00021959999999999997, 'epoch': 0.3}
{'loss': 3.6884, 'grad_norm': 2.7236626148223877, 'learning_rate': 0.00022079999999999997, 'epoch': 0.3}
{'loss': 3.8017, 'grad_norm': 5.043910980224609, 'learning_rate': 0.00022199999999999998, 'epoch': 0.3}
{'loss': 3.7758, 'grad_norm': 3.8614418506622314, 'learning_rate': 0.00022319999999999998, 'epoch': 0.31}
{'loss': 3.7547, 'grad_norm': 1.1346452236175537, 'learning_rate': 0.00022439999999999998, 'epoch': 0.31}
{'loss': 3.753, 'grad_norm': 1.0689696073532104, 'learning_rate': 0.00022559999999999998, 'epoch': 0.31}
{'loss': 3.7695, 'grad_norm': 0.8435825109481812, 'learning_rate': 0.00022679999999999998, 'epoch': 0.31}
{'loss': 3.7443, 'grad_norm': 3.1550614833831787, 'learning_rate': 0.00022799999999999999, 'epoch': 0.31}
{'loss': 3.744, 'grad_norm': 1.395892858505249, 'learning_rate': 0.0002292, 'epoch': 0.31}
{'loss': 3.7178, 'grad_norm': 1.396396517753601, 'learning_rate': 0.0002304, 'epoch': 0.32}
{'loss': 3.7936, 'grad_norm': 2.3831560611724854, 'learning_rate': 0.0002316, 'epoch': 0.32}
{'loss': 3.8456, 'grad_norm': 1.0550271272659302, 'learning_rate': 0.0002328, 'epoch': 0.32}
{'loss': 4.0069, 'grad_norm': nan, 'learning_rate': 0.0002328, 'epoch': 0.32}
{'loss': 5.1383, 'grad_norm': 33.41340637207031, 'learning_rate': 0.000234, 'epoch': 0.32}
{'loss': 3.9097, 'grad_norm': 7.806170463562012, 'learning_rate': 0.0002352, 'epoch': 0.32}
{'loss': 4.1741, 'grad_norm': 14.041966438293457, 'learning_rate': 0.0002364, 'epoch': 0.32}
{'loss': 3.7813, 'grad_norm': 3.9741554260253906, 'learning_rate': 0.0002376, 'epoch': 0.33}
{'loss': 3.8102, 'grad_norm': 4.545853614807129, 'learning_rate': 0.0002388, 'epoch': 0.33}
{'loss': 3.9618, 'grad_norm': 1.390458583831787, 'learning_rate': 0.00023999999999999998, 'epoch': 0.33}
{'loss': 3.7913, 'grad_norm': 4.107555389404297, 'learning_rate': 0.00024119999999999998, 'epoch': 0.33}
{'loss': 3.7686, 'grad_norm': 5.0071001052856445, 'learning_rate': 0.00024239999999999998, 'epoch': 0.33}
{'loss': 3.7878, 'grad_norm': 1.4023362398147583, 'learning_rate': 0.00024359999999999999, 'epoch': 0.33}
{'loss': 3.7219, 'grad_norm': 1.8946585655212402, 'learning_rate': 0.0002448, 'epoch': 0.34}
{'loss': 3.8243, 'grad_norm': 6.606730937957764, 'learning_rate': 0.00024599999999999996, 'epoch': 0.34}
{'loss': 3.7834, 'grad_norm': 6.040172576904297, 'learning_rate': 0.0002472, 'epoch': 0.34}
{'loss': 3.641, 'grad_norm': 2.071228504180908, 'learning_rate': 0.00024839999999999997, 'epoch': 0.34}
{'loss': 3.6105, 'grad_norm': 1.3428393602371216, 'learning_rate': 0.00024959999999999994, 'epoch': 0.34}
{'loss': 3.6217, 'grad_norm': 0.787800669670105, 'learning_rate': 0.00025079999999999997, 'epoch': 0.34}
{'loss': 3.7114, 'grad_norm': 2.0004360675811768, 'learning_rate': 0.00025199999999999995, 'epoch': 0.35}
{'loss': 3.6323, 'grad_norm': 1.195417046546936, 'learning_rate': 0.0002532, 'epoch': 0.35}
{'loss': 3.5889, 'grad_norm': 1.0387095212936401, 'learning_rate': 0.00025439999999999995, 'epoch': 0.35}
{'loss': 3.655, 'grad_norm': 2.781135082244873, 'learning_rate': 0.0002556, 'epoch': 0.35}
{'loss': 3.5095, 'grad_norm': 1.7965943813323975, 'learning_rate': 0.00025679999999999995, 'epoch': 0.35}
{'loss': 3.4822, 'grad_norm': 1.3385984897613525, 'learning_rate': 0.000258, 'epoch': 0.35}
{'loss': 3.5514, 'grad_norm': 0.9003497958183289, 'learning_rate': 0.00025919999999999996, 'epoch': 0.36}
{'loss': 3.5991, 'grad_norm': 2.133894681930542, 'learning_rate': 0.0002604, 'epoch': 0.36}
{'loss': 3.5298, 'grad_norm': 2.850198268890381, 'learning_rate': 0.00026159999999999996, 'epoch': 0.36}
{'loss': 3.523, 'grad_norm': 2.5526442527770996, 'learning_rate': 0.0002628, 'epoch': 0.36}
{'loss': 3.4451, 'grad_norm': 1.144463062286377, 'learning_rate': 0.00026399999999999997, 'epoch': 0.36}
{'loss': 3.4878, 'grad_norm': 2.455634593963623, 'learning_rate': 0.0002652, 'epoch': 0.36}
{'loss': 3.4994, 'grad_norm': 3.2465641498565674, 'learning_rate': 0.00026639999999999997, 'epoch': 0.36}
{'loss': 3.6165, 'grad_norm': 5.939897060394287, 'learning_rate': 0.0002676, 'epoch': 0.37}
{'loss': 3.435, 'grad_norm': 1.3382649421691895, 'learning_rate': 0.0002688, 'epoch': 0.37}
{'loss': 3.3932, 'grad_norm': 2.1053507328033447, 'learning_rate': 0.00027, 'epoch': 0.37}
{'loss': 3.3735, 'grad_norm': 2.439821243286133, 'learning_rate': 0.0002712, 'epoch': 0.37}
{'loss': 3.4748, 'grad_norm': 2.1407806873321533, 'learning_rate': 0.0002724, 'epoch': 0.37}
{'loss': 3.4818, 'grad_norm': 1.0282739400863647, 'learning_rate': 0.0002736, 'epoch': 0.37}
{'loss': 3.2369, 'grad_norm': 2.0128676891326904, 'learning_rate': 0.0002748, 'epoch': 0.38}
{'loss': 3.276, 'grad_norm': 1.8852875232696533, 'learning_rate': 0.000276, 'epoch': 0.38}
{'loss': 3.1211, 'grad_norm': 2.1389763355255127, 'learning_rate': 0.0002772, 'epoch': 0.38}
{'loss': 3.264, 'grad_norm': 0.9285290837287903, 'learning_rate': 0.0002784, 'epoch': 0.38}
{'loss': 3.1274, 'grad_norm': 1.0446114540100098, 'learning_rate': 0.00027959999999999997, 'epoch': 0.38}
{'loss': 3.1724, 'grad_norm': 1.0576235055923462, 'learning_rate': 0.0002808, 'epoch': 0.38}
{'loss': 3.1182, 'grad_norm': 1.1633328199386597, 'learning_rate': 0.00028199999999999997, 'epoch': 0.39}
{'loss': 3.2078, 'grad_norm': 1.1700071096420288, 'learning_rate': 0.00028319999999999994, 'epoch': 0.39}
{'loss': 3.031, 'grad_norm': 1.20949125289917, 'learning_rate': 0.0002844, 'epoch': 0.39}
{'loss': 3.1169, 'grad_norm': 1.5069172382354736, 'learning_rate': 0.00028559999999999995, 'epoch': 0.39}
{'loss': 3.548, 'grad_norm': 5.52088737487793, 'learning_rate': 0.0002868, 'epoch': 0.39}
{'loss': 2.9713, 'grad_norm': 2.012521505355835, 'learning_rate': 0.00028799999999999995, 'epoch': 0.39}
{'loss': 3.1009, 'grad_norm': 1.2430109977722168, 'learning_rate': 0.0002892, 'epoch': 0.4}
{'loss': 3.0908, 'grad_norm': 2.175598621368408, 'learning_rate': 0.00029039999999999996, 'epoch': 0.4}
{'loss': 3.1309, 'grad_norm': 1.7490752935409546, 'learning_rate': 0.0002916, 'epoch': 0.4}
{'loss': 3.4149, 'grad_norm': 2.675246477127075, 'learning_rate': 0.00029279999999999996, 'epoch': 0.4}
{'loss': 7.3776, 'grad_norm': 67.86805725097656, 'learning_rate': 0.000294, 'epoch': 0.4}
{'loss': 3.4882, 'grad_norm': 14.589703559875488, 'learning_rate': 0.00029519999999999997, 'epoch': 0.4}
{'loss': 3.1488, 'grad_norm': 7.9796528816223145, 'learning_rate': 0.0002964, 'epoch': 0.4}
{'loss': 2.877, 'grad_norm': 3.0207479000091553, 'learning_rate': 0.00029759999999999997, 'epoch': 0.41}
{'loss': 2.9563, 'grad_norm': 2.367036819458008, 'learning_rate': 0.0002988, 'epoch': 0.41}
{'loss': 2.954, 'grad_norm': 3.7514734268188477, 'learning_rate': 0.0003, 'epoch': 0.41}
{'loss': 2.8172, 'grad_norm': 4.1485185623168945, 'learning_rate': 0.00030119999999999995, 'epoch': 0.41}
{'loss': 2.9282, 'grad_norm': 1.7835866212844849, 'learning_rate': 0.0003024, 'epoch': 0.41}
{'loss': 2.5845, 'grad_norm': 1.942415714263916, 'learning_rate': 0.00030359999999999995, 'epoch': 0.41}
{'loss': 2.5646, 'grad_norm': 5.2271647453308105, 'learning_rate': 0.0003048, 'epoch': 0.42}
{'loss': 2.7103, 'grad_norm': 6.962810516357422, 'learning_rate': 0.00030599999999999996, 'epoch': 0.42}
{'loss': 2.423, 'grad_norm': 5.135075569152832, 'learning_rate': 0.0003072, 'epoch': 0.42}
{'loss': 2.8392, 'grad_norm': 8.863642692565918, 'learning_rate': 0.00030839999999999996, 'epoch': 0.42}
{'loss': 2.4988, 'grad_norm': 3.3374407291412354, 'learning_rate': 0.0003096, 'epoch': 0.42}
{'loss': 2.3518, 'grad_norm': 1.1783090829849243, 'learning_rate': 0.00031079999999999997, 'epoch': 0.42}
{'loss': 2.2305, 'grad_norm': 1.9863837957382202, 'learning_rate': 0.000312, 'epoch': 0.43}
{'loss': 2.074, 'grad_norm': 2.0679221153259277, 'learning_rate': 0.00031319999999999997, 'epoch': 0.43}
{'loss': 2.2423, 'grad_norm': 1.0884628295898438, 'learning_rate': 0.0003144, 'epoch': 0.43}
{'loss': 2.2729, 'grad_norm': 1.5065993070602417, 'learning_rate': 0.0003156, 'epoch': 0.43}
{'loss': 2.0671, 'grad_norm': 3.6157784461975098, 'learning_rate': 0.0003168, 'epoch': 0.43}
{'loss': 2.068, 'grad_norm': 2.7996487617492676, 'learning_rate': 0.000318, 'epoch': 0.43}
{'loss': 2.2638, 'grad_norm': 2.879556179046631, 'learning_rate': 0.0003192, 'epoch': 0.44}
{'loss': 2.3935, 'grad_norm': 2.203124523162842, 'learning_rate': 0.0003204, 'epoch': 0.44}
{'loss': 2.011, 'grad_norm': 1.6067564487457275, 'learning_rate': 0.0003216, 'epoch': 0.44}
{'loss': 2.0908, 'grad_norm': 1.5974482297897339, 'learning_rate': 0.0003228, 'epoch': 0.44}
{'loss': 2.274, 'grad_norm': 1.0055814981460571, 'learning_rate': 0.000324, 'epoch': 0.44}
{'loss': 2.3729, 'grad_norm': 2.469381332397461, 'learning_rate': 0.0003252, 'epoch': 0.44}
{'loss': 2.5572, 'grad_norm': 3.0898544788360596, 'learning_rate': 0.0003264, 'epoch': 0.44}
{'loss': 2.0441, 'grad_norm': 2.4572532176971436, 'learning_rate': 0.0003276, 'epoch': 0.45}
{'loss': 2.4606, 'grad_norm': 1.1149117946624756, 'learning_rate': 0.0003288, 'epoch': 0.45}
{'loss': 1.9802, 'grad_norm': 1.2347513437271118, 'learning_rate': 0.00033, 'epoch': 0.45}
{'loss': 2.0375, 'grad_norm': 0.9329550862312317, 'learning_rate': 0.0003312, 'epoch': 0.45}
{'loss': 1.9136, 'grad_norm': 1.0154274702072144, 'learning_rate': 0.0003324, 'epoch': 0.45}
{'loss': 1.9651, 'grad_norm': 1.4999691247940063, 'learning_rate': 0.0003336, 'epoch': 0.45}
{'loss': 2.2576, 'grad_norm': 2.7222843170166016, 'learning_rate': 0.0003348, 'epoch': 0.46}
{'loss': 2.5305, 'grad_norm': 3.6237800121307373, 'learning_rate': 0.000336, 'epoch': 0.46}
{'loss': 2.0296, 'grad_norm': 1.117451786994934, 'learning_rate': 0.0003372, 'epoch': 0.46}
{'loss': 1.7895, 'grad_norm': 1.1448254585266113, 'learning_rate': 0.00033839999999999993, 'epoch': 0.46}
{'loss': 2.1357, 'grad_norm': 2.2782580852508545, 'learning_rate': 0.00033959999999999996, 'epoch': 0.46}
{'loss': 2.0516, 'grad_norm': 1.6750726699829102, 'learning_rate': 0.00034079999999999994, 'epoch': 0.46}
{'loss': 2.3526, 'grad_norm': 1.2394545078277588, 'learning_rate': 0.00034199999999999996, 'epoch': 0.47}
{'loss': 1.6459, 'grad_norm': 1.8539354801177979, 'learning_rate': 0.00034319999999999994, 'epoch': 0.47}
{'loss': 1.8823, 'grad_norm': 2.4915544986724854, 'learning_rate': 0.00034439999999999997, 'epoch': 0.47}
{'loss': 2.3253, 'grad_norm': 3.2931063175201416, 'learning_rate': 0.00034559999999999994, 'epoch': 0.47}
{'loss': 2.1961, 'grad_norm': 1.839165449142456, 'learning_rate': 0.0003467999999999999, 'epoch': 0.47}
{'loss': 2.1387, 'grad_norm': 1.942629098892212, 'learning_rate': 0.00034799999999999995, 'epoch': 0.47}
{'loss': 2.3971, 'grad_norm': 3.1105213165283203, 'learning_rate': 0.0003491999999999999, 'epoch': 0.48}
{'loss': 2.3519, 'grad_norm': 4.102758407592773, 'learning_rate': 0.00035039999999999995, 'epoch': 0.48}
{'loss': 2.3328, 'grad_norm': 1.9071604013442993, 'learning_rate': 0.0003515999999999999, 'epoch': 0.48}
{'loss': 2.7772, 'grad_norm': 2.1007919311523438, 'learning_rate': 0.00035279999999999996, 'epoch': 0.48}
{'loss': 3.5737, 'grad_norm': 16.104711532592773, 'learning_rate': 0.00035399999999999993, 'epoch': 0.48}
{'loss': 2.6921, 'grad_norm': 7.038409233093262, 'learning_rate': 0.00035519999999999996, 'epoch': 0.48}
{'loss': 1.8049, 'grad_norm': 1.6274710893630981, 'learning_rate': 0.00035639999999999994, 'epoch': 0.48}
{'loss': 2.3663, 'grad_norm': 2.712127923965454, 'learning_rate': 0.00035759999999999996, 'epoch': 0.49}
{'loss': 2.0543, 'grad_norm': 2.4220919609069824, 'learning_rate': 0.00035879999999999994, 'epoch': 0.49}
{'loss': 2.0634, 'grad_norm': 4.0067291259765625, 'learning_rate': 0.00035999999999999997, 'epoch': 0.49}
{'loss': 2.3239, 'grad_norm': 3.2753944396972656, 'learning_rate': 0.00036119999999999994, 'epoch': 0.49}
{'loss': 1.7574, 'grad_norm': 2.2122488021850586, 'learning_rate': 0.00036239999999999997, 'epoch': 0.49}
{'loss': 2.0192, 'grad_norm': 1.5825291872024536, 'learning_rate': 0.00036359999999999995, 'epoch': 0.49}
{'loss': 1.9231, 'grad_norm': 2.8736724853515625, 'learning_rate': 0.0003648, 'epoch': 0.5}
{'loss': 1.5975, 'grad_norm': 2.250493288040161, 'learning_rate': 0.00036599999999999995, 'epoch': 0.5}
{'loss': 1.8792, 'grad_norm': 2.5043630599975586, 'learning_rate': 0.0003672, 'epoch': 0.5}
{'loss': 1.7717, 'grad_norm': 0.8661364912986755, 'learning_rate': 0.00036839999999999996, 'epoch': 0.5}
{'loss': 1.5281, 'grad_norm': 0.8577361702919006, 'learning_rate': 0.0003696, 'epoch': 0.5}
{'loss': 1.628, 'grad_norm': 1.055830478668213, 'learning_rate': 0.00037079999999999996, 'epoch': 0.5}
{'loss': 1.4602, 'grad_norm': 1.0024993419647217, 'learning_rate': 0.000372, 'epoch': 0.51}
{'loss': 1.8524, 'grad_norm': 0.9780610203742981, 'learning_rate': 0.00037319999999999996, 'epoch': 0.51}
{'loss': 2.0074, 'grad_norm': 1.4789562225341797, 'learning_rate': 0.0003744, 'epoch': 0.51}
{'loss': 1.2627, 'grad_norm': 0.8723859786987305, 'learning_rate': 0.00037559999999999997, 'epoch': 0.51}
{'loss': 1.9843, 'grad_norm': 1.3482846021652222, 'learning_rate': 0.00037679999999999994, 'epoch': 0.51}
{'loss': 1.6801, 'grad_norm': 0.9912565350532532, 'learning_rate': 0.00037799999999999997, 'epoch': 0.51}
{'loss': 1.9071, 'grad_norm': 1.0150072574615479, 'learning_rate': 0.00037919999999999995, 'epoch': 0.52}
{'loss': 1.8058, 'grad_norm': 1.704774260520935, 'learning_rate': 0.0003804, 'epoch': 0.52}
{'loss': 1.8745, 'grad_norm': 0.9451725482940674, 'learning_rate': 0.00038159999999999995, 'epoch': 0.52}
{'loss': 1.5741, 'grad_norm': 0.9761624336242676, 'learning_rate': 0.0003828, 'epoch': 0.52}
{'loss': 1.3833, 'grad_norm': 1.4582504034042358, 'learning_rate': 0.00038399999999999996, 'epoch': 0.52}
{'loss': 1.5075, 'grad_norm': 1.1197179555892944, 'learning_rate': 0.0003852, 'epoch': 0.52}
{'loss': 1.4607, 'grad_norm': 0.9969186186790466, 'learning_rate': 0.00038639999999999996, 'epoch': 0.52}
{'loss': 1.6644, 'grad_norm': 1.349977970123291, 'learning_rate': 0.0003876, 'epoch': 0.53}
{'loss': 1.6294, 'grad_norm': 1.314611792564392, 'learning_rate': 0.00038879999999999996, 'epoch': 0.53}
{'loss': 1.6681, 'grad_norm': 1.257775068283081, 'learning_rate': 0.00039, 'epoch': 0.53}
{'loss': 1.6958, 'grad_norm': 1.4171950817108154, 'learning_rate': 0.00039119999999999997, 'epoch': 0.53}
{'loss': 1.4356, 'grad_norm': 1.1131385564804077, 'learning_rate': 0.0003924, 'epoch': 0.53}
{'loss': 1.8862, 'grad_norm': 1.3538260459899902, 'learning_rate': 0.00039359999999999997, 'epoch': 0.53}
{'loss': 1.151, 'grad_norm': 1.371056079864502, 'learning_rate': 0.0003948, 'epoch': 0.54}
{'loss': 1.6071, 'grad_norm': 1.915818691253662, 'learning_rate': 0.000396, 'epoch': 0.54}
{'loss': 1.634, 'grad_norm': 1.0851808786392212, 'learning_rate': 0.0003972, 'epoch': 0.54}
{'loss': 1.6541, 'grad_norm': 1.4100474119186401, 'learning_rate': 0.0003984, 'epoch': 0.54}
{'loss': 1.5271, 'grad_norm': 1.3158091306686401, 'learning_rate': 0.0003996, 'epoch': 0.54}
{'loss': 1.2765, 'grad_norm': 1.1614930629730225, 'learning_rate': 0.0004008, 'epoch': 0.54}
{'loss': 1.7856, 'grad_norm': 1.33802330493927, 'learning_rate': 0.000402, 'epoch': 0.55}
{'loss': 2.2085, 'grad_norm': 5.562392234802246, 'learning_rate': 0.0004032, 'epoch': 0.55}
{'loss': 1.5976, 'grad_norm': 1.9968953132629395, 'learning_rate': 0.0004044, 'epoch': 0.55}
{'loss': 1.8008, 'grad_norm': 1.8027876615524292, 'learning_rate': 0.0004056, 'epoch': 0.55}
{'loss': 1.6538, 'grad_norm': 1.254902958869934, 'learning_rate': 0.00040679999999999997, 'epoch': 0.55}
{'loss': 1.9169, 'grad_norm': 1.9276193380355835, 'learning_rate': 0.000408, 'epoch': 0.55}
{'loss': 2.3671, 'grad_norm': 2.292935371398926, 'learning_rate': 0.00040919999999999997, 'epoch': 0.56}
{'loss': 2.3169, 'grad_norm': 2.12475323677063, 'learning_rate': 0.0004104, 'epoch': 0.56}
{'loss': 1.9982, 'grad_norm': 1.7366119623184204, 'learning_rate': 0.0004116, 'epoch': 0.56}
{'loss': 2.0756, 'grad_norm': 2.0030996799468994, 'learning_rate': 0.00041279999999999995, 'epoch': 0.56}
{'loss': 1.7156, 'grad_norm': 2.0033862590789795, 'learning_rate': 0.0004139999999999999, 'epoch': 0.56}
{'loss': 1.5964, 'grad_norm': 1.3473812341690063, 'learning_rate': 0.00041519999999999995, 'epoch': 0.56}
{'loss': 2.145, 'grad_norm': 1.2339274883270264, 'learning_rate': 0.00041639999999999993, 'epoch': 0.56}
{'loss': 1.9784, 'grad_norm': 2.5667104721069336, 'learning_rate': 0.00041759999999999996, 'epoch': 0.57}
{'loss': 2.0522, 'grad_norm': 3.6534647941589355, 'learning_rate': 0.00041879999999999993, 'epoch': 0.57}
{'loss': 1.9374, 'grad_norm': 2.5614418983459473, 'learning_rate': 0.00041999999999999996, 'epoch': 0.57}
{'loss': 1.9315, 'grad_norm': 1.8349665403366089, 'learning_rate': 0.00042119999999999994, 'epoch': 0.57}
{'loss': 1.8887, 'grad_norm': 1.746505618095398, 'learning_rate': 0.0004223999999999999, 'epoch': 0.57}
{'loss': 1.8386, 'grad_norm': 2.7527122497558594, 'learning_rate': 0.00042359999999999994, 'epoch': 0.57}
{'loss': 1.5589, 'grad_norm': 1.1328954696655273, 'learning_rate': 0.0004247999999999999, 'epoch': 0.58}
{'loss': 1.7198, 'grad_norm': 2.864661931991577, 'learning_rate': 0.00042599999999999995, 'epoch': 0.58}
{'loss': 1.6276, 'grad_norm': 1.6503008604049683, 'learning_rate': 0.0004271999999999999, 'epoch': 0.58}
{'loss': 1.5628, 'grad_norm': 1.7130440473556519, 'learning_rate': 0.00042839999999999995, 'epoch': 0.58}
{'loss': 1.3983, 'grad_norm': 1.21794593334198, 'learning_rate': 0.0004295999999999999, 'epoch': 0.58}
{'loss': 1.4055, 'grad_norm': 1.321083664894104, 'learning_rate': 0.00043079999999999995, 'epoch': 0.58}
{'loss': 1.2443, 'grad_norm': 1.700247883796692, 'learning_rate': 0.00043199999999999993, 'epoch': 0.59}
{'loss': 1.4464, 'grad_norm': 1.1965219974517822, 'learning_rate': 0.00043319999999999996, 'epoch': 0.59}
{'loss': 1.8806, 'grad_norm': 3.254066228866577, 'learning_rate': 0.00043439999999999993, 'epoch': 0.59}
{'loss': 2.4964, 'grad_norm': 5.463562488555908, 'learning_rate': 0.00043559999999999996, 'epoch': 0.59}
{'loss': 1.3674, 'grad_norm': 1.5125354528427124, 'learning_rate': 0.00043679999999999994, 'epoch': 0.59}
{'loss': 1.3027, 'grad_norm': 1.185897707939148, 'learning_rate': 0.00043799999999999997, 'epoch': 0.59}
{'loss': 1.3632, 'grad_norm': 1.516951560974121, 'learning_rate': 0.00043919999999999994, 'epoch': 0.6}
{'loss': 1.2936, 'grad_norm': 1.1514403820037842, 'learning_rate': 0.00044039999999999997, 'epoch': 0.6}
{'loss': 1.6098, 'grad_norm': 1.5255740880966187, 'learning_rate': 0.00044159999999999995, 'epoch': 0.6}
{'loss': 1.279, 'grad_norm': 0.9126186966896057, 'learning_rate': 0.0004428, 'epoch': 0.6}
{'loss': 1.2755, 'grad_norm': 1.026580810546875, 'learning_rate': 0.00044399999999999995, 'epoch': 0.6}
{'loss': 1.6704, 'grad_norm': 0.8756309151649475, 'learning_rate': 0.0004452, 'epoch': 0.6}
{'loss': 1.4622, 'grad_norm': 1.0775223970413208, 'learning_rate': 0.00044639999999999995, 'epoch': 0.6}
{'loss': 1.2966, 'grad_norm': 0.9524688720703125, 'learning_rate': 0.0004476, 'epoch': 0.61}
{'loss': 1.7725, 'grad_norm': 1.137495756149292, 'learning_rate': 0.00044879999999999996, 'epoch': 0.61}
{'loss': 1.4823, 'grad_norm': 1.6954994201660156, 'learning_rate': 0.00045, 'epoch': 0.61}
{'loss': 1.5489, 'grad_norm': 1.0127160549163818, 'learning_rate': 0.00045119999999999996, 'epoch': 0.61}
{'loss': 1.383, 'grad_norm': 0.8300620317459106, 'learning_rate': 0.00045239999999999994, 'epoch': 0.61}
{'loss': 1.6092, 'grad_norm': 1.0958133935928345, 'learning_rate': 0.00045359999999999997, 'epoch': 0.61}
{'loss': 1.341, 'grad_norm': 1.1555867195129395, 'learning_rate': 0.00045479999999999994, 'epoch': 0.62}
{'loss': 1.4381, 'grad_norm': 1.214953064918518, 'learning_rate': 0.00045599999999999997, 'epoch': 0.62}
{'loss': 1.2995, 'grad_norm': 1.4742426872253418, 'learning_rate': 0.00045719999999999995, 'epoch': 0.62}
{'loss': 1.7789, 'grad_norm': 1.461856722831726, 'learning_rate': 0.0004584, 'epoch': 0.62}
{'loss': 1.575, 'grad_norm': 1.4308078289031982, 'learning_rate': 0.00045959999999999995, 'epoch': 0.62}
{'loss': 1.4533, 'grad_norm': 1.2594529390335083, 'learning_rate': 0.0004608, 'epoch': 0.62}
{'loss': 1.3271, 'grad_norm': 1.5839440822601318, 'learning_rate': 0.00046199999999999995, 'epoch': 0.63}
{'loss': 1.4592, 'grad_norm': 1.2260992527008057, 'learning_rate': 0.0004632, 'epoch': 0.63}
{'loss': 1.3533, 'grad_norm': 1.3083007335662842, 'learning_rate': 0.00046439999999999996, 'epoch': 0.63}
{'loss': 1.6796, 'grad_norm': 1.6389918327331543, 'learning_rate': 0.0004656, 'epoch': 0.63}
{'loss': 1.8386, 'grad_norm': 1.3117871284484863, 'learning_rate': 0.00046679999999999996, 'epoch': 0.63}
{'loss': 1.655, 'grad_norm': 2.565639019012451, 'learning_rate': 0.000468, 'epoch': 0.63}
{'loss': 1.8948, 'grad_norm': 1.448935866355896, 'learning_rate': 0.00046919999999999997, 'epoch': 0.64}
{'loss': 2.2576, 'grad_norm': 1.8764803409576416, 'learning_rate': 0.0004704, 'epoch': 0.64}
{'loss': 1.9952, 'grad_norm': 2.017988681793213, 'learning_rate': 0.00047159999999999997, 'epoch': 0.64}
{'loss': 1.8984, 'grad_norm': 2.5078186988830566, 'learning_rate': 0.0004728, 'epoch': 0.64}
{'loss': 1.9603, 'grad_norm': 3.1720643043518066, 'learning_rate': 0.000474, 'epoch': 0.64}
{'loss': 1.7871, 'grad_norm': 2.934274435043335, 'learning_rate': 0.0004752, 'epoch': 0.64}
{'loss': 7.4159, 'grad_norm': 31.748046875, 'learning_rate': 0.0004764, 'epoch': 0.64}
{'loss': 1.6849, 'grad_norm': 2.579294204711914, 'learning_rate': 0.0004776, 'epoch': 0.65}
{'loss': 1.8641, 'grad_norm': 4.465425491333008, 'learning_rate': 0.0004788, 'epoch': 0.65}
{'loss': 1.7485, 'grad_norm': 4.0198845863342285, 'learning_rate': 0.00047999999999999996, 'epoch': 0.65}
{'loss': 1.4707, 'grad_norm': 5.093113422393799, 'learning_rate': 0.0004812, 'epoch': 0.65}
{'loss': 1.6763, 'grad_norm': 2.745760440826416, 'learning_rate': 0.00048239999999999996, 'epoch': 0.65}
{'loss': 1.5871, 'grad_norm': 0.9687884449958801, 'learning_rate': 0.0004836, 'epoch': 0.65}
{'loss': 1.4119, 'grad_norm': 1.2059258222579956, 'learning_rate': 0.00048479999999999997, 'epoch': 0.66}
{'loss': 1.495, 'grad_norm': 2.057121753692627, 'learning_rate': 0.000486, 'epoch': 0.66}
{'loss': 1.4386, 'grad_norm': 3.4827053546905518, 'learning_rate': 0.00048719999999999997, 'epoch': 0.66}
{'loss': 1.353, 'grad_norm': 2.003380537033081, 'learning_rate': 0.0004883999999999999, 'epoch': 0.66}
{'loss': 1.1335, 'grad_norm': 0.9448583722114563, 'learning_rate': 0.0004896, 'epoch': 0.66}
{'loss': 1.0505, 'grad_norm': 1.0274648666381836, 'learning_rate': 0.0004907999999999999, 'epoch': 0.66}
{'loss': 1.509, 'grad_norm': 1.221886157989502, 'learning_rate': 0.0004919999999999999, 'epoch': 0.67}
{'loss': 1.0935, 'grad_norm': 1.546191692352295, 'learning_rate': 0.0004932, 'epoch': 0.67}
{'loss': 1.521, 'grad_norm': 1.7654293775558472, 'learning_rate': 0.0004944, 'epoch': 0.67}
{'loss': 1.6335, 'grad_norm': 1.518165946006775, 'learning_rate': 0.0004955999999999999, 'epoch': 0.67}
{'loss': 1.2315, 'grad_norm': 1.6623975038528442, 'learning_rate': 0.0004967999999999999, 'epoch': 0.67}
{'loss': 1.5225, 'grad_norm': 1.2630988359451294, 'learning_rate': 0.000498, 'epoch': 0.67}
{'loss': 1.1764, 'grad_norm': 0.9908505082130432, 'learning_rate': 0.0004991999999999999, 'epoch': 0.68}
{'loss': 1.2603, 'grad_norm': 0.9683183431625366, 'learning_rate': 0.0005003999999999999, 'epoch': 0.68}
{'loss': 1.4432, 'grad_norm': 1.0998846292495728, 'learning_rate': 0.0005015999999999999, 'epoch': 0.68}
{'loss': 1.2796, 'grad_norm': 1.0269334316253662, 'learning_rate': 0.0005028, 'epoch': 0.68}
{'loss': 1.4105, 'grad_norm': 0.9077733755111694, 'learning_rate': 0.0005039999999999999, 'epoch': 0.68}
{'loss': 1.3406, 'grad_norm': 1.3366079330444336, 'learning_rate': 0.0005051999999999999, 'epoch': 0.68}
{'loss': 1.1905, 'grad_norm': 1.4101577997207642, 'learning_rate': 0.0005064, 'epoch': 0.68}
{'loss': 1.1317, 'grad_norm': 1.103102445602417, 'learning_rate': 0.0005076, 'epoch': 0.69}
{'loss': 1.3766, 'grad_norm': 0.9465294480323792, 'learning_rate': 0.0005087999999999999, 'epoch': 0.69}
{'loss': 1.3493, 'grad_norm': 1.0435762405395508, 'learning_rate': 0.0005099999999999999, 'epoch': 0.69}
{'loss': 0.9838, 'grad_norm': 1.2893332242965698, 'learning_rate': 0.0005112, 'epoch': 0.69}
{'loss': 1.2218, 'grad_norm': 0.8329612016677856, 'learning_rate': 0.0005124, 'epoch': 0.69}
{'loss': 1.8575, 'grad_norm': 1.602290391921997, 'learning_rate': 0.0005135999999999999, 'epoch': 0.69}
{'loss': 1.2371, 'grad_norm': 0.8070494532585144, 'learning_rate': 0.0005147999999999999, 'epoch': 0.7}
{'loss': 1.9235, 'grad_norm': 1.5245780944824219, 'learning_rate': 0.000516, 'epoch': 0.7}
{'loss': 1.522, 'grad_norm': 0.9657381176948547, 'learning_rate': 0.0005172, 'epoch': 0.7}
{'loss': 1.4748, 'grad_norm': 1.3066210746765137, 'learning_rate': 0.0005183999999999999, 'epoch': 0.7}
{'loss': 1.2555, 'grad_norm': 1.1301110982894897, 'learning_rate': 0.0005195999999999999, 'epoch': 0.7}
{'loss': 1.341, 'grad_norm': 1.2480872869491577, 'learning_rate': 0.0005208, 'epoch': 0.7}
{'loss': 1.3585, 'grad_norm': 1.0376918315887451, 'learning_rate': 0.000522, 'epoch': 0.71}
{'loss': 1.599, 'grad_norm': 1.3093161582946777, 'learning_rate': 0.0005231999999999999, 'epoch': 0.71}
{'loss': 1.7139, 'grad_norm': 1.9071390628814697, 'learning_rate': 0.0005244, 'epoch': 0.71}
{'loss': 1.3638, 'grad_norm': 1.1246815919876099, 'learning_rate': 0.0005256, 'epoch': 0.71}
{'loss': 1.8597, 'grad_norm': 1.378431797027588, 'learning_rate': 0.0005267999999999999, 'epoch': 0.71}
{'loss': 1.4876, 'grad_norm': 1.1764037609100342, 'learning_rate': 0.0005279999999999999, 'epoch': 0.71}
{'loss': 1.9046, 'grad_norm': 1.4928016662597656, 'learning_rate': 0.0005292, 'epoch': 0.72}
{'loss': 1.8089, 'grad_norm': 2.034743070602417, 'learning_rate': 0.0005304, 'epoch': 0.72}
{'loss': 1.8413, 'grad_norm': 1.540407657623291, 'learning_rate': 0.0005315999999999999, 'epoch': 0.72}
{'loss': 2.2742, 'grad_norm': 3.950709581375122, 'learning_rate': 0.0005327999999999999, 'epoch': 0.72}
{'loss': 3.3207, 'grad_norm': 15.23299789428711, 'learning_rate': 0.000534, 'epoch': 0.72}
{'loss': 2.531, 'grad_norm': 6.555901527404785, 'learning_rate': 0.0005352, 'epoch': 0.72}
{'loss': 1.9143, 'grad_norm': 3.783543109893799, 'learning_rate': 0.0005363999999999999, 'epoch': 0.72}
{'loss': 1.9658, 'grad_norm': 1.695298671722412, 'learning_rate': 0.0005376, 'epoch': 0.73}
{'loss': 1.6642, 'grad_norm': 2.622856378555298, 'learning_rate': 0.0005388, 'epoch': 0.73}
{'loss': 1.4833, 'grad_norm': 2.731189012527466, 'learning_rate': 0.00054, 'epoch': 0.73}
{'loss': 1.7344, 'grad_norm': 1.4314954280853271, 'learning_rate': 0.0005411999999999999, 'epoch': 0.73}
{'loss': 1.6237, 'grad_norm': 3.498527765274048, 'learning_rate': 0.0005424, 'epoch': 0.73}
{'loss': 1.3437, 'grad_norm': 2.0262954235076904, 'learning_rate': 0.0005436, 'epoch': 0.73}
{'loss': 1.6199, 'grad_norm': 1.5271885395050049, 'learning_rate': 0.0005448, 'epoch': 0.74}
{'loss': 1.3299, 'grad_norm': 0.9165617227554321, 'learning_rate': 0.0005459999999999999, 'epoch': 0.74}
{'loss': 1.4318, 'grad_norm': 1.9898568391799927, 'learning_rate': 0.0005472, 'epoch': 0.74}
{'loss': 1.2851, 'grad_norm': 2.3856873512268066, 'learning_rate': 0.0005484, 'epoch': 0.74}
{'loss': 1.3408, 'grad_norm': 1.6049182415008545, 'learning_rate': 0.0005496, 'epoch': 0.74}
{'loss': 1.3017, 'grad_norm': 1.0130642652511597, 'learning_rate': 0.0005507999999999999, 'epoch': 0.74}
{'loss': 1.0274, 'grad_norm': 1.0306544303894043, 'learning_rate': 0.000552, 'epoch': 0.75}
{'loss': 1.3187, 'grad_norm': 1.1104224920272827, 'learning_rate': 0.0005532, 'epoch': 0.75}
{'loss': 1.3076, 'grad_norm': 1.14987051486969, 'learning_rate': 0.0005544, 'epoch': 0.75}
{'loss': 1.252, 'grad_norm': 1.2761118412017822, 'learning_rate': 0.0005556, 'epoch': 0.75}
{'loss': 1.3166, 'grad_norm': 0.9457799792289734, 'learning_rate': 0.0005568, 'epoch': 0.75}
{'loss': 1.1882, 'grad_norm': 0.824832022190094, 'learning_rate': 0.000558, 'epoch': 0.75}
{'loss': 1.2435, 'grad_norm': 0.9857451319694519, 'learning_rate': 0.0005591999999999999, 'epoch': 0.76}
{'loss': 1.2344, 'grad_norm': 1.5159227848052979, 'learning_rate': 0.0005604, 'epoch': 0.76}
{'loss': 1.013, 'grad_norm': 1.4017863273620605, 'learning_rate': 0.0005616, 'epoch': 0.76}
{'loss': 1.2271, 'grad_norm': 1.1972615718841553, 'learning_rate': 0.0005627999999999999, 'epoch': 0.76}
{'loss': 1.3682, 'grad_norm': 0.9828841090202332, 'learning_rate': 0.0005639999999999999, 'epoch': 0.76}
{'loss': 1.3816, 'grad_norm': 1.062817096710205, 'learning_rate': 0.0005652, 'epoch': 0.76}
{'loss': 1.2144, 'grad_norm': 1.049489140510559, 'learning_rate': 0.0005663999999999999, 'epoch': 0.76}
{'loss': 1.2625, 'grad_norm': 1.626882553100586, 'learning_rate': 0.0005675999999999999, 'epoch': 0.77}
{'loss': 1.0219, 'grad_norm': 1.114654779434204, 'learning_rate': 0.0005688, 'epoch': 0.77}
{'loss': 1.2605, 'grad_norm': 1.0060404539108276, 'learning_rate': 0.00057, 'epoch': 0.77}
{'loss': 1.0487, 'grad_norm': 0.9237557053565979, 'learning_rate': 0.0005711999999999999, 'epoch': 0.77}
{'loss': 1.8105, 'grad_norm': 2.188255786895752, 'learning_rate': 0.0005723999999999999, 'epoch': 0.77}
{'loss': 1.4796, 'grad_norm': 3.0459892749786377, 'learning_rate': 0.0005736, 'epoch': 0.77}
{'loss': 1.4054, 'grad_norm': 2.037982940673828, 'learning_rate': 0.0005747999999999999, 'epoch': 0.78}
{'loss': 1.385, 'grad_norm': 1.2173347473144531, 'learning_rate': 0.0005759999999999999, 'epoch': 0.78}
{'loss': 1.545, 'grad_norm': 1.3485534191131592, 'learning_rate': 0.0005771999999999999, 'epoch': 0.78}
{'loss': 1.6206, 'grad_norm': 2.718611240386963, 'learning_rate': 0.0005784, 'epoch': 0.78}
{'loss': 1.5209, 'grad_norm': 1.6564363241195679, 'learning_rate': 0.0005795999999999999, 'epoch': 0.78}
{'loss': 1.449, 'grad_norm': 1.4725884199142456, 'learning_rate': 0.0005807999999999999, 'epoch': 0.78}
{'loss': 1.8618, 'grad_norm': 1.3264169692993164, 'learning_rate': 0.0005819999999999999, 'epoch': 0.79}
{'loss': 1.5934, 'grad_norm': 1.0854110717773438, 'learning_rate': 0.0005832, 'epoch': 0.79}
{'loss': 1.2471, 'grad_norm': 1.3333096504211426, 'learning_rate': 0.0005843999999999999, 'epoch': 0.79}
{'loss': 1.8123, 'grad_norm': 1.5022006034851074, 'learning_rate': 0.0005855999999999999, 'epoch': 0.79}
{'loss': 1.3155, 'grad_norm': 1.329306721687317, 'learning_rate': 0.0005868, 'epoch': 0.79}
{'loss': 1.0192, 'grad_norm': 1.1506342887878418, 'learning_rate': 0.000588, 'epoch': 0.79}
{'loss': 1.502, 'grad_norm': 1.5134472846984863, 'learning_rate': 0.0005891999999999999, 'epoch': 0.8}
{'loss': 1.5467, 'grad_norm': 1.7710678577423096, 'learning_rate': 0.0005903999999999999, 'epoch': 0.8}
{'loss': 2.19, 'grad_norm': 2.886460781097412, 'learning_rate': 0.0005916, 'epoch': 0.8}
{'loss': 2.7593, 'grad_norm': 2.4858016967773438, 'learning_rate': 0.0005928, 'epoch': 0.8}
{'loss': 1.8281, 'grad_norm': 1.9686570167541504, 'learning_rate': 0.0005939999999999999, 'epoch': 0.8}
{'loss': 1.3073, 'grad_norm': 1.2734591960906982, 'learning_rate': 0.0005951999999999999, 'epoch': 0.8}
{'loss': 2.0247, 'grad_norm': 2.072976589202881, 'learning_rate': 0.0005964, 'epoch': 0.8}
{'loss': 1.8502, 'grad_norm': 1.9811313152313232, 'learning_rate': 0.0005976, 'epoch': 0.81}
{'loss': 1.6976, 'grad_norm': 2.6311845779418945, 'learning_rate': 0.0005987999999999999, 'epoch': 0.81}
{'loss': 1.9533, 'grad_norm': 2.684401750564575, 'learning_rate': 0.0006, 'epoch': 0.81}
{'loss': 1.3887, 'grad_norm': 3.3301351070404053, 'learning_rate': 0.0005987999999999999, 'epoch': 0.81}
{'loss': 1.5074, 'grad_norm': 2.357325553894043, 'learning_rate': 0.0005976, 'epoch': 0.81}
{'loss': 1.3912, 'grad_norm': 1.2169139385223389, 'learning_rate': 0.0005964, 'epoch': 0.81}
{'loss': 1.4808, 'grad_norm': 1.8445833921432495, 'learning_rate': 0.0005951999999999999, 'epoch': 0.82}
{'loss': 1.0834, 'grad_norm': 1.3977484703063965, 'learning_rate': 0.0005939999999999999, 'epoch': 0.82}
{'loss': 1.1475, 'grad_norm': 1.5727133750915527, 'learning_rate': 0.0005928, 'epoch': 0.82}
{'loss': 1.5048, 'grad_norm': 1.4709762334823608, 'learning_rate': 0.0005916, 'epoch': 0.82}
{'loss': 1.1661, 'grad_norm': 0.7950598001480103, 'learning_rate': 0.0005903999999999999, 'epoch': 0.82}
{'loss': 1.1876, 'grad_norm': 1.0826159715652466, 'learning_rate': 0.0005891999999999999, 'epoch': 0.82}
{'loss': 1.1763, 'grad_norm': 1.8124991655349731, 'learning_rate': 0.000588, 'epoch': 0.83}
{'loss': 1.1749, 'grad_norm': 0.9041058421134949, 'learning_rate': 0.0005868, 'epoch': 0.83}
{'loss': 0.8526, 'grad_norm': 0.8802869915962219, 'learning_rate': 0.0005855999999999999, 'epoch': 0.83}
{'loss': 1.2469, 'grad_norm': 0.9845436215400696, 'learning_rate': 0.0005843999999999999, 'epoch': 0.83}
{'loss': 1.3676, 'grad_norm': 0.8130229115486145, 'learning_rate': 0.0005832, 'epoch': 0.83}
{'loss': 1.408, 'grad_norm': 1.4055910110473633, 'learning_rate': 0.0005819999999999999, 'epoch': 0.83}
{'loss': 1.0278, 'grad_norm': 0.7262439727783203, 'learning_rate': 0.0005807999999999999, 'epoch': 0.84}
{'loss': 1.1932, 'grad_norm': 0.7629141211509705, 'learning_rate': 0.0005795999999999999, 'epoch': 0.84}
{'loss': 1.8301, 'grad_norm': 1.0631065368652344, 'learning_rate': 0.0005784, 'epoch': 0.84}
{'loss': 1.5161, 'grad_norm': 0.9995020627975464, 'learning_rate': 0.0005771999999999999, 'epoch': 0.84}
{'loss': 1.3039, 'grad_norm': 0.9407309889793396, 'learning_rate': 0.0005759999999999999, 'epoch': 0.84}
{'loss': 1.1735, 'grad_norm': 0.9237894415855408, 'learning_rate': 0.0005747999999999999, 'epoch': 0.84}
{'loss': 1.1395, 'grad_norm': 1.0956400632858276, 'learning_rate': 0.0005736, 'epoch': 0.84}
{'loss': 1.1507, 'grad_norm': 2.5186548233032227, 'learning_rate': 0.0005723999999999999, 'epoch': 0.85}
{'loss': 1.1775, 'grad_norm': 1.024733066558838, 'learning_rate': 0.0005711999999999999, 'epoch': 0.85}
{'loss': 1.4415, 'grad_norm': 2.2728676795959473, 'learning_rate': 0.00057, 'epoch': 0.85}
{'loss': 1.1036, 'grad_norm': 1.187499761581421, 'learning_rate': 0.0005688, 'epoch': 0.85}
{'loss': 0.9976, 'grad_norm': 1.2145191431045532, 'learning_rate': 0.0005675999999999999, 'epoch': 0.85}
{'loss': 1.2453, 'grad_norm': 0.9440417289733887, 'learning_rate': 0.0005663999999999999, 'epoch': 0.85}
{'loss': 1.7054, 'grad_norm': 1.289574146270752, 'learning_rate': 0.0005652, 'epoch': 0.86}
{'loss': 1.7251, 'grad_norm': 1.401564121246338, 'learning_rate': 0.0005639999999999999, 'epoch': 0.86}
{'loss': 1.2378, 'grad_norm': 1.1180814504623413, 'learning_rate': 0.0005627999999999999, 'epoch': 0.86}
{'loss': 1.0896, 'grad_norm': 0.9536440968513489, 'learning_rate': 0.0005616, 'epoch': 0.86}
{'loss': 1.2259, 'grad_norm': 0.8881138563156128, 'learning_rate': 0.0005604, 'epoch': 0.86}
{'loss': 1.3238, 'grad_norm': 0.96197509765625, 'learning_rate': 0.0005591999999999999, 'epoch': 0.86}
{'loss': 1.1894, 'grad_norm': 1.1683094501495361, 'learning_rate': 0.000558, 'epoch': 0.87}
{'loss': 1.5966, 'grad_norm': 1.276745080947876, 'learning_rate': 0.0005568, 'epoch': 0.87}
{'loss': 1.3465, 'grad_norm': 1.0269030332565308, 'learning_rate': 0.0005556, 'epoch': 0.87}
{'loss': 1.2189, 'grad_norm': 1.259565830230713, 'learning_rate': 0.0005544, 'epoch': 0.87}
{'loss': 1.504, 'grad_norm': 1.0580670833587646, 'learning_rate': 0.0005532, 'epoch': 0.87}
{'loss': 1.7338, 'grad_norm': 1.3217496871948242, 'learning_rate': 0.000552, 'epoch': 0.87}
{'loss': 1.9817, 'grad_norm': 1.4637740850448608, 'learning_rate': 0.0005507999999999999, 'epoch': 0.88}
{'loss': 2.0032, 'grad_norm': 2.559971570968628, 'learning_rate': 0.0005496, 'epoch': 0.88}
{'loss': 1.7932, 'grad_norm': 1.6275663375854492, 'learning_rate': 0.0005484, 'epoch': 0.88}
{'loss': 2.0458, 'grad_norm': 1.796790599822998, 'learning_rate': 0.0005472, 'epoch': 0.88}
{'loss': 1.9726, 'grad_norm': 4.545191764831543, 'learning_rate': 0.0005459999999999999, 'epoch': 0.88}
{'loss': 2.3674, 'grad_norm': 5.169295310974121, 'learning_rate': 0.0005448, 'epoch': 0.88}
{'loss': 1.6493, 'grad_norm': 1.5627833604812622, 'learning_rate': 0.0005436, 'epoch': 0.88}
{'loss': 2.0752, 'grad_norm': 3.6947457790374756, 'learning_rate': 0.0005424, 'epoch': 0.89}
{'loss': 1.5896, 'grad_norm': 3.6189661026000977, 'learning_rate': 0.0005411999999999999, 'epoch': 0.89}
{'loss': 1.2161, 'grad_norm': 2.7466511726379395, 'learning_rate': 0.00054, 'epoch': 0.89}
{'loss': 1.2768, 'grad_norm': 3.221942663192749, 'learning_rate': 0.0005388, 'epoch': 0.89}
{'loss': 1.749, 'grad_norm': 3.667484760284424, 'learning_rate': 0.0005376, 'epoch': 0.89}
{'loss': 1.4901, 'grad_norm': 3.118382692337036, 'learning_rate': 0.0005363999999999999, 'epoch': 0.89}
{'loss': 1.6848, 'grad_norm': 3.807770252227783, 'learning_rate': 0.0005352, 'epoch': 0.9}
{'loss': 1.9896, 'grad_norm': 4.106380939483643, 'learning_rate': 0.000534, 'epoch': 0.9}
{'loss': 1.5196, 'grad_norm': 2.869680643081665, 'learning_rate': 0.0005327999999999999, 'epoch': 0.9}
{'loss': 1.1682, 'grad_norm': 0.984009325504303, 'learning_rate': 0.0005315999999999999, 'epoch': 0.9}
{'loss': 1.2468, 'grad_norm': 1.011704444885254, 'learning_rate': 0.0005304, 'epoch': 0.9}
{'loss': 1.2559, 'grad_norm': 1.148173451423645, 'learning_rate': 0.0005292, 'epoch': 0.9}
{'loss': 1.0665, 'grad_norm': 0.933331310749054, 'learning_rate': 0.0005279999999999999, 'epoch': 0.91}
{'loss': 1.0592, 'grad_norm': 1.015312671661377, 'learning_rate': 0.0005267999999999999, 'epoch': 0.91}
{'loss': 0.924, 'grad_norm': 1.135771632194519, 'learning_rate': 0.0005256, 'epoch': 0.91}
{'loss': 1.1068, 'grad_norm': 1.1397788524627686, 'learning_rate': 0.0005244, 'epoch': 0.91}
{'loss': 1.0425, 'grad_norm': 0.9835603833198547, 'learning_rate': 0.0005231999999999999, 'epoch': 0.91}
{'loss': 1.2302, 'grad_norm': 1.0392098426818848, 'learning_rate': 0.000522, 'epoch': 0.91}
{'loss': 1.3862, 'grad_norm': 1.8193734884262085, 'learning_rate': 0.0005208, 'epoch': 0.92}
{'loss': 1.5438, 'grad_norm': 1.6436972618103027, 'learning_rate': 0.0005195999999999999, 'epoch': 0.92}
{'loss': 1.1842, 'grad_norm': 1.352057933807373, 'learning_rate': 0.0005183999999999999, 'epoch': 0.92}
{'loss': 1.4275, 'grad_norm': 1.0538089275360107, 'learning_rate': 0.0005172, 'epoch': 0.92}
{'loss': 1.2033, 'grad_norm': 1.1751643419265747, 'learning_rate': 0.000516, 'epoch': 0.92}
{'loss': 1.6655, 'grad_norm': 1.044425129890442, 'learning_rate': 0.0005147999999999999, 'epoch': 0.92}
{'loss': 1.2228, 'grad_norm': 0.7362115383148193, 'learning_rate': 0.0005135999999999999, 'epoch': 0.92}
{'loss': 1.1776, 'grad_norm': 1.3597044944763184, 'learning_rate': 0.0005124, 'epoch': 0.93}
{'loss': 1.013, 'grad_norm': 1.4289404153823853, 'learning_rate': 0.0005112, 'epoch': 0.93}
{'loss': 1.1201, 'grad_norm': 1.58928644657135, 'learning_rate': 0.0005099999999999999, 'epoch': 0.93}
{'loss': 1.0296, 'grad_norm': 0.878803014755249, 'learning_rate': 0.0005087999999999999, 'epoch': 0.93}
{'loss': 1.3948, 'grad_norm': 1.7352557182312012, 'learning_rate': 0.0005076, 'epoch': 0.93}
{'loss': 1.0634, 'grad_norm': 1.0597188472747803, 'learning_rate': 0.0005064, 'epoch': 0.93}
{'loss': 0.9397, 'grad_norm': 0.8611565232276917, 'learning_rate': 0.0005051999999999999, 'epoch': 0.94}
{'loss': 1.065, 'grad_norm': 1.1366254091262817, 'learning_rate': 0.0005039999999999999, 'epoch': 0.94}
{'loss': 1.0936, 'grad_norm': 1.156342625617981, 'learning_rate': 0.0005028, 'epoch': 0.94}
{'loss': 1.1916, 'grad_norm': 1.2860143184661865, 'learning_rate': 0.0005015999999999999, 'epoch': 0.94}
{'loss': 1.0391, 'grad_norm': 1.1369061470031738, 'learning_rate': 0.0005003999999999999, 'epoch': 0.94}
{'loss': 1.3709, 'grad_norm': 1.7245908975601196, 'learning_rate': 0.0004991999999999999, 'epoch': 0.94}
{'loss': 1.2722, 'grad_norm': 1.0689557790756226, 'learning_rate': 0.000498, 'epoch': 0.95}
{'loss': 1.5314, 'grad_norm': 1.8937160968780518, 'learning_rate': 0.0004967999999999999, 'epoch': 0.95}
{'loss': 1.4849, 'grad_norm': 1.4616285562515259, 'learning_rate': 0.0004955999999999999, 'epoch': 0.95}
{'loss': 1.5592, 'grad_norm': 3.183936834335327, 'learning_rate': 0.0004944, 'epoch': 0.95}
{'loss': 1.3617, 'grad_norm': 1.1988084316253662, 'learning_rate': 0.0004932, 'epoch': 0.95}
{'loss': 1.4135, 'grad_norm': 1.7577106952667236, 'learning_rate': 0.0004919999999999999, 'epoch': 0.95}
{'loss': 1.1338, 'grad_norm': 1.496863603591919, 'learning_rate': 0.0004907999999999999, 'epoch': 0.96}
{'loss': 3.0016, 'grad_norm': 9.257676124572754, 'learning_rate': 0.0004896, 'epoch': 0.96}
{'loss': 1.5336, 'grad_norm': 1.5697489976882935, 'learning_rate': 0.0004883999999999999, 'epoch': 0.96}
{'loss': 1.3453, 'grad_norm': nan, 'learning_rate': 0.0004883999999999999, 'epoch': 0.96}
{'loss': 4.199, 'grad_norm': 18.818782806396484, 'learning_rate': 0.00048719999999999997, 'epoch': 0.96}
{'loss': 1.6129, 'grad_norm': 1.5022028684616089, 'learning_rate': 0.000486, 'epoch': 0.96}
{'loss': 1.558, 'grad_norm': 2.133873462677002, 'learning_rate': 0.00048479999999999997, 'epoch': 0.96}
{'loss': 1.2855, 'grad_norm': 2.496293544769287, 'learning_rate': 0.0004836, 'epoch': 0.97}
{'loss': 1.3996, 'grad_norm': 2.753438949584961, 'learning_rate': 0.00048239999999999996, 'epoch': 0.97}
{'loss': 1.0731, 'grad_norm': 1.4719444513320923, 'learning_rate': 0.0004812, 'epoch': 0.97}
{'loss': 1.1837, 'grad_norm': 1.9870835542678833, 'learning_rate': 0.00047999999999999996, 'epoch': 0.97}
{'loss': 1.1817, 'grad_norm': 0.8579409122467041, 'learning_rate': 0.0004788, 'epoch': 0.97}
{'loss': 1.2752, 'grad_norm': 0.6938973069190979, 'learning_rate': 0.0004776, 'epoch': 0.97}
{'loss': 1.1829, 'grad_norm': 1.510031819343567, 'learning_rate': 0.0004764, 'epoch': 0.98}
{'loss': 1.0776, 'grad_norm': 1.6417129039764404, 'learning_rate': 0.0004752, 'epoch': 0.98}
{'loss': 1.1359, 'grad_norm': 1.4704375267028809, 'learning_rate': 0.000474, 'epoch': 0.98}
{'loss': 0.947, 'grad_norm': 0.9758228063583374, 'learning_rate': 0.0004728, 'epoch': 0.98}
{'loss': 1.1518, 'grad_norm': 1.2002493143081665, 'learning_rate': 0.00047159999999999997, 'epoch': 0.98}
{'loss': 1.1217, 'grad_norm': 2.3293352127075195, 'learning_rate': 0.0004704, 'epoch': 0.98}
{'loss': 0.9375, 'grad_norm': 0.8101193904876709, 'learning_rate': 0.00046919999999999997, 'epoch': 0.99}
{'loss': 1.4114, 'grad_norm': 1.1048221588134766, 'learning_rate': 0.000468, 'epoch': 0.99}
{'loss': 1.4405, 'grad_norm': 1.491821050643921, 'learning_rate': 0.00046679999999999996, 'epoch': 0.99}
{'loss': 1.1741, 'grad_norm': 2.0165274143218994, 'learning_rate': 0.0004656, 'epoch': 0.99}
{'loss': 0.9986, 'grad_norm': 1.7262567281723022, 'learning_rate': 0.00046439999999999996, 'epoch': 0.99}
{'loss': 1.4554, 'grad_norm': 1.53129243850708, 'learning_rate': 0.0004632, 'epoch': 0.99}
{'loss': 1.3938, 'grad_norm': 1.972591757774353, 'learning_rate': 0.00046199999999999995, 'epoch': 1.0}
{'loss': 1.4817, 'grad_norm': 1.5069432258605957, 'learning_rate': 0.0004608, 'epoch': 1.0}
{'loss': 1.3043, 'grad_norm': 1.252928614616394, 'learning_rate': 0.00045959999999999995, 'epoch': 1.0}
{'loss': 1.5814, 'grad_norm': 2.1552650928497314, 'learning_rate': 0.0004584, 'epoch': 1.0}
{'loss': 3.3539, 'grad_norm': 12.845656394958496, 'learning_rate': 0.00045719999999999995, 'epoch': 1.0}
{'loss': 1.8614, 'grad_norm': 5.422074794769287, 'learning_rate': 0.00045599999999999997, 'epoch': 1.0}
{'loss': 1.3776, 'grad_norm': 3.4376301765441895, 'learning_rate': 0.00045479999999999994, 'epoch': 1.0}
{'loss': 2.3901, 'grad_norm': 4.690155506134033, 'learning_rate': 0.00045359999999999997, 'epoch': 1.01}
{'loss': 2.0007, 'grad_norm': 3.5546085834503174, 'learning_rate': 0.00045239999999999994, 'epoch': 1.01}
{'loss': 1.9367, 'grad_norm': 4.01783561706543, 'learning_rate': 0.00045119999999999996, 'epoch': 1.01}
{'loss': 1.5302, 'grad_norm': 3.1941683292388916, 'learning_rate': 0.00045, 'epoch': 1.01}
{'loss': 1.3838, 'grad_norm': 2.860696315765381, 'learning_rate': 0.00044879999999999996, 'epoch': 1.01}
{'loss': 1.6477, 'grad_norm': 3.759099006652832, 'learning_rate': 0.0004476, 'epoch': 1.01}
{'loss': 1.7445, 'grad_norm': 3.119152307510376, 'learning_rate': 0.00044639999999999995, 'epoch': 1.02}
{'loss': 1.2008, 'grad_norm': 3.340733051300049, 'learning_rate': 0.0004452, 'epoch': 1.02}
{'loss': 1.3083, 'grad_norm': 1.641968846321106, 'learning_rate': 0.00044399999999999995, 'epoch': 1.02}
{'loss': 1.0248, 'grad_norm': 1.6026384830474854, 'learning_rate': 0.0004428, 'epoch': 1.02}
{'loss': 1.3308, 'grad_norm': 0.840795636177063, 'learning_rate': 0.00044159999999999995, 'epoch': 1.02}
{'loss': 1.0817, 'grad_norm': 0.8223994374275208, 'learning_rate': 0.00044039999999999997, 'epoch': 1.02}
{'loss': 1.0903, 'grad_norm': 0.9794006943702698, 'learning_rate': 0.00043919999999999994, 'epoch': 1.03}
{'loss': 1.2616, 'grad_norm': 1.5365368127822876, 'learning_rate': 0.00043799999999999997, 'epoch': 1.03}
{'loss': 1.2687, 'grad_norm': 1.0885334014892578, 'learning_rate': 0.00043679999999999994, 'epoch': 1.03}
{'loss': 1.1898, 'grad_norm': 0.7841877341270447, 'learning_rate': 0.00043559999999999996, 'epoch': 1.03}
{'loss': 1.0463, 'grad_norm': 0.8564435839653015, 'learning_rate': 0.00043439999999999993, 'epoch': 1.03}
{'loss': 1.0762, 'grad_norm': 1.2559213638305664, 'learning_rate': 0.00043319999999999996, 'epoch': 1.03}
{'loss': 0.9965, 'grad_norm': 0.7620260715484619, 'learning_rate': 0.00043199999999999993, 'epoch': 1.04}
{'loss': 1.0164, 'grad_norm': 0.9760488867759705, 'learning_rate': 0.00043079999999999995, 'epoch': 1.04}
{'loss': 1.1046, 'grad_norm': 0.7712533473968506, 'learning_rate': 0.0004295999999999999, 'epoch': 1.04}
{'loss': 1.2174, 'grad_norm': 1.1640052795410156, 'learning_rate': 0.00042839999999999995, 'epoch': 1.04}
{'loss': 1.0906, 'grad_norm': 1.037165880203247, 'learning_rate': 0.0004271999999999999, 'epoch': 1.04}
{'loss': 1.0219, 'grad_norm': 0.9110749959945679, 'learning_rate': 0.00042599999999999995, 'epoch': 1.04}
{'loss': 1.17, 'grad_norm': 1.0287991762161255, 'learning_rate': 0.0004247999999999999, 'epoch': 1.04}
{'loss': 1.2855, 'grad_norm': 1.1112055778503418, 'learning_rate': 0.00042359999999999994, 'epoch': 1.05}
{'loss': 0.7607, 'grad_norm': 0.7852709293365479, 'learning_rate': 0.0004223999999999999, 'epoch': 1.05}
{'loss': 1.0289, 'grad_norm': 0.9790500998497009, 'learning_rate': 0.00042119999999999994, 'epoch': 1.05}
{'loss': 1.0636, 'grad_norm': 1.4499422311782837, 'learning_rate': 0.00041999999999999996, 'epoch': 1.05}
{'loss': 1.3441, 'grad_norm': 1.9767885208129883, 'learning_rate': 0.00041879999999999993, 'epoch': 1.05}
{'loss': 0.8745, 'grad_norm': 1.0959701538085938, 'learning_rate': 0.00041759999999999996, 'epoch': 1.05}
{'loss': 1.1249, 'grad_norm': 0.9967984557151794, 'learning_rate': 0.00041639999999999993, 'epoch': 1.06}
{'loss': 0.8992, 'grad_norm': 0.9587727189064026, 'learning_rate': 0.00041519999999999995, 'epoch': 1.06}
{'loss': 0.9742, 'grad_norm': 1.1093708276748657, 'learning_rate': 0.0004139999999999999, 'epoch': 1.06}
{'loss': 1.2295, 'grad_norm': 0.9936672449111938, 'learning_rate': 0.00041279999999999995, 'epoch': 1.06}
{'loss': 1.2144, 'grad_norm': 1.1689198017120361, 'learning_rate': 0.0004116, 'epoch': 1.06}
{'loss': 1.2725, 'grad_norm': 1.4126062393188477, 'learning_rate': 0.0004104, 'epoch': 1.06}
{'loss': 1.5316, 'grad_norm': 1.4932892322540283, 'learning_rate': 0.00040919999999999997, 'epoch': 1.07}
{'loss': 1.5249, 'grad_norm': 1.1049163341522217, 'learning_rate': 0.000408, 'epoch': 1.07}
{'loss': 1.3551, 'grad_norm': 0.9667163491249084, 'learning_rate': 0.00040679999999999997, 'epoch': 1.07}
{'loss': 1.3199, 'grad_norm': 0.9758523106575012, 'learning_rate': 0.0004056, 'epoch': 1.07}
{'loss': 1.2972, 'grad_norm': 1.1948597431182861, 'learning_rate': 0.0004044, 'epoch': 1.07}
{'loss': 1.122, 'grad_norm': 1.191303014755249, 'learning_rate': 0.0004032, 'epoch': 1.07}
{'loss': 1.5213, 'grad_norm': 1.206954836845398, 'learning_rate': 0.000402, 'epoch': 1.08}
{'loss': 1.6332, 'grad_norm': 1.3517687320709229, 'learning_rate': 0.0004008, 'epoch': 1.08}
{'loss': 1.7137, 'grad_norm': 1.1111180782318115, 'learning_rate': 0.0003996, 'epoch': 1.08}
{'loss': 1.6731, 'grad_norm': 1.4726959466934204, 'learning_rate': 0.0003984, 'epoch': 1.08}
{'loss': 2.7504, 'grad_norm': 10.061053276062012, 'learning_rate': 0.0003972, 'epoch': 1.08}
{'loss': 2.2303, 'grad_norm': 5.816658973693848, 'learning_rate': 0.000396, 'epoch': 1.08}
{'loss': 1.868, 'grad_norm': 3.435324192047119, 'learning_rate': 0.0003948, 'epoch': 1.08}
{'loss': 1.3964, 'grad_norm': 1.3176164627075195, 'learning_rate': 0.00039359999999999997, 'epoch': 1.09}
{'loss': 1.2653, 'grad_norm': 2.0973780155181885, 'learning_rate': 0.0003924, 'epoch': 1.09}
{'loss': 1.397, 'grad_norm': 3.4674441814422607, 'learning_rate': 0.00039119999999999997, 'epoch': 1.09}
{'loss': 1.3017, 'grad_norm': 3.38520884513855, 'learning_rate': 0.00039, 'epoch': 1.09}
{'loss': 1.482, 'grad_norm': 3.912292242050171, 'learning_rate': 0.00038879999999999996, 'epoch': 1.09}
{'loss': 1.6181, 'grad_norm': 2.1913371086120605, 'learning_rate': 0.0003876, 'epoch': 1.09}
{'loss': 1.2356, 'grad_norm': 2.3298208713531494, 'learning_rate': 0.00038639999999999996, 'epoch': 1.1}
{'loss': 1.0381, 'grad_norm': 2.1702969074249268, 'learning_rate': 0.0003852, 'epoch': 1.1}
{'loss': 0.9146, 'grad_norm': 1.1289864778518677, 'learning_rate': 0.00038399999999999996, 'epoch': 1.1}
{'loss': 1.0582, 'grad_norm': 0.9991991519927979, 'learning_rate': 0.0003828, 'epoch': 1.1}
{'loss': 0.8837, 'grad_norm': 0.7332308292388916, 'learning_rate': 0.00038159999999999995, 'epoch': 1.1}
{'loss': 0.991, 'grad_norm': 1.068939447402954, 'learning_rate': 0.0003804, 'epoch': 1.1}
{'loss': 0.8415, 'grad_norm': 1.5490227937698364, 'learning_rate': 0.00037919999999999995, 'epoch': 1.11}
{'loss': 1.0779, 'grad_norm': 1.802791714668274, 'learning_rate': 0.00037799999999999997, 'epoch': 1.11}
{'loss': 1.2486, 'grad_norm': 1.9739185571670532, 'learning_rate': 0.00037679999999999994, 'epoch': 1.11}
{'loss': 1.1758, 'grad_norm': 1.049307107925415, 'learning_rate': 0.00037559999999999997, 'epoch': 1.11}
{'loss': 1.1739, 'grad_norm': 1.0275464057922363, 'learning_rate': 0.0003744, 'epoch': 1.11}
{'loss': 1.1667, 'grad_norm': 1.0034747123718262, 'learning_rate': 0.00037319999999999996, 'epoch': 1.11}
{'loss': 1.2092, 'grad_norm': 0.8343290090560913, 'learning_rate': 0.000372, 'epoch': 1.12}
{'loss': 1.0965, 'grad_norm': 0.9574180245399475, 'learning_rate': 0.00037079999999999996, 'epoch': 1.12}
{'loss': 1.5092, 'grad_norm': 1.8875223398208618, 'learning_rate': 0.0003696, 'epoch': 1.12}
{'loss': 1.1156, 'grad_norm': 0.9866309762001038, 'learning_rate': 0.00036839999999999996, 'epoch': 1.12}
{'loss': 0.9822, 'grad_norm': 1.3818832635879517, 'learning_rate': 0.0003672, 'epoch': 1.12}
{'loss': 1.3489, 'grad_norm': 1.0865228176116943, 'learning_rate': 0.00036599999999999995, 'epoch': 1.12}
{'loss': 0.9266, 'grad_norm': 1.0702693462371826, 'learning_rate': 0.0003648, 'epoch': 1.12}
{'loss': 1.0806, 'grad_norm': 1.2056565284729004, 'learning_rate': 0.00036359999999999995, 'epoch': 1.13}
{'loss': 0.9282, 'grad_norm': 1.358705997467041, 'learning_rate': 0.00036239999999999997, 'epoch': 1.13}
{'loss': 0.9558, 'grad_norm': 0.7640613317489624, 'learning_rate': 0.00036119999999999994, 'epoch': 1.13}
{'loss': 1.4606, 'grad_norm': 1.973166584968567, 'learning_rate': 0.00035999999999999997, 'epoch': 1.13}
{'loss': 1.045, 'grad_norm': 1.1392557621002197, 'learning_rate': 0.00035879999999999994, 'epoch': 1.13}
{'loss': 0.9051, 'grad_norm': 1.138685703277588, 'learning_rate': 0.00035759999999999996, 'epoch': 1.13}
{'loss': 1.13, 'grad_norm': 1.061118483543396, 'learning_rate': 0.00035639999999999994, 'epoch': 1.14}
{'loss': 0.9264, 'grad_norm': 0.7949228286743164, 'learning_rate': 0.00035519999999999996, 'epoch': 1.14}
{'loss': 0.7756, 'grad_norm': 0.7795979976654053, 'learning_rate': 0.00035399999999999993, 'epoch': 1.14}
{'loss': 0.9986, 'grad_norm': 0.7646054029464722, 'learning_rate': 0.00035279999999999996, 'epoch': 1.14}
{'loss': 1.0035, 'grad_norm': 1.2770469188690186, 'learning_rate': 0.0003515999999999999, 'epoch': 1.14}
{'loss': 1.2797, 'grad_norm': 1.0702884197235107, 'learning_rate': 0.00035039999999999995, 'epoch': 1.14}
{'loss': 1.2564, 'grad_norm': 1.9675824642181396, 'learning_rate': 0.0003491999999999999, 'epoch': 1.15}
{'loss': 0.8434, 'grad_norm': 0.9342278838157654, 'learning_rate': 0.00034799999999999995, 'epoch': 1.15}
{'loss': 1.9938, 'grad_norm': 2.6957037448883057, 'learning_rate': 0.0003467999999999999, 'epoch': 1.15}
{'loss': 1.1458, 'grad_norm': 1.313462257385254, 'learning_rate': 0.00034559999999999994, 'epoch': 1.15}
{'loss': 1.1156, 'grad_norm': 0.9469001889228821, 'learning_rate': 0.00034439999999999997, 'epoch': 1.15}
{'loss': 0.7993, 'grad_norm': 0.9021716117858887, 'learning_rate': 0.00034319999999999994, 'epoch': 1.15}
{'loss': 1.4469, 'grad_norm': 1.6395480632781982, 'learning_rate': 0.00034199999999999996, 'epoch': 1.16}
{'loss': 1.5812, 'grad_norm': 1.6747560501098633, 'learning_rate': 0.00034079999999999994, 'epoch': 1.16}
{'loss': 1.3118, 'grad_norm': 1.44581937789917, 'learning_rate': 0.00033959999999999996, 'epoch': 1.16}
{'loss': 2.0225, 'grad_norm': 2.0632808208465576, 'learning_rate': 0.00033839999999999993, 'epoch': 1.16}
{'loss': 2.8181, 'grad_norm': 9.794708251953125, 'learning_rate': 0.0003372, 'epoch': 1.16}
{'loss': 2.1584, 'grad_norm': 6.015258312225342, 'learning_rate': 0.000336, 'epoch': 1.16}
{'loss': 1.4894, 'grad_norm': 2.810046672821045, 'learning_rate': 0.0003348, 'epoch': 1.16}
{'loss': 1.7008, 'grad_norm': 4.039572238922119, 'learning_rate': 0.0003336, 'epoch': 1.17}
{'loss': 1.4878, 'grad_norm': 1.8455368280410767, 'learning_rate': 0.0003324, 'epoch': 1.17}
{'loss': 1.8387, 'grad_norm': 1.9877344369888306, 'learning_rate': 0.0003312, 'epoch': 1.17}
{'loss': 2.3008, 'grad_norm': 2.020326614379883, 'learning_rate': 0.00033, 'epoch': 1.17}
{'loss': 1.0218, 'grad_norm': 1.342176079750061, 'learning_rate': 0.0003288, 'epoch': 1.17}
{'loss': 1.1738, 'grad_norm': 3.733637809753418, 'learning_rate': 0.0003276, 'epoch': 1.17}
{'loss': 1.0969, 'grad_norm': 3.3622446060180664, 'learning_rate': 0.0003264, 'epoch': 1.18}
{'loss': 1.2702, 'grad_norm': 3.723426103591919, 'learning_rate': 0.0003252, 'epoch': 1.18}
{'loss': 1.2957, 'grad_norm': 2.8122305870056152, 'learning_rate': 0.000324, 'epoch': 1.18}
{'loss': 1.0445, 'grad_norm': 2.5551021099090576, 'learning_rate': 0.0003228, 'epoch': 1.18}
{'loss': 1.2356, 'grad_norm': 2.1728436946868896, 'learning_rate': 0.0003216, 'epoch': 1.18}
{'loss': 1.3066, 'grad_norm': 1.1469835042953491, 'learning_rate': 0.0003204, 'epoch': 1.18}
{'loss': 1.0766, 'grad_norm': 0.8240766525268555, 'learning_rate': 0.0003192, 'epoch': 1.19}
{'loss': 1.1108, 'grad_norm': 0.9729487299919128, 'learning_rate': 0.000318, 'epoch': 1.19}
{'loss': 0.9828, 'grad_norm': 0.7998544573783875, 'learning_rate': 0.0003168, 'epoch': 1.19}
{'loss': 1.0775, 'grad_norm': 1.330359697341919, 'learning_rate': 0.0003156, 'epoch': 1.19}
{'loss': 1.038, 'grad_norm': 1.8550713062286377, 'learning_rate': 0.0003144, 'epoch': 1.19}
{'loss': 1.1854, 'grad_norm': 1.3517425060272217, 'learning_rate': 0.00031319999999999997, 'epoch': 1.19}
{'loss': 0.8974, 'grad_norm': 1.2003748416900635, 'learning_rate': 0.000312, 'epoch': 1.2}
{'loss': 1.5292, 'grad_norm': 2.6782844066619873, 'learning_rate': 0.00031079999999999997, 'epoch': 1.2}
{'loss': 0.977, 'grad_norm': 0.9224521517753601, 'learning_rate': 0.0003096, 'epoch': 1.2}
{'loss': 0.8665, 'grad_norm': 0.7886136174201965, 'learning_rate': 0.00030839999999999996, 'epoch': 1.2}
{'loss': 1.2128, 'grad_norm': 0.8379237055778503, 'learning_rate': 0.0003072, 'epoch': 1.2}
{'loss': 0.9512, 'grad_norm': 0.8912472724914551, 'learning_rate': 0.00030599999999999996, 'epoch': 1.2}
{'loss': 1.2134, 'grad_norm': 0.7551859021186829, 'learning_rate': 0.0003048, 'epoch': 1.2}
{'loss': 0.8269, 'grad_norm': 0.8147563338279724, 'learning_rate': 0.00030359999999999995, 'epoch': 1.21}
{'loss': 1.2237, 'grad_norm': 1.0927190780639648, 'learning_rate': 0.0003024, 'epoch': 1.21}
{'loss': 0.9561, 'grad_norm': 1.3002434968948364, 'learning_rate': 0.00030119999999999995, 'epoch': 1.21}
{'loss': 0.9805, 'grad_norm': 1.19173002243042, 'learning_rate': 0.0003, 'epoch': 1.21}
{'loss': 0.9241, 'grad_norm': 0.8880097270011902, 'learning_rate': 0.0002988, 'epoch': 1.21}
{'loss': 1.2185, 'grad_norm': 1.1053305864334106, 'learning_rate': 0.00029759999999999997, 'epoch': 1.21}
{'loss': 1.4252, 'grad_norm': 0.9699023365974426, 'learning_rate': 0.0002964, 'epoch': 1.22}
{'loss': 1.2692, 'grad_norm': 0.8996603488922119, 'learning_rate': 0.00029519999999999997, 'epoch': 1.22}
{'loss': 1.1205, 'grad_norm': 0.8809080123901367, 'learning_rate': 0.000294, 'epoch': 1.22}
{'loss': 1.1138, 'grad_norm': 0.9682839512825012, 'learning_rate': 0.00029279999999999996, 'epoch': 1.22}
{'loss': 1.0813, 'grad_norm': 1.3711163997650146, 'learning_rate': 0.0002916, 'epoch': 1.22}
{'loss': 1.1325, 'grad_norm': 0.9899935126304626, 'learning_rate': 0.00029039999999999996, 'epoch': 1.22}
{'loss': 1.5435, 'grad_norm': 0.9368510842323303, 'learning_rate': 0.0002892, 'epoch': 1.23}
{'loss': 1.3168, 'grad_norm': 1.091867208480835, 'learning_rate': 0.00028799999999999995, 'epoch': 1.23}
{'loss': 1.7494, 'grad_norm': 2.5387539863586426, 'learning_rate': 0.0002868, 'epoch': 1.23}
{'loss': 1.0951, 'grad_norm': 0.923830509185791, 'learning_rate': 0.00028559999999999995, 'epoch': 1.23}
{'loss': 1.5517, 'grad_norm': 1.384752631187439, 'learning_rate': 0.0002844, 'epoch': 1.23}
{'loss': 1.4577, 'grad_norm': 1.1273128986358643, 'learning_rate': 0.00028319999999999994, 'epoch': 1.23}
{'loss': 1.0851, 'grad_norm': 1.3909173011779785, 'learning_rate': 0.00028199999999999997, 'epoch': 1.24}
{'loss': 1.9448, 'grad_norm': 2.421490430831909, 'learning_rate': 0.0002808, 'epoch': 1.24}
{'loss': 1.2732, 'grad_norm': 1.3807581663131714, 'learning_rate': 0.00027959999999999997, 'epoch': 1.24}
{'loss': 1.9347, 'grad_norm': 2.0578272342681885, 'learning_rate': 0.0002784, 'epoch': 1.24}
{'loss': 3.8362, 'grad_norm': 15.272141456604004, 'learning_rate': 0.0002772, 'epoch': 1.24}
{'loss': 1.9091, 'grad_norm': 5.2646708488464355, 'learning_rate': 0.000276, 'epoch': 1.24}
{'loss': 1.6095, 'grad_norm': 2.031355619430542, 'learning_rate': 0.0002748, 'epoch': 1.24}
{'loss': 2.3089, 'grad_norm': 4.6534600257873535, 'learning_rate': 0.0002736, 'epoch': 1.25}
{'loss': 2.4965, 'grad_norm': 6.541667461395264, 'learning_rate': 0.0002724, 'epoch': 1.25}
{'loss': 1.6555, 'grad_norm': 2.7578318119049072, 'learning_rate': 0.0002712, 'epoch': 1.25}
{'loss': 1.3038, 'grad_norm': 1.1129381656646729, 'learning_rate': 0.00027, 'epoch': 1.25}
{'loss': 1.1506, 'grad_norm': 2.7952072620391846, 'learning_rate': 0.0002688, 'epoch': 1.25}
{'loss': 1.1711, 'grad_norm': 3.8253567218780518, 'learning_rate': 0.0002676, 'epoch': 1.25}
{'loss': 1.2522, 'grad_norm': 3.225694179534912, 'learning_rate': 0.00026639999999999997, 'epoch': 1.26}
{'loss': 1.1518, 'grad_norm': 2.5266146659851074, 'learning_rate': 0.0002652, 'epoch': 1.26}
{'loss': 1.2192, 'grad_norm': 2.8188230991363525, 'learning_rate': 0.00026399999999999997, 'epoch': 1.26}
{'loss': 1.2666, 'grad_norm': 2.217848539352417, 'learning_rate': 0.0002628, 'epoch': 1.26}
{'loss': 0.9006, 'grad_norm': 1.5173269510269165, 'learning_rate': 0.00026159999999999996, 'epoch': 1.26}
{'loss': 1.0547, 'grad_norm': 0.8272497057914734, 'learning_rate': 0.0002604, 'epoch': 1.26}
{'loss': 0.8253, 'grad_norm': 0.7954143285751343, 'learning_rate': 0.00025919999999999996, 'epoch': 1.27}
{'loss': 0.9969, 'grad_norm': 0.5565853118896484, 'learning_rate': 0.000258, 'epoch': 1.27}
{'loss': 1.4545, 'grad_norm': 1.0500190258026123, 'learning_rate': 0.00025679999999999995, 'epoch': 1.27}
{'loss': 1.171, 'grad_norm': 0.8248721957206726, 'learning_rate': 0.0002556, 'epoch': 1.27}
{'loss': 0.9472, 'grad_norm': 0.7490447759628296, 'learning_rate': 0.00025439999999999995, 'epoch': 1.27}
{'loss': 1.3288, 'grad_norm': 1.4040035009384155, 'learning_rate': 0.0002532, 'epoch': 1.27}
{'loss': 0.893, 'grad_norm': 1.6696480512619019, 'learning_rate': 0.00025199999999999995, 'epoch': 1.28}
{'loss': 0.9655, 'grad_norm': 1.1780556440353394, 'learning_rate': 0.00025079999999999997, 'epoch': 1.28}
{'loss': 0.8489, 'grad_norm': 0.8681122660636902, 'learning_rate': 0.00024959999999999994, 'epoch': 1.28}
{'loss': 1.302, 'grad_norm': 2.7494149208068848, 'learning_rate': 0.00024839999999999997, 'epoch': 1.28}
{'loss': 1.2423, 'grad_norm': 0.7193929553031921, 'learning_rate': 0.0002472, 'epoch': 1.28}
{'loss': 1.1013, 'grad_norm': 0.7485970258712769, 'learning_rate': 0.00024599999999999996, 'epoch': 1.28}
{'loss': 1.0633, 'grad_norm': 1.010740041732788, 'learning_rate': 0.0002448, 'epoch': 1.28}
{'loss': 0.9045, 'grad_norm': 1.0126278400421143, 'learning_rate': 0.00024359999999999999, 'epoch': 1.29}
{'loss': 1.1721, 'grad_norm': 0.8286617398262024, 'learning_rate': 0.00024239999999999998, 'epoch': 1.29}
{'loss': 0.697, 'grad_norm': 0.8142926692962646, 'learning_rate': 0.00024119999999999998, 'epoch': 1.29}
{'loss': 1.0488, 'grad_norm': 1.0537707805633545, 'learning_rate': 0.00023999999999999998, 'epoch': 1.29}
{'loss': 0.8774, 'grad_norm': 1.3153316974639893, 'learning_rate': 0.0002388, 'epoch': 1.29}
{'loss': 1.3213, 'grad_norm': 0.871797502040863, 'learning_rate': 0.0002376, 'epoch': 1.29}
{'loss': 1.199, 'grad_norm': 0.7886813282966614, 'learning_rate': 0.0002364, 'epoch': 1.3}
{'loss': 1.2296, 'grad_norm': 1.002602219581604, 'learning_rate': 0.0002352, 'epoch': 1.3}
{'loss': 1.2236, 'grad_norm': 0.9214668273925781, 'learning_rate': 0.000234, 'epoch': 1.3}
{'loss': 1.0334, 'grad_norm': 1.148370385169983, 'learning_rate': 0.0002328, 'epoch': 1.3}
{'loss': 1.3067, 'grad_norm': 0.9379896521568298, 'learning_rate': 0.0002316, 'epoch': 1.3}
{'loss': 1.3121, 'grad_norm': 0.956409215927124, 'learning_rate': 0.0002304, 'epoch': 1.3}
{'loss': 0.9634, 'grad_norm': 0.7684486508369446, 'learning_rate': 0.0002292, 'epoch': 1.31}
{'loss': 1.2217, 'grad_norm': 1.111099123954773, 'learning_rate': 0.00022799999999999999, 'epoch': 1.31}
{'loss': 1.2113, 'grad_norm': 1.2419041395187378, 'learning_rate': 0.00022679999999999998, 'epoch': 1.31}
{'loss': 1.2651, 'grad_norm': 1.0385098457336426, 'learning_rate': 0.00022559999999999998, 'epoch': 1.31}
{'loss': 1.1297, 'grad_norm': 1.2145808935165405, 'learning_rate': 0.00022439999999999998, 'epoch': 1.31}
{'loss': 1.3326, 'grad_norm': 1.5363961458206177, 'learning_rate': 0.00022319999999999998, 'epoch': 1.31}
{'loss': 1.2146, 'grad_norm': 1.2900283336639404, 'learning_rate': 0.00022199999999999998, 'epoch': 1.32}
{'loss': 1.6352, 'grad_norm': 1.2551729679107666, 'learning_rate': 0.00022079999999999997, 'epoch': 1.32}
{'loss': 1.8657, 'grad_norm': 1.9140880107879639, 'learning_rate': 0.00021959999999999997, 'epoch': 1.32}
{'loss': 1.7609, 'grad_norm': 1.6980606317520142, 'learning_rate': 0.00021839999999999997, 'epoch': 1.32}
{'loss': 4.9791, 'grad_norm': 24.27659797668457, 'learning_rate': 0.00021719999999999997, 'epoch': 1.32}
{'loss': 1.948, 'grad_norm': 4.224913597106934, 'learning_rate': 0.00021599999999999996, 'epoch': 1.32}
{'loss': 1.2907, 'grad_norm': 1.786584496498108, 'learning_rate': 0.00021479999999999996, 'epoch': 1.32}
{'loss': 1.8151, 'grad_norm': 3.6893458366394043, 'learning_rate': 0.00021359999999999996, 'epoch': 1.33}
{'loss': 1.4565, 'grad_norm': 1.7416751384735107, 'learning_rate': 0.00021239999999999996, 'epoch': 1.33}
{'loss': 1.4603, 'grad_norm': 1.4054017066955566, 'learning_rate': 0.00021119999999999996, 'epoch': 1.33}
{'loss': 1.1399, 'grad_norm': 1.827987551689148, 'learning_rate': 0.00020999999999999998, 'epoch': 1.33}
{'loss': 1.0021, 'grad_norm': 1.687665343284607, 'learning_rate': 0.00020879999999999998, 'epoch': 1.33}
{'loss': 1.3135, 'grad_norm': 1.9120396375656128, 'learning_rate': 0.00020759999999999998, 'epoch': 1.33}
{'loss': 1.2274, 'grad_norm': 1.4296196699142456, 'learning_rate': 0.00020639999999999998, 'epoch': 1.34}
{'loss': 1.064, 'grad_norm': 2.3591153621673584, 'learning_rate': 0.0002052, 'epoch': 1.34}
{'loss': 1.245, 'grad_norm': 2.0794975757598877, 'learning_rate': 0.000204, 'epoch': 1.34}
{'loss': 1.0842, 'grad_norm': 1.6829882860183716, 'learning_rate': 0.0002028, 'epoch': 1.34}
{'loss': 0.9773, 'grad_norm': 1.7696207761764526, 'learning_rate': 0.0002016, 'epoch': 1.34}
{'loss': 1.0883, 'grad_norm': 0.9369833469390869, 'learning_rate': 0.0002004, 'epoch': 1.34}
{'loss': 0.9052, 'grad_norm': 1.0317164659500122, 'learning_rate': 0.0001992, 'epoch': 1.35}
{'loss': 1.0024, 'grad_norm': 0.7406511902809143, 'learning_rate': 0.000198, 'epoch': 1.35}
{'loss': 1.0525, 'grad_norm': 0.7658127546310425, 'learning_rate': 0.00019679999999999999, 'epoch': 1.35}
{'loss': 1.6095, 'grad_norm': 4.549338340759277, 'learning_rate': 0.00019559999999999998, 'epoch': 1.35}
{'loss': 0.9631, 'grad_norm': 1.467298984527588, 'learning_rate': 0.00019439999999999998, 'epoch': 1.35}
{'loss': 0.9923, 'grad_norm': 0.682819664478302, 'learning_rate': 0.00019319999999999998, 'epoch': 1.35}
{'loss': 0.688, 'grad_norm': 1.0607706308364868, 'learning_rate': 0.00019199999999999998, 'epoch': 1.36}
{'loss': 0.9521, 'grad_norm': 1.449480414390564, 'learning_rate': 0.00019079999999999998, 'epoch': 1.36}
{'loss': 1.1783, 'grad_norm': 1.363101601600647, 'learning_rate': 0.00018959999999999997, 'epoch': 1.36}
{'loss': 1.0023, 'grad_norm': 1.044743537902832, 'learning_rate': 0.00018839999999999997, 'epoch': 1.36}
{'loss': 0.8738, 'grad_norm': 1.300769567489624, 'learning_rate': 0.0001872, 'epoch': 1.36}
{'loss': 0.9665, 'grad_norm': 0.9082262516021729, 'learning_rate': 0.000186, 'epoch': 1.36}
{'loss': 0.7391, 'grad_norm': 0.739010751247406, 'learning_rate': 0.0001848, 'epoch': 1.36}
{'loss': 1.0973, 'grad_norm': 0.8147821426391602, 'learning_rate': 0.0001836, 'epoch': 1.37}
{'loss': 0.912, 'grad_norm': 1.0824979543685913, 'learning_rate': 0.0001824, 'epoch': 1.37}
{'loss': 0.9727, 'grad_norm': 0.9057460427284241, 'learning_rate': 0.00018119999999999999, 'epoch': 1.37}
{'loss': 0.9984, 'grad_norm': 1.5311682224273682, 'learning_rate': 0.00017999999999999998, 'epoch': 1.37}
{'loss': 1.3081, 'grad_norm': 1.1883121728897095, 'learning_rate': 0.00017879999999999998, 'epoch': 1.37}
{'loss': 1.2561, 'grad_norm': 0.8667554259300232, 'learning_rate': 0.00017759999999999998, 'epoch': 1.37}
{'loss': 0.9624, 'grad_norm': 0.9504633545875549, 'learning_rate': 0.00017639999999999998, 'epoch': 1.38}
{'loss': 0.9895, 'grad_norm': 0.7584782242774963, 'learning_rate': 0.00017519999999999998, 'epoch': 1.38}
{'loss': 1.4783, 'grad_norm': 0.8988743424415588, 'learning_rate': 0.00017399999999999997, 'epoch': 1.38}
{'loss': 1.0286, 'grad_norm': 1.5294109582901, 'learning_rate': 0.00017279999999999997, 'epoch': 1.38}
{'loss': 1.3548, 'grad_norm': 0.900830864906311, 'learning_rate': 0.00017159999999999997, 'epoch': 1.38}
{'loss': 1.3327, 'grad_norm': 1.1617467403411865, 'learning_rate': 0.00017039999999999997, 'epoch': 1.38}
{'loss': 0.9852, 'grad_norm': 0.9407745599746704, 'learning_rate': 0.00016919999999999997, 'epoch': 1.39}
{'loss': 1.209, 'grad_norm': 1.5121272802352905, 'learning_rate': 0.000168, 'epoch': 1.39}
{'loss': 1.336, 'grad_norm': 1.1016932725906372, 'learning_rate': 0.0001668, 'epoch': 1.39}
{'loss': 1.4303, 'grad_norm': 1.236220359802246, 'learning_rate': 0.0001656, 'epoch': 1.39}
{'loss': 1.4783, 'grad_norm': 1.2185155153274536, 'learning_rate': 0.0001644, 'epoch': 1.39}
{'loss': 1.5201, 'grad_norm': 1.0286515951156616, 'learning_rate': 0.0001632, 'epoch': 1.39}
{'loss': 1.299, 'grad_norm': 1.185445785522461, 'learning_rate': 0.000162, 'epoch': 1.4}
{'loss': 1.4461, 'grad_norm': 1.2194920778274536, 'learning_rate': 0.0001608, 'epoch': 1.4}
{'loss': 1.8892, 'grad_norm': 1.220286250114441, 'learning_rate': 0.0001596, 'epoch': 1.4}
{'loss': 2.0015, 'grad_norm': 1.2706676721572876, 'learning_rate': 0.0001584, 'epoch': 1.4}
{'loss': 1.6254, 'grad_norm': 3.5840415954589844, 'learning_rate': 0.0001572, 'epoch': 1.4}
{'loss': 1.7071, 'grad_norm': 4.40497350692749, 'learning_rate': 0.000156, 'epoch': 1.4}
{'loss': 1.1047, 'grad_norm': 0.8230572938919067, 'learning_rate': 0.0001548, 'epoch': 1.4}
{'loss': 1.8217, 'grad_norm': 4.162302017211914, 'learning_rate': 0.0001536, 'epoch': 1.41}
{'loss': 1.9785, 'grad_norm': 5.07633113861084, 'learning_rate': 0.0001524, 'epoch': 1.41}
{'loss': 1.0672, 'grad_norm': 0.917648434638977, 'learning_rate': 0.0001512, 'epoch': 1.41}
{'loss': 2.0423, 'grad_norm': 4.194571018218994, 'learning_rate': 0.00015, 'epoch': 1.41}
{'loss': 1.6481, 'grad_norm': 2.5355117321014404, 'learning_rate': 0.00014879999999999998, 'epoch': 1.41}
{'loss': 1.4132, 'grad_norm': 1.0271695852279663, 'learning_rate': 0.00014759999999999998, 'epoch': 1.41}
{'loss': 1.2408, 'grad_norm': 1.7041980028152466, 'learning_rate': 0.00014639999999999998, 'epoch': 1.42}
{'loss': 1.0874, 'grad_norm': 1.204385757446289, 'learning_rate': 0.00014519999999999998, 'epoch': 1.42}
{'loss': 1.0752, 'grad_norm': 1.4748934507369995, 'learning_rate': 0.00014399999999999998, 'epoch': 1.42}
{'loss': 0.9498, 'grad_norm': 1.2053824663162231, 'learning_rate': 0.00014279999999999997, 'epoch': 1.42}
{'loss': 0.8382, 'grad_norm': 1.6274027824401855, 'learning_rate': 0.00014159999999999997, 'epoch': 1.42}
{'loss': 0.847, 'grad_norm': 1.2175933122634888, 'learning_rate': 0.0001404, 'epoch': 1.42}
{'loss': 0.9262, 'grad_norm': 1.1891071796417236, 'learning_rate': 0.0001392, 'epoch': 1.43}
{'loss': 0.8711, 'grad_norm': 0.8570193648338318, 'learning_rate': 0.000138, 'epoch': 1.43}
{'loss': 0.7945, 'grad_norm': 0.8134769201278687, 'learning_rate': 0.0001368, 'epoch': 1.43}
{'loss': 1.0081, 'grad_norm': 0.8427578210830688, 'learning_rate': 0.0001356, 'epoch': 1.43}
{'loss': 0.7724, 'grad_norm': 0.6914164423942566, 'learning_rate': 0.0001344, 'epoch': 1.43}
{'loss': 1.3446, 'grad_norm': 1.2948582172393799, 'learning_rate': 0.00013319999999999999, 'epoch': 1.43}
{'loss': 1.4488, 'grad_norm': 2.3760907649993896, 'learning_rate': 0.00013199999999999998, 'epoch': 1.44}
{'loss': 1.0265, 'grad_norm': 0.8447459936141968, 'learning_rate': 0.00013079999999999998, 'epoch': 1.44}
{'loss': 1.0248, 'grad_norm': 0.9479515552520752, 'learning_rate': 0.00012959999999999998, 'epoch': 1.44}
{'loss': 1.1762, 'grad_norm': 0.8598971366882324, 'learning_rate': 0.00012839999999999998, 'epoch': 1.44}
{'loss': 1.4474, 'grad_norm': 0.8861218690872192, 'learning_rate': 0.00012719999999999997, 'epoch': 1.44}
{'loss': 1.234, 'grad_norm': 1.63547682762146, 'learning_rate': 0.00012599999999999997, 'epoch': 1.44}
{'loss': 1.2004, 'grad_norm': 1.8481323719024658, 'learning_rate': 0.00012479999999999997, 'epoch': 1.44}
{'loss': 0.9047, 'grad_norm': 1.1849677562713623, 'learning_rate': 0.0001236, 'epoch': 1.45}
{'loss': 0.8302, 'grad_norm': 0.8991519808769226, 'learning_rate': 0.0001224, 'epoch': 1.45}
{'loss': 1.1055, 'grad_norm': 0.7898010015487671, 'learning_rate': 0.00012119999999999999, 'epoch': 1.45}
{'loss': 1.1601, 'grad_norm': 0.7709459662437439, 'learning_rate': 0.00011999999999999999, 'epoch': 1.45}
{'loss': 0.8276, 'grad_norm': 0.7087196111679077, 'learning_rate': 0.0001188, 'epoch': 1.45}
{'loss': 1.578, 'grad_norm': 1.3262732028961182, 'learning_rate': 0.0001176, 'epoch': 1.45}
{'loss': 1.1724, 'grad_norm': 0.9715768694877625, 'learning_rate': 0.0001164, 'epoch': 1.46}
{'loss': 1.191, 'grad_norm': 0.9180259108543396, 'learning_rate': 0.0001152, 'epoch': 1.46}
{'loss': 1.1005, 'grad_norm': 0.8658446669578552, 'learning_rate': 0.00011399999999999999, 'epoch': 1.46}
{'loss': 0.8082, 'grad_norm': 0.8337435126304626, 'learning_rate': 0.00011279999999999999, 'epoch': 1.46}
{'loss': 1.3635, 'grad_norm': 1.3308426141738892, 'learning_rate': 0.00011159999999999999, 'epoch': 1.46}
{'loss': 1.3976, 'grad_norm': 1.605542540550232, 'learning_rate': 0.00011039999999999999, 'epoch': 1.46}
{'loss': 1.1107, 'grad_norm': 0.9793137907981873, 'learning_rate': 0.00010919999999999998, 'epoch': 1.47}
{'loss': 1.0646, 'grad_norm': 1.0021345615386963, 'learning_rate': 0.00010799999999999998, 'epoch': 1.47}
{'loss': 1.0765, 'grad_norm': 1.106182336807251, 'learning_rate': 0.00010679999999999998, 'epoch': 1.47}
{'loss': 0.8327, 'grad_norm': 0.944386899471283, 'learning_rate': 0.00010559999999999998, 'epoch': 1.47}
{'loss': 1.2833, 'grad_norm': 0.8899224996566772, 'learning_rate': 0.00010439999999999999, 'epoch': 1.47}
{'loss': 1.4942, 'grad_norm': 0.9858981370925903, 'learning_rate': 0.00010319999999999999, 'epoch': 1.47}
{'loss': 0.9906, 'grad_norm': 0.8973054885864258, 'learning_rate': 0.000102, 'epoch': 1.48}
{'loss': 1.6196, 'grad_norm': 1.453721523284912, 'learning_rate': 0.0001008, 'epoch': 1.48}
{'loss': 1.6073, 'grad_norm': 1.0986156463623047, 'learning_rate': 9.96e-05, 'epoch': 1.48}
{'loss': 1.9778, 'grad_norm': 2.032989978790283, 'learning_rate': 9.839999999999999e-05, 'epoch': 1.48}
{'loss': 1.141, 'grad_norm': 1.989129900932312, 'learning_rate': 9.719999999999999e-05, 'epoch': 1.48}
{'loss': 1.5118, 'grad_norm': 3.4167699813842773, 'learning_rate': 9.599999999999999e-05, 'epoch': 1.48}
{'loss': 1.0734, 'grad_norm': 1.3643302917480469, 'learning_rate': 9.479999999999999e-05, 'epoch': 1.48}
{'loss': 1.7124, 'grad_norm': 2.2885854244232178, 'learning_rate': 9.36e-05, 'epoch': 1.49}
{'loss': 0.8954, 'grad_norm': 0.6576846241950989, 'learning_rate': 9.24e-05, 'epoch': 1.49}
{'loss': 1.0185, 'grad_norm': 0.8722153306007385, 'learning_rate': 9.12e-05, 'epoch': 1.49}
{'loss': 1.004, 'grad_norm': 0.8326541781425476, 'learning_rate': 8.999999999999999e-05, 'epoch': 1.49}
{'loss': 1.1592, 'grad_norm': 2.4778904914855957, 'learning_rate': 8.879999999999999e-05, 'epoch': 1.49}
{'loss': 1.2076, 'grad_norm': 0.8404483795166016, 'learning_rate': 8.759999999999999e-05, 'epoch': 1.49}
{'loss': 0.9555, 'grad_norm': 0.8248417973518372, 'learning_rate': 8.639999999999999e-05, 'epoch': 1.5}
{'loss': 0.979, 'grad_norm': 1.3365864753723145, 'learning_rate': 8.519999999999998e-05, 'epoch': 1.5}
{'loss': 1.0958, 'grad_norm': 1.1861578226089478, 'learning_rate': 8.4e-05, 'epoch': 1.5}
{'loss': 0.9629, 'grad_norm': 0.88190758228302, 'learning_rate': 8.28e-05, 'epoch': 1.5}
{'loss': 0.8173, 'grad_norm': 0.7885952591896057, 'learning_rate': 8.16e-05, 'epoch': 1.5}
{'loss': 0.9212, 'grad_norm': 0.8672547936439514, 'learning_rate': 8.04e-05, 'epoch': 1.5}
{'loss': 0.7609, 'grad_norm': 0.9873324036598206, 'learning_rate': 7.92e-05, 'epoch': 1.51}
{'loss': 0.9147, 'grad_norm': 0.7246285676956177, 'learning_rate': 7.8e-05, 'epoch': 1.51}
{'loss': 1.0565, 'grad_norm': 0.935647189617157, 'learning_rate': 7.68e-05, 'epoch': 1.51}
{'loss': 0.9969, 'grad_norm': 0.9067904353141785, 'learning_rate': 7.56e-05, 'epoch': 1.51}
{'loss': 1.02, 'grad_norm': 0.711391031742096, 'learning_rate': 7.439999999999999e-05, 'epoch': 1.51}
{'loss': 0.8794, 'grad_norm': 0.6557864546775818, 'learning_rate': 7.319999999999999e-05, 'epoch': 1.51}
{'loss': 0.7447, 'grad_norm': 0.6219711899757385, 'learning_rate': 7.199999999999999e-05, 'epoch': 1.52}
{'loss': 0.7373, 'grad_norm': 0.8622006773948669, 'learning_rate': 7.079999999999999e-05, 'epoch': 1.52}
{'loss': 1.2627, 'grad_norm': 1.1472575664520264, 'learning_rate': 6.96e-05, 'epoch': 1.52}
{'loss': 1.0621, 'grad_norm': 0.7451357245445251, 'learning_rate': 6.84e-05, 'epoch': 1.52}
{'loss': 0.9089, 'grad_norm': 0.6065587997436523, 'learning_rate': 6.72e-05, 'epoch': 1.52}
{'loss': 1.0643, 'grad_norm': 1.4195854663848877, 'learning_rate': 6.599999999999999e-05, 'epoch': 1.52}
{'loss': 0.7469, 'grad_norm': 0.5955117344856262, 'learning_rate': 6.479999999999999e-05, 'epoch': 1.52}
{'loss': 1.0978, 'grad_norm': 0.6250576972961426, 'learning_rate': 6.359999999999999e-05, 'epoch': 1.53}
{'loss': 0.8296, 'grad_norm': 0.6930971145629883, 'learning_rate': 6.239999999999999e-05, 'epoch': 1.53}
{'loss': 1.0546, 'grad_norm': 0.6830615997314453, 'learning_rate': 6.12e-05, 'epoch': 1.53}
{'loss': 0.8516, 'grad_norm': 0.7899861931800842, 'learning_rate': 5.9999999999999995e-05, 'epoch': 1.53}
{'loss': 0.9437, 'grad_norm': 0.7817133665084839, 'learning_rate': 5.88e-05, 'epoch': 1.53}
{'loss': 0.9189, 'grad_norm': 0.7757598161697388, 'learning_rate': 5.76e-05, 'epoch': 1.53}
{'loss': 1.1483, 'grad_norm': 1.3347138166427612, 'learning_rate': 5.6399999999999995e-05, 'epoch': 1.54}
{'loss': 0.9015, 'grad_norm': 1.1997400522232056, 'learning_rate': 5.519999999999999e-05, 'epoch': 1.54}
{'loss': 1.1634, 'grad_norm': 0.887032687664032, 'learning_rate': 5.399999999999999e-05, 'epoch': 1.54}
{'loss': 0.9525, 'grad_norm': 0.8554338812828064, 'learning_rate': 5.279999999999999e-05, 'epoch': 1.54}
{'loss': 1.2372, 'grad_norm': 1.3892364501953125, 'learning_rate': 5.1599999999999994e-05, 'epoch': 1.54}
{'loss': 1.3967, 'grad_norm': 0.9542357921600342, 'learning_rate': 5.04e-05, 'epoch': 1.54}
{'loss': 1.22, 'grad_norm': 0.8893820643424988, 'learning_rate': 4.9199999999999997e-05, 'epoch': 1.55}
{'loss': 1.2027, 'grad_norm': 1.0028985738754272, 'learning_rate': 4.7999999999999994e-05, 'epoch': 1.55}
{'loss': 1.0165, 'grad_norm': 0.9833260774612427, 'learning_rate': 4.68e-05, 'epoch': 1.55}
{'loss': 0.9173, 'grad_norm': 1.2113572359085083, 'learning_rate': 4.56e-05, 'epoch': 1.55}
{'loss': 1.2573, 'grad_norm': 1.3547580242156982, 'learning_rate': 4.4399999999999995e-05, 'epoch': 1.55}
{'loss': 1.244, 'grad_norm': 1.373116135597229, 'learning_rate': 4.319999999999999e-05, 'epoch': 1.55}
{'loss': 1.6164, 'grad_norm': 1.7258973121643066, 'learning_rate': 4.2e-05, 'epoch': 1.56}
{'loss': 1.5954, 'grad_norm': 1.2587857246398926, 'learning_rate': 4.08e-05, 'epoch': 1.56}
{'loss': 1.6517, 'grad_norm': 1.243959903717041, 'learning_rate': 3.96e-05, 'epoch': 1.56}
{'loss': 3.1696, 'grad_norm': 8.083672523498535, 'learning_rate': 3.84e-05, 'epoch': 1.56}
{'loss': 1.6055, 'grad_norm': 3.0081162452697754, 'learning_rate': 3.7199999999999996e-05, 'epoch': 1.56}
{'loss': 1.4517, 'grad_norm': 2.0530784130096436, 'learning_rate': 3.5999999999999994e-05, 'epoch': 1.56}
{'loss': 1.3951, 'grad_norm': 2.999591588973999, 'learning_rate': 3.48e-05, 'epoch': 1.56}
{'loss': 1.6471, 'grad_norm': 3.652292490005493, 'learning_rate': 3.36e-05, 'epoch': 1.57}
{'loss': 1.1589, 'grad_norm': 0.9475372433662415, 'learning_rate': 3.2399999999999995e-05, 'epoch': 1.57}
{'loss': 1.2993, 'grad_norm': 1.1663963794708252, 'learning_rate': 3.119999999999999e-05, 'epoch': 1.57}
{'loss': 0.8657, 'grad_norm': 0.7425952553749084, 'learning_rate': 2.9999999999999997e-05, 'epoch': 1.57}
{'loss': 0.8047, 'grad_norm': 0.7692848443984985, 'learning_rate': 2.88e-05, 'epoch': 1.57}
{'loss': 1.0338, 'grad_norm': 1.0877598524093628, 'learning_rate': 2.7599999999999997e-05, 'epoch': 1.57}
{'loss': 1.02, 'grad_norm': 1.2162353992462158, 'learning_rate': 2.6399999999999995e-05, 'epoch': 1.58}
{'loss': 1.1142, 'grad_norm': 0.8985974788665771, 'learning_rate': 2.52e-05, 'epoch': 1.58}
{'loss': 1.7305, 'grad_norm': 3.2390971183776855, 'learning_rate': 2.3999999999999997e-05, 'epoch': 1.58}
{'loss': 0.7165, 'grad_norm': 0.744255781173706, 'learning_rate': 2.28e-05, 'epoch': 1.58}
{'loss': 0.846, 'grad_norm': 0.8843870759010315, 'learning_rate': 2.1599999999999996e-05, 'epoch': 1.58}
{'loss': 1.038, 'grad_norm': 0.8216111660003662, 'learning_rate': 2.04e-05, 'epoch': 1.58}
{'loss': 0.735, 'grad_norm': 0.7894061207771301, 'learning_rate': 1.92e-05, 'epoch': 1.59}
{'loss': 0.8259, 'grad_norm': 1.1496872901916504, 'learning_rate': 1.7999999999999997e-05, 'epoch': 1.59}
{'loss': 0.8359, 'grad_norm': 0.7256965637207031, 'learning_rate': 1.68e-05, 'epoch': 1.59}
{'loss': 1.1465, 'grad_norm': 1.1701247692108154, 'learning_rate': 1.5599999999999996e-05, 'epoch': 1.59}
{'loss': 0.9484, 'grad_norm': 0.8793047070503235, 'learning_rate': 1.44e-05, 'epoch': 1.59}
{'loss': 0.8829, 'grad_norm': 1.147821307182312, 'learning_rate': 1.3199999999999997e-05, 'epoch': 1.59}
{'loss': 1.0134, 'grad_norm': 0.9907615184783936, 'learning_rate': 1.1999999999999999e-05, 'epoch': 1.6}
{'loss': 0.9232, 'grad_norm': 1.2195550203323364, 'learning_rate': 1.0799999999999998e-05, 'epoch': 1.6}
{'loss': 0.803, 'grad_norm': 0.745823085308075, 'learning_rate': 9.6e-06, 'epoch': 1.6}
{'loss': 0.9856, 'grad_norm': 0.9418966174125671, 'learning_rate': 8.4e-06, 'epoch': 1.6}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:15, 2.58it/s][A
2%|โ | 3/196 [00:01<01:38, 1.97it/s][A
2%|โ | 4/196 [00:02<01:57, 1.64it/s][A
3%|โ | 5/196 [00:03<02:09, 1.47it/s][A
3%|โ | 6/196 [00:04<02:28, 1.28it/s][A
4%|โ | 7/196 [00:04<02:29, 1.26it/s][A
4%|โ | 8/196 [00:05<02:39, 1.18it/s][A
5%|โ | 9/196 [00:07<03:34, 1.15s/it][A
5%|โ | 10/196 [00:09<04:08, 1.34s/it][A
6%|โ | 11/196 [00:11<04:47, 1.55s/it][A
6%|โ | 12/196 [00:13<04:48, 1.57s/it][A
7%|โ | 13/196 [00:13<04:08, 1.36s/it][A
7%|โ | 14/196 [00:14<03:30, 1.15s/it][A
8%|โ | 15/196 [00:15<02:58, 1.01it/s][A
8%|โ | 16/196 [00:15<02:46, 1.08it/s][A
9%|โ | 17/196 [00:16<02:44, 1.09it/s][A
9%|โ | 18/196 [00:18<03:09, 1.06s/it][A
10%|โ | 19/196 [00:20<04:00, 1.36s/it][A
10%|โ | 20/196 [00:21<04:11, 1.43s/it][A
11%|โ | 21/196 [00:23<04:22, 1.50s/it][A
11%|โ | 22/196 [00:24<04:03, 1.40s/it][A
12%|โโ | 23/196 [00:25<03:34, 1.24s/it][A
12%|โโ | 24/196 [00:26<02:53, 1.01s/it][A
13%|โโ | 25/196 [00:26<02:30, 1.13it/s][A
13%|โโ | 26/196 [00:27<02:13, 1.27it/s][A
14%|โโ | 27/196 [00:27<02:03, 1.37it/s][A
14%|โโ | 28/196 [00:28<01:59, 1.41it/s][A
15%|โโ | 29/196 [00:29<02:00, 1.39it/s][A
15%|โโ | 30/196 [00:29<01:58, 1.40it/s][A
16%|โโ | 31/196 [00:30<01:46, 1.55it/s][A
16%|โโ | 32/196 [00:31<01:47, 1.52it/s][A
17%|โโ | 33/196 [00:32<02:02, 1.33it/s][A
17%|โโ | 34/196 [00:33<02:28, 1.09it/s][A
18%|โโ | 35/196 [00:34<02:41, 1.00s/it][A
18%|โโ | 36/196 [00:35<02:58, 1.12s/it][A
19%|โโ | 37/196 [00:36<02:50, 1.07s/it][A
19%|โโ | 38/196 [00:37<02:39, 1.01s/it][A
20%|โโ | 39/196 [00:38<02:26, 1.07it/s][A
20%|โโ | 40/196 [00:39<02:17, 1.14it/s][A
21%|โโ | 41/196 [00:39<02:05, 1.23it/s][A
21%|โโโ | 42/196 [00:40<02:00, 1.27it/s][A
22%|โโโ | 43/196 [00:41<01:57, 1.30it/s][A
22%|โโโ | 44/196 [00:42<01:52, 1.35it/s][A
23%|โโโ | 45/196 [00:42<01:43, 1.45it/s][A
23%|โโโ | 46/196 [00:43<01:40, 1.50it/s][A
24%|โโโ | 47/196 [00:43<01:39, 1.50it/s][A
24%|โโโ | 48/196 [00:44<01:36, 1.53it/s][A
25%|โโโ | 49/196 [00:45<01:35, 1.53it/s][A
26%|โโโ | 50/196 [00:45<01:34, 1.55it/s][A
26%|โโโ | 51/196 [00:46<01:31, 1.58it/s][A
27%|โโโ | 52/196 [00:47<01:32, 1.55it/s][A
27%|โโโ | 53/196 [00:47<01:32, 1.54it/s][A
28%|โโโ | 54/196 [00:48<01:32, 1.53it/s][A
28%|โโโ | 55/196 [00:49<01:41, 1.39it/s][A
29%|โโโ | 56/196 [00:50<01:49, 1.28it/s][A
29%|โโโ | 57/196 [00:51<01:54, 1.21it/s][A
30%|โโโ | 58/196 [00:52<01:55, 1.19it/s][A
30%|โโโ | 59/196 [00:52<01:53, 1.21it/s][A
31%|โโโ | 60/196 [00:53<01:43, 1.32it/s][A
31%|โโโ | 61/196 [00:54<01:36, 1.40it/s][A
32%|โโโโ | 62/196 [00:54<01:37, 1.37it/s][A
32%|โโโโ | 63/196 [00:55<01:39, 1.34it/s][A
33%|โโโโ | 64/196 [00:56<01:37, 1.35it/s][A
33%|โโโโ | 65/196 [00:57<01:37, 1.35it/s][A
34%|โโโโ | 66/196 [00:57<01:41, 1.28it/s][A
34%|โโโโ | 67/196 [00:58<01:43, 1.24it/s][A
35%|โโโโ | 68/196 [00:59<01:55, 1.11it/s][A
35%|โโโโ | 69/196 [01:00<01:52, 1.13it/s][A
36%|โโโโ | 70/196 [01:01<01:44, 1.20it/s][A
36%|โโโโ | 71/196 [01:02<01:38, 1.27it/s][A
37%|โโโโ | 72/196 [01:02<01:31, 1.35it/s][A
37%|โโโโ | 73/196 [01:03<01:24, 1.45it/s][A
38%|โโโโ | 74/196 [01:03<01:20, 1.52it/s][A
38%|โโโโ | 75/196 [01:04<01:18, 1.55it/s][A
39%|โโโโ | 76/196 [01:05<01:16, 1.57it/s][A
39%|โโโโ | 77/196 [01:05<01:19, 1.50it/s][A
40%|โโโโ | 78/196 [01:06<01:20, 1.47it/s][A
40%|โโโโ | 79/196 [01:07<01:19, 1.48it/s][A
41%|โโโโ | 80/196 [01:08<01:24, 1.38it/s][A
41%|โโโโโ | 81/196 [01:08<01:24, 1.37it/s][A
42%|โโโโโ | 82/196 [01:09<01:23, 1.37it/s][A
42%|โโโโโ | 83/196 [01:10<01:24, 1.33it/s][A
43%|โโโโโ | 84/196 [01:11<01:24, 1.33it/s][A
43%|โโโโโ | 85/196 [01:11<01:23, 1.33it/s][A
44%|โโโโโ | 86/196 [01:12<01:25, 1.29it/s][A
44%|โโโโโ | 87/196 [01:13<01:23, 1.30it/s][A
45%|โโโโโ | 88/196 [01:14<01:25, 1.27it/s][A
45%|โโโโโ | 89/196 [01:15<01:26, 1.23it/s][A
46%|โโโโโ | 90/196 [01:15<01:24, 1.26it/s][A
46%|โโโโโ | 91/196 [01:16<01:19, 1.32it/s][A
47%|โโโโโ | 92/196 [01:17<01:16, 1.36it/s][A
47%|โโโโโ | 93/196 [01:18<01:20, 1.28it/s][A
48%|โโโโโ | 94/196 [01:18<01:18, 1.29it/s][A
48%|โโโโโ | 95/196 [01:19<01:18, 1.29it/s][A
49%|โโโโโ | 96/196 [01:20<01:20, 1.24it/s][A
49%|โโโโโ | 97/196 [01:21<01:16, 1.29it/s][A
50%|โโโโโ | 98/196 [01:22<01:17, 1.27it/s][A
51%|โโโโโ | 99/196 [01:22<01:11, 1.36it/s][A
51%|โโโโโ | 100/196 [01:23<01:03, 1.51it/s][A
52%|โโโโโโ | 101/196 [01:23<01:01, 1.55it/s][A
52%|โโโโโโ | 102/196 [01:24<01:05, 1.44it/s][A
53%|โโโโโโ | 103/196 [01:25<01:10, 1.31it/s][A
53%|โโโโโโ | 104/196 [01:26<01:18, 1.18it/s][A
54%|โโโโโโ | 105/196 [01:27<01:18, 1.16it/s][A
54%|โโโโโโ | 106/196 [01:28<01:15, 1.19it/s][A
55%|โโโโโโ | 107/196 [01:28<01:10, 1.26it/s][A
55%|โโโโโโ | 108/196 [01:29<01:02, 1.40it/s][A
56%|โโโโโโ | 109/196 [01:30<00:59, 1.47it/s][A
56%|โโโโโโ | 110/196 [01:30<00:58, 1.48it/s][A
57%|โโโโโโ | 111/196 [01:31<00:58, 1.45it/s][A
57%|โโโโโโ | 112/196 [01:32<01:00, 1.40it/s][A
58%|โโโโโโ | 113/196 [01:32<00:58, 1.41it/s][A
58%|โโโโโโ | 114/196 [01:33<00:54, 1.51it/s][A
59%|โโโโโโ | 115/196 [01:34<00:52, 1.53it/s][A
59%|โโโโโโ | 116/196 [01:34<00:51, 1.54it/s][A
60%|โโโโโโ | 117/196 [01:35<00:47, 1.65it/s][A
60%|โโโโโโ | 118/196 [01:35<00:43, 1.80it/s][A
61%|โโโโโโ | 119/196 [01:36<00:46, 1.66it/s][A
61%|โโโโโโ | 120/196 [01:37<00:47, 1.60it/s][A
62%|โโโโโโโ | 121/196 [01:37<00:47, 1.57it/s][A
62%|โโโโโโโ | 122/196 [01:38<00:48, 1.53it/s][A
63%|โโโโโโโ | 123/196 [01:39<00:46, 1.57it/s][A
63%|โโโโโโโ | 124/196 [01:39<00:47, 1.52it/s][A
64%|โโโโโโโ | 125/196 [01:40<00:47, 1.51it/s][A
64%|โโโโโโโ | 126/196 [01:41<00:53, 1.32it/s][A
65%|โโโโโโโ | 127/196 [01:42<00:50, 1.37it/s][A
65%|โโโโโโโ | 128/196 [01:42<00:48, 1.41it/s][A
66%|โโโโโโโ | 129/196 [01:43<00:46, 1.43it/s][A
66%|โโโโโโโ | 130/196 [01:44<00:46, 1.40it/s][A
67%|โโโโโโโ | 131/196 [01:44<00:45, 1.44it/s][A
67%|โโโโโโโ | 132/196 [01:45<00:41, 1.53it/s][A
68%|โโโโโโโ | 133/196 [01:46<00:41, 1.53it/s][A
68%|โโโโโโโ | 134/196 [01:46<00:41, 1.49it/s][A
69%|โโโโโโโ | 135/196 [01:47<00:40, 1.51it/s][A
69%|โโโโโโโ | 136/196 [01:48<00:39, 1.51it/s][A
70%|โโโโโโโ | 137/196 [01:48<00:38, 1.51it/s][A
70%|โโโโโโโ | 138/196 [01:49<00:38, 1.52it/s][A
71%|โโโโโโโ | 139/196 [01:50<00:38, 1.47it/s][A
71%|โโโโโโโโ | 140/196 [01:50<00:36, 1.53it/s][A
72%|โโโโโโโโ | 141/196 [01:51<00:35, 1.55it/s][A
72%|โโโโโโโโ | 142/196 [01:52<00:35, 1.50it/s][A
73%|โโโโโโโโ | 143/196 [01:52<00:36, 1.45it/s][A
73%|โโโโโโโโ | 144/196 [01:53<00:35, 1.47it/s][A
74%|โโโโโโโโ | 145/196 [01:53<00:32, 1.59it/s][A
74%|โโโโโโโโ | 146/196 [01:54<00:30, 1.65it/s][A
75%|โโโโโโโโ | 147/196 [01:55<00:29, 1.67it/s][A
76%|โโโโโโโโ | 148/196 [01:55<00:29, 1.65it/s][A
76%|โโโโโโโโ | 149/196 [01:56<00:26, 1.74it/s][A
77%|โโโโโโโโ | 150/196 [01:56<00:28, 1.60it/s][A
77%|โโโโโโโโ | 151/196 [01:57<00:29, 1.55it/s][A
78%|โโโโโโโโ | 152/196 [01:58<00:28, 1.55it/s][A
78%|โโโโโโโโ | 153/196 [01:58<00:27, 1.54it/s][A
79%|โโโโโโโโ | 154/196 [01:59<00:27, 1.54it/s][A
79%|โโโโโโโโ | 155/196 [02:00<00:28, 1.44it/s][A
80%|โโโโโโโโ | 156/196 [02:01<00:30, 1.31it/s][A
80%|โโโโโโโโ | 157/196 [02:02<00:30, 1.26it/s][A
81%|โโโโโโโโ | 158/196 [02:02<00:27, 1.39it/s][A
81%|โโโโโโโโ | 159/196 [02:03<00:24, 1.49it/s][A
82%|โโโโโโโโโ | 160/196 [02:03<00:23, 1.51it/s][A
82%|โโโโโโโโโ | 161/196 [02:04<00:23, 1.49it/s][A
83%|โโโโโโโโโ | 162/196 [02:05<00:22, 1.49it/s][A
83%|โโโโโโโโโ | 163/196 [02:05<00:21, 1.52it/s][A
84%|โโโโโโโโโ | 164/196 [02:06<00:21, 1.52it/s][A
84%|โโโโโโโโโ | 165/196 [02:07<00:21, 1.47it/s][A
85%|โโโโโโโโโ | 166/196 [02:07<00:19, 1.52it/s][A
85%|โโโโโโโโโ | 167/196 [02:08<00:18, 1.55it/s][A
86%|โโโโโโโโโ | 168/196 [02:09<00:17, 1.61it/s][A
86%|โโโโโโโโโ | 169/196 [02:09<00:17, 1.52it/s][A
87%|โโโโโโโโโ | 170/196 [02:10<00:17, 1.45it/s][A
87%|โโโโโโโโโ | 171/196 [02:11<00:17, 1.47it/s][A
88%|โโโโโโโโโ | 172/196 [02:12<00:16, 1.44it/s][A
88%|โโโโโโโโโ | 173/196 [02:12<00:15, 1.45it/s][A
89%|โโโโโโโโโ | 174/196 [02:13<00:15, 1.38it/s][A
89%|โโโโโโโโโ | 175/196 [02:14<00:19, 1.10it/s][A
90%|โโโโโโโโโ | 176/196 [02:17<00:26, 1.33s/it][A
90%|โโโโโโโโโ | 177/196 [02:19<00:28, 1.52s/it][A
91%|โโโโโโโโโ | 178/196 [02:21<00:30, 1.71s/it][A
91%|โโโโโโโโโโ| 179/196 [02:22<00:28, 1.69s/it][A
92%|โโโโโโโโโโ| 180/196 [02:23<00:22, 1.40s/it][A
92%|โโโโโโโโโโ| 181/196 [02:24<00:17, 1.18s/it][A
93%|โโโโโโโโโโ| 182/196 [02:24<00:14, 1.03s/it][A
93%|โโโโโโโโโโ| 183/196 [02:25<00:13, 1.01s/it][A
94%|โโโโโโโโโโ| 184/196 [02:26<00:10, 1.10it/s][A
94%|โโโโโโโโโโ| 185/196 [02:27<00:09, 1.14it/s][A
95%|โโโโโโโโโโ| 186/196 [02:28<00:08, 1.14it/s][A
95%|โโโโโโโโโโ| 187/196 [02:28<00:07, 1.23it/s][A
96%|โโโโโโโโโโ| 188/196 [02:29<00:06, 1.31it/s][A
96%|โโโโโโโโโโ| 189/196 [02:30<00:05, 1.34it/s][A
97%|โโโโโโโโโโ| 190/196 [02:30<00:04, 1.42it/s][A
97%|โโโโโโโโโโ| 191/196 [02:31<00:03, 1.50it/s][A
98%|โโโโโโโโโโ| 192/196 [02:32<00:02, 1.48it/s][A
98%|โโโโโโโโโโ| 193/196 [02:32<00:02, 1.46it/s][A
99%|โโโโโโโโโโ| 194/196 [02:33<00:01, 1.49it/s][A
99%|โโโโโโโโโโ| 195/196 [02:34<00:00, 1.53it/s][A
100%|โโโโโโโโโโ| 196/196 [02:34<00:00, 1.91it/s][A
[A
100%|โโโโโโโโโโ| 1000/1000 [35:23<00:00, 1.71s/it]
100%|โโโโโโโโโโ| 196/196 [02:41<00:00, 1.91it/s][A
[A
100%|โโโโโโโโโโ| 1000/1000 [35:32<00:00, 1.71s/it]
100%|โโโโโโโโโโ| 1000/1000 [35:32<00:00, 2.13s/it]
Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction: liber offเคฟc impess เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formating เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคนเฅ
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction: เคเคธ tutorial เคฎเฅเค เคนเคฎ impres windw เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ slide insert เคเคฐเฅเค เคเคฐ copy เคเคฐเฅเค font เคคเคฅเคพ font เคเฅ format เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ operating system เคเฅ เคฐเฅเคช เคฎเฅเค gnu linuเค เคเคฐ liber ffic version 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเฅ เคนเฅเค
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ sampl impres open เคเคฐเคคเฅ เคนเฅเค เคเคฟ
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ scren เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเค เคเค เคเฅ เคฎเฅเคฎเคเฅเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเค เคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
{'eval_loss': 1.5066314935684204, 'eval_cer': 0.30955352407101183, 'eval_wer': 0.43571675485946765, 'eval_runtime': 163.053, 'eval_samples_per_second': 19.233, 'eval_steps_per_second': 1.202, 'epoch': 1.6}
{'train_runtime': 2133.1271, 'train_samples_per_second': 15.001, 'train_steps_per_second': 0.469, 'train_loss': 3.21392811447382, 'epoch': 1.6}
***** train metrics *****
epoch = 1.6
total_flos = 5785619396GF
train_loss = 3.2139
train_runtime = 0:35:33.12
train_samples = 20000
train_samples_per_second = 15.001
train_steps_per_second = 0.469
08/21/2024 16:40:49 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/196 [00:00, ?it/s]
1%| | 2/196 [00:00<01:04, 3.03it/s]
2%|โ | 3/196 [00:01<01:31, 2.12it/s]
2%|โ | 4/196 [00:02<01:51, 1.72it/s]
3%|โ | 5/196 [00:02<02:05, 1.52it/s]
3%|โ | 6/196 [00:03<02:22, 1.33it/s]
4%|โ | 7/196 [00:04<02:25, 1.30it/s]
4%|โ | 8/196 [00:05<02:36, 1.20it/s]
5%|โ | 9/196 [00:07<03:28, 1.12s/it]
5%|โ | 10/196 [00:09<04:01, 1.30s/it]
6%|โ | 11/196 [00:10<04:34, 1.48s/it]
6%|โ | 12/196 [00:12<04:40, 1.53s/it]
7%|โ | 13/196 [00:13<04:02, 1.33s/it]
7%|โ | 14/196 [00:14<03:25, 1.13s/it]
8%|โ | 15/196 [00:14<02:54, 1.04it/s]
8%|โ | 16/196 [00:15<02:43, 1.10it/s]
9%|โ | 17/196 [00:16<02:43, 1.09it/s]
9%|โ | 18/196 [00:17<03:07, 1.06s/it]
10%|โ | 19/196 [00:19<03:56, 1.34s/it]
10%|โ | 20/196 [00:21<04:07, 1.41s/it]
11%|โ | 21/196 [00:22<04:14, 1.45s/it]
11%|โ | 22/196 [00:24<03:57, 1.37s/it]
12%|โโ | 23/196 [00:24<03:29, 1.21s/it]
12%|โโ | 24/196 [00:25<02:49, 1.01it/s]
13%|โโ | 25/196 [00:25<02:27, 1.16it/s]
13%|โโ | 26/196 [00:26<02:11, 1.29it/s]
14%|โโ | 27/196 [00:27<02:01, 1.39it/s]
14%|โโ | 28/196 [00:27<01:56, 1.44it/s]
15%|โโ | 29/196 [00:28<01:57, 1.42it/s]
15%|โโ | 30/196 [00:29<01:55, 1.44it/s]
16%|โโ | 31/196 [00:29<01:44, 1.59it/s]
16%|โโ | 32/196 [00:30<01:44, 1.56it/s]
17%|โโ | 33/196 [00:31<01:59, 1.37it/s]
17%|โโ | 34/196 [00:32<02:24, 1.12it/s]
18%|โโ | 35/196 [00:33<02:35, 1.04it/s]
18%|โโ | 36/196 [00:34<02:52, 1.08s/it]
19%|โโ | 37/196 [00:35<02:46, 1.05s/it]
19%|โโ | 38/196 [00:36<02:35, 1.02it/s]
20%|โโ | 39/196 [00:37<02:22, 1.10it/s]
20%|โโ | 40/196 [00:38<02:13, 1.17it/s]
21%|โโ | 41/196 [00:38<02:02, 1.27it/s]
21%|โโโ | 42/196 [00:39<01:57, 1.31it/s]
22%|โโโ | 43/196 [00:40<01:54, 1.34it/s]
22%|โโโ | 44/196 [00:40<01:49, 1.39it/s]
23%|โโโ | 45/196 [00:41<01:43, 1.46it/s]
23%|โโโ | 46/196 [00:42<01:38, 1.53it/s]
24%|โโโ | 47/196 [00:42<01:37, 1.53it/s]
24%|โโโ | 48/196 [00:43<01:33, 1.58it/s]
25%|โโโ | 49/196 [00:44<01:32, 1.59it/s]
26%|โโโ | 50/196 [00:44<01:31, 1.60it/s]
26%|โโโ | 51/196 [00:45<01:28, 1.64it/s]
27%|โโโ | 52/196 [00:45<01:30, 1.58it/s]
27%|โโโ | 53/196 [00:46<01:30, 1.57it/s]
28%|โโโ | 54/196 [00:47<01:30, 1.57it/s]
28%|โโโ | 55/196 [00:48<01:38, 1.43it/s]
29%|โโโ | 56/196 [00:48<01:46, 1.32it/s]
29%|โโโ | 57/196 [00:49<01:51, 1.25it/s]
30%|โโโ | 58/196 [00:50<01:52, 1.23it/s]
30%|โโโ | 59/196 [00:51<01:49, 1.25it/s]
31%|โโโ | 60/196 [00:51<01:38, 1.39it/s]
31%|โโโ | 61/196 [00:52<01:32, 1.46it/s]
32%|โโโโ | 62/196 [00:53<01:33, 1.43it/s]
32%|โโโโ | 63/196 [00:54<01:34, 1.40it/s]
33%|โโโโ | 64/196 [00:54<01:34, 1.40it/s]
33%|โโโโ | 65/196 [00:55<01:33, 1.40it/s]
34%|โโโโ | 66/196 [00:56<01:38, 1.32it/s]
34%|โโโโ | 67/196 [00:57<01:40, 1.29it/s]
35%|โโโโ | 68/196 [00:58<01:51, 1.15it/s]
35%|โโโโ | 69/196 [00:59<01:48, 1.17it/s]
36%|โโโโ | 70/196 [00:59<01:41, 1.24it/s]
36%|โโโโ | 71/196 [01:00<01:34, 1.32it/s]
37%|โโโโ | 72/196 [01:01<01:28, 1.39it/s]
37%|โโโโ | 73/196 [01:01<01:21, 1.51it/s]
38%|โโโโ | 74/196 [01:02<01:17, 1.58it/s]
38%|โโโโ | 75/196 [01:02<01:15, 1.60it/s]
39%|โโโโ | 76/196 [01:03<01:13, 1.63it/s]
39%|โโโโ | 77/196 [01:04<01:17, 1.54it/s]
40%|โโโโ | 78/196 [01:04<01:18, 1.50it/s]
40%|โโโโ | 79/196 [01:05<01:17, 1.51it/s]
41%|โโโโ | 80/196 [01:06<01:21, 1.42it/s]
41%|โโโโโ | 81/196 [01:06<01:21, 1.40it/s]
42%|โโโโโ | 82/196 [01:07<01:20, 1.42it/s]
42%|โโโโโ | 83/196 [01:08<01:22, 1.37it/s]
43%|โโโโโ | 84/196 [01:09<01:21, 1.37it/s]
43%|โโโโโ | 85/196 [01:09<01:21, 1.37it/s]
44%|โโโโโ | 86/196 [01:10<01:22, 1.33it/s]
44%|โโโโโ | 87/196 [01:11<01:21, 1.34it/s]
45%|โโโโโ | 88/196 [01:12<01:23, 1.29it/s]
45%|โโโโโ | 89/196 [01:13<01:24, 1.26it/s]
46%|โโโโโ | 90/196 [01:13<01:22, 1.29it/s]
46%|โโโโโ | 91/196 [01:14<01:17, 1.35it/s]
47%|โโโโโ | 92/196 [01:15<01:14, 1.40it/s]
47%|โโโโโ | 93/196 [01:16<01:18, 1.31it/s]
48%|โโโโโ | 94/196 [01:16<01:16, 1.33it/s]
48%|โโโโโ | 95/196 [01:17<01:15, 1.34it/s]
49%|โโโโโ | 96/196 [01:18<01:17, 1.28it/s]
49%|โโโโโ | 97/196 [01:19<01:13, 1.34it/s]
50%|โโโโโ | 98/196 [01:19<01:14, 1.31it/s]
51%|โโโโโ | 99/196 [01:20<01:08, 1.41it/s]
51%|โโโโโ | 100/196 [01:20<01:00, 1.58it/s]
52%|โโโโโโ | 101/196 [01:21<00:58, 1.61it/s]
52%|โโโโโโ | 102/196 [01:22<01:02, 1.50it/s]
53%|โโโโโโ | 103/196 [01:23<01:08, 1.37it/s]
53%|โโโโโโ | 104/196 [01:24<01:15, 1.22it/s]
54%|โโโโโโ | 105/196 [01:24<01:15, 1.20it/s]
54%|โโโโโโ | 106/196 [01:25<01:13, 1.22it/s]
55%|โโโโโโ | 107/196 [01:26<01:08, 1.30it/s]
55%|โโโโโโ | 108/196 [01:26<01:00, 1.44it/s]
56%|โโโโโโ | 109/196 [01:27<00:57, 1.50it/s]
56%|โโโโโโ | 110/196 [01:28<00:56, 1.52it/s]
57%|โโโโโโ | 111/196 [01:28<00:56, 1.51it/s]
57%|โโโโโโ | 112/196 [01:29<00:57, 1.45it/s]
58%|โโโโโโ | 113/196 [01:30<00:56, 1.47it/s]
58%|โโโโโโ | 114/196 [01:30<00:52, 1.56it/s]
59%|โโโโโโ | 115/196 [01:31<00:51, 1.58it/s]
59%|โโโโโโ | 116/196 [01:32<00:50, 1.59it/s]
60%|โโโโโโ | 117/196 [01:32<00:46, 1.70it/s]
60%|โโโโโโ | 118/196 [01:32<00:41, 1.86it/s]
61%|โโโโโโ | 119/196 [01:33<00:44, 1.71it/s]
61%|โโโโโโ | 120/196 [01:34<00:46, 1.65it/s]
62%|โโโโโโโ | 121/196 [01:34<00:46, 1.61it/s]
62%|โโโโโโโ | 122/196 [01:35<00:47, 1.57it/s]
63%|โโโโโโโ | 123/196 [01:36<00:45, 1.60it/s]
63%|โโโโโโโ | 124/196 [01:36<00:46, 1.56it/s]
64%|โโโโโโโ | 125/196 [01:37<00:45, 1.55it/s]
64%|โโโโโโโ | 126/196 [01:38<00:51, 1.36it/s]
65%|โโโโโโโ | 127/196 [01:39<00:49, 1.40it/s]
65%|โโโโโโโ | 128/196 [01:39<00:46, 1.47it/s]
66%|โโโโโโโ | 129/196 [01:40<00:44, 1.49it/s]
66%|โโโโโโโ | 130/196 [01:41<00:45, 1.46it/s]
67%|โโโโโโโ | 131/196 [01:41<00:44, 1.47it/s]
67%|โโโโโโโ | 132/196 [01:42<00:40, 1.57it/s]
68%|โโโโโโโ | 133/196 [01:42<00:40, 1.57it/s]
68%|โโโโโโโ | 134/196 [01:43<00:40, 1.53it/s]
69%|โโโโโโโ | 135/196 [01:44<00:39, 1.56it/s]
69%|โโโโโโโ | 136/196 [01:44<00:38, 1.56it/s]
70%|โโโโโโโ | 137/196 [01:45<00:37, 1.56it/s]
70%|โโโโโโโ | 138/196 [01:46<00:36, 1.57it/s]
71%|โโโโโโโ | 139/196 [01:46<00:37, 1.50it/s]
71%|โโโโโโโโ | 140/196 [01:47<00:35, 1.56it/s]
72%|โโโโโโโโ | 141/196 [01:48<00:34, 1.58it/s]
72%|โโโโโโโโ | 142/196 [01:48<00:34, 1.54it/s]
73%|โโโโโโโโ | 143/196 [01:49<00:35, 1.49it/s]
73%|โโโโโโโโ | 144/196 [01:50<00:33, 1.56it/s]
74%|โโโโโโโโ | 145/196 [01:50<00:30, 1.68it/s]
74%|โโโโโโโโ | 146/196 [01:51<00:28, 1.74it/s]
75%|โโโโโโโโ | 147/196 [01:51<00:28, 1.75it/s]
76%|โโโโโโโโ | 148/196 [01:52<00:27, 1.73it/s]
76%|โโโโโโโโ | 149/196 [01:52<00:25, 1.82it/s]
77%|โโโโโโโโ | 150/196 [01:53<00:27, 1.67it/s]
77%|โโโโโโโโ | 151/196 [01:54<00:28, 1.61it/s]
78%|โโโโโโโโ | 152/196 [01:54<00:27, 1.60it/s]
78%|โโโโโโโโ | 153/196 [01:55<00:26, 1.60it/s]
79%|โโโโโโโโ | 154/196 [01:56<00:26, 1.59it/s]
79%|โโโโโโโโ | 155/196 [01:56<00:27, 1.48it/s]
80%|โโโโโโโโ | 156/196 [01:57<00:29, 1.34it/s]
80%|โโโโโโโโ | 157/196 [01:58<00:30, 1.29it/s]
81%|โโโโโโโโ | 158/196 [01:59<00:26, 1.43it/s]
81%|โโโโโโโโ | 159/196 [01:59<00:24, 1.53it/s]
82%|โโโโโโโโโ | 160/196 [02:00<00:23, 1.56it/s]
82%|โโโโโโโโโ | 161/196 [02:00<00:22, 1.53it/s]
83%|โโโโโโโโโ | 162/196 [02:01<00:21, 1.55it/s]
83%|โโโโโโโโโ | 163/196 [02:02<00:20, 1.57it/s]
84%|โโโโโโโโโ | 164/196 [02:02<00:20, 1.58it/s]
84%|โโโโโโโโโ | 165/196 [02:03<00:20, 1.53it/s]
85%|โโโโโโโโโ | 166/196 [02:04<00:19, 1.57it/s]
85%|โโโโโโโโโ | 167/196 [02:04<00:18, 1.60it/s]
86%|โโโโโโโโโ | 168/196 [02:05<00:16, 1.69it/s]
86%|โโโโโโโโโ | 169/196 [02:05<00:16, 1.60it/s]
87%|โโโโโโโโโ | 170/196 [02:06<00:17, 1.51it/s]
87%|โโโโโโโโโ | 171/196 [02:07<00:16, 1.51it/s]
88%|โโโโโโโโโ | 172/196 [02:08<00:16, 1.49it/s]
88%|โโโโโโโโโ | 173/196 [02:08<00:15, 1.49it/s]
89%|โโโโโโโโโ | 174/196 [02:09<00:15, 1.42it/s]
89%|โโโโโโโโโ | 175/196 [02:10<00:18, 1.14it/s]
90%|โโโโโโโโโ | 176/196 [02:13<00:26, 1.30s/it]
90%|โโโโโโโโโ | 177/196 [02:14<00:28, 1.48s/it]
91%|โโโโโโโโโ | 178/196 [02:17<00:30, 1.67s/it]
91%|โโโโโโโโโโ| 179/196 [02:18<00:28, 1.66s/it]
92%|โโโโโโโโโโ| 180/196 [02:19<00:21, 1.37s/it]
92%|โโโโโโโโโโ| 181/196 [02:20<00:17, 1.16s/it]
93%|โโโโโโโโโโ| 182/196 [02:20<00:14, 1.01s/it]
93%|โโโโโโโโโโ| 183/196 [02:21<00:12, 1.01it/s]
94%|โโโโโโโโโโ| 184/196 [02:22<00:10, 1.13it/s]
94%|โโโโโโโโโโ| 185/196 [02:23<00:09, 1.17it/s]
95%|โโโโโโโโโโ| 186/196 [02:23<00:08, 1.17it/s]
95%|โโโโโโโโโโ| 187/196 [02:24<00:07, 1.26it/s]
96%|โโโโโโโโโโ| 188/196 [02:25<00:05, 1.34it/s]
96%|โโโโโโโโโโ| 189/196 [02:25<00:05, 1.38it/s]
97%|โโโโโโโโโโ| 190/196 [02:26<00:04, 1.45it/s]
97%|โโโโโโโโโโ| 191/196 [02:27<00:03, 1.52it/s]
98%|โโโโโโโโโโ| 192/196 [02:27<00:02, 1.49it/s]
98%|โโโโโโโโโโ| 193/196 [02:28<00:02, 1.48it/s]
99%|โโโโโโโโโโ| 194/196 [02:29<00:01, 1.51it/s]
99%|โโโโโโโโโโ| 195/196 [02:29<00:00, 1.56it/s]
100%|โโโโโโโโโโ| 196/196 [02:29<00:00, 1.94it/s]
100%|โโโโโโโโโโ| 196/196 [02:37<00:00, 1.25it/s]
Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction: liber offเคฟc impess เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formating เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคนเฅ
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction: เคเคธ tutorial เคฎเฅเค เคนเคฎ impres windw เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ slide insert เคเคฐเฅเค เคเคฐ copy เคเคฐเฅเค font เคคเคฅเคพ font เคเฅ format เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ operating system เคเฅ เคฐเฅเคช เคฎเฅเค gnu linuเค เคเคฐ liber ffic version 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเฅ เคนเฅเค
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ sampl impres open เคเคฐเคคเฅ เคนเฅเค เคเคฟ
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ scren เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเค เคเค เคเฅ เคฎเฅเคฎเคเฅเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเค เคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
***** eval metrics *****
epoch = 1.6
eval_cer = 0.3096
eval_loss = 1.5066
eval_runtime = 0:02:39.31
eval_samples = 3136
eval_samples_per_second = 19.684
eval_steps_per_second = 1.23
eval_wer = 0.4357
wandb: - 0.007 MB of 0.007 MB uploaded
wandb: \ 0.007 MB of 0.114 MB uploaded
wandb: | 0.114 MB of 0.114 MB uploaded
wandb:
wandb: Run history:
wandb: eval/cer โโ
wandb: eval/loss โโ
wandb: eval/runtime โโ
wandb: eval/samples_per_second โโ
wandb: eval/steps_per_second โโ
wandb: eval/wer โโ
wandb: train/epoch โโโโโโโโโโโโโโโโโโโโโ
โ
โ
โ
โ
โ
โโโโโโโโโโโโโโ
wandb: train/global_step โโโโโโโโโโโโโโโโโโโโโ
โ
โ
โ
โ
โ
โโโโโโโโโโโโโโ
wandb: train/grad_norm โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
wandb: train/learning_rate โโโโโโโโโโโ
โ
โ
โโโโโโโโโโโโโโโ
โ
โ
โโโโโโโโโโ
wandb: train/loss โโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
wandb:
wandb: Run summary:
wandb: eval/cer 0.30955
wandb: eval/loss 1.50663
wandb: eval/runtime 159.3193
wandb: eval/samples_per_second 19.684
wandb: eval/steps_per_second 1.23
wandb: eval/wer 0.43572
wandb: total_flos 6.212261523683712e+18
wandb: train/epoch 1.6
wandb: train/global_step 1000
wandb: train/grad_norm 0.9419
wandb: train/learning_rate 1e-05
wandb: train/loss 0.9856
wandb: train_loss 3.21393
wandb: train_runtime 2133.1271
wandb: train_samples_per_second 15.001
wandb: train_steps_per_second 0.469
wandb:
wandb: ๐ View run elated-pine-27 at: https://wandb.ai/priyanshipal/huggingface/runs/0evkescz
wandb: โญ๏ธ View project at: https://wandb.ai/priyanshipal/huggingface
wandb: Synced 6 W&B file(s), 0 media file(s), 1 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240821_155449-0evkescz/logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.