wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240821_145646-o660b9lv
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run iconic-capybara-25
wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
wandb: ๐ View run at https://wandb.ai/priyanshipal/huggingface/runs/o660b9lv
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐ค Transformers. Use `eval_strategy` instead
warnings.warn(
08/21/2024 14:56:50 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 52825 examples [00:00, 151020.17 examples/s]
Generating train split: 52825 examples [00:00, 147333.22 examples/s]
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 3136 examples [00:00, 31226.84 examples/s]
Generating train split: 3136 examples [00:00, 30668.04 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:508: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.3, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.2, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.2, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
preprocess datasets: 0%| | 0/20000 [00:00, ? examples/s]
preprocess datasets: 0%| | 1/20000 [00:05<32:45:52, 5.90s/ examples]
preprocess datasets: 0%| | 8/20000 [00:06<3:04:25, 1.81 examples/s]
preprocess datasets: 0%| | 17/20000 [00:06<1:11:57, 4.63 examples/s]
preprocess datasets: 0%| | 26/20000 [00:06<40:10, 8.28 examples/s]
preprocess datasets: 0%| | 33/20000 [00:06<28:13, 11.79 examples/s]
preprocess datasets: 0%| | 42/20000 [00:06<19:02, 17.46 examples/s]
preprocess datasets: 0%| | 49/20000 [00:06<14:49, 22.42 examples/s]
preprocess datasets: 0%| | 60/20000 [00:06<10:13, 32.49 examples/s]
preprocess datasets: 0%| | 68/20000 [00:06<08:32, 38.89 examples/s]
preprocess datasets: 0%| | 78/20000 [00:07<07:25, 44.69 examples/s]
preprocess datasets: 0%| | 90/20000 [00:07<06:29, 51.11 examples/s]
preprocess datasets: 0%| | 98/20000 [00:07<06:02, 54.90 examples/s]
preprocess datasets: 1%| | 105/20000 [00:07<05:59, 55.40 examples/s]
preprocess datasets: 1%| | 112/20000 [00:07<05:49, 56.85 examples/s]
preprocess datasets: 1%| | 122/20000 [00:07<05:12, 63.56 examples/s]
preprocess datasets: 1%| | 130/20000 [00:07<04:57, 66.77 examples/s]
preprocess datasets: 1%| | 139/20000 [00:07<04:39, 71.08 examples/s]
preprocess datasets: 1%| | 150/20000 [00:08<05:06, 64.77 examples/s]
preprocess datasets: 1%| | 159/20000 [00:08<04:43, 69.94 examples/s]
preprocess datasets: 1%| | 170/20000 [00:08<04:49, 68.57 examples/s]
preprocess datasets: 1%| | 181/20000 [00:08<04:50, 68.32 examples/s]
preprocess datasets: 1%| | 189/20000 [00:08<04:50, 68.17 examples/s]
preprocess datasets: 1%| | 196/20000 [00:08<04:52, 67.78 examples/s]
preprocess datasets: 1%| | 203/20000 [00:08<04:50, 68.22 examples/s]
preprocess datasets: 1%| | 213/20000 [00:08<04:29, 73.52 examples/s]
preprocess datasets: 1%| | 222/20000 [00:09<04:21, 75.53 examples/s]
preprocess datasets: 1%| | 231/20000 [00:09<06:12, 53.01 examples/s]
preprocess datasets: 1%| | 239/20000 [00:09<05:57, 55.27 examples/s]
preprocess datasets: 1%| | 248/20000 [00:09<05:30, 59.74 examples/s]
preprocess datasets: 1%|โ | 258/20000 [00:09<04:58, 66.22 examples/s]
preprocess datasets: 1%|โ | 267/20000 [00:09<06:06, 53.90 examples/s]
preprocess datasets: 1%|โ | 275/20000 [00:10<05:55, 55.55 examples/s]
preprocess datasets: 1%|โ | 284/20000 [00:10<06:02, 54.41 examples/s]
preprocess datasets: 1%|โ | 292/20000 [00:10<05:43, 57.39 examples/s]
preprocess datasets: 2%|โ | 300/20000 [00:10<05:24, 60.75 examples/s]
preprocess datasets: 2%|โ | 308/20000 [00:10<05:54, 55.61 examples/s]
preprocess datasets: 2%|โ | 317/20000 [00:10<05:16, 62.11 examples/s]
preprocess datasets: 2%|โ | 325/20000 [00:10<05:10, 63.35 examples/s]
preprocess datasets: 2%|โ | 332/20000 [00:11<05:09, 63.52 examples/s]
preprocess datasets: 2%|โ | 340/20000 [00:11<04:54, 66.84 examples/s]
preprocess datasets: 2%|โ | 349/20000 [00:11<05:35, 58.52 examples/s]
preprocess datasets: 2%|โ | 358/20000 [00:11<05:05, 64.33 examples/s]
preprocess datasets: 2%|โ | 369/20000 [00:11<05:09, 63.52 examples/s]
preprocess datasets: 2%|โ | 379/20000 [00:11<05:19, 61.46 examples/s]
preprocess datasets: 2%|โ | 387/20000 [00:11<05:11, 63.03 examples/s]
preprocess datasets: 2%|โ | 394/20000 [00:11<05:14, 62.30 examples/s]
preprocess datasets: 2%|โ | 401/20000 [00:12<05:10, 63.22 examples/s]
preprocess datasets: 2%|โ | 409/20000 [00:12<05:03, 64.60 examples/s]
preprocess datasets: 2%|โ | 417/20000 [00:12<05:08, 63.52 examples/s]
preprocess datasets: 2%|โ | 428/20000 [00:12<05:11, 62.78 examples/s]
preprocess datasets: 2%|โ | 439/20000 [00:12<04:42, 69.35 examples/s]
preprocess datasets: 2%|โ | 447/20000 [00:12<04:44, 68.61 examples/s]
preprocess datasets: 2%|โ | 458/20000 [00:12<04:51, 67.13 examples/s]
preprocess datasets: 2%|โ | 466/20000 [00:13<04:43, 68.88 examples/s]
preprocess datasets: 2%|โ | 474/20000 [00:13<04:45, 68.49 examples/s]
preprocess datasets: 2%|โ | 484/20000 [00:13<04:19, 75.16 examples/s]
preprocess datasets: 2%|โ | 492/20000 [00:13<04:24, 73.65 examples/s]
preprocess datasets: 3%|โ | 501/20000 [00:13<04:26, 73.21 examples/s]
preprocess datasets: 3%|โ | 509/20000 [00:13<04:27, 72.81 examples/s]
preprocess datasets: 3%|โ | 519/20000 [00:13<04:11, 77.33 examples/s]
preprocess datasets: 3%|โ | 527/20000 [00:13<04:30, 72.01 examples/s]
preprocess datasets: 3%|โ | 535/20000 [00:13<04:39, 69.70 examples/s]
preprocess datasets: 3%|โ | 543/20000 [00:14<04:52, 66.55 examples/s]
preprocess datasets: 3%|โ | 550/20000 [00:14<04:55, 65.75 examples/s]
preprocess datasets: 3%|โ | 558/20000 [00:14<04:52, 66.58 examples/s]
preprocess datasets: 3%|โ | 568/20000 [00:14<04:35, 70.65 examples/s]
preprocess datasets: 3%|โ | 577/20000 [00:14<04:27, 72.54 examples/s]
preprocess datasets: 3%|โ | 585/20000 [00:14<04:31, 71.62 examples/s]
preprocess datasets: 3%|โ | 593/20000 [00:14<04:32, 71.33 examples/s]
preprocess datasets: 3%|โ | 604/20000 [00:15<05:10, 62.44 examples/s]
preprocess datasets: 3%|โ | 613/20000 [00:15<04:59, 64.82 examples/s]
preprocess datasets: 3%|โ | 622/20000 [00:15<04:40, 69.10 examples/s]
preprocess datasets: 3%|โ | 633/20000 [00:15<04:45, 67.84 examples/s]
preprocess datasets: 3%|โ | 642/20000 [00:15<04:46, 67.50 examples/s]
preprocess datasets: 3%|โ | 652/20000 [00:15<05:02, 63.99 examples/s]
preprocess datasets: 3%|โ | 661/20000 [00:15<04:45, 67.77 examples/s]
preprocess datasets: 3%|โ | 669/20000 [00:15<04:40, 69.02 examples/s]
preprocess datasets: 3%|โ | 677/20000 [00:16<05:04, 63.43 examples/s]
preprocess datasets: 3%|โ | 686/20000 [00:16<04:53, 65.80 examples/s]
preprocess datasets: 3%|โ | 696/20000 [00:16<04:40, 68.78 examples/s]
preprocess datasets: 4%|โ | 705/20000 [00:16<04:24, 73.06 examples/s]
preprocess datasets: 4%|โ | 716/20000 [00:16<04:38, 69.35 examples/s]
preprocess datasets: 4%|โ | 727/20000 [00:16<04:15, 75.33 examples/s]
preprocess datasets: 4%|โ | 736/20000 [00:16<04:22, 73.45 examples/s]
preprocess datasets: 4%|โ | 745/20000 [00:17<04:15, 75.37 examples/s]
preprocess datasets: 4%|โ | 753/20000 [00:17<04:16, 75.04 examples/s]
preprocess datasets: 4%|โ | 764/20000 [00:17<04:30, 71.18 examples/s]
preprocess datasets: 4%|โ | 774/20000 [00:17<05:00, 64.07 examples/s]
preprocess datasets: 4%|โ | 784/20000 [00:17<05:08, 62.24 examples/s]
preprocess datasets: 4%|โ | 792/20000 [00:17<04:54, 65.20 examples/s]
preprocess datasets: 4%|โ | 799/20000 [00:17<04:55, 65.08 examples/s]
preprocess datasets: 4%|โ | 807/20000 [00:17<04:45, 67.22 examples/s]
preprocess datasets: 4%|โ | 816/20000 [00:18<04:35, 69.58 examples/s]
preprocess datasets: 4%|โ | 827/20000 [00:18<04:15, 74.91 examples/s]
preprocess datasets: 4%|โ | 836/20000 [00:18<04:15, 74.92 examples/s]
preprocess datasets: 4%|โ | 849/20000 [00:18<04:19, 73.73 examples/s]
preprocess datasets: 4%|โ | 857/20000 [00:18<04:25, 72.16 examples/s]
preprocess datasets: 4%|โ | 868/20000 [00:18<04:11, 75.95 examples/s]
preprocess datasets: 4%|โ | 876/20000 [00:18<04:18, 73.97 examples/s]
preprocess datasets: 4%|โ | 885/20000 [00:19<04:08, 76.98 examples/s]
preprocess datasets: 4%|โ | 894/20000 [00:19<04:36, 69.01 examples/s]
preprocess datasets: 5%|โ | 902/20000 [00:19<04:33, 69.78 examples/s]
preprocess datasets: 5%|โ | 911/20000 [00:19<04:59, 63.81 examples/s]
preprocess datasets: 5%|โ | 919/20000 [00:19<04:56, 64.27 examples/s]
preprocess datasets: 5%|โ | 926/20000 [00:19<05:07, 62.12 examples/s]
preprocess datasets: 5%|โ | 933/20000 [00:19<05:03, 62.72 examples/s]
preprocess datasets: 5%|โ | 944/20000 [00:19<04:55, 64.40 examples/s]
preprocess datasets: 5%|โ | 954/20000 [00:20<05:50, 54.32 examples/s]
preprocess datasets: 5%|โ | 962/20000 [00:20<05:37, 56.47 examples/s]
preprocess datasets: 5%|โ | 970/20000 [00:20<05:14, 60.53 examples/s]
preprocess datasets: 5%|โ | 977/20000 [00:20<05:11, 61.09 examples/s]
preprocess datasets: 5%|โ | 986/20000 [00:20<04:51, 65.25 examples/s]
preprocess datasets: 5%|โ | 993/20000 [00:20<04:53, 64.82 examples/s]
preprocess datasets: 5%|โ | 1000/20000 [00:21<14:39, 21.61 examples/s]
preprocess datasets: 5%|โ | 1011/20000 [00:21<10:13, 30.94 examples/s]
preprocess datasets: 5%|โ | 1021/20000 [00:21<08:25, 37.54 examples/s]
preprocess datasets: 5%|โ | 1030/20000 [00:22<07:13, 43.74 examples/s]
preprocess datasets: 5%|โ | 1038/20000 [00:22<06:31, 48.46 examples/s]
preprocess datasets: 5%|โ | 1046/20000 [00:22<06:00, 52.59 examples/s]
preprocess datasets: 5%|โ | 1056/20000 [00:22<05:20, 59.17 examples/s]
preprocess datasets: 5%|โ | 1065/20000 [00:22<04:51, 64.92 examples/s]
preprocess datasets: 5%|โ | 1074/20000 [00:22<04:33, 69.17 examples/s]
preprocess datasets: 5%|โ | 1082/20000 [00:22<04:28, 70.56 examples/s]
preprocess datasets: 5%|โ | 1091/20000 [00:22<04:17, 73.37 examples/s]
preprocess datasets: 6%|โ | 1100/20000 [00:22<04:13, 74.58 examples/s]
preprocess datasets: 6%|โ | 1109/20000 [00:23<05:07, 61.38 examples/s]
preprocess datasets: 6%|โ | 1119/20000 [00:23<04:32, 69.30 examples/s]
preprocess datasets: 6%|โ | 1131/20000 [00:23<04:31, 69.45 examples/s]
preprocess datasets: 6%|โ | 1140/20000 [00:23<04:34, 68.68 examples/s]
preprocess datasets: 6%|โ | 1149/20000 [00:23<04:19, 72.69 examples/s]
preprocess datasets: 6%|โ | 1157/20000 [00:23<04:25, 70.92 examples/s]
preprocess datasets: 6%|โ | 1166/20000 [00:23<04:18, 72.82 examples/s]
preprocess datasets: 6%|โ | 1175/20000 [00:24<04:15, 73.80 examples/s]
preprocess datasets: 6%|โ | 1187/20000 [00:24<03:46, 82.94 examples/s]
preprocess datasets: 6%|โ | 1198/20000 [00:24<04:01, 77.84 examples/s]
preprocess datasets: 6%|โ | 1208/20000 [00:24<05:11, 60.28 examples/s]
preprocess datasets: 6%|โ | 1215/20000 [00:24<05:07, 61.06 examples/s]
preprocess datasets: 6%|โ | 1224/20000 [00:25<11:45, 26.62 examples/s]
preprocess datasets: 6%|โ | 1234/20000 [00:25<09:12, 33.94 examples/s]
preprocess datasets: 6%|โ | 1243/20000 [00:25<07:44, 40.34 examples/s]
preprocess datasets: 6%|โ | 1253/20000 [00:25<07:37, 40.94 examples/s]
preprocess datasets: 6%|โ | 1260/20000 [00:26<07:04, 44.14 examples/s]
preprocess datasets: 6%|โ | 1271/20000 [00:26<05:50, 53.42 examples/s]
preprocess datasets: 6%|โ | 1278/20000 [00:26<05:35, 55.76 examples/s]
preprocess datasets: 6%|โ | 1288/20000 [00:26<04:52, 64.00 examples/s]
preprocess datasets: 6%|โ | 1296/20000 [00:26<04:48, 64.75 examples/s]
preprocess datasets: 7%|โ | 1305/20000 [00:26<04:37, 67.48 examples/s]
preprocess datasets: 7%|โ | 1315/20000 [00:26<04:17, 72.69 examples/s]
preprocess datasets: 7%|โ | 1323/20000 [00:26<04:14, 73.41 examples/s]
preprocess datasets: 7%|โ | 1331/20000 [00:27<04:09, 74.93 examples/s]
preprocess datasets: 7%|โ | 1343/20000 [00:27<04:13, 73.70 examples/s]
preprocess datasets: 7%|โ | 1354/20000 [00:27<04:17, 72.37 examples/s]
preprocess datasets: 7%|โ | 1363/20000 [00:27<04:13, 73.51 examples/s]
preprocess datasets: 7%|โ | 1375/20000 [00:27<04:24, 70.34 examples/s]
preprocess datasets: 7%|โ | 1387/20000 [00:27<04:25, 70.20 examples/s]
preprocess datasets: 7%|โ | 1396/20000 [00:27<04:18, 71.92 examples/s]
preprocess datasets: 7%|โ | 1408/20000 [00:28<03:55, 78.88 examples/s]
preprocess datasets: 7%|โ | 1417/20000 [00:28<04:00, 77.42 examples/s]
preprocess datasets: 7%|โ | 1426/20000 [00:28<04:00, 77.22 examples/s]
preprocess datasets: 7%|โ | 1438/20000 [00:28<03:40, 84.25 examples/s]
preprocess datasets: 7%|โ | 1449/20000 [00:28<04:00, 77.15 examples/s]
preprocess datasets: 7%|โ | 1459/20000 [00:28<03:55, 78.74 examples/s]
preprocess datasets: 7%|โ | 1468/20000 [00:28<03:48, 81.25 examples/s]
preprocess datasets: 7%|โ | 1481/20000 [00:28<03:53, 79.15 examples/s]
preprocess datasets: 7%|โ | 1495/20000 [00:29<03:28, 88.78 examples/s]
preprocess datasets: 8%|โ | 1507/20000 [00:29<04:05, 75.28 examples/s]
preprocess datasets: 8%|โ | 1520/20000 [00:29<04:11, 73.55 examples/s]
preprocess datasets: 8%|โ | 1529/20000 [00:29<04:05, 75.17 examples/s]
preprocess datasets: 8%|โ | 1537/20000 [00:29<04:11, 73.49 examples/s]
preprocess datasets: 8%|โ | 1546/20000 [00:29<04:04, 75.51 examples/s]
preprocess datasets: 8%|โ | 1554/20000 [00:29<04:14, 72.43 examples/s]
preprocess datasets: 8%|โ | 1565/20000 [00:30<04:29, 68.40 examples/s]
preprocess datasets: 8%|โ | 1574/20000 [00:30<04:14, 72.48 examples/s]
preprocess datasets: 8%|โ | 1583/20000 [00:30<04:12, 72.85 examples/s]
preprocess datasets: 8%|โ | 1594/20000 [00:30<03:57, 77.50 examples/s]
preprocess datasets: 8%|โ | 1603/20000 [00:30<03:55, 78.00 examples/s]
preprocess datasets: 8%|โ | 1612/20000 [00:30<03:51, 79.42 examples/s]
preprocess datasets: 8%|โ | 1625/20000 [00:30<04:02, 75.89 examples/s]
preprocess datasets: 8%|โ | 1635/20000 [00:30<03:51, 79.42 examples/s]
preprocess datasets: 8%|โ | 1644/20000 [00:31<03:57, 77.18 examples/s]
preprocess datasets: 8%|โ | 1654/20000 [00:31<08:46, 34.88 examples/s]
preprocess datasets: 8%|โ | 1663/20000 [00:31<07:23, 41.37 examples/s]
preprocess datasets: 8%|โ | 1673/20000 [00:32<06:17, 48.53 examples/s]
preprocess datasets: 8%|โ | 1680/20000 [00:32<05:55, 51.60 examples/s]
preprocess datasets: 8%|โ | 1689/20000 [00:32<05:54, 51.60 examples/s]
preprocess datasets: 8%|โ | 1696/20000 [00:32<05:37, 54.24 examples/s]
preprocess datasets: 9%|โ | 1708/20000 [00:32<05:09, 59.10 examples/s]
preprocess datasets: 9%|โ | 1718/20000 [00:32<05:18, 57.32 examples/s]
preprocess datasets: 9%|โ | 1725/20000 [00:32<05:20, 57.10 examples/s]
preprocess datasets: 9%|โ | 1736/20000 [00:33<05:13, 58.26 examples/s]
preprocess datasets: 9%|โ | 1746/20000 [00:33<04:35, 66.29 examples/s]
preprocess datasets: 9%|โ | 1754/20000 [00:33<04:41, 64.82 examples/s]
preprocess datasets: 9%|โ | 1762/20000 [00:33<04:31, 67.10 examples/s]
preprocess datasets: 9%|โ | 1770/20000 [00:33<04:34, 66.43 examples/s]
preprocess datasets: 9%|โ | 1781/20000 [00:33<04:13, 71.90 examples/s]
preprocess datasets: 9%|โ | 1790/20000 [00:33<04:05, 74.28 examples/s]
preprocess datasets: 9%|โ | 1798/20000 [00:33<04:14, 71.51 examples/s]
preprocess datasets: 9%|โ | 1807/20000 [00:34<04:14, 71.55 examples/s]
preprocess datasets: 9%|โ | 1817/20000 [00:34<03:55, 77.34 examples/s]
preprocess datasets: 9%|โ | 1827/20000 [00:34<03:47, 79.93 examples/s]
preprocess datasets: 9%|โ | 1836/20000 [00:34<03:57, 76.47 examples/s]
preprocess datasets: 9%|โ | 1846/20000 [00:34<04:32, 66.53 examples/s]
preprocess datasets: 9%|โ | 1858/20000 [00:34<03:54, 77.24 examples/s]
preprocess datasets: 9%|โ | 1867/20000 [00:34<03:49, 78.84 examples/s]
preprocess datasets: 9%|โ | 1877/20000 [00:34<03:46, 80.12 examples/s]
preprocess datasets: 9%|โ | 1886/20000 [00:35<03:51, 78.23 examples/s]
preprocess datasets: 9%|โ | 1894/20000 [00:35<03:58, 75.97 examples/s]
preprocess datasets: 10%|โ | 1903/20000 [00:35<03:54, 77.29 examples/s]
preprocess datasets: 10%|โ | 1914/20000 [00:35<04:11, 72.05 examples/s]
preprocess datasets: 10%|โ | 1925/20000 [00:35<04:14, 70.99 examples/s]
preprocess datasets: 10%|โ | 1937/20000 [00:35<04:15, 70.66 examples/s]
preprocess datasets: 10%|โ | 1949/20000 [00:35<04:15, 70.74 examples/s]
preprocess datasets: 10%|โ | 1959/20000 [00:36<04:07, 72.81 examples/s]
preprocess datasets: 10%|โ | 1972/20000 [00:36<03:59, 75.13 examples/s]
preprocess datasets: 10%|โ | 1981/20000 [00:36<03:52, 77.41 examples/s]
preprocess datasets: 10%|โ | 1990/20000 [00:36<03:53, 77.14 examples/s]
preprocess datasets: 10%|โ | 2000/20000 [00:37<10:30, 28.55 examples/s]
preprocess datasets: 10%|โ | 2010/20000 [00:37<08:24, 35.64 examples/s]
preprocess datasets: 10%|โ | 2020/20000 [00:37<06:59, 42.84 examples/s]
preprocess datasets: 10%|โ | 2028/20000 [00:37<06:21, 47.13 examples/s]
preprocess datasets: 10%|โ | 2037/20000 [00:37<05:38, 53.04 examples/s]
preprocess datasets: 10%|โ | 2047/20000 [00:37<04:57, 60.35 examples/s]
preprocess datasets: 10%|โ | 2056/20000 [00:38<04:37, 64.57 examples/s]
preprocess datasets: 10%|โ | 2068/20000 [00:38<04:02, 73.98 examples/s]
preprocess datasets: 10%|โ | 2079/20000 [00:38<03:47, 78.76 examples/s]
preprocess datasets: 10%|โ | 2089/20000 [00:38<04:08, 72.17 examples/s]
preprocess datasets: 10%|โ | 2098/20000 [00:38<04:06, 72.70 examples/s]
preprocess datasets: 11%|โ | 2108/20000 [00:38<03:53, 76.70 examples/s]
preprocess datasets: 11%|โ | 2118/20000 [00:38<03:42, 80.46 examples/s]
preprocess datasets: 11%|โ | 2128/20000 [00:38<04:11, 70.98 examples/s]
preprocess datasets: 11%|โ | 2136/20000 [00:39<04:12, 70.88 examples/s]
preprocess datasets: 11%|โ | 2151/20000 [00:39<03:24, 87.46 examples/s]
preprocess datasets: 11%|โ | 2163/20000 [00:39<03:39, 81.26 examples/s]
preprocess datasets: 11%|โ | 2175/20000 [00:39<03:28, 85.49 examples/s]
preprocess datasets: 11%|โ | 2186/20000 [00:39<03:45, 79.03 examples/s]
preprocess datasets: 11%|โ | 2196/20000 [00:39<03:42, 80.04 examples/s]
preprocess datasets: 11%|โ | 2207/20000 [00:39<03:35, 82.58 examples/s]
preprocess datasets: 11%|โ | 2217/20000 [00:40<04:07, 71.95 examples/s]
preprocess datasets: 11%|โ | 2225/20000 [00:40<04:16, 69.35 examples/s]
preprocess datasets: 11%|โ | 2234/20000 [00:40<04:09, 71.34 examples/s]
preprocess datasets: 11%|โ | 2243/20000 [00:40<04:10, 70.79 examples/s]
preprocess datasets: 11%|โโ | 2251/20000 [00:41<14:04, 21.01 examples/s]
preprocess datasets: 11%|โโ | 2259/20000 [00:41<11:22, 25.99 examples/s]
preprocess datasets: 11%|โโ | 2268/20000 [00:41<09:01, 32.74 examples/s]
preprocess datasets: 11%|โโ | 2275/20000 [00:41<08:10, 36.17 examples/s]
preprocess datasets: 11%|โโ | 2282/20000 [00:42<07:25, 39.78 examples/s]
preprocess datasets: 11%|โโ | 2290/20000 [00:42<06:24, 46.07 examples/s]
preprocess datasets: 11%|โโ | 2298/20000 [00:42<06:03, 48.76 examples/s]
preprocess datasets: 12%|โโ | 2305/20000 [00:42<05:42, 51.64 examples/s]
preprocess datasets: 12%|โโ | 2316/20000 [00:42<04:44, 62.25 examples/s]
preprocess datasets: 12%|โโ | 2324/20000 [00:42<04:28, 65.79 examples/s]
preprocess datasets: 12%|โโ | 2332/20000 [00:42<04:25, 66.60 examples/s]
preprocess datasets: 12%|โโ | 2342/20000 [00:42<04:04, 72.20 examples/s]
preprocess datasets: 12%|โโ | 2350/20000 [00:42<04:03, 72.34 examples/s]
preprocess datasets: 12%|โโ | 2361/20000 [00:43<03:45, 78.10 examples/s]
preprocess datasets: 12%|โโ | 2370/20000 [00:43<03:56, 74.42 examples/s]
preprocess datasets: 12%|โโ | 2382/20000 [00:43<03:36, 81.36 examples/s]
preprocess datasets: 12%|โโ | 2392/20000 [00:43<03:31, 83.13 examples/s]
preprocess datasets: 12%|โโ | 2401/20000 [00:43<03:29, 84.18 examples/s]
preprocess datasets: 12%|โโ | 2410/20000 [00:43<03:36, 81.10 examples/s]
preprocess datasets: 12%|โโ | 2422/20000 [00:43<03:59, 73.41 examples/s]
preprocess datasets: 12%|โโ | 2434/20000 [00:44<03:33, 82.22 examples/s]
preprocess datasets: 12%|โโ | 2445/20000 [00:44<03:21, 87.27 examples/s]
preprocess datasets: 12%|โโ | 2455/20000 [00:44<03:19, 87.81 examples/s]
preprocess datasets: 12%|โโ | 2468/20000 [00:44<03:35, 81.31 examples/s]
preprocess datasets: 12%|โโ | 2478/20000 [00:44<03:36, 81.00 examples/s]
preprocess datasets: 12%|โโ | 2490/20000 [00:44<03:24, 85.67 examples/s]
preprocess datasets: 13%|โโ | 2502/20000 [00:44<03:09, 92.34 examples/s]
preprocess datasets: 13%|โโ | 2513/20000 [00:44<03:28, 83.87 examples/s]
preprocess datasets: 13%|โโ | 2522/20000 [00:45<03:32, 82.21 examples/s]
preprocess datasets: 13%|โโ | 2531/20000 [00:45<03:32, 82.35 examples/s]
preprocess datasets: 13%|โโ | 2546/20000 [00:45<03:35, 80.94 examples/s]
preprocess datasets: 13%|โโ | 2555/20000 [00:45<03:37, 80.29 examples/s]
preprocess datasets: 13%|โโ | 2565/20000 [00:45<03:32, 81.97 examples/s]
preprocess datasets: 13%|โโ | 2575/20000 [00:45<03:31, 82.26 examples/s]
preprocess datasets: 13%|โโ | 2586/20000 [00:45<03:18, 87.52 examples/s]
preprocess datasets: 13%|โโ | 2599/20000 [00:45<03:01, 95.93 examples/s]
preprocess datasets: 13%|โโ | 2613/20000 [00:46<03:05, 93.68 examples/s]
preprocess datasets: 13%|โโ | 2624/20000 [00:46<03:29, 82.93 examples/s]
preprocess datasets: 13%|โโ | 2633/20000 [00:46<03:35, 80.44 examples/s]
preprocess datasets: 13%|โโ | 2643/20000 [00:46<03:34, 80.93 examples/s]
preprocess datasets: 13%|โโ | 2654/20000 [00:46<03:32, 81.44 examples/s]
preprocess datasets: 13%|โโ | 2664/20000 [00:46<03:28, 82.99 examples/s]
preprocess datasets: 13%|โโ | 2674/20000 [00:46<03:31, 81.77 examples/s]
preprocess datasets: 13%|โโ | 2683/20000 [00:46<03:27, 83.45 examples/s]
preprocess datasets: 13%|โโ | 2692/20000 [00:47<03:37, 79.49 examples/s]
preprocess datasets: 14%|โโ | 2701/20000 [00:47<03:46, 76.21 examples/s]
preprocess datasets: 14%|โโ | 2710/20000 [00:47<03:46, 76.24 examples/s]
preprocess datasets: 14%|โโ | 2718/20000 [00:47<03:58, 72.45 examples/s]
preprocess datasets: 14%|โโ | 2730/20000 [00:47<03:32, 81.46 examples/s]
preprocess datasets: 14%|โโ | 2742/20000 [00:47<03:42, 77.61 examples/s]
preprocess datasets: 14%|โโ | 2751/20000 [00:47<04:11, 68.62 examples/s]
preprocess datasets: 14%|โโ | 2760/20000 [00:48<04:01, 71.43 examples/s]
preprocess datasets: 14%|โโ | 2768/20000 [00:48<04:05, 70.08 examples/s]
preprocess datasets: 14%|โโ | 2777/20000 [00:48<04:09, 69.16 examples/s]
preprocess datasets: 14%|โโ | 2787/20000 [00:48<03:47, 75.60 examples/s]
preprocess datasets: 14%|โโ | 2797/20000 [00:48<03:38, 78.84 examples/s]
preprocess datasets: 14%|โโ | 2807/20000 [00:48<03:35, 79.97 examples/s]
preprocess datasets: 14%|โโ | 2820/20000 [00:48<03:34, 79.92 examples/s]
preprocess datasets: 14%|โโ | 2834/20000 [00:48<03:43, 76.81 examples/s]
preprocess datasets: 14%|โโ | 2844/20000 [00:49<03:59, 71.66 examples/s]
preprocess datasets: 14%|โโ | 2854/20000 [00:49<04:25, 64.55 examples/s]
preprocess datasets: 14%|โโ | 2864/20000 [00:49<04:06, 69.52 examples/s]
preprocess datasets: 14%|โโ | 2872/20000 [00:49<04:10, 68.35 examples/s]
preprocess datasets: 14%|โโ | 2880/20000 [00:49<04:02, 70.52 examples/s]
preprocess datasets: 14%|โโ | 2890/20000 [00:49<03:50, 74.33 examples/s]
preprocess datasets: 14%|โโ | 2899/20000 [00:49<03:45, 75.92 examples/s]
preprocess datasets: 15%|โโ | 2910/20000 [00:50<03:47, 75.18 examples/s]
preprocess datasets: 15%|โโ | 2919/20000 [00:50<03:52, 73.54 examples/s]
preprocess datasets: 15%|โโ | 2931/20000 [00:50<03:58, 71.56 examples/s]
preprocess datasets: 15%|โโ | 2941/20000 [00:50<03:45, 75.56 examples/s]
preprocess datasets: 15%|โโ | 2951/20000 [00:50<03:33, 79.83 examples/s]
preprocess datasets: 15%|โโ | 2964/20000 [00:50<03:52, 73.12 examples/s]
preprocess datasets: 15%|โโ | 2972/20000 [00:50<03:55, 72.33 examples/s]
preprocess datasets: 15%|โโ | 2980/20000 [00:51<04:04, 69.75 examples/s]
preprocess datasets: 15%|โโ | 2988/20000 [00:51<04:01, 70.41 examples/s]
preprocess datasets: 15%|โโ | 2997/20000 [00:51<03:57, 71.60 examples/s]
preprocess datasets: 15%|โโ | 3005/20000 [00:52<13:18, 21.29 examples/s]
preprocess datasets: 15%|โโ | 3015/20000 [00:52<09:58, 28.36 examples/s]
preprocess datasets: 15%|โโ | 3025/20000 [00:52<08:02, 35.15 examples/s]
preprocess datasets: 15%|โโ | 3038/20000 [00:52<05:57, 47.48 examples/s]
preprocess datasets: 15%|โโ | 3052/20000 [00:52<05:01, 56.21 examples/s]
preprocess datasets: 15%|โโ | 3062/20000 [00:53<04:52, 57.86 examples/s]
preprocess datasets: 15%|โโ | 3070/20000 [00:53<04:49, 58.44 examples/s]
preprocess datasets: 15%|โโ | 3079/20000 [00:53<04:30, 62.55 examples/s]
preprocess datasets: 15%|โโ | 3090/20000 [00:53<03:59, 70.52 examples/s]
preprocess datasets: 15%|โโ | 3099/20000 [00:53<04:02, 69.72 examples/s]
preprocess datasets: 16%|โโ | 3111/20000 [00:53<03:36, 77.92 examples/s]
preprocess datasets: 16%|โโ | 3121/20000 [00:53<03:30, 80.00 examples/s]
preprocess datasets: 16%|โโ | 3131/20000 [00:53<03:22, 83.39 examples/s]
preprocess datasets: 16%|โโ | 3141/20000 [00:54<03:26, 81.46 examples/s]
preprocess datasets: 16%|โโ | 3156/20000 [00:54<03:17, 85.09 examples/s]
preprocess datasets: 16%|โโ | 3168/20000 [00:54<03:36, 77.61 examples/s]
preprocess datasets: 16%|โโ | 3179/20000 [00:54<03:24, 82.38 examples/s]
preprocess datasets: 16%|โโ | 3189/20000 [00:54<03:25, 81.78 examples/s]
preprocess datasets: 16%|โโ | 3200/20000 [00:54<03:39, 76.67 examples/s]
preprocess datasets: 16%|โโ | 3213/20000 [00:54<03:16, 85.25 examples/s]
preprocess datasets: 16%|โโ | 3225/20000 [00:55<03:25, 81.83 examples/s]
preprocess datasets: 16%|โโ | 3237/20000 [00:55<03:38, 76.61 examples/s]
preprocess datasets: 16%|โโ | 3247/20000 [00:55<03:34, 78.13 examples/s]
preprocess datasets: 16%|โโ | 3259/20000 [00:55<03:52, 71.93 examples/s]
preprocess datasets: 16%|โโ | 3269/20000 [00:55<03:41, 75.47 examples/s]
preprocess datasets: 16%|โโ | 3277/20000 [00:55<03:45, 74.22 examples/s]
preprocess datasets: 16%|โโ | 3287/20000 [00:55<03:33, 78.19 examples/s]
preprocess datasets: 16%|โโ | 3298/20000 [00:55<03:17, 84.78 examples/s]
preprocess datasets: 17%|โโ | 3312/20000 [00:56<03:21, 82.81 examples/s]
preprocess datasets: 17%|โโ | 3326/20000 [00:56<03:01, 91.98 examples/s]
preprocess datasets: 17%|โโ | 3338/20000 [00:56<03:21, 82.78 examples/s]
preprocess datasets: 17%|โโ | 3350/20000 [00:56<03:29, 79.57 examples/s]
preprocess datasets: 17%|โโ | 3360/20000 [00:56<03:51, 71.76 examples/s]
preprocess datasets: 17%|โโ | 3369/20000 [00:56<03:45, 73.89 examples/s]
preprocess datasets: 17%|โโ | 3378/20000 [00:57<03:38, 76.19 examples/s]
preprocess datasets: 17%|โโ | 3387/20000 [00:57<03:39, 75.57 examples/s]
preprocess datasets: 17%|โโ | 3399/20000 [00:57<03:55, 70.48 examples/s]
preprocess datasets: 17%|โโ | 3408/20000 [00:57<03:51, 71.54 examples/s]
preprocess datasets: 17%|โโ | 3421/20000 [00:57<03:42, 74.42 examples/s]
preprocess datasets: 17%|โโ | 3429/20000 [00:57<03:46, 73.10 examples/s]
preprocess datasets: 17%|โโ | 3441/20000 [00:57<03:24, 80.80 examples/s]
preprocess datasets: 17%|โโ | 3451/20000 [00:57<03:18, 83.33 examples/s]
preprocess datasets: 17%|โโ | 3460/20000 [00:58<03:19, 83.09 examples/s]
preprocess datasets: 17%|โโ | 3472/20000 [00:58<03:26, 80.02 examples/s]
preprocess datasets: 17%|โโ | 3485/20000 [00:58<05:20, 51.60 examples/s]
preprocess datasets: 17%|โโ | 3494/20000 [00:58<04:52, 56.41 examples/s]
preprocess datasets: 18%|โโ | 3501/20000 [00:58<04:48, 57.28 examples/s]
preprocess datasets: 18%|โโ | 3509/20000 [00:59<04:42, 58.41 examples/s]
preprocess datasets: 18%|โโ | 3518/20000 [00:59<04:22, 62.82 examples/s]
preprocess datasets: 18%|โโ | 3526/20000 [00:59<04:10, 65.75 examples/s]
preprocess datasets: 18%|โโ | 3535/20000 [00:59<03:59, 68.87 examples/s]
preprocess datasets: 18%|โโ | 3543/20000 [00:59<03:54, 70.25 examples/s]
preprocess datasets: 18%|โโ | 3554/20000 [00:59<03:39, 74.98 examples/s]
preprocess datasets: 18%|โโ | 3562/20000 [00:59<03:37, 75.41 examples/s]
preprocess datasets: 18%|โโ | 3574/20000 [00:59<03:09, 86.85 examples/s]
preprocess datasets: 18%|โโ | 3584/20000 [00:59<03:09, 86.69 examples/s]
preprocess datasets: 18%|โโ | 3596/20000 [01:00<03:21, 81.53 examples/s]
preprocess datasets: 18%|โโ | 3609/20000 [01:00<03:28, 78.78 examples/s]
preprocess datasets: 18%|โโ | 3618/20000 [01:00<03:25, 79.54 examples/s]
preprocess datasets: 18%|โโ | 3627/20000 [01:00<03:23, 80.61 examples/s]
preprocess datasets: 18%|โโ | 3636/20000 [01:00<03:29, 78.05 examples/s]
preprocess datasets: 18%|โโ | 3646/20000 [01:00<03:23, 80.48 examples/s]
preprocess datasets: 18%|โโ | 3657/20000 [01:00<03:40, 74.14 examples/s]
preprocess datasets: 18%|โโ | 3670/20000 [01:00<03:13, 84.49 examples/s]
preprocess datasets: 18%|โโ | 3680/20000 [01:01<03:10, 85.66 examples/s]
preprocess datasets: 18%|โโ | 3692/20000 [01:01<03:25, 79.49 examples/s]
preprocess datasets: 19%|โโ | 3701/20000 [01:01<03:22, 80.31 examples/s]
preprocess datasets: 19%|โโ | 3714/20000 [01:01<03:32, 76.67 examples/s]
preprocess datasets: 19%|โโ | 3726/20000 [01:01<03:17, 82.56 examples/s]
preprocess datasets: 19%|โโ | 3736/20000 [01:01<03:10, 85.31 examples/s]
preprocess datasets: 19%|โโ | 3748/20000 [01:01<03:23, 79.80 examples/s]
preprocess datasets: 19%|โโ | 3760/20000 [01:02<03:07, 86.77 examples/s]
preprocess datasets: 19%|โโ | 3773/20000 [01:02<02:51, 94.58 examples/s]
preprocess datasets: 19%|โโ | 3785/20000 [01:02<03:10, 85.06 examples/s]
preprocess datasets: 19%|โโ | 3795/20000 [01:02<03:09, 85.49 examples/s]
preprocess datasets: 19%|โโ | 3804/20000 [01:02<03:14, 83.43 examples/s]
preprocess datasets: 19%|โโ | 3813/20000 [01:02<03:17, 81.94 examples/s]
preprocess datasets: 19%|โโ | 3829/20000 [01:02<03:09, 85.39 examples/s]
preprocess datasets: 19%|โโ | 3838/20000 [01:03<03:14, 83.19 examples/s]
preprocess datasets: 19%|โโ | 3853/20000 [01:03<03:11, 84.18 examples/s]
preprocess datasets: 19%|โโ | 3863/20000 [01:03<03:31, 76.30 examples/s]
preprocess datasets: 19%|โโ | 3874/20000 [01:03<03:32, 75.81 examples/s]
preprocess datasets: 19%|โโ | 3887/20000 [01:03<03:39, 73.55 examples/s]
preprocess datasets: 19%|โโ | 3898/20000 [01:03<03:27, 77.55 examples/s]
preprocess datasets: 20%|โโ | 3908/20000 [01:03<03:22, 79.51 examples/s]
preprocess datasets: 20%|โโ | 3918/20000 [01:04<03:21, 79.82 examples/s]
preprocess datasets: 20%|โโ | 3930/20000 [01:04<03:07, 85.70 examples/s]
preprocess datasets: 20%|โโ | 3943/20000 [01:04<03:12, 83.38 examples/s]
preprocess datasets: 20%|โโ | 3954/20000 [01:04<03:35, 74.50 examples/s]
preprocess datasets: 20%|โโ | 3963/20000 [01:04<03:33, 75.18 examples/s]
preprocess datasets: 20%|โโ | 3972/20000 [01:04<03:31, 75.92 examples/s]
preprocess datasets: 20%|โโ | 3983/20000 [01:04<03:24, 78.36 examples/s]
preprocess datasets: 20%|โโ | 3996/20000 [01:05<03:32, 75.35 examples/s]
preprocess datasets: 20%|โโ | 4005/20000 [01:05<09:38, 27.63 examples/s]
preprocess datasets: 20%|โโ | 4014/20000 [01:06<07:58, 33.40 examples/s]
preprocess datasets: 20%|โโ | 4023/20000 [01:06<06:46, 39.27 examples/s]
preprocess datasets: 20%|โโ | 4031/20000 [01:06<05:59, 44.46 examples/s]
preprocess datasets: 20%|โโ | 4040/20000 [01:06<05:14, 50.71 examples/s]
preprocess datasets: 20%|โโ | 4051/20000 [01:06<04:25, 60.16 examples/s]
preprocess datasets: 20%|โโ | 4060/20000 [01:06<04:13, 62.91 examples/s]
preprocess datasets: 20%|โโ | 4069/20000 [01:06<03:57, 67.13 examples/s]
preprocess datasets: 20%|โโ | 4079/20000 [01:06<03:42, 71.68 examples/s]
preprocess datasets: 20%|โโ | 4093/20000 [01:07<03:06, 85.35 examples/s]
preprocess datasets: 21%|โโ | 4107/20000 [01:07<03:05, 85.71 examples/s]
preprocess datasets: 21%|โโ | 4117/20000 [01:07<03:02, 87.06 examples/s]
preprocess datasets: 21%|โโ | 4127/20000 [01:07<03:08, 84.17 examples/s]
preprocess datasets: 21%|โโ | 4136/20000 [01:07<03:08, 84.10 examples/s]
preprocess datasets: 21%|โโ | 4145/20000 [01:07<03:06, 84.95 examples/s]
preprocess datasets: 21%|โโ | 4154/20000 [01:07<03:07, 84.37 examples/s]
preprocess datasets: 21%|โโ | 4164/20000 [01:07<03:27, 76.37 examples/s]
preprocess datasets: 21%|โโ | 4174/20000 [01:08<03:56, 66.85 examples/s]
preprocess datasets: 21%|โโ | 4182/20000 [01:08<03:57, 66.70 examples/s]
preprocess datasets: 21%|โโ | 4191/20000 [01:08<03:45, 70.20 examples/s]
preprocess datasets: 21%|โโ | 4204/20000 [01:08<03:10, 82.75 examples/s]
preprocess datasets: 21%|โโ | 4213/20000 [01:08<05:27, 48.13 examples/s]
preprocess datasets: 21%|โโ | 4224/20000 [01:08<04:38, 56.72 examples/s]
preprocess datasets: 21%|โโ | 4232/20000 [01:09<04:30, 58.37 examples/s]
preprocess datasets: 21%|โโ | 4243/20000 [01:09<04:14, 61.86 examples/s]
preprocess datasets: 21%|โโโ | 4254/20000 [01:09<03:49, 68.62 examples/s]
preprocess datasets: 21%|โโโ | 4266/20000 [01:09<03:27, 75.92 examples/s]
preprocess datasets: 21%|โโโ | 4277/20000 [01:09<03:09, 82.75 examples/s]
preprocess datasets: 21%|โโโ | 4290/20000 [01:09<03:21, 77.80 examples/s]
preprocess datasets: 22%|โโโ | 4302/20000 [01:09<03:09, 83.01 examples/s]
preprocess datasets: 22%|โโโ | 4313/20000 [01:10<03:03, 85.40 examples/s]
preprocess datasets: 22%|โโโ | 4322/20000 [01:10<07:42, 33.90 examples/s]
preprocess datasets: 22%|โโโ | 4332/20000 [01:10<06:20, 41.19 examples/s]
preprocess datasets: 22%|โโโ | 4341/20000 [01:11<05:32, 47.08 examples/s]
preprocess datasets: 22%|โโโ | 4354/20000 [01:11<04:48, 54.28 examples/s]
preprocess datasets: 22%|โโโ | 4362/20000 [01:11<04:28, 58.32 examples/s]
preprocess datasets: 22%|โโโ | 4370/20000 [01:11<04:13, 61.58 examples/s]
preprocess datasets: 22%|โโโ | 4379/20000 [01:11<03:57, 65.84 examples/s]
preprocess datasets: 22%|โโโ | 4390/20000 [01:11<03:56, 66.11 examples/s]
preprocess datasets: 22%|โโโ | 4399/20000 [01:12<05:35, 46.49 examples/s]
preprocess datasets: 22%|โโโ | 4409/20000 [01:12<04:48, 54.11 examples/s]
preprocess datasets: 22%|โโโ | 4421/20000 [01:12<03:56, 65.93 examples/s]
preprocess datasets: 22%|โโโ | 4431/20000 [01:12<03:44, 69.25 examples/s]
preprocess datasets: 22%|โโโ | 4442/20000 [01:12<03:32, 73.36 examples/s]
preprocess datasets: 22%|โโโ | 4451/20000 [01:12<03:28, 74.65 examples/s]
preprocess datasets: 22%|โโโ | 4462/20000 [01:12<03:31, 73.41 examples/s]
preprocess datasets: 22%|โโโ | 4471/20000 [01:12<03:52, 66.73 examples/s]
preprocess datasets: 22%|โโโ | 4481/20000 [01:13<03:40, 70.44 examples/s]
preprocess datasets: 22%|โโโ | 4489/20000 [01:13<03:51, 66.99 examples/s]
preprocess datasets: 22%|โโโ | 4498/20000 [01:13<03:43, 69.38 examples/s]
preprocess datasets: 23%|โโโ | 4508/20000 [01:13<03:27, 74.81 examples/s]
preprocess datasets: 23%|โโโ | 4518/20000 [01:13<03:22, 76.62 examples/s]
preprocess datasets: 23%|โโโ | 4526/20000 [01:13<03:22, 76.55 examples/s]
preprocess datasets: 23%|โโโ | 4538/20000 [01:13<03:05, 83.47 examples/s]
preprocess datasets: 23%|โโโ | 4547/20000 [01:13<03:18, 77.79 examples/s]
preprocess datasets: 23%|โโโ | 4556/20000 [01:14<03:17, 78.39 examples/s]
preprocess datasets: 23%|โโโ | 4565/20000 [01:14<03:14, 79.52 examples/s]
preprocess datasets: 23%|โโโ | 4574/20000 [01:14<03:12, 80.12 examples/s]
preprocess datasets: 23%|โโโ | 4585/20000 [01:14<03:24, 75.50 examples/s]
preprocess datasets: 23%|โโโ | 4593/20000 [01:14<03:27, 74.24 examples/s]
preprocess datasets: 23%|โโโ | 4601/20000 [01:14<03:33, 72.27 examples/s]
preprocess datasets: 23%|โโโ | 4612/20000 [01:14<03:18, 77.66 examples/s]
preprocess datasets: 23%|โโโ | 4623/20000 [01:14<03:05, 82.85 examples/s]
preprocess datasets: 23%|โโโ | 4635/20000 [01:15<03:19, 76.89 examples/s]
preprocess datasets: 23%|โโโ | 4648/20000 [01:15<03:02, 84.16 examples/s]
preprocess datasets: 23%|โโโ | 4659/20000 [01:15<02:57, 86.39 examples/s]
preprocess datasets: 23%|โโโ | 4670/20000 [01:15<02:56, 86.88 examples/s]
preprocess datasets: 23%|โโโ | 4680/20000 [01:15<02:56, 86.82 examples/s]
preprocess datasets: 23%|โโโ | 4692/20000 [01:15<03:09, 80.73 examples/s]
preprocess datasets: 24%|โโโ | 4702/20000 [01:15<03:06, 81.95 examples/s]
preprocess datasets: 24%|โโโ | 4713/20000 [01:15<02:58, 85.45 examples/s]
preprocess datasets: 24%|โโโ | 4722/20000 [01:16<03:02, 83.92 examples/s]
preprocess datasets: 24%|โโโ | 4732/20000 [01:16<03:01, 83.94 examples/s]
preprocess datasets: 24%|โโโ | 4743/20000 [01:16<02:57, 86.07 examples/s]
preprocess datasets: 24%|โโโ | 4756/20000 [01:16<02:47, 91.22 examples/s]
preprocess datasets: 24%|โโโ | 4771/20000 [01:16<02:47, 91.06 examples/s]
preprocess datasets: 24%|โโโ | 4782/20000 [01:16<02:47, 90.87 examples/s]
preprocess datasets: 24%|โโโ | 4792/20000 [01:16<02:49, 89.84 examples/s]
preprocess datasets: 24%|โโโ | 4803/20000 [01:16<02:46, 91.22 examples/s]
preprocess datasets: 24%|โโโ | 4821/20000 [01:17<02:38, 95.62 examples/s]
preprocess datasets: 24%|โโโ | 4833/20000 [01:17<02:58, 84.85 examples/s]
preprocess datasets: 24%|โโโ | 4845/20000 [01:17<03:07, 80.99 examples/s]
preprocess datasets: 24%|โโโ | 4855/20000 [01:17<03:05, 81.56 examples/s]
preprocess datasets: 24%|โโโ | 4866/20000 [01:18<06:23, 39.48 examples/s]
preprocess datasets: 24%|โโโ | 4874/20000 [01:18<08:23, 30.02 examples/s]
preprocess datasets: 24%|โโโ | 4887/20000 [01:18<06:14, 40.34 examples/s]
preprocess datasets: 24%|โโโ | 4895/20000 [01:18<05:34, 45.11 examples/s]
preprocess datasets: 25%|โโโ | 4906/20000 [01:19<04:37, 54.32 examples/s]
preprocess datasets: 25%|โโโ | 4919/20000 [01:19<03:46, 66.55 examples/s]
preprocess datasets: 25%|โโโ | 4932/20000 [01:19<03:43, 67.32 examples/s]
preprocess datasets: 25%|โโโ | 4941/20000 [01:19<03:36, 69.50 examples/s]
preprocess datasets: 25%|โโโ | 4950/20000 [01:19<03:28, 72.08 examples/s]
preprocess datasets: 25%|โโโ | 4961/20000 [01:19<03:11, 78.48 examples/s]
preprocess datasets: 25%|โโโ | 4972/20000 [01:19<03:25, 73.02 examples/s]
preprocess datasets: 25%|โโโ | 4981/20000 [01:19<03:19, 75.18 examples/s]
preprocess datasets: 25%|โโโ | 4991/20000 [01:20<03:10, 78.59 examples/s]
preprocess datasets: 25%|โโโ | 5000/20000 [01:20<08:55, 27.99 examples/s]
preprocess datasets: 25%|โโโ | 5008/20000 [01:21<07:27, 33.47 examples/s]
preprocess datasets: 25%|โโโ | 5018/20000 [01:21<06:04, 41.05 examples/s]
preprocess datasets: 25%|โโโ | 5029/20000 [01:21<04:51, 51.40 examples/s]
preprocess datasets: 25%|โโโ | 5038/20000 [01:21<04:30, 55.30 examples/s]
preprocess datasets: 25%|โโโ | 5047/20000 [01:21<04:09, 60.02 examples/s]
preprocess datasets: 25%|โโโ | 5059/20000 [01:21<03:35, 69.19 examples/s]
preprocess datasets: 25%|โโโ | 5070/20000 [01:21<03:41, 67.31 examples/s]
preprocess datasets: 25%|โโโ | 5081/20000 [01:21<03:22, 73.80 examples/s]
preprocess datasets: 25%|โโโ | 5090/20000 [01:22<03:14, 76.46 examples/s]
preprocess datasets: 26%|โโโ | 5103/20000 [01:22<03:17, 75.60 examples/s]
preprocess datasets: 26%|โโโ | 5114/20000 [01:22<03:03, 81.03 examples/s]
preprocess datasets: 26%|โโโ | 5125/20000 [01:22<03:23, 73.15 examples/s]
preprocess datasets: 26%|โโโ | 5136/20000 [01:22<03:16, 75.71 examples/s]
preprocess datasets: 26%|โโโ | 5145/20000 [01:22<03:14, 76.52 examples/s]
preprocess datasets: 26%|โโโ | 5156/20000 [01:22<03:03, 81.01 examples/s]
preprocess datasets: 26%|โโโ | 5167/20000 [01:22<02:48, 87.85 examples/s]
preprocess datasets: 26%|โโโ | 5179/20000 [01:23<03:04, 80.22 examples/s]
preprocess datasets: 26%|โโโ | 5188/20000 [01:23<03:06, 79.58 examples/s]
preprocess datasets: 26%|โโโ | 5200/20000 [01:23<03:18, 74.55 examples/s]
preprocess datasets: 26%|โโโ | 5209/20000 [01:23<03:22, 72.98 examples/s]
preprocess datasets: 26%|โโโ | 5217/20000 [01:23<03:20, 73.87 examples/s]
preprocess datasets: 26%|โโโ | 5227/20000 [01:23<03:12, 76.90 examples/s]
preprocess datasets: 26%|โโโ | 5237/20000 [01:23<03:15, 75.69 examples/s]
preprocess datasets: 26%|โโโ | 5247/20000 [01:24<03:08, 78.19 examples/s]
preprocess datasets: 26%|โโโ | 5257/20000 [01:24<03:10, 77.35 examples/s]
preprocess datasets: 26%|โโโ | 5265/20000 [01:24<03:14, 75.57 examples/s]
preprocess datasets: 26%|โโโ | 5273/20000 [01:24<03:23, 72.41 examples/s]
preprocess datasets: 26%|โโโ | 5283/20000 [01:24<03:21, 73.02 examples/s]
preprocess datasets: 26%|โโโ | 5292/20000 [01:24<03:18, 74.03 examples/s]
preprocess datasets: 26%|โโโ | 5300/20000 [01:24<03:19, 73.58 examples/s]
preprocess datasets: 27%|โโโ | 5309/20000 [01:24<03:09, 77.44 examples/s]
preprocess datasets: 27%|โโโ | 5320/20000 [01:25<02:54, 83.90 examples/s]
preprocess datasets: 27%|โโโ | 5329/20000 [01:25<02:54, 84.25 examples/s]
preprocess datasets: 27%|โโโ | 5340/20000 [01:25<03:14, 75.19 examples/s]
preprocess datasets: 27%|โโโ | 5353/20000 [01:25<03:18, 73.63 examples/s]
preprocess datasets: 27%|โโโ | 5364/20000 [01:25<03:02, 80.26 examples/s]
preprocess datasets: 27%|โโโ | 5379/20000 [01:25<02:38, 92.21 examples/s]
preprocess datasets: 27%|โโโ | 5394/20000 [01:25<02:44, 89.00 examples/s]
preprocess datasets: 27%|โโโ | 5406/20000 [01:26<03:00, 80.74 examples/s]
preprocess datasets: 27%|โโโ | 5419/20000 [01:26<02:47, 87.09 examples/s]
preprocess datasets: 27%|โโโ | 5429/20000 [01:26<02:49, 86.04 examples/s]
preprocess datasets: 27%|โโโ | 5438/20000 [01:26<02:57, 82.16 examples/s]
preprocess datasets: 27%|โโโ | 5447/20000 [01:26<03:00, 80.80 examples/s]
preprocess datasets: 27%|โโโ | 5460/20000 [01:26<03:08, 77.15 examples/s]
preprocess datasets: 27%|โโโ | 5468/20000 [01:26<03:13, 75.06 examples/s]
preprocess datasets: 27%|โโโ | 5481/20000 [01:27<03:20, 72.43 examples/s]
preprocess datasets: 27%|โโโ | 5490/20000 [01:27<03:14, 74.51 examples/s]
preprocess datasets: 28%|โโโ | 5501/20000 [01:27<03:11, 75.91 examples/s]
preprocess datasets: 28%|โโโ | 5512/20000 [01:27<03:23, 71.26 examples/s]
preprocess datasets: 28%|โโโ | 5522/20000 [01:27<03:12, 75.09 examples/s]
preprocess datasets: 28%|โโโ | 5530/20000 [01:27<03:18, 72.74 examples/s]
preprocess datasets: 28%|โโโ | 5539/20000 [01:27<03:08, 76.58 examples/s]
preprocess datasets: 28%|โโโ | 5550/20000 [01:27<03:23, 70.88 examples/s]
preprocess datasets: 28%|โโโ | 5560/20000 [01:28<04:24, 54.65 examples/s]
preprocess datasets: 28%|โโโ | 5571/20000 [01:28<03:54, 61.54 examples/s]
preprocess datasets: 28%|โโโ | 5579/20000 [01:28<04:20, 55.46 examples/s]
preprocess datasets: 28%|โโโ | 5586/20000 [01:28<04:18, 55.77 examples/s]
preprocess datasets: 28%|โโโ | 5597/20000 [01:28<03:46, 63.72 examples/s]
preprocess datasets: 28%|โโโ | 5606/20000 [01:28<03:28, 68.97 examples/s]
preprocess datasets: 28%|โโโ | 5616/20000 [01:29<03:15, 73.43 examples/s]
preprocess datasets: 28%|โโโ | 5629/20000 [01:29<02:49, 84.68 examples/s]
preprocess datasets: 28%|โโโ | 5640/20000 [01:29<03:14, 73.95 examples/s]
preprocess datasets: 28%|โโโ | 5650/20000 [01:29<03:06, 76.96 examples/s]
preprocess datasets: 28%|โโโ | 5664/20000 [01:29<03:04, 77.80 examples/s]
preprocess datasets: 28%|โโโ | 5673/20000 [01:29<03:04, 77.73 examples/s]
preprocess datasets: 28%|โโโ | 5681/20000 [01:29<03:05, 77.13 examples/s]
preprocess datasets: 28%|โโโ | 5694/20000 [01:29<02:46, 86.02 examples/s]
preprocess datasets: 29%|โโโ | 5706/20000 [01:30<02:40, 89.22 examples/s]
preprocess datasets: 29%|โโโ | 5717/20000 [01:30<02:55, 81.34 examples/s]
preprocess datasets: 29%|โโโ | 5726/20000 [01:30<02:58, 79.96 examples/s]
preprocess datasets: 29%|โโโ | 5736/20000 [01:30<02:55, 81.20 examples/s]
preprocess datasets: 29%|โโโ | 5748/20000 [01:30<02:42, 87.59 examples/s]
preprocess datasets: 29%|โโโ | 5763/20000 [01:30<02:46, 85.50 examples/s]
preprocess datasets: 29%|โโโ | 5777/20000 [01:30<02:29, 95.28 examples/s]
preprocess datasets: 29%|โโโ | 5789/20000 [01:31<02:45, 85.73 examples/s]
preprocess datasets: 29%|โโโ | 5800/20000 [01:31<02:41, 87.85 examples/s]
preprocess datasets: 29%|โโโ | 5812/20000 [01:31<02:38, 89.59 examples/s]
preprocess datasets: 29%|โโโ | 5825/20000 [01:31<02:48, 83.96 examples/s]
preprocess datasets: 29%|โโโ | 5836/20000 [01:31<02:43, 86.78 examples/s]
preprocess datasets: 29%|โโโ | 5846/20000 [01:31<02:46, 85.24 examples/s]
preprocess datasets: 29%|โโโ | 5856/20000 [01:31<02:42, 86.84 examples/s]
preprocess datasets: 29%|โโโ | 5866/20000 [01:31<02:42, 86.82 examples/s]
preprocess datasets: 29%|โโโ | 5875/20000 [01:32<02:48, 83.73 examples/s]
preprocess datasets: 29%|โโโ | 5886/20000 [01:32<03:06, 75.75 examples/s]
preprocess datasets: 29%|โโโ | 5897/20000 [01:32<03:16, 71.91 examples/s]
preprocess datasets: 30%|โโโ | 5908/20000 [01:32<03:02, 77.30 examples/s]
preprocess datasets: 30%|โโโ | 5917/20000 [01:32<02:57, 79.23 examples/s]
preprocess datasets: 30%|โโโ | 5926/20000 [01:32<02:55, 80.08 examples/s]
preprocess datasets: 30%|โโโ | 5935/20000 [01:32<02:54, 80.41 examples/s]
preprocess datasets: 30%|โโโ | 5952/20000 [01:33<02:22, 98.51 examples/s]
preprocess datasets: 30%|โโโ | 5963/20000 [01:33<02:27, 95.18 examples/s]
preprocess datasets: 30%|โโโ | 5974/20000 [01:33<02:50, 82.14 examples/s]
preprocess datasets: 30%|โโโ | 5984/20000 [01:33<02:50, 82.32 examples/s]
preprocess datasets: 30%|โโโ | 5993/20000 [01:33<02:54, 80.17 examples/s]
preprocess datasets: 30%|โโโ | 6005/20000 [01:34<07:58, 29.22 examples/s]
preprocess datasets: 30%|โโโ | 6018/20000 [01:34<06:02, 38.54 examples/s]
preprocess datasets: 30%|โโโ | 6030/20000 [01:34<05:08, 45.25 examples/s]
preprocess datasets: 30%|โโโ | 6042/20000 [01:34<04:34, 50.77 examples/s]
preprocess datasets: 30%|โโโ | 6050/20000 [01:35<05:32, 42.01 examples/s]
preprocess datasets: 30%|โโโ | 6062/20000 [01:35<04:26, 52.34 examples/s]
preprocess datasets: 30%|โโโ | 6072/20000 [01:35<03:54, 59.43 examples/s]
preprocess datasets: 30%|โโโ | 6082/20000 [01:35<03:34, 64.78 examples/s]
preprocess datasets: 30%|โโโ | 6093/20000 [01:35<03:11, 72.51 examples/s]
preprocess datasets: 31%|โโโ | 6106/20000 [01:35<02:52, 80.44 examples/s]
preprocess datasets: 31%|โโโ | 6117/20000 [01:35<02:50, 81.29 examples/s]
preprocess datasets: 31%|โโโ | 6127/20000 [01:36<02:47, 82.75 examples/s]
preprocess datasets: 31%|โโโ | 6138/20000 [01:36<02:44, 84.49 examples/s]
preprocess datasets: 31%|โโโ | 6148/20000 [01:36<02:46, 82.97 examples/s]
preprocess datasets: 31%|โโโ | 6159/20000 [01:36<02:41, 85.59 examples/s]
preprocess datasets: 31%|โโโ | 6172/20000 [01:36<02:51, 80.71 examples/s]
preprocess datasets: 31%|โโโ | 6186/20000 [01:36<02:32, 90.35 examples/s]
preprocess datasets: 31%|โโโ | 6196/20000 [01:36<02:33, 90.16 examples/s]
preprocess datasets: 31%|โโโ | 6209/20000 [01:37<02:44, 83.70 examples/s]
preprocess datasets: 31%|โโโ | 6219/20000 [01:37<02:39, 86.38 examples/s]
preprocess datasets: 31%|โโโ | 6229/20000 [01:37<02:40, 85.91 examples/s]
preprocess datasets: 31%|โโโ | 6239/20000 [01:37<02:41, 85.29 examples/s]
preprocess datasets: 31%|โโโ | 6248/20000 [01:37<02:46, 82.50 examples/s]
preprocess datasets: 31%|โโโโ | 6258/20000 [01:37<02:50, 80.62 examples/s]
preprocess datasets: 31%|โโโโ | 6267/20000 [01:37<02:51, 79.90 examples/s]
preprocess datasets: 31%|โโโโ | 6277/20000 [01:37<02:47, 82.15 examples/s]
preprocess datasets: 31%|โโโโ | 6286/20000 [01:37<02:54, 78.59 examples/s]
preprocess datasets: 32%|โโโโ | 6300/20000 [01:38<02:32, 89.76 examples/s]
preprocess datasets: 32%|โโโโ | 6313/20000 [01:38<02:45, 82.62 examples/s]
preprocess datasets: 32%|โโโโ | 6324/20000 [01:38<02:37, 86.87 examples/s]
preprocess datasets: 32%|โโโโ | 6333/20000 [01:38<02:52, 79.09 examples/s]
preprocess datasets: 32%|โโโโ | 6343/20000 [01:38<02:46, 81.93 examples/s]
preprocess datasets: 32%|โโโโ | 6352/20000 [01:38<03:00, 75.46 examples/s]
preprocess datasets: 32%|โโโโ | 6362/20000 [01:38<02:57, 76.95 examples/s]
preprocess datasets: 32%|โโโโ | 6373/20000 [01:39<02:54, 78.29 examples/s]
preprocess datasets: 32%|โโโโ | 6385/20000 [01:39<02:42, 83.55 examples/s]
preprocess datasets: 32%|โโโโ | 6396/20000 [01:39<02:36, 86.98 examples/s]
preprocess datasets: 32%|โโโโ | 6409/20000 [01:39<02:38, 85.83 examples/s]
preprocess datasets: 32%|โโโโ | 6420/20000 [01:39<02:29, 91.11 examples/s]
preprocess datasets: 32%|โโโโ | 6431/20000 [01:39<02:31, 89.53 examples/s]
preprocess datasets: 32%|โโโโ | 6447/20000 [01:39<02:28, 91.28 examples/s]
preprocess datasets: 32%|โโโโ | 6457/20000 [01:39<02:34, 87.45 examples/s]
preprocess datasets: 32%|โโโโ | 6467/20000 [01:40<02:44, 82.27 examples/s]
preprocess datasets: 32%|โโโโ | 6478/20000 [01:40<02:35, 86.85 examples/s]
preprocess datasets: 32%|โโโโ | 6492/20000 [01:40<02:44, 81.88 examples/s]
preprocess datasets: 33%|โโโโ | 6501/20000 [01:40<02:48, 80.31 examples/s]
preprocess datasets: 33%|โโโโ | 6510/20000 [01:40<02:47, 80.50 examples/s]
preprocess datasets: 33%|โโโโ | 6520/20000 [01:40<02:43, 82.43 examples/s]
preprocess datasets: 33%|โโโโ | 6533/20000 [01:40<02:31, 88.65 examples/s]
preprocess datasets: 33%|โโโโ | 6543/20000 [01:41<02:32, 88.22 examples/s]
preprocess datasets: 33%|โโโโ | 6557/20000 [01:41<02:40, 84.00 examples/s]
preprocess datasets: 33%|โโโโ | 6567/20000 [01:41<02:39, 84.30 examples/s]
preprocess datasets: 33%|โโโโ | 6576/20000 [01:41<02:45, 81.25 examples/s]
preprocess datasets: 33%|โโโโ | 6589/20000 [01:41<02:49, 79.08 examples/s]
preprocess datasets: 33%|โโโโ | 6597/20000 [01:42<04:50, 46.08 examples/s]
preprocess datasets: 33%|โโโโ | 6608/20000 [01:42<04:02, 55.15 examples/s]
preprocess datasets: 33%|โโโโ | 6618/20000 [01:42<03:34, 62.43 examples/s]
preprocess datasets: 33%|โโโโ | 6628/20000 [01:42<03:20, 66.72 examples/s]
preprocess datasets: 33%|โโโโ | 6641/20000 [01:42<02:57, 75.34 examples/s]
preprocess datasets: 33%|โโโโ | 6651/20000 [01:42<02:50, 78.07 examples/s]
preprocess datasets: 33%|โโโโ | 6662/20000 [01:42<02:52, 77.48 examples/s]
preprocess datasets: 33%|โโโโ | 6671/20000 [01:42<03:16, 67.90 examples/s]
preprocess datasets: 33%|โโโโ | 6680/20000 [01:43<03:08, 70.70 examples/s]
preprocess datasets: 33%|โโโโ | 6693/20000 [01:43<03:06, 71.36 examples/s]
preprocess datasets: 34%|โโโโ | 6703/20000 [01:43<03:03, 72.41 examples/s]
preprocess datasets: 34%|โโโโ | 6713/20000 [01:43<02:57, 74.65 examples/s]
preprocess datasets: 34%|โโโโ | 6724/20000 [01:43<02:41, 82.30 examples/s]
preprocess datasets: 34%|โโโโ | 6733/20000 [01:43<02:39, 83.01 examples/s]
preprocess datasets: 34%|โโโโ | 6743/20000 [01:43<02:46, 79.44 examples/s]
preprocess datasets: 34%|โโโโ | 6754/20000 [01:44<03:42, 59.58 examples/s]
preprocess datasets: 34%|โโโโ | 6763/20000 [01:44<03:37, 60.79 examples/s]
preprocess datasets: 34%|โโโโ | 6776/20000 [01:44<02:58, 73.90 examples/s]
preprocess datasets: 34%|โโโโ | 6786/20000 [01:44<02:49, 77.75 examples/s]
preprocess datasets: 34%|โโโโ | 6797/20000 [01:44<02:59, 73.54 examples/s]
preprocess datasets: 34%|โโโโ | 6808/20000 [01:44<02:44, 80.43 examples/s]
preprocess datasets: 34%|โโโโ | 6818/20000 [01:44<02:40, 81.89 examples/s]
preprocess datasets: 34%|โโโโ | 6832/20000 [01:44<02:19, 94.13 examples/s]
preprocess datasets: 34%|โโโโ | 6847/20000 [01:45<02:22, 92.49 examples/s]
preprocess datasets: 34%|โโโโ | 6859/20000 [01:45<02:34, 84.99 examples/s]
preprocess datasets: 34%|โโโโ | 6874/20000 [01:45<02:16, 96.18 examples/s]
preprocess datasets: 34%|โโโโ | 6890/20000 [01:45<02:20, 93.61 examples/s]
preprocess datasets: 35%|โโโโ | 6902/20000 [01:45<02:29, 87.60 examples/s]
preprocess datasets: 35%|โโโโ | 6912/20000 [01:45<02:29, 87.75 examples/s]
preprocess datasets: 35%|โโโโ | 6923/20000 [01:46<02:26, 89.02 examples/s]
preprocess datasets: 35%|โโโโ | 6934/20000 [01:46<02:42, 80.32 examples/s]
preprocess datasets: 35%|โโโโ | 6947/20000 [01:46<02:46, 78.49 examples/s]
preprocess datasets: 35%|โโโโ | 6960/20000 [01:46<02:47, 77.76 examples/s]
preprocess datasets: 35%|โโโโ | 6969/20000 [01:46<02:43, 79.71 examples/s]
preprocess datasets: 35%|โโโโ | 6979/20000 [01:46<02:58, 73.04 examples/s]
preprocess datasets: 35%|โโโโ | 6991/20000 [01:46<02:39, 81.31 examples/s]
preprocess datasets: 35%|โโโโ | 7000/20000 [01:47<07:47, 27.80 examples/s]
preprocess datasets: 35%|โโโโ | 7011/20000 [01:47<06:05, 35.58 examples/s]
preprocess datasets: 35%|โโโโ | 7023/20000 [01:48<05:02, 42.91 examples/s]
preprocess datasets: 35%|โโโโ | 7033/20000 [01:48<04:41, 46.09 examples/s]
preprocess datasets: 35%|โโโโ | 7040/20000 [01:48<04:32, 47.56 examples/s]
preprocess datasets: 35%|โโโโ | 7048/20000 [01:48<04:06, 52.49 examples/s]
preprocess datasets: 35%|โโโโ | 7057/20000 [01:48<03:40, 58.70 examples/s]
preprocess datasets: 35%|โโโโ | 7074/20000 [01:48<02:47, 77.37 examples/s]
preprocess datasets: 35%|โโโโ | 7087/20000 [01:48<02:47, 76.93 examples/s]
preprocess datasets: 35%|โโโโ | 7096/20000 [01:49<02:46, 77.55 examples/s]
preprocess datasets: 36%|โโโโ | 7110/20000 [01:49<02:47, 76.89 examples/s]
preprocess datasets: 36%|โโโโ | 7122/20000 [01:49<02:32, 84.41 examples/s]
preprocess datasets: 36%|โโโโ | 7131/20000 [01:49<02:34, 83.55 examples/s]
preprocess datasets: 36%|โโโโ | 7148/20000 [01:49<02:22, 90.05 examples/s]
preprocess datasets: 36%|โโโโ | 7158/20000 [01:49<02:26, 87.92 examples/s]
preprocess datasets: 36%|โโโโ | 7168/20000 [01:49<02:43, 78.28 examples/s]
preprocess datasets: 36%|โโโโ | 7181/20000 [01:50<02:43, 78.29 examples/s]
preprocess datasets: 36%|โโโโ | 7190/20000 [01:50<02:42, 78.81 examples/s]
preprocess datasets: 36%|โโโโ | 7201/20000 [01:50<02:57, 72.24 examples/s]
preprocess datasets: 36%|โโโโ | 7209/20000 [01:50<03:05, 69.11 examples/s]
preprocess datasets: 36%|โโโโ | 7217/20000 [01:50<03:06, 68.39 examples/s]
preprocess datasets: 36%|โโโโ | 7229/20000 [01:50<02:39, 80.09 examples/s]
preprocess datasets: 36%|โโโโ | 7240/20000 [01:50<03:00, 70.60 examples/s]
preprocess datasets: 36%|โโโโ | 7248/20000 [01:51<03:02, 70.02 examples/s]
preprocess datasets: 36%|โโโโ | 7256/20000 [01:51<02:59, 71.15 examples/s]
preprocess datasets: 36%|โโโโ | 7267/20000 [01:51<02:45, 76.92 examples/s]
preprocess datasets: 36%|โโโโ | 7276/20000 [01:51<02:44, 77.43 examples/s]
preprocess datasets: 36%|โโโโ | 7287/20000 [01:51<02:34, 82.27 examples/s]
preprocess datasets: 36%|โโโโ | 7299/20000 [01:51<02:22, 89.07 examples/s]
preprocess datasets: 37%|โโโโ | 7312/20000 [01:51<02:16, 93.08 examples/s]
preprocess datasets: 37%|โโโโ | 7324/20000 [01:51<02:13, 94.86 examples/s]
preprocess datasets: 37%|โโโโ | 7335/20000 [01:51<02:10, 97.09 examples/s]
preprocess datasets: 37%|โโโโ | 7349/20000 [01:52<02:04, 102.01 examples/s]
preprocess datasets: 37%|โโโโ | 7362/20000 [01:52<02:01, 104.28 examples/s]
preprocess datasets: 37%|โโโโ | 7380/20000 [01:52<01:57, 107.41 examples/s]
preprocess datasets: 37%|โโโโ | 7393/20000 [01:52<01:53, 111.26 examples/s]
preprocess datasets: 37%|โโโโ | 7405/20000 [01:52<01:53, 111.44 examples/s]
preprocess datasets: 37%|โโโโ | 7418/20000 [01:52<02:06, 99.10 examples/s]
preprocess datasets: 37%|โโโโ | 7431/20000 [01:52<02:16, 91.77 examples/s]
preprocess datasets: 37%|โโโโ | 7441/20000 [01:53<02:21, 88.95 examples/s]
preprocess datasets: 37%|โโโโ | 7457/20000 [01:53<02:17, 91.25 examples/s]
preprocess datasets: 37%|โโโโ | 7470/20000 [01:53<02:06, 99.11 examples/s]
preprocess datasets: 37%|โโโโ | 7481/20000 [01:53<02:23, 87.01 examples/s]
preprocess datasets: 37%|โโโโ | 7494/20000 [01:53<02:35, 80.63 examples/s]
preprocess datasets: 38%|โโโโ | 7505/20000 [01:53<02:24, 86.38 examples/s]
preprocess datasets: 38%|โโโโ | 7521/20000 [01:53<02:18, 90.41 examples/s]
preprocess datasets: 38%|โโโโ | 7533/20000 [01:54<02:16, 91.63 examples/s]
preprocess datasets: 38%|โโโโ | 7544/20000 [01:54<02:12, 93.76 examples/s]
preprocess datasets: 38%|โโโโ | 7558/20000 [01:54<02:22, 87.10 examples/s]
preprocess datasets: 38%|โโโโ | 7569/20000 [01:54<02:20, 88.17 examples/s]
preprocess datasets: 38%|โโโโ | 7581/20000 [01:54<02:11, 94.71 examples/s]
preprocess datasets: 38%|โโโโ | 7594/20000 [01:54<02:06, 98.28 examples/s]
preprocess datasets: 38%|โโโโ | 7606/20000 [01:54<02:20, 88.38 examples/s]
preprocess datasets: 38%|โโโโ | 7617/20000 [01:55<02:37, 78.84 examples/s]
preprocess datasets: 38%|โโโโ | 7626/20000 [01:55<02:55, 70.62 examples/s]
preprocess datasets: 38%|โโโโ | 7635/20000 [01:55<02:52, 71.85 examples/s]
preprocess datasets: 38%|โโโโ | 7645/20000 [01:55<02:42, 76.25 examples/s]
preprocess datasets: 38%|โโโโ | 7655/20000 [01:55<02:56, 70.05 examples/s]
preprocess datasets: 38%|โโโโ | 7664/20000 [01:55<02:52, 71.34 examples/s]
preprocess datasets: 38%|โโโโ | 7673/20000 [01:55<02:51, 72.03 examples/s]
preprocess datasets: 38%|โโโโ | 7681/20000 [01:55<02:47, 73.62 examples/s]
preprocess datasets: 38%|โโโโ | 7690/20000 [01:56<03:06, 66.04 examples/s]
preprocess datasets: 38%|โโโโ | 7697/20000 [01:56<03:09, 64.77 examples/s]
preprocess datasets: 39%|โโโโ | 7706/20000 [01:56<02:59, 68.30 examples/s]
preprocess datasets: 39%|โโโโ | 7715/20000 [01:56<02:54, 70.47 examples/s]
preprocess datasets: 39%|โโโโ | 7726/20000 [01:56<02:36, 78.19 examples/s]
preprocess datasets: 39%|โโโโ | 7735/20000 [01:56<02:40, 76.54 examples/s]
preprocess datasets: 39%|โโโโ | 7744/20000 [01:56<02:39, 76.63 examples/s]
preprocess datasets: 39%|โโโโ | 7753/20000 [01:56<02:41, 75.83 examples/s]
preprocess datasets: 39%|โโโโ | 7764/20000 [01:57<02:30, 81.10 examples/s]
preprocess datasets: 39%|โโโโ | 7776/20000 [01:57<02:37, 77.80 examples/s]
preprocess datasets: 39%|โโโโ | 7786/20000 [01:57<02:30, 81.14 examples/s]
preprocess datasets: 39%|โโโโ | 7799/20000 [01:57<02:21, 86.32 examples/s]
preprocess datasets: 39%|โโโโ | 7809/20000 [01:57<02:19, 87.36 examples/s]
preprocess datasets: 39%|โโโโ | 7822/20000 [01:57<02:11, 92.29 examples/s]
preprocess datasets: 39%|โโโโ | 7832/20000 [01:57<02:16, 88.94 examples/s]
preprocess datasets: 39%|โโโโ | 7841/20000 [01:57<02:24, 84.11 examples/s]
preprocess datasets: 39%|โโโโ | 7850/20000 [01:58<02:27, 82.23 examples/s]
preprocess datasets: 39%|โโโโ | 7860/20000 [01:58<02:29, 81.27 examples/s]
preprocess datasets: 39%|โโโโ | 7872/20000 [01:58<02:23, 84.74 examples/s]
preprocess datasets: 39%|โโโโ | 7883/20000 [01:58<02:21, 85.67 examples/s]
preprocess datasets: 39%|โโโโ | 7892/20000 [01:58<02:27, 81.96 examples/s]
preprocess datasets: 40%|โโโโ | 7905/20000 [01:58<02:14, 89.70 examples/s]
preprocess datasets: 40%|โโโโ | 7914/20000 [01:58<02:21, 85.58 examples/s]
preprocess datasets: 40%|โโโโ | 7928/20000 [01:58<02:07, 94.90 examples/s]
preprocess datasets: 40%|โโโโ | 7942/20000 [01:59<02:13, 90.12 examples/s]
preprocess datasets: 40%|โโโโ | 7954/20000 [01:59<02:28, 81.26 examples/s]
preprocess datasets: 40%|โโโโ | 7965/20000 [01:59<02:39, 75.54 examples/s]
preprocess datasets: 40%|โโโโ | 7973/20000 [01:59<02:39, 75.19 examples/s]
preprocess datasets: 40%|โโโโ | 7982/20000 [01:59<02:40, 74.92 examples/s]
preprocess datasets: 40%|โโโโ | 7994/20000 [01:59<02:42, 73.89 examples/s]
preprocess datasets: 40%|โโโโ | 8002/20000 [02:00<07:45, 25.75 examples/s]
preprocess datasets: 40%|โโโโ | 8012/20000 [02:00<06:08, 32.57 examples/s]
preprocess datasets: 40%|โโโโ | 8020/20000 [02:01<05:23, 37.00 examples/s]
preprocess datasets: 40%|โโโโ | 8027/20000 [02:01<04:54, 40.64 examples/s]
preprocess datasets: 40%|โโโโ | 8038/20000 [02:01<03:58, 50.25 examples/s]
preprocess datasets: 40%|โโโโ | 8048/20000 [02:01<03:28, 57.45 examples/s]
preprocess datasets: 40%|โโโโ | 8057/20000 [02:01<03:09, 63.03 examples/s]
preprocess datasets: 40%|โโโโ | 8066/20000 [02:01<02:59, 66.50 examples/s]
preprocess datasets: 40%|โโโโ | 8076/20000 [02:01<02:47, 71.37 examples/s]
preprocess datasets: 40%|โโโโ | 8084/20000 [02:01<02:51, 69.46 examples/s]
preprocess datasets: 40%|โโโโ | 8093/20000 [02:02<02:52, 69.05 examples/s]
preprocess datasets: 41%|โโโโ | 8104/20000 [02:02<02:31, 78.61 examples/s]
preprocess datasets: 41%|โโโโ | 8117/20000 [02:02<02:36, 75.75 examples/s]
preprocess datasets: 41%|โโโโ | 8126/20000 [02:02<02:37, 75.56 examples/s]
preprocess datasets: 41%|โโโโ | 8135/20000 [02:02<02:33, 77.17 examples/s]
preprocess datasets: 41%|โโโโ | 8146/20000 [02:02<02:49, 69.73 examples/s]
preprocess datasets: 41%|โโโโ | 8156/20000 [02:02<02:40, 73.74 examples/s]
preprocess datasets: 41%|โโโโ | 8166/20000 [02:02<02:34, 76.45 examples/s]
preprocess datasets: 41%|โโโโ | 8177/20000 [02:03<02:28, 79.87 examples/s]
preprocess datasets: 41%|โโโโ | 8191/20000 [02:03<02:25, 81.34 examples/s]
preprocess datasets: 41%|โโโโ | 8205/20000 [02:03<02:23, 82.17 examples/s]
preprocess datasets: 41%|โโโโ | 8220/20000 [02:03<02:23, 82.17 examples/s]
preprocess datasets: 41%|โโโโ | 8230/20000 [02:04<04:09, 47.10 examples/s]
preprocess datasets: 41%|โโโโ | 8242/20000 [02:04<03:30, 55.75 examples/s]
preprocess datasets: 41%|โโโโโ | 8250/20000 [02:04<04:02, 48.45 examples/s]
preprocess datasets: 41%|โโโโโ | 8261/20000 [02:04<03:30, 55.83 examples/s]
preprocess datasets: 41%|โโโโโ | 8269/20000 [02:04<03:15, 60.02 examples/s]
preprocess datasets: 41%|โโโโโ | 8279/20000 [02:04<02:55, 66.63 examples/s]
preprocess datasets: 41%|โโโโโ | 8290/20000 [02:04<02:35, 75.11 examples/s]
preprocess datasets: 41%|โโโโโ | 8299/20000 [02:05<02:40, 73.08 examples/s]
preprocess datasets: 42%|โโโโโ | 8311/20000 [02:05<02:21, 82.38 examples/s]
preprocess datasets: 42%|โโโโโ | 8322/20000 [02:05<02:16, 85.43 examples/s]
preprocess datasets: 42%|โโโโโ | 8332/20000 [02:05<02:13, 87.35 examples/s]
preprocess datasets: 42%|โโโโโ | 8347/20000 [02:05<02:17, 84.81 examples/s]
preprocess datasets: 42%|โโโโโ | 8361/20000 [02:05<02:16, 85.56 examples/s]
preprocess datasets: 42%|โโโโโ | 8376/20000 [02:05<01:59, 97.25 examples/s]
preprocess datasets: 42%|โโโโโ | 8387/20000 [02:05<02:01, 95.67 examples/s]
preprocess datasets: 42%|โโโโโ | 8398/20000 [02:06<02:05, 92.22 examples/s]
preprocess datasets: 42%|โโโโโ | 8414/20000 [02:06<01:53, 101.69 examples/s]
preprocess datasets: 42%|โโโโโ | 8428/20000 [02:06<02:01, 95.06 examples/s]
preprocess datasets: 42%|โโโโโ | 8440/20000 [02:06<02:21, 81.50 examples/s]
preprocess datasets: 42%|โโโโโ | 8450/20000 [02:06<02:17, 84.00 examples/s]
preprocess datasets: 42%|โโโโโ | 8464/20000 [02:06<02:04, 92.41 examples/s]
preprocess datasets: 42%|โโโโโ | 8474/20000 [02:06<02:09, 89.14 examples/s]
preprocess datasets: 42%|โโโโโ | 8485/20000 [02:07<02:05, 91.69 examples/s]
preprocess datasets: 42%|โโโโโ | 8498/20000 [02:07<02:01, 94.35 examples/s]
preprocess datasets: 43%|โโโโโ | 8513/20000 [02:07<02:05, 91.58 examples/s]
preprocess datasets: 43%|โโโโโ | 8523/20000 [02:07<02:08, 89.53 examples/s]
preprocess datasets: 43%|โโโโโ | 8538/20000 [02:07<02:06, 90.30 examples/s]
preprocess datasets: 43%|โโโโโ | 8552/20000 [02:07<01:55, 99.54 examples/s]
preprocess datasets: 43%|โโโโโ | 8565/20000 [02:07<02:09, 88.07 examples/s]
preprocess datasets: 43%|โโโโโ | 8580/20000 [02:08<02:10, 87.47 examples/s]
preprocess datasets: 43%|โโโโโ | 8594/20000 [02:08<02:14, 84.97 examples/s]
preprocess datasets: 43%|โโโโโ | 8607/20000 [02:08<02:01, 93.53 examples/s]
preprocess datasets: 43%|โโโโโ | 8618/20000 [02:08<02:01, 93.75 examples/s]
preprocess datasets: 43%|โโโโโ | 8632/20000 [02:08<02:03, 91.80 examples/s]
preprocess datasets: 43%|โโโโโ | 8642/20000 [02:08<02:22, 79.76 examples/s]
preprocess datasets: 43%|โโโโโ | 8652/20000 [02:08<02:18, 81.68 examples/s]
preprocess datasets: 43%|โโโโโ | 8663/20000 [02:09<02:13, 84.89 examples/s]
preprocess datasets: 43%|โโโโโ | 8676/20000 [02:09<02:18, 81.78 examples/s]
preprocess datasets: 43%|โโโโโ | 8688/20000 [02:09<02:09, 87.43 examples/s]
preprocess datasets: 44%|โโโโโ | 8701/20000 [02:09<02:03, 91.30 examples/s]
preprocess datasets: 44%|โโโโโ | 8715/20000 [02:09<02:11, 85.97 examples/s]
preprocess datasets: 44%|โโโโโ | 8724/20000 [02:09<02:18, 81.21 examples/s]
preprocess datasets: 44%|โโโโโ | 8738/20000 [02:09<02:17, 81.65 examples/s]
preprocess datasets: 44%|โโโโโ | 8748/20000 [02:10<02:14, 83.49 examples/s]
preprocess datasets: 44%|โโโโโ | 8759/20000 [02:10<02:36, 71.61 examples/s]
preprocess datasets: 44%|โโโโโ | 8773/20000 [02:10<02:32, 73.71 examples/s]
preprocess datasets: 44%|โโโโโ | 8786/20000 [02:10<02:20, 79.90 examples/s]
preprocess datasets: 44%|โโโโโ | 8797/20000 [02:10<02:20, 79.66 examples/s]
preprocess datasets: 44%|โโโโโ | 8810/20000 [02:10<02:21, 78.95 examples/s]
preprocess datasets: 44%|โโโโโ | 8819/20000 [02:11<02:21, 78.99 examples/s]
preprocess datasets: 44%|โโโโโ | 8828/20000 [02:11<02:23, 77.72 examples/s]
preprocess datasets: 44%|โโโโโ | 8838/20000 [02:11<02:17, 81.18 examples/s]
preprocess datasets: 44%|โโโโโ | 8847/20000 [02:11<02:15, 82.25 examples/s]
preprocess datasets: 44%|โโโโโ | 8856/20000 [02:11<02:13, 83.28 examples/s]
preprocess datasets: 44%|โโโโโ | 8868/20000 [02:11<02:19, 79.64 examples/s]
preprocess datasets: 44%|โโโโโ | 8880/20000 [02:11<02:21, 78.47 examples/s]
preprocess datasets: 44%|โโโโโ | 8892/20000 [02:11<02:25, 76.26 examples/s]
preprocess datasets: 45%|โโโโโ | 8901/20000 [02:12<02:25, 76.42 examples/s]
preprocess datasets: 45%|โโโโโ | 8914/20000 [02:12<02:09, 85.63 examples/s]
preprocess datasets: 45%|โโโโโ | 8927/20000 [02:12<02:00, 92.16 examples/s]
preprocess datasets: 45%|โโโโโ | 8938/20000 [02:12<02:13, 82.95 examples/s]
preprocess datasets: 45%|โโโโโ | 8951/20000 [02:12<02:03, 89.54 examples/s]
preprocess datasets: 45%|โโโโโ | 8961/20000 [02:12<02:02, 90.29 examples/s]
preprocess datasets: 45%|โโโโโ | 8972/20000 [02:12<02:12, 82.94 examples/s]
preprocess datasets: 45%|โโโโโ | 8988/20000 [02:13<02:07, 86.08 examples/s]
preprocess datasets: 45%|โโโโโ | 8999/20000 [02:13<02:04, 88.34 examples/s]
preprocess datasets: 45%|โโโโโ | 9009/20000 [02:14<05:46, 31.75 examples/s]
preprocess datasets: 45%|โโโโโ | 9019/20000 [02:14<04:45, 38.44 examples/s]
preprocess datasets: 45%|โโโโโ | 9029/20000 [02:14<04:07, 44.28 examples/s]
preprocess datasets: 45%|โโโโโ | 9038/20000 [02:14<03:41, 49.59 examples/s]
preprocess datasets: 45%|โโโโโ | 9050/20000 [02:14<03:05, 59.12 examples/s]
preprocess datasets: 45%|โโโโโ | 9062/20000 [02:14<02:55, 62.50 examples/s]
preprocess datasets: 45%|โโโโโ | 9071/20000 [02:14<03:36, 50.58 examples/s]
preprocess datasets: 45%|โโโโโ | 9083/20000 [02:15<02:56, 61.91 examples/s]
preprocess datasets: 45%|โโโโโ | 9095/20000 [02:15<06:12, 29.29 examples/s]
preprocess datasets: 46%|โโโโโ | 9104/20000 [02:16<05:14, 34.70 examples/s]
preprocess datasets: 46%|โโโโโ | 9113/20000 [02:16<04:28, 40.49 examples/s]
preprocess datasets: 46%|โโโโโ | 9121/20000 [02:16<04:02, 44.87 examples/s]
preprocess datasets: 46%|โโโโโ | 9134/20000 [02:16<03:06, 58.14 examples/s]
preprocess datasets: 46%|โโโโโ | 9145/20000 [02:16<02:46, 65.34 examples/s]
preprocess datasets: 46%|โโโโโ | 9159/20000 [02:16<02:14, 80.51 examples/s]
preprocess datasets: 46%|โโโโโ | 9173/20000 [02:16<02:13, 81.38 examples/s]
preprocess datasets: 46%|โโโโโ | 9183/20000 [02:16<02:12, 81.45 examples/s]
preprocess datasets: 46%|โโโโโ | 9195/20000 [02:17<02:04, 86.60 examples/s]
preprocess datasets: 46%|โโโโโ | 9209/20000 [02:17<02:16, 78.81 examples/s]
preprocess datasets: 46%|โโโโโ | 9224/20000 [02:17<01:56, 92.43 examples/s]
preprocess datasets: 46%|โโโโโ | 9237/20000 [02:17<02:03, 87.12 examples/s]
preprocess datasets: 46%|โโโโโ | 9248/20000 [02:17<02:00, 89.07 examples/s]
preprocess datasets: 46%|โโโโโ | 9265/20000 [02:17<01:55, 92.90 examples/s]
preprocess datasets: 46%|โโโโโ | 9277/20000 [02:17<01:56, 92.23 examples/s]
preprocess datasets: 46%|โโโโโ | 9289/20000 [02:18<02:06, 84.51 examples/s]
preprocess datasets: 46%|โโโโโ | 9299/20000 [02:18<02:09, 82.48 examples/s]
preprocess datasets: 47%|โโโโโ | 9308/20000 [02:18<02:08, 83.26 examples/s]
preprocess datasets: 47%|โโโโโ | 9321/20000 [02:18<02:02, 87.04 examples/s]
preprocess datasets: 47%|โโโโโ | 9330/20000 [02:18<02:06, 84.47 examples/s]
preprocess datasets: 47%|โโโโโ | 9339/20000 [02:18<02:08, 83.02 examples/s]
preprocess datasets: 47%|โโโโโ | 9353/20000 [02:18<01:55, 92.58 examples/s]
preprocess datasets: 47%|โโโโโ | 9364/20000 [02:18<01:55, 91.75 examples/s]
preprocess datasets: 47%|โโโโโ | 9375/20000 [02:19<02:08, 82.64 examples/s]
preprocess datasets: 47%|โโโโโ | 9388/20000 [02:19<02:00, 87.94 examples/s]
preprocess datasets: 47%|โโโโโ | 9400/20000 [02:19<01:55, 92.15 examples/s]
preprocess datasets: 47%|โโโโโ | 9411/20000 [02:19<01:51, 94.64 examples/s]
preprocess datasets: 47%|โโโโโ | 9422/20000 [02:19<02:07, 83.29 examples/s]
preprocess datasets: 47%|โโโโโ | 9435/20000 [02:19<01:53, 93.46 examples/s]
preprocess datasets: 47%|โโโโโ | 9449/20000 [02:19<01:55, 91.54 examples/s]
preprocess datasets: 47%|โโโโโ | 9459/20000 [02:20<02:02, 86.14 examples/s]
preprocess datasets: 47%|โโโโโ | 9472/20000 [02:20<02:06, 83.13 examples/s]
preprocess datasets: 47%|โโโโโ | 9482/20000 [02:20<02:03, 85.19 examples/s]
preprocess datasets: 47%|โโโโโ | 9492/20000 [02:20<02:01, 86.59 examples/s]
preprocess datasets: 48%|โโโโโ | 9503/20000 [02:20<01:59, 88.03 examples/s]
preprocess datasets: 48%|โโโโโ | 9517/20000 [02:20<02:00, 86.89 examples/s]
preprocess datasets: 48%|โโโโโ | 9529/20000 [02:20<01:53, 92.34 examples/s]
preprocess datasets: 48%|โโโโโ | 9540/20000 [02:20<01:55, 90.94 examples/s]
preprocess datasets: 48%|โโโโโ | 9552/20000 [02:21<02:08, 81.35 examples/s]
preprocess datasets: 48%|โโโโโ | 9563/20000 [02:21<02:04, 83.70 examples/s]
preprocess datasets: 48%|โโโโโ | 9573/20000 [02:21<02:05, 82.83 examples/s]
preprocess datasets: 48%|โโโโโ | 9583/20000 [02:21<02:05, 82.84 examples/s]
preprocess datasets: 48%|โโโโโ | 9598/20000 [02:21<02:02, 84.65 examples/s]
preprocess datasets: 48%|โโโโโ | 9608/20000 [02:21<02:02, 84.65 examples/s]
preprocess datasets: 48%|โโโโโ | 9622/20000 [02:21<01:48, 95.23 examples/s]
preprocess datasets: 48%|โโโโโ | 9635/20000 [02:22<02:00, 86.35 examples/s]
preprocess datasets: 48%|โโโโโ | 9649/20000 [02:22<01:45, 98.13 examples/s]
preprocess datasets: 48%|โโโโโ | 9662/20000 [02:22<01:56, 88.60 examples/s]
preprocess datasets: 48%|โโโโโ | 9673/20000 [02:22<01:57, 88.22 examples/s]
preprocess datasets: 48%|โโโโโ | 9686/20000 [02:22<01:58, 86.92 examples/s]
preprocess datasets: 48%|โโโโโ | 9696/20000 [02:22<02:11, 78.21 examples/s]
preprocess datasets: 49%|โโโโโ | 9705/20000 [02:23<02:25, 70.88 examples/s]
preprocess datasets: 49%|โโโโโ | 9714/20000 [02:23<02:19, 73.91 examples/s]
preprocess datasets: 49%|โโโโโ | 9722/20000 [02:23<02:23, 71.86 examples/s]
preprocess datasets: 49%|โโโโโ | 9735/20000 [02:23<02:02, 84.00 examples/s]
preprocess datasets: 49%|โโโโโ | 9745/20000 [02:23<02:01, 84.27 examples/s]
preprocess datasets: 49%|โโโโโ | 9759/20000 [02:23<02:01, 84.11 examples/s]
preprocess datasets: 49%|โโโโโ | 9772/20000 [02:23<02:30, 68.05 examples/s]
preprocess datasets: 49%|โโโโโ | 9782/20000 [02:24<02:32, 66.99 examples/s]
preprocess datasets: 49%|โโโโโ | 9795/20000 [02:24<02:10, 78.12 examples/s]
preprocess datasets: 49%|โโโโโ | 9805/20000 [02:24<02:14, 76.04 examples/s]
preprocess datasets: 49%|โโโโโ | 9818/20000 [02:24<01:59, 84.89 examples/s]
preprocess datasets: 49%|โโโโโ | 9828/20000 [02:24<01:57, 86.23 examples/s]
preprocess datasets: 49%|โโโโโ | 9839/20000 [02:24<01:56, 87.40 examples/s]
preprocess datasets: 49%|โโโโโ | 9849/20000 [02:24<01:58, 85.75 examples/s]
preprocess datasets: 49%|โโโโโ | 9863/20000 [02:24<01:43, 97.69 examples/s]
preprocess datasets: 49%|โโโโโ | 9876/20000 [02:25<01:40, 100.76 examples/s]
preprocess datasets: 49%|โโโโโ | 9890/20000 [02:25<01:47, 93.96 examples/s]
preprocess datasets: 50%|โโโโโ | 9902/20000 [02:25<01:45, 95.61 examples/s]
preprocess datasets: 50%|โโโโโ | 9914/20000 [02:25<01:57, 86.14 examples/s]
preprocess datasets: 50%|โโโโโ | 9923/20000 [02:25<01:56, 86.27 examples/s]
preprocess datasets: 50%|โโโโโ | 9932/20000 [02:25<02:04, 80.91 examples/s]
preprocess datasets: 50%|โโโโโ | 9943/20000 [02:25<01:55, 86.72 examples/s]
preprocess datasets: 50%|โโโโโ | 9955/20000 [02:25<01:51, 90.25 examples/s]
preprocess datasets: 50%|โโโโโ | 9970/20000 [02:26<01:51, 90.27 examples/s]
preprocess datasets: 50%|โโโโโ | 9984/20000 [02:26<01:55, 86.89 examples/s]
preprocess datasets: 50%|โโโโโ | 9999/20000 [02:26<01:46, 94.32 examples/s]
preprocess datasets: 50%|โโโโโ | 10009/20000 [02:27<05:13, 31.92 examples/s]
preprocess datasets: 50%|โโโโโ | 10021/20000 [02:27<04:07, 40.28 examples/s]
preprocess datasets: 50%|โโโโโ | 10033/20000 [02:27<03:24, 48.74 examples/s]
preprocess datasets: 50%|โโโโโ | 10042/20000 [02:27<03:06, 53.27 examples/s]
preprocess datasets: 50%|โโโโโ | 10053/20000 [02:27<02:45, 59.97 examples/s]
preprocess datasets: 50%|โโโโโ | 10065/20000 [02:28<02:39, 62.42 examples/s]
preprocess datasets: 50%|โโโโโ | 10073/20000 [02:28<02:32, 65.12 examples/s]
preprocess datasets: 50%|โโโโโ | 10084/20000 [02:28<02:18, 71.73 examples/s]
preprocess datasets: 50%|โโโโโ | 10094/20000 [02:28<02:45, 59.79 examples/s]
preprocess datasets: 51%|โโโโโ | 10103/20000 [02:28<02:34, 63.96 examples/s]
preprocess datasets: 51%|โโโโโ | 10115/20000 [02:28<02:15, 73.21 examples/s]
preprocess datasets: 51%|โโโโโ | 10124/20000 [02:28<02:08, 76.93 examples/s]
preprocess datasets: 51%|โโโโโ | 10136/20000 [02:28<01:57, 84.16 examples/s]
preprocess datasets: 51%|โโโโโ | 10145/20000 [02:29<01:59, 82.72 examples/s]
preprocess datasets: 51%|โโโโโ | 10155/20000 [02:29<02:00, 81.69 examples/s]
preprocess datasets: 51%|โโโโโ | 10166/20000 [02:29<01:55, 85.09 examples/s]
preprocess datasets: 51%|โโโโโ | 10177/20000 [02:29<01:51, 87.77 examples/s]
preprocess datasets: 51%|โโโโโ | 10190/20000 [02:29<01:41, 96.55 examples/s]
preprocess datasets: 51%|โโโโโ | 10201/20000 [02:29<01:44, 93.54 examples/s]
preprocess datasets: 51%|โโโโโ | 10212/20000 [02:29<01:41, 96.79 examples/s]
preprocess datasets: 51%|โโโโโ | 10222/20000 [02:29<01:40, 96.94 examples/s]
preprocess datasets: 51%|โโโโโ | 10232/20000 [02:29<01:43, 94.77 examples/s]
preprocess datasets: 51%|โโโโโ | 10242/20000 [02:30<01:45, 92.44 examples/s]
preprocess datasets: 51%|โโโโโโ | 10252/20000 [02:30<01:44, 92.90 examples/s]
preprocess datasets: 51%|โโโโโโ | 10263/20000 [02:30<01:45, 92.67 examples/s]
preprocess datasets: 51%|โโโโโโ | 10277/20000 [02:30<01:55, 84.54 examples/s]
preprocess datasets: 51%|โโโโโโ | 10288/20000 [02:30<02:03, 78.80 examples/s]
preprocess datasets: 51%|โโโโโโ | 10298/20000 [02:30<02:00, 80.28 examples/s]
preprocess datasets: 52%|โโโโโโ | 10308/20000 [02:30<01:59, 81.09 examples/s]
preprocess datasets: 52%|โโโโโโ | 10321/20000 [02:31<01:48, 88.96 examples/s]
preprocess datasets: 52%|โโโโโโ | 10333/20000 [02:31<01:53, 85.31 examples/s]
preprocess datasets: 52%|โโโโโโ | 10342/20000 [02:31<01:57, 82.44 examples/s]
preprocess datasets: 52%|โโโโโโ | 10351/20000 [02:31<01:59, 80.54 examples/s]
preprocess datasets: 52%|โโโโโโ | 10363/20000 [02:31<01:49, 87.76 examples/s]
preprocess datasets: 52%|โโโโโโ | 10373/20000 [02:31<01:49, 88.01 examples/s]
preprocess datasets: 52%|โโโโโโ | 10382/20000 [02:31<01:53, 84.89 examples/s]
preprocess datasets: 52%|โโโโโโ | 10395/20000 [02:31<02:05, 76.61 examples/s]
preprocess datasets: 52%|โโโโโโ | 10403/20000 [02:32<02:07, 75.45 examples/s]
preprocess datasets: 52%|โโโโโโ | 10412/20000 [02:32<02:07, 75.12 examples/s]
preprocess datasets: 52%|โโโโโโ | 10423/20000 [02:32<01:57, 81.44 examples/s]
preprocess datasets: 52%|โโโโโโ | 10436/20000 [02:32<01:58, 80.80 examples/s]
preprocess datasets: 52%|โโโโโโ | 10445/20000 [02:32<01:59, 79.91 examples/s]
preprocess datasets: 52%|โโโโโโ | 10454/20000 [02:32<01:56, 81.88 examples/s]
preprocess datasets: 52%|โโโโโโ | 10469/20000 [02:32<01:39, 95.45 examples/s]
preprocess datasets: 52%|โโโโโโ | 10479/20000 [02:32<01:44, 91.12 examples/s]
preprocess datasets: 52%|โโโโโโ | 10490/20000 [02:33<01:54, 82.87 examples/s]
preprocess datasets: 52%|โโโโโโ | 10500/20000 [02:33<01:56, 81.49 examples/s]
preprocess datasets: 53%|โโโโโโ | 10511/20000 [02:33<01:50, 85.76 examples/s]
preprocess datasets: 53%|โโโโโโ | 10523/20000 [02:33<01:48, 87.31 examples/s]
preprocess datasets: 53%|โโโโโโ | 10536/20000 [02:33<01:41, 92.80 examples/s]
preprocess datasets: 53%|โโโโโโ | 10549/20000 [02:33<01:50, 85.16 examples/s]
preprocess datasets: 53%|โโโโโโ | 10560/20000 [02:33<01:49, 86.46 examples/s]
preprocess datasets: 53%|โโโโโโ | 10574/20000 [02:33<01:39, 94.35 examples/s]
preprocess datasets: 53%|โโโโโโ | 10586/20000 [02:34<01:54, 82.12 examples/s]
preprocess datasets: 53%|โโโโโโ | 10599/20000 [02:34<01:58, 79.10 examples/s]
preprocess datasets: 53%|โโโโโโ | 10612/20000 [02:34<01:51, 84.21 examples/s]
preprocess datasets: 53%|โโโโโโ | 10622/20000 [02:34<01:48, 86.55 examples/s]
preprocess datasets: 53%|โโโโโโ | 10632/20000 [02:34<01:47, 86.87 examples/s]
preprocess datasets: 53%|โโโโโโ | 10642/20000 [02:34<01:49, 85.41 examples/s]
preprocess datasets: 53%|โโโโโโ | 10655/20000 [02:34<01:41, 92.47 examples/s]
preprocess datasets: 53%|โโโโโโ | 10665/20000 [02:35<01:56, 79.86 examples/s]
preprocess datasets: 53%|โโโโโโ | 10675/20000 [02:35<02:02, 76.42 examples/s]
preprocess datasets: 53%|โโโโโโ | 10685/20000 [02:35<02:09, 71.96 examples/s]
preprocess datasets: 53%|โโโโโโ | 10694/20000 [02:35<02:08, 72.66 examples/s]
preprocess datasets: 54%|โโโโโโ | 10704/20000 [02:35<02:03, 75.48 examples/s]
preprocess datasets: 54%|โโโโโโ | 10713/20000 [02:35<02:01, 76.32 examples/s]
preprocess datasets: 54%|โโโโโโ | 10726/20000 [02:35<01:46, 86.80 examples/s]
preprocess datasets: 54%|โโโโโโ | 10737/20000 [02:36<01:46, 86.93 examples/s]
preprocess datasets: 54%|โโโโโโ | 10746/20000 [02:36<01:49, 84.75 examples/s]
preprocess datasets: 54%|โโโโโโ | 10758/20000 [02:36<01:43, 88.88 examples/s]
preprocess datasets: 54%|โโโโโโ | 10769/20000 [02:36<01:40, 92.23 examples/s]
preprocess datasets: 54%|โโโโโโ | 10783/20000 [02:36<01:44, 88.41 examples/s]
preprocess datasets: 54%|โโโโโโ | 10795/20000 [02:36<01:52, 81.61 examples/s]
preprocess datasets: 54%|โโโโโโ | 10804/20000 [02:36<01:53, 81.08 examples/s]
preprocess datasets: 54%|โโโโโโ | 10815/20000 [02:36<01:46, 85.89 examples/s]
preprocess datasets: 54%|โโโโโโ | 10826/20000 [02:37<01:44, 88.00 examples/s]
preprocess datasets: 54%|โโโโโโ | 10836/20000 [02:37<01:43, 88.42 examples/s]
preprocess datasets: 54%|โโโโโโ | 10848/20000 [02:37<01:39, 92.09 examples/s]
preprocess datasets: 54%|โโโโโโ | 10858/20000 [02:37<01:39, 91.82 examples/s]
preprocess datasets: 54%|โโโโโโ | 10872/20000 [02:37<01:47, 84.79 examples/s]
preprocess datasets: 54%|โโโโโโ | 10881/20000 [02:37<02:05, 72.61 examples/s]
preprocess datasets: 54%|โโโโโโ | 10889/20000 [02:37<02:03, 73.95 examples/s]
preprocess datasets: 55%|โโโโโโ | 10900/20000 [02:37<01:54, 79.65 examples/s]
preprocess datasets: 55%|โโโโโโ | 10909/20000 [02:38<02:06, 72.14 examples/s]
preprocess datasets: 55%|โโโโโโ | 10922/20000 [02:38<01:50, 81.97 examples/s]
preprocess datasets: 55%|โโโโโโ | 10934/20000 [02:38<01:41, 89.68 examples/s]
preprocess datasets: 55%|โโโโโโ | 10946/20000 [02:38<01:36, 93.45 examples/s]
preprocess datasets: 55%|โโโโโโ | 10960/20000 [02:38<01:29, 100.46 examples/s]
preprocess datasets: 55%|โโโโโโ | 10974/20000 [02:38<01:22, 109.86 examples/s]
preprocess datasets: 55%|โโโโโโ | 10990/20000 [02:38<01:28, 102.35 examples/s]
preprocess datasets: 55%|โโโโโโ | 11005/20000 [02:39<04:06, 36.47 examples/s]
preprocess datasets: 55%|โโโโโโ | 11015/20000 [02:39<03:31, 42.57 examples/s]
preprocess datasets: 55%|โโโโโโ | 11026/20000 [02:40<02:58, 50.23 examples/s]
preprocess datasets: 55%|โโโโโโ | 11035/20000 [02:40<02:43, 54.98 examples/s]
preprocess datasets: 55%|โโโโโโ | 11046/20000 [02:40<02:22, 62.92 examples/s]
preprocess datasets: 55%|โโโโโโ | 11056/20000 [02:40<02:11, 67.83 examples/s]
preprocess datasets: 55%|โโโโโโ | 11071/20000 [02:40<01:58, 75.58 examples/s]
preprocess datasets: 55%|โโโโโโ | 11080/20000 [02:40<01:57, 75.90 examples/s]
preprocess datasets: 55%|โโโโโโ | 11091/20000 [02:40<01:48, 81.90 examples/s]
preprocess datasets: 56%|โโโโโโ | 11103/20000 [02:40<01:52, 78.99 examples/s]
preprocess datasets: 56%|โโโโโโ | 11117/20000 [02:41<01:39, 89.21 examples/s]
preprocess datasets: 56%|โโโโโโ | 11130/20000 [02:41<01:43, 86.05 examples/s]
preprocess datasets: 56%|โโโโโโ | 11143/20000 [02:41<01:45, 84.01 examples/s]
preprocess datasets: 56%|โโโโโโ | 11155/20000 [02:41<01:54, 77.23 examples/s]
preprocess datasets: 56%|โโโโโโ | 11166/20000 [02:41<01:47, 82.46 examples/s]
preprocess datasets: 56%|โโโโโโ | 11176/20000 [02:41<01:46, 82.99 examples/s]
preprocess datasets: 56%|โโโโโโ | 11186/20000 [02:42<02:02, 71.98 examples/s]
preprocess datasets: 56%|โโโโโโ | 11203/20000 [02:42<01:37, 90.12 examples/s]
preprocess datasets: 56%|โโโโโโ | 11214/20000 [02:42<01:50, 79.80 examples/s]
preprocess datasets: 56%|โโโโโโ | 11223/20000 [02:42<01:48, 80.56 examples/s]
preprocess datasets: 56%|โโโโโโ | 11232/20000 [02:42<01:49, 79.80 examples/s]
preprocess datasets: 56%|โโโโโโ | 11241/20000 [02:42<01:50, 79.33 examples/s]
preprocess datasets: 56%|โโโโโโ | 11252/20000 [02:42<01:48, 80.53 examples/s]
preprocess datasets: 56%|โโโโโโ | 11261/20000 [02:42<01:49, 80.12 examples/s]
preprocess datasets: 56%|โโโโโโ | 11273/20000 [02:43<01:39, 87.97 examples/s]
preprocess datasets: 56%|โโโโโโ | 11283/20000 [02:43<01:41, 85.92 examples/s]
preprocess datasets: 56%|โโโโโโ | 11294/20000 [02:43<01:35, 90.86 examples/s]
preprocess datasets: 57%|โโโโโโ | 11311/20000 [02:43<01:22, 105.87 examples/s]
preprocess datasets: 57%|โโโโโโ | 11325/20000 [02:43<01:32, 93.84 examples/s]
preprocess datasets: 57%|โโโโโโ | 11339/20000 [02:43<01:37, 88.99 examples/s]
preprocess datasets: 57%|โโโโโโ | 11349/20000 [02:43<01:38, 88.25 examples/s]
preprocess datasets: 57%|โโโโโโ | 11365/20000 [02:44<01:38, 87.89 examples/s]
preprocess datasets: 57%|โโโโโโ | 11374/20000 [02:44<01:41, 85.14 examples/s]
preprocess datasets: 57%|โโโโโโ | 11386/20000 [02:44<01:38, 87.87 examples/s]
preprocess datasets: 57%|โโโโโโ | 11398/20000 [02:44<01:33, 91.79 examples/s]
preprocess datasets: 57%|โโโโโโ | 11409/20000 [02:44<01:36, 89.13 examples/s]
preprocess datasets: 57%|โโโโโโ | 11418/20000 [02:44<01:43, 82.73 examples/s]
preprocess datasets: 57%|โโโโโโ | 11429/20000 [02:44<01:39, 86.46 examples/s]
preprocess datasets: 57%|โโโโโโ | 11441/20000 [02:44<01:34, 90.56 examples/s]
preprocess datasets: 57%|โโโโโโ | 11453/20000 [02:45<01:51, 76.68 examples/s]
preprocess datasets: 57%|โโโโโโ | 11463/20000 [02:45<01:57, 72.40 examples/s]
preprocess datasets: 57%|โโโโโโ | 11473/20000 [02:45<01:53, 75.15 examples/s]
preprocess datasets: 57%|โโโโโโ | 11487/20000 [02:45<01:35, 89.54 examples/s]
preprocess datasets: 58%|โโโโโโ | 11503/20000 [02:45<01:22, 103.07 examples/s]
preprocess datasets: 58%|โโโโโโ | 11515/20000 [02:45<01:25, 99.81 examples/s]
preprocess datasets: 58%|โโโโโโ | 11532/20000 [02:45<01:25, 98.67 examples/s]
preprocess datasets: 58%|โโโโโโ | 11544/20000 [02:45<01:23, 101.58 examples/s]
preprocess datasets: 58%|โโโโโโ | 11557/20000 [02:46<01:21, 104.04 examples/s]
preprocess datasets: 58%|โโโโโโ | 11573/20000 [02:46<01:38, 85.68 examples/s]
preprocess datasets: 58%|โโโโโโ | 11583/20000 [02:46<01:38, 85.35 examples/s]
preprocess datasets: 58%|โโโโโโ | 11596/20000 [02:46<01:45, 79.94 examples/s]
preprocess datasets: 58%|โโโโโโ | 11608/20000 [02:46<01:36, 86.61 examples/s]
preprocess datasets: 58%|โโโโโโ | 11618/20000 [02:46<01:36, 86.55 examples/s]
preprocess datasets: 58%|โโโโโโ | 11628/20000 [02:47<01:41, 82.84 examples/s]
preprocess datasets: 58%|โโโโโโ | 11637/20000 [02:47<01:44, 80.17 examples/s]
preprocess datasets: 58%|โโโโโโ | 11648/20000 [02:47<01:39, 83.56 examples/s]
preprocess datasets: 58%|โโโโโโ | 11659/20000 [02:47<01:36, 86.48 examples/s]
preprocess datasets: 58%|โโโโโโ | 11670/20000 [02:47<01:50, 75.42 examples/s]
preprocess datasets: 58%|โโโโโโ | 11678/20000 [02:47<01:50, 75.02 examples/s]
preprocess datasets: 58%|โโโโโโ | 11689/20000 [02:47<01:54, 72.52 examples/s]
preprocess datasets: 59%|โโโโโโ | 11705/20000 [02:47<01:32, 89.59 examples/s]
preprocess datasets: 59%|โโโโโโ | 11717/20000 [02:48<01:28, 93.68 examples/s]
preprocess datasets: 59%|โโโโโโ | 11728/20000 [02:48<01:27, 94.18 examples/s]
preprocess datasets: 59%|โโโโโโ | 11739/20000 [02:48<01:27, 94.90 examples/s]
preprocess datasets: 59%|โโโโโโ | 11749/20000 [02:48<01:30, 91.63 examples/s]
preprocess datasets: 59%|โโโโโโ | 11762/20000 [02:48<01:24, 97.43 examples/s]
preprocess datasets: 59%|โโโโโโ | 11779/20000 [02:48<01:27, 93.99 examples/s]
preprocess datasets: 59%|โโโโโโ | 11792/20000 [02:48<01:33, 87.56 examples/s]
preprocess datasets: 59%|โโโโโโ | 11805/20000 [02:49<01:37, 83.82 examples/s]
preprocess datasets: 59%|โโโโโโ | 11818/20000 [02:49<01:29, 90.94 examples/s]
preprocess datasets: 59%|โโโโโโ | 11829/20000 [02:49<01:27, 93.09 examples/s]
preprocess datasets: 59%|โโโโโโ | 11842/20000 [02:49<01:23, 97.73 examples/s]
preprocess datasets: 59%|โโโโโโ | 11858/20000 [02:49<01:14, 109.28 examples/s]
preprocess datasets: 59%|โโโโโโ | 11872/20000 [02:49<01:09, 116.15 examples/s]
preprocess datasets: 59%|โโโโโโ | 11887/20000 [02:49<01:15, 107.79 examples/s]
preprocess datasets: 60%|โโโโโโ | 11901/20000 [02:49<01:22, 98.36 examples/s]
preprocess datasets: 60%|โโโโโโ | 11917/20000 [02:50<01:17, 104.94 examples/s]
preprocess datasets: 60%|โโโโโโ | 11931/20000 [02:50<01:21, 99.08 examples/s]
preprocess datasets: 60%|โโโโโโ | 11942/20000 [02:50<01:31, 87.80 examples/s]
preprocess datasets: 60%|โโโโโโ | 11953/20000 [02:50<01:30, 88.57 examples/s]
preprocess datasets: 60%|โโโโโโ | 11967/20000 [02:50<01:44, 76.56 examples/s]
preprocess datasets: 60%|โโโโโโ | 11981/20000 [02:50<01:34, 84.79 examples/s]
preprocess datasets: 60%|โโโโโโ | 11993/20000 [02:51<01:32, 86.85 examples/s]
preprocess datasets: 60%|โโโโโโ | 12005/20000 [02:51<03:55, 33.97 examples/s]
preprocess datasets: 60%|โโโโโโ | 12014/20000 [02:52<03:23, 39.30 examples/s]
preprocess datasets: 60%|โโโโโโ | 12025/20000 [02:52<02:46, 47.86 examples/s]
preprocess datasets: 60%|โโโโโโ | 12037/20000 [02:52<02:16, 58.37 examples/s]
preprocess datasets: 60%|โโโโโโ | 12051/20000 [02:52<02:01, 65.57 examples/s]
preprocess datasets: 60%|โโโโโโ | 12065/20000 [02:52<01:54, 69.07 examples/s]
preprocess datasets: 60%|โโโโโโ | 12074/20000 [02:52<01:51, 70.97 examples/s]
preprocess datasets: 60%|โโโโโโ | 12088/20000 [02:52<01:38, 80.68 examples/s]
preprocess datasets: 61%|โโโโโโ | 12103/20000 [02:52<01:27, 89.81 examples/s]
preprocess datasets: 61%|โโโโโโ | 12114/20000 [02:53<01:24, 93.02 examples/s]
preprocess datasets: 61%|โโโโโโ | 12126/20000 [02:53<01:22, 95.00 examples/s]
preprocess datasets: 61%|โโโโโโ | 12139/20000 [02:53<01:19, 98.72 examples/s]
preprocess datasets: 61%|โโโโโโ | 12154/20000 [02:53<01:24, 92.58 examples/s]
preprocess datasets: 61%|โโโโโโ | 12167/20000 [02:53<01:31, 85.50 examples/s]
preprocess datasets: 61%|โโโโโโ | 12179/20000 [02:53<01:27, 89.34 examples/s]
preprocess datasets: 61%|โโโโโโ | 12192/20000 [02:53<01:33, 83.38 examples/s]
preprocess datasets: 61%|โโโโโโ | 12203/20000 [02:54<01:29, 86.68 examples/s]
preprocess datasets: 61%|โโโโโโ | 12214/20000 [02:54<01:27, 89.03 examples/s]
preprocess datasets: 61%|โโโโโโ | 12227/20000 [02:54<01:31, 85.29 examples/s]
preprocess datasets: 61%|โโโโโโ | 12242/20000 [02:54<01:19, 98.16 examples/s]
preprocess datasets: 61%|โโโโโโโ | 12257/20000 [02:54<01:22, 93.33 examples/s]
preprocess datasets: 61%|โโโโโโโ | 12273/20000 [02:54<01:22, 93.58 examples/s]
preprocess datasets: 61%|โโโโโโโ | 12284/20000 [02:54<01:22, 93.91 examples/s]
preprocess datasets: 61%|โโโโโโโ | 12295/20000 [02:55<01:47, 71.62 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12309/20000 [02:55<01:32, 83.18 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12319/20000 [02:55<01:31, 83.66 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12330/20000 [02:55<01:31, 83.74 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12341/20000 [02:55<01:27, 87.64 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12352/20000 [02:55<01:24, 90.98 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12364/20000 [02:55<01:35, 80.11 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12375/20000 [02:56<01:31, 83.52 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12390/20000 [02:56<01:27, 86.83 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12402/20000 [02:56<01:21, 92.82 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12417/20000 [02:56<01:26, 88.09 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12432/20000 [02:56<01:18, 96.67 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12443/20000 [02:56<01:20, 94.00 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12455/20000 [02:56<01:15, 99.90 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12473/20000 [02:57<01:03, 117.74 examples/s]
preprocess datasets: 62%|โโโโโโโ | 12490/20000 [02:57<01:16, 98.51 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12501/20000 [02:57<01:22, 90.55 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12512/20000 [02:57<01:29, 83.25 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12522/20000 [02:57<01:33, 80.22 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12535/20000 [02:57<01:25, 86.90 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12548/20000 [02:57<01:21, 91.45 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12558/20000 [02:58<01:23, 88.80 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12571/20000 [02:58<01:17, 95.87 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12582/20000 [02:58<01:32, 80.05 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12591/20000 [02:58<01:30, 81.51 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12601/20000 [02:58<01:26, 85.16 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12610/20000 [02:58<01:27, 84.04 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12625/20000 [02:58<01:18, 94.53 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12638/20000 [02:58<01:23, 87.96 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12655/20000 [02:59<01:12, 101.63 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12670/20000 [02:59<01:06, 110.35 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12684/20000 [02:59<01:02, 116.71 examples/s]
preprocess datasets: 63%|โโโโโโโ | 12698/20000 [02:59<01:01, 118.73 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12711/20000 [02:59<01:11, 101.95 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12729/20000 [02:59<01:10, 103.56 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12743/20000 [02:59<01:15, 96.06 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12754/20000 [03:00<01:17, 93.70 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12766/20000 [03:00<01:14, 97.40 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12779/20000 [03:00<01:20, 89.59 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12789/20000 [03:00<01:21, 88.56 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12800/20000 [03:00<01:23, 85.94 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12811/20000 [03:00<01:32, 77.42 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12825/20000 [03:00<01:22, 87.06 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12837/20000 [03:01<01:32, 77.50 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12847/20000 [03:01<01:29, 80.32 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12859/20000 [03:01<01:25, 83.11 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12872/20000 [03:01<01:17, 91.93 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12885/20000 [03:01<01:14, 95.46 examples/s]
preprocess datasets: 64%|โโโโโโโ | 12895/20000 [03:01<01:17, 91.80 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12907/20000 [03:01<01:24, 84.33 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12918/20000 [03:02<01:24, 83.74 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12927/20000 [03:02<01:26, 81.99 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12938/20000 [03:02<01:22, 85.10 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12950/20000 [03:02<01:27, 80.92 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12964/20000 [03:02<01:32, 76.23 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12974/20000 [03:02<01:28, 79.70 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12988/20000 [03:02<01:30, 77.27 examples/s]
preprocess datasets: 65%|โโโโโโโ | 12999/20000 [03:03<01:24, 83.16 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13010/20000 [03:03<03:42, 31.38 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13020/20000 [03:04<03:08, 37.00 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13032/20000 [03:04<02:31, 45.89 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13043/20000 [03:04<02:07, 54.55 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13054/20000 [03:04<01:50, 62.68 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13065/20000 [03:04<01:48, 64.17 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13077/20000 [03:04<01:36, 72.05 examples/s]
preprocess datasets: 65%|โโโโโโโ | 13092/20000 [03:04<01:21, 85.10 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13102/20000 [03:04<01:21, 84.88 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13112/20000 [03:05<01:21, 84.36 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13122/20000 [03:05<01:19, 86.11 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13134/20000 [03:05<01:14, 92.31 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13150/20000 [03:05<01:14, 92.42 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13161/20000 [03:05<01:13, 93.31 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13171/20000 [03:05<01:16, 89.59 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13183/20000 [03:05<01:22, 82.95 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13196/20000 [03:05<01:13, 92.40 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13207/20000 [03:06<01:10, 96.05 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13222/20000 [03:06<01:10, 95.49 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13236/20000 [03:06<01:05, 103.58 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13249/20000 [03:06<01:04, 104.27 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13262/20000 [03:06<01:12, 92.46 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13276/20000 [03:06<01:06, 101.12 examples/s]
preprocess datasets: 66%|โโโโโโโ | 13287/20000 [03:06<01:07, 99.13 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13303/20000 [03:06<01:03, 106.03 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13316/20000 [03:07<01:01, 107.99 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13329/20000 [03:07<01:03, 104.85 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13343/20000 [03:07<01:09, 96.46 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13360/20000 [03:07<00:59, 112.18 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13373/20000 [03:07<00:57, 116.11 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13387/20000 [03:07<00:56, 116.25 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13404/20000 [03:07<00:59, 111.08 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13418/20000 [03:08<01:12, 90.63 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13429/20000 [03:08<01:10, 92.97 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13440/20000 [03:08<01:09, 94.97 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13453/20000 [03:08<01:14, 87.56 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13468/20000 [03:08<01:13, 88.48 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13482/20000 [03:08<01:07, 95.91 examples/s]
preprocess datasets: 67%|โโโโโโโ | 13492/20000 [03:08<01:08, 95.35 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13506/20000 [03:09<01:02, 103.97 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13520/20000 [03:09<00:58, 109.90 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13536/20000 [03:09<00:56, 113.89 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13551/20000 [03:09<00:59, 107.79 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13565/20000 [03:09<00:58, 109.45 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13579/20000 [03:09<00:56, 114.30 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13596/20000 [03:09<01:02, 103.24 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13608/20000 [03:09<01:00, 105.21 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13621/20000 [03:10<01:10, 90.88 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13633/20000 [03:10<01:07, 94.72 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13649/20000 [03:10<01:00, 104.40 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13661/20000 [03:10<00:59, 105.82 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13672/20000 [03:10<01:04, 98.20 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13685/20000 [03:10<01:11, 88.36 examples/s]
preprocess datasets: 68%|โโโโโโโ | 13696/20000 [03:10<01:10, 89.27 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13707/20000 [03:11<01:10, 89.82 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13720/20000 [03:11<01:05, 95.47 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13731/20000 [03:11<01:05, 96.17 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13742/20000 [03:11<01:19, 79.16 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13754/20000 [03:11<01:11, 87.85 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13768/20000 [03:11<01:20, 77.76 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13778/20000 [03:11<01:17, 80.77 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13790/20000 [03:12<01:15, 81.94 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13805/20000 [03:12<01:15, 82.49 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13815/20000 [03:12<01:19, 78.12 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13830/20000 [03:12<01:09, 88.50 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13842/20000 [03:12<01:07, 91.24 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13857/20000 [03:12<01:03, 97.39 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13870/20000 [03:12<01:00, 101.20 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13881/20000 [03:13<01:03, 95.89 examples/s]
preprocess datasets: 69%|โโโโโโโ | 13894/20000 [03:13<01:01, 99.63 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13910/20000 [03:13<01:02, 96.92 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13927/20000 [03:13<01:03, 96.06 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13938/20000 [03:13<01:02, 96.76 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13949/20000 [03:13<01:02, 97.01 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13960/20000 [03:13<01:00, 99.13 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13974/20000 [03:13<00:59, 101.86 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13985/20000 [03:14<00:59, 101.53 examples/s]
preprocess datasets: 70%|โโโโโโโ | 13998/20000 [03:14<00:56, 106.49 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14009/20000 [03:15<02:50, 35.13 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14027/20000 [03:15<01:58, 50.49 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14038/20000 [03:15<01:48, 55.19 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14050/20000 [03:15<01:35, 62.38 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14068/20000 [03:15<01:15, 78.47 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14080/20000 [03:15<01:16, 76.89 examples/s]
preprocess datasets: 70%|โโโโโโโ | 14093/20000 [03:15<01:10, 84.22 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14109/20000 [03:15<01:07, 87.18 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14120/20000 [03:16<01:05, 90.36 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14132/20000 [03:16<01:02, 93.16 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14147/20000 [03:16<00:56, 103.94 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14162/20000 [03:16<00:59, 98.08 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14173/20000 [03:16<00:58, 99.47 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14189/20000 [03:16<00:58, 98.67 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14205/20000 [03:16<00:53, 108.17 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14221/20000 [03:17<00:48, 119.54 examples/s]
preprocess datasets: 71%|โโโโโโโ | 14237/20000 [03:17<01:10, 81.61 examples/s]
preprocess datasets: 71%|โโโโโโโโ | 14250/20000 [03:17<01:16, 75.49 examples/s]
preprocess datasets: 71%|โโโโโโโโ | 14259/20000 [03:17<01:15, 76.43 examples/s]
preprocess datasets: 71%|โโโโโโโโ | 14270/20000 [03:17<01:11, 80.15 examples/s]
preprocess datasets: 71%|โโโโโโโโ | 14281/20000 [03:17<01:08, 83.09 examples/s]
preprocess datasets: 71%|โโโโโโโโ | 14292/20000 [03:18<01:05, 87.56 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14305/20000 [03:18<00:58, 96.78 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14320/20000 [03:18<00:53, 105.61 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14332/20000 [03:18<00:53, 105.28 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14345/20000 [03:18<00:51, 109.70 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14364/20000 [03:18<00:57, 98.19 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14378/20000 [03:18<01:01, 91.70 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14390/20000 [03:19<01:07, 83.43 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14402/20000 [03:19<01:12, 77.48 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14417/20000 [03:19<01:03, 87.67 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14428/20000 [03:19<01:15, 73.68 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14440/20000 [03:19<01:10, 79.42 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14452/20000 [03:19<01:07, 82.41 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14464/20000 [03:19<01:04, 85.21 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14474/20000 [03:20<01:04, 85.37 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14485/20000 [03:20<01:02, 88.43 examples/s]
preprocess datasets: 72%|โโโโโโโโ | 14498/20000 [03:20<00:56, 96.95 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14510/20000 [03:20<00:56, 96.76 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14525/20000 [03:20<00:58, 94.36 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14535/20000 [03:20<01:02, 87.86 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14547/20000 [03:20<00:57, 94.12 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14558/20000 [03:20<00:56, 96.64 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14570/20000 [03:21<00:53, 101.08 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14582/20000 [03:21<00:52, 102.48 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14594/20000 [03:21<00:52, 102.01 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14607/20000 [03:21<00:52, 103.07 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14620/20000 [03:21<00:52, 102.12 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14636/20000 [03:21<00:48, 111.58 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14650/20000 [03:21<00:47, 112.02 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14662/20000 [03:21<00:49, 108.74 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14673/20000 [03:21<00:50, 104.92 examples/s]
preprocess datasets: 73%|โโโโโโโโ | 14686/20000 [03:22<00:59, 89.74 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14700/20000 [03:22<00:54, 96.95 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14718/20000 [03:22<00:52, 100.37 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14731/20000 [03:22<00:59, 88.15 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14746/20000 [03:22<00:58, 89.81 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14761/20000 [03:22<00:58, 90.12 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14773/20000 [03:23<00:55, 94.78 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14785/20000 [03:23<01:01, 85.32 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14801/20000 [03:23<00:59, 87.47 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14814/20000 [03:23<00:55, 94.19 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14825/20000 [03:23<00:54, 94.47 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14838/20000 [03:23<00:53, 95.74 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14853/20000 [03:23<00:50, 102.85 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14870/20000 [03:24<00:54, 94.10 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14881/20000 [03:24<00:54, 93.68 examples/s]
preprocess datasets: 74%|โโโโโโโโ | 14891/20000 [03:24<00:54, 93.62 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14904/20000 [03:24<00:56, 90.21 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14921/20000 [03:24<00:48, 104.44 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14936/20000 [03:24<00:44, 113.01 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14949/20000 [03:24<00:44, 112.84 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14961/20000 [03:24<00:44, 112.46 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14977/20000 [03:25<00:47, 105.16 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14988/20000 [03:25<00:47, 105.92 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 14999/20000 [03:25<00:50, 99.79 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15011/20000 [03:26<02:24, 34.54 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15025/20000 [03:26<01:52, 44.23 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15034/20000 [03:26<01:40, 49.63 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15049/20000 [03:26<01:18, 63.36 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15059/20000 [03:26<01:12, 68.62 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15072/20000 [03:26<01:05, 74.96 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15082/20000 [03:27<01:04, 75.96 examples/s]
preprocess datasets: 75%|โโโโโโโโ | 15094/20000 [03:27<00:59, 82.38 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15105/20000 [03:27<01:03, 77.12 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15116/20000 [03:27<00:59, 82.36 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15126/20000 [03:27<00:58, 83.73 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15135/20000 [03:27<00:58, 83.83 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15151/20000 [03:27<00:47, 102.59 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15167/20000 [03:27<00:47, 101.07 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15181/20000 [03:28<00:51, 94.24 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15196/20000 [03:28<00:51, 92.68 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15210/20000 [03:28<00:47, 99.98 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15225/20000 [03:28<00:51, 92.42 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15235/20000 [03:28<00:52, 91.01 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15251/20000 [03:28<00:51, 91.98 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15264/20000 [03:28<00:47, 99.38 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15280/20000 [03:29<00:47, 98.81 examples/s]
preprocess datasets: 76%|โโโโโโโโ | 15293/20000 [03:29<00:45, 103.61 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15307/20000 [03:29<00:44, 106.45 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15320/20000 [03:29<00:42, 111.33 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15333/20000 [03:29<00:50, 92.60 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15344/20000 [03:29<00:49, 93.23 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15357/20000 [03:29<00:52, 88.25 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15369/20000 [03:30<00:55, 83.28 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15378/20000 [03:30<00:55, 83.43 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15390/20000 [03:30<00:53, 86.48 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15404/20000 [03:30<00:47, 96.68 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15414/20000 [03:30<00:52, 86.59 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15426/20000 [03:30<00:50, 90.74 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15438/20000 [03:30<00:47, 95.63 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15451/20000 [03:30<00:44, 101.33 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15463/20000 [03:31<00:49, 90.82 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15473/20000 [03:31<00:53, 85.13 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15484/20000 [03:31<00:52, 86.36 examples/s]
preprocess datasets: 77%|โโโโโโโโ | 15499/20000 [03:31<00:44, 100.04 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15512/20000 [03:31<00:49, 90.39 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15526/20000 [03:31<00:52, 85.99 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15543/20000 [03:31<00:44, 99.12 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15556/20000 [03:32<00:43, 102.91 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15567/20000 [03:32<00:43, 102.47 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15582/20000 [03:32<00:44, 99.47 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15594/20000 [03:32<00:51, 85.87 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15605/20000 [03:32<00:49, 88.13 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15615/20000 [03:32<00:50, 87.63 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15630/20000 [03:32<00:50, 86.88 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15642/20000 [03:33<00:47, 92.13 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15653/20000 [03:33<00:46, 93.54 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15666/20000 [03:33<00:50, 86.00 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15676/20000 [03:33<00:50, 85.13 examples/s]
preprocess datasets: 78%|โโโโโโโโ | 15692/20000 [03:33<00:42, 100.59 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15707/20000 [03:33<00:40, 105.24 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15719/20000 [03:33<00:42, 101.88 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15732/20000 [03:33<00:41, 103.56 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15743/20000 [03:34<00:43, 97.28 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15757/20000 [03:34<00:40, 105.64 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15773/20000 [03:34<00:42, 99.87 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15785/20000 [03:34<00:40, 103.40 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15804/20000 [03:34<00:39, 106.77 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15823/20000 [03:34<00:38, 108.18 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15835/20000 [03:34<00:39, 105.98 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15852/20000 [03:35<00:39, 104.02 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15863/20000 [03:35<00:40, 102.00 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15877/20000 [03:35<00:44, 93.12 examples/s]
preprocess datasets: 79%|โโโโโโโโ | 15889/20000 [03:35<00:48, 84.34 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15901/20000 [03:35<00:45, 90.35 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15915/20000 [03:35<00:42, 96.86 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15930/20000 [03:35<00:43, 94.15 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15940/20000 [03:36<00:43, 93.25 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15950/20000 [03:36<00:43, 92.92 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15963/20000 [03:36<00:40, 100.78 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15976/20000 [03:36<00:44, 90.22 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 15988/20000 [03:36<00:43, 92.48 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16000/20000 [03:37<02:26, 27.30 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16011/20000 [03:37<01:58, 33.78 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16022/20000 [03:37<01:36, 41.26 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16035/20000 [03:38<01:15, 52.81 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16051/20000 [03:38<01:03, 62.46 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16062/20000 [03:38<00:57, 68.86 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16075/20000 [03:38<00:51, 76.72 examples/s]
preprocess datasets: 80%|โโโโโโโโ | 16089/20000 [03:38<00:45, 85.87 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16102/20000 [03:38<00:43, 90.61 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16114/20000 [03:38<00:42, 91.34 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16130/20000 [03:39<00:41, 92.59 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16140/20000 [03:39<00:41, 94.07 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16153/20000 [03:39<00:43, 87.97 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16165/20000 [03:39<00:41, 91.84 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16175/20000 [03:39<00:41, 91.33 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16186/20000 [03:39<00:40, 94.89 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16203/20000 [03:39<00:36, 104.46 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16216/20000 [03:39<00:39, 96.56 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16230/20000 [03:40<00:37, 101.57 examples/s]
preprocess datasets: 81%|โโโโโโโโ | 16244/20000 [03:40<00:40, 92.98 examples/s]
preprocess datasets: 81%|โโโโโโโโโ | 16262/20000 [03:40<00:37, 100.09 examples/s]
preprocess datasets: 81%|โโโโโโโโโ | 16274/20000 [03:40<00:36, 102.87 examples/s]
preprocess datasets: 81%|โโโโโโโโโ | 16289/20000 [03:41<02:16, 27.12 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16304/20000 [03:42<01:43, 35.88 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16315/20000 [03:42<01:27, 42.12 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16328/20000 [03:42<01:11, 51.34 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16342/20000 [03:42<00:58, 62.23 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16355/20000 [03:42<00:57, 63.50 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16372/20000 [03:42<00:49, 72.57 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16382/20000 [03:42<00:48, 74.84 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16397/20000 [03:43<00:40, 88.19 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16410/20000 [03:43<00:39, 90.83 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16425/20000 [03:43<00:42, 84.55 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16435/20000 [03:43<00:41, 85.03 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16446/20000 [03:43<00:45, 77.94 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16455/20000 [03:43<00:45, 78.66 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16470/20000 [03:43<00:39, 89.43 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16481/20000 [03:43<00:37, 93.15 examples/s]
preprocess datasets: 82%|โโโโโโโโโ | 16495/20000 [03:44<00:34, 101.12 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16508/20000 [03:44<00:34, 102.58 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16525/20000 [03:44<00:33, 105.22 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16541/20000 [03:44<00:33, 104.67 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16554/20000 [03:44<00:31, 108.96 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16571/20000 [03:44<00:33, 102.52 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16584/20000 [03:44<00:32, 105.21 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16597/20000 [03:45<00:32, 105.92 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16608/20000 [03:45<00:33, 101.96 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16622/20000 [03:45<00:35, 94.10 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16634/20000 [03:45<00:42, 78.41 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16646/20000 [03:45<00:40, 83.30 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16655/20000 [03:45<00:43, 76.64 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16667/20000 [03:45<00:39, 84.44 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16677/20000 [03:46<00:42, 77.54 examples/s]
preprocess datasets: 83%|โโโโโโโโโ | 16694/20000 [03:46<00:34, 94.59 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16708/20000 [03:46<00:36, 90.44 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16720/20000 [03:46<00:40, 81.25 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16731/20000 [03:46<00:38, 85.60 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16747/20000 [03:46<00:36, 89.87 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16763/20000 [03:47<00:36, 89.55 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16774/20000 [03:47<00:37, 86.55 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16786/20000 [03:47<00:35, 90.51 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16797/20000 [03:47<00:38, 82.93 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16810/20000 [03:47<00:35, 90.73 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16820/20000 [03:47<00:34, 91.83 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16834/20000 [03:47<00:32, 97.81 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16849/20000 [03:47<00:29, 108.54 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16864/20000 [03:48<00:33, 93.51 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16877/20000 [03:48<00:31, 97.87 examples/s]
preprocess datasets: 84%|โโโโโโโโโ | 16891/20000 [03:48<00:33, 93.26 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16906/20000 [03:48<00:30, 100.26 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16920/20000 [03:48<00:34, 90.54 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16934/20000 [03:48<00:32, 95.22 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16951/20000 [03:48<00:27, 110.83 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16964/20000 [03:49<00:31, 95.58 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16975/20000 [03:49<00:31, 95.91 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 16988/20000 [03:49<00:50, 59.31 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17000/20000 [03:50<01:35, 31.43 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17008/20000 [03:50<01:23, 35.62 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17019/20000 [03:50<01:07, 44.02 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17032/20000 [03:50<00:55, 53.95 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17041/20000 [03:50<00:50, 58.58 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17050/20000 [03:51<00:46, 63.45 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17059/20000 [03:51<00:46, 63.89 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17071/20000 [03:51<00:39, 74.81 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17080/20000 [03:51<00:37, 77.52 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17089/20000 [03:51<00:37, 77.41 examples/s]
preprocess datasets: 85%|โโโโโโโโโ | 17099/20000 [03:51<00:35, 82.05 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17112/20000 [03:51<00:32, 90.06 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17124/20000 [03:51<00:35, 81.31 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17134/20000 [03:52<00:34, 83.57 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17144/20000 [03:52<00:34, 83.90 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17158/20000 [03:52<00:32, 87.48 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17170/20000 [03:52<00:35, 80.35 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17180/20000 [03:52<00:35, 78.52 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17192/20000 [03:52<00:32, 85.24 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17201/20000 [03:52<00:32, 85.74 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17211/20000 [03:52<00:31, 87.70 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17221/20000 [03:53<00:31, 88.29 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17230/20000 [03:53<00:32, 84.05 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17241/20000 [03:53<00:31, 87.74 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17250/20000 [03:53<00:31, 88.00 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17264/20000 [03:53<00:28, 95.03 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17276/20000 [03:53<00:28, 97.02 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17287/20000 [03:53<00:28, 96.27 examples/s]
preprocess datasets: 86%|โโโโโโโโโ | 17299/20000 [03:53<00:27, 97.55 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17315/20000 [03:54<00:24, 108.15 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17326/20000 [03:54<00:29, 89.88 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17337/20000 [03:54<00:29, 91.18 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17349/20000 [03:54<00:31, 83.70 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17360/20000 [03:54<00:30, 85.33 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17369/20000 [03:54<00:31, 83.73 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17381/20000 [03:54<00:29, 88.46 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17390/20000 [03:54<00:30, 85.73 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17401/20000 [03:55<00:29, 87.77 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17411/20000 [03:55<00:28, 90.03 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17426/20000 [03:55<00:29, 87.41 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17436/20000 [03:55<00:34, 75.04 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17449/20000 [03:55<00:30, 83.20 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17459/20000 [03:55<00:30, 82.93 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17471/20000 [03:55<00:28, 87.34 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17482/20000 [03:56<00:31, 79.01 examples/s]
preprocess datasets: 87%|โโโโโโโโโ | 17496/20000 [03:56<00:28, 88.52 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17506/20000 [03:56<00:28, 86.37 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17516/20000 [03:56<00:28, 86.84 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17528/20000 [03:56<00:31, 79.05 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17540/20000 [03:56<00:28, 84.95 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17551/20000 [03:56<00:28, 87.17 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17563/20000 [03:56<00:25, 94.99 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17575/20000 [03:57<00:24, 98.48 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17590/20000 [03:57<00:22, 109.53 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17602/20000 [03:57<00:22, 104.83 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17616/20000 [03:57<00:21, 113.31 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17629/20000 [03:57<00:24, 98.29 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17644/20000 [03:57<00:24, 94.82 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17656/20000 [03:57<00:28, 80.97 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17668/20000 [03:58<00:27, 85.40 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17678/20000 [03:58<00:26, 87.67 examples/s]
preprocess datasets: 88%|โโโโโโโโโ | 17688/20000 [03:58<00:30, 76.42 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17701/20000 [03:58<00:26, 85.66 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17715/20000 [03:58<00:27, 84.14 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17725/20000 [03:58<00:27, 81.76 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17740/20000 [03:58<00:24, 91.08 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17750/20000 [03:59<00:24, 91.07 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17762/20000 [03:59<00:24, 90.72 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17773/20000 [03:59<00:24, 92.61 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17786/20000 [03:59<00:22, 98.10 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17799/20000 [03:59<00:24, 90.72 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17814/20000 [03:59<00:24, 88.03 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17828/20000 [03:59<00:23, 93.51 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17840/20000 [04:00<00:25, 84.28 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17851/20000 [04:00<00:24, 86.07 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17866/20000 [04:00<00:24, 87.56 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17877/20000 [04:00<00:23, 90.31 examples/s]
preprocess datasets: 89%|โโโโโโโโโ | 17887/20000 [04:00<00:23, 89.80 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17900/20000 [04:00<00:22, 94.45 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17916/20000 [04:00<00:21, 97.49 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17927/20000 [04:00<00:21, 95.58 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17941/20000 [04:01<00:20, 99.05 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17951/20000 [04:01<00:21, 96.50 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17962/20000 [04:01<00:21, 95.26 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17977/20000 [04:01<00:21, 92.03 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17987/20000 [04:01<00:22, 87.54 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 17998/20000 [04:01<00:22, 87.23 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18011/20000 [04:02<01:03, 31.56 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18026/20000 [04:02<00:46, 42.66 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18039/20000 [04:02<00:39, 49.12 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18053/20000 [04:03<00:33, 58.77 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18065/20000 [04:03<00:28, 66.83 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18078/20000 [04:03<00:25, 76.40 examples/s]
preprocess datasets: 90%|โโโโโโโโโ | 18092/20000 [04:03<00:23, 82.92 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18102/20000 [04:03<00:22, 84.69 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18117/20000 [04:03<00:21, 87.54 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18132/20000 [04:03<00:18, 100.39 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18147/20000 [04:03<00:17, 107.11 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18164/20000 [04:04<00:17, 103.89 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18177/20000 [04:04<00:19, 93.95 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18189/20000 [04:04<00:18, 96.16 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18201/20000 [04:04<00:28, 63.83 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18212/20000 [04:04<00:25, 69.87 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18222/20000 [04:05<00:24, 72.46 examples/s]
preprocess datasets: 91%|โโโโโโโโโ | 18232/20000 [04:05<00:24, 73.39 examples/s]
preprocess datasets: 91%|โโโโโโโโโโ| 18251/20000 [04:05<00:20, 85.73 examples/s]
preprocess datasets: 91%|โโโโโโโโโโ| 18261/20000 [04:05<00:20, 85.87 examples/s]
preprocess datasets: 91%|โโโโโโโโโโ| 18272/20000 [04:05<00:19, 87.91 examples/s]
preprocess datasets: 91%|โโโโโโโโโโ| 18284/20000 [04:05<00:21, 81.14 examples/s]
preprocess datasets: 91%|โโโโโโโโโโ| 18296/20000 [04:05<00:19, 87.30 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18307/20000 [04:05<00:18, 90.67 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18317/20000 [04:06<00:18, 89.47 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18331/20000 [04:06<00:17, 94.65 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18342/20000 [04:06<00:17, 96.08 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18356/20000 [04:06<00:19, 85.46 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18365/20000 [04:06<00:19, 82.81 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18374/20000 [04:06<00:19, 81.31 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18384/20000 [04:06<00:19, 82.05 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18398/20000 [04:07<00:17, 91.91 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18409/20000 [04:07<00:17, 88.47 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18421/20000 [04:07<00:16, 92.90 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18436/20000 [04:07<00:14, 107.30 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18450/20000 [04:07<00:16, 93.20 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18463/20000 [04:07<00:15, 97.64 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18480/20000 [04:07<00:15, 95.85 examples/s]
preprocess datasets: 92%|โโโโโโโโโโ| 18494/20000 [04:07<00:14, 102.27 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18506/20000 [04:08<00:15, 93.60 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18519/20000 [04:08<00:17, 85.29 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18528/20000 [04:08<00:17, 85.57 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18538/20000 [04:08<00:17, 84.81 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18551/20000 [04:08<00:15, 93.68 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18562/20000 [04:08<00:18, 79.01 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18572/20000 [04:08<00:17, 79.64 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18584/20000 [04:09<00:18, 77.66 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18595/20000 [04:09<00:16, 84.94 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18607/20000 [04:09<00:17, 77.57 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18620/20000 [04:09<00:18, 76.57 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18631/20000 [04:09<00:18, 74.62 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18646/20000 [04:09<00:19, 70.06 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18654/20000 [04:10<00:19, 69.65 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18665/20000 [04:10<00:17, 75.97 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18675/20000 [04:10<00:16, 79.73 examples/s]
preprocess datasets: 93%|โโโโโโโโโโ| 18687/20000 [04:10<00:15, 86.46 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18701/20000 [04:10<00:15, 85.29 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18717/20000 [04:10<00:12, 101.31 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18728/20000 [04:10<00:14, 87.66 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18743/20000 [04:11<00:14, 86.48 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18757/20000 [04:11<00:14, 83.20 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18769/20000 [04:11<00:14, 87.20 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18783/20000 [04:11<00:14, 85.58 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18793/20000 [04:11<00:14, 84.12 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18805/20000 [04:11<00:13, 91.14 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18818/20000 [04:11<00:13, 87.65 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18834/20000 [04:12<00:13, 87.02 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18846/20000 [04:12<00:12, 91.89 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18856/20000 [04:12<00:12, 92.60 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18870/20000 [04:12<00:11, 99.90 examples/s]
preprocess datasets: 94%|โโโโโโโโโโ| 18886/20000 [04:12<00:09, 112.75 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18901/20000 [04:12<00:10, 104.64 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18913/20000 [04:12<00:10, 106.76 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18924/20000 [04:12<00:10, 105.31 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18936/20000 [04:13<00:10, 102.26 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18950/20000 [04:13<00:09, 106.61 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18966/20000 [04:13<00:09, 103.84 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18978/20000 [04:13<00:11, 88.20 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 18993/20000 [04:13<00:10, 95.83 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19004/20000 [04:14<00:29, 33.66 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19014/20000 [04:14<00:24, 40.09 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19025/20000 [04:14<00:21, 44.65 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19035/20000 [04:15<00:19, 50.17 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19045/20000 [04:15<00:17, 55.64 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19054/20000 [04:15<00:16, 56.37 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19063/20000 [04:15<00:17, 54.90 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19074/20000 [04:15<00:14, 62.57 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19084/20000 [04:15<00:13, 68.18 examples/s]
preprocess datasets: 95%|โโโโโโโโโโ| 19095/20000 [04:15<00:11, 75.68 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19106/20000 [04:15<00:11, 81.18 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19115/20000 [04:16<00:11, 80.01 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19126/20000 [04:16<00:10, 84.93 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19137/20000 [04:16<00:10, 83.25 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19146/20000 [04:16<00:10, 83.01 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19158/20000 [04:16<00:09, 87.02 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19169/20000 [04:16<00:10, 77.86 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19180/20000 [04:16<00:10, 78.30 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19192/20000 [04:16<00:09, 86.36 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19202/20000 [04:17<00:09, 83.16 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19216/20000 [04:17<00:08, 94.77 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19227/20000 [04:17<00:08, 86.87 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19240/20000 [04:17<00:08, 84.69 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19252/20000 [04:17<00:09, 77.73 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19265/20000 [04:17<00:09, 79.22 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19282/20000 [04:17<00:07, 96.26 examples/s]
preprocess datasets: 96%|โโโโโโโโโโ| 19296/20000 [04:18<00:06, 100.91 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19308/20000 [04:18<00:07, 98.46 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19324/20000 [04:18<00:07, 95.30 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19336/20000 [04:18<00:07, 88.23 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19346/20000 [04:18<00:07, 88.66 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19358/20000 [04:18<00:06, 93.54 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19369/20000 [04:18<00:06, 95.13 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19383/20000 [04:19<00:06, 88.69 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19394/20000 [04:19<00:06, 90.16 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19405/20000 [04:19<00:06, 91.40 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19417/20000 [04:19<00:07, 80.52 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19427/20000 [04:19<00:07, 79.30 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19437/20000 [04:19<00:06, 80.46 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19446/20000 [04:19<00:06, 79.28 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19456/20000 [04:19<00:06, 82.08 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19468/20000 [04:20<00:05, 91.18 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19478/20000 [04:20<00:05, 87.52 examples/s]
preprocess datasets: 97%|โโโโโโโโโโ| 19490/20000 [04:20<00:05, 89.60 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19501/20000 [04:20<00:05, 89.28 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19514/20000 [04:20<00:05, 96.72 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19530/20000 [04:20<00:04, 110.61 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19544/20000 [04:20<00:05, 88.98 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19554/20000 [04:21<00:05, 86.40 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19568/20000 [04:21<00:04, 98.63 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19581/20000 [04:21<00:04, 103.86 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19593/20000 [04:21<00:04, 90.76 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19603/20000 [04:21<00:04, 89.92 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19616/20000 [04:21<00:04, 81.22 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19629/20000 [04:21<00:04, 89.57 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19645/20000 [04:22<00:03, 91.98 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19655/20000 [04:22<00:03, 91.37 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19666/20000 [04:22<00:03, 92.91 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19677/20000 [04:22<00:03, 93.97 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19689/20000 [04:22<00:03, 96.33 examples/s]
preprocess datasets: 98%|โโโโโโโโโโ| 19699/20000 [04:22<00:03, 95.24 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19710/20000 [04:22<00:03, 81.80 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19719/20000 [04:22<00:03, 79.35 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19732/20000 [04:22<00:03, 86.01 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19744/20000 [04:23<00:02, 89.15 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19756/20000 [04:23<00:02, 93.82 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19767/20000 [04:23<00:02, 91.96 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19777/20000 [04:23<00:02, 86.19 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19790/20000 [04:23<00:02, 81.56 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19806/20000 [04:23<00:02, 96.76 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19818/20000 [04:23<00:01, 99.14 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19834/20000 [04:24<00:01, 96.64 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19844/20000 [04:24<00:01, 96.89 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19855/20000 [04:24<00:01, 96.54 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19867/20000 [04:24<00:01, 99.52 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19879/20000 [04:24<00:01, 100.98 examples/s]
preprocess datasets: 99%|โโโโโโโโโโ| 19892/20000 [04:24<00:01, 87.71 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19905/20000 [04:24<00:01, 84.83 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19916/20000 [04:25<00:01, 74.45 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19929/20000 [04:25<00:00, 84.08 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19938/20000 [04:25<00:00, 84.55 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19951/20000 [04:25<00:00, 89.14 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19962/20000 [04:25<00:00, 87.11 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19975/20000 [04:25<00:00, 83.32 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19985/20000 [04:25<00:00, 86.26 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 19997/20000 [04:25<00:00, 90.74 examples/s]
preprocess datasets: 100%|โโโโโโโโโโ| 20000/20000 [04:26<00:00, 74.97 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
0%| | 0/1000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
0%| | 1/1000 [00:14<3:53:08, 14.00s/it]
0%| | 1/1000 [00:14<3:53:08, 14.00s/it]
0%| | 2/1000 [00:18<2:17:45, 8.28s/it]
0%| | 2/1000 [00:18<2:17:45, 8.28s/it]
0%| | 3/1000 [00:22<1:43:28, 6.23s/it]
0%| | 3/1000 [00:22<1:43:28, 6.23s/it]
0%| | 4/1000 [00:25<1:24:49, 5.11s/it]
0%| | 4/1000 [00:25<1:24:49, 5.11s/it]
0%| | 5/1000 [00:28<1:12:50, 4.39s/it]
0%| | 5/1000 [00:28<1:12:50, 4.39s/it]
1%| | 6/1000 [00:31<1:04:28, 3.89s/it]
1%| | 6/1000 [00:31<1:04:28, 3.89s/it]
1%| | 7/1000 [00:34<58:00, 3.51s/it]
1%| | 7/1000 [00:34<58:00, 3.51s/it]
1%| | 8/1000 [00:36<53:42, 3.25s/it]
1%| | 8/1000 [00:36<53:42, 3.25s/it]
1%| | 9/1000 [00:39<49:51, 3.02s/it]
1%| | 9/1000 [00:39<49:51, 3.02s/it]
1%| | 10/1000 [00:41<46:21, 2.81s/it]
1%| | 10/1000 [00:41<46:21, 2.81s/it]
1%| | 11/1000 [00:44<43:54, 2.66s/it]
1%| | 11/1000 [00:44<43:54, 2.66s/it]
1%| | 12/1000 [00:46<42:13, 2.56s/it]
1%| | 12/1000 [00:46<42:13, 2.56s/it]
1%|โ | 13/1000 [00:48<40:13, 2.45s/it]
1%|โ | 13/1000 [00:48<40:13, 2.45s/it]
1%|โ | 14/1000 [00:50<38:09, 2.32s/it]
1%|โ | 14/1000 [00:50<38:09, 2.32s/it]
2%|โ | 15/1000 [00:52<36:41, 2.24s/it]
2%|โ | 15/1000 [00:52<36:41, 2.24s/it]
2%|โ | 16/1000 [00:54<35:46, 2.18s/it]
2%|โ | 16/1000 [00:54<35:46, 2.18s/it]
2%|โ | 17/1000 [00:56<34:45, 2.12s/it]
2%|โ | 17/1000 [00:56<34:45, 2.12s/it]
2%|โ | 18/1000 [00:58<32:49, 2.01s/it]
2%|โ | 18/1000 [00:58<32:49, 2.01s/it]
2%|โ | 19/1000 [01:00<31:29, 1.93s/it]
2%|โ | 19/1000 [01:00<31:29, 1.93s/it]
2%|โ | 20/1000 [01:01<30:45, 1.88s/it]
2%|โ | 20/1000 [01:01<30:45, 1.88s/it]
2%|โ | 21/1000 [01:03<30:01, 1.84s/it]
2%|โ | 21/1000 [01:03<30:01, 1.84s/it]
2%|โ | 22/1000 [01:05<29:28, 1.81s/it]
2%|โ | 22/1000 [01:05<29:28, 1.81s/it]
2%|โ | 23/1000 [01:07<29:09, 1.79s/it]
2%|โ | 23/1000 [01:07<29:09, 1.79s/it]
2%|โ | 24/1000 [01:08<28:21, 1.74s/it]
2%|โ | 24/1000 [01:08<28:21, 1.74s/it]
2%|โ | 25/1000 [01:10<26:57, 1.66s/it]
2%|โ | 25/1000 [01:10<26:57, 1.66s/it]
3%|โ | 26/1000 [01:11<25:59, 1.60s/it]
3%|โ | 26/1000 [01:11<25:59, 1.60s/it]
3%|โ | 27/1000 [01:13<25:18, 1.56s/it]
3%|โ | 27/1000 [01:13<25:18, 1.56s/it]
3%|โ | 28/1000 [01:14<24:48, 1.53s/it]
3%|โ | 28/1000 [01:14<24:48, 1.53s/it]
3%|โ | 29/1000 [01:16<24:28, 1.51s/it]
3%|โ | 29/1000 [01:16<24:28, 1.51s/it]
3%|โ | 30/1000 [01:17<24:18, 1.50s/it]
3%|โ | 30/1000 [01:17<24:18, 1.50s/it]
3%|โ | 31/1000 [01:19<24:08, 1.49s/it]
3%|โ | 31/1000 [01:19<24:08, 1.49s/it]
3%|โ | 32/1000 [01:20<23:32, 1.46s/it]
3%|โ | 32/1000 [01:20<23:32, 1.46s/it]
3%|โ | 33/1000 [01:21<22:17, 1.38s/it]
3%|โ | 33/1000 [01:21<22:17, 1.38s/it]
3%|โ | 34/1000 [01:22<21:23, 1.33s/it]
3%|โ | 34/1000 [01:22<21:23, 1.33s/it]
4%|โ | 35/1000 [01:24<20:44, 1.29s/it]
4%|โ | 35/1000 [01:24<20:44, 1.29s/it]
4%|โ | 36/1000 [01:25<20:16, 1.26s/it]
4%|โ | 36/1000 [01:25<20:16, 1.26s/it]
4%|โ | 37/1000 [01:26<19:56, 1.24s/it]
4%|โ | 37/1000 [01:26<19:56, 1.24s/it]
4%|โ | 38/1000 [01:27<19:43, 1.23s/it]
4%|โ | 38/1000 [01:27<19:43, 1.23s/it]
4%|โ | 39/1000 [01:28<19:33, 1.22s/it]
4%|โ | 39/1000 [01:28<19:33, 1.22s/it]
4%|โ | 40/1000 [01:30<19:08, 1.20s/it]
4%|โ | 40/1000 [01:30<19:08, 1.20s/it]
4%|โ | 41/1000 [01:31<18:19, 1.15s/it]
4%|โ | 41/1000 [01:31<18:19, 1.15s/it]
4%|โ | 42/1000 [01:31<17:12, 1.08s/it]
4%|โ | 42/1000 [01:32<17:12, 1.08s/it]
4%|โ | 43/1000 [01:32<16:29, 1.03s/it]
4%|โ | 43/1000 [01:32<16:29, 1.03s/it]
4%|โ | 44/1000 [01:33<15:54, 1.00it/s]
4%|โ | 44/1000 [01:33<15:54, 1.00it/s]
4%|โ | 45/1000 [01:34<15:32, 1.02it/s]
4%|โ | 45/1000 [01:34<15:32, 1.02it/s]
5%|โ | 46/1000 [01:35<14:58, 1.06it/s]
5%|โ | 46/1000 [01:35<14:58, 1.06it/s]
5%|โ | 47/1000 [01:36<13:53, 1.14it/s]
5%|โ | 47/1000 [01:36<13:53, 1.14it/s]
5%|โ | 48/1000 [01:37<12:54, 1.23it/s]
5%|โ | 48/1000 [01:37<12:54, 1.23it/s]
5%|โ | 49/1000 [01:37<12:10, 1.30it/s]
5%|โ | 49/1000 [01:37<12:10, 1.30it/s]
5%|โ | 50/1000 [01:40<20:36, 1.30s/it]
5%|โ | 50/1000 [01:40<20:36, 1.30s/it]
5%|โ | 51/1000 [01:46<45:50, 2.90s/it]
5%|โ | 51/1000 [01:46<45:50, 2.90s/it]
5%|โ | 52/1000 [01:50<50:59, 3.23s/it]
5%|โ | 52/1000 [01:50<50:59, 3.23s/it]
5%|โ | 53/1000 [01:54<52:42, 3.34s/it]
5%|โ | 53/1000 [01:54<52:42, 3.34s/it]
5%|โ | 54/1000 [01:57<52:21, 3.32s/it]
5%|โ | 54/1000 [01:57<52:21, 3.32s/it]
6%|โ | 55/1000 [02:00<50:52, 3.23s/it]
6%|โ | 55/1000 [02:00<50:52, 3.23s/it]
6%|โ | 56/1000 [02:03<48:59, 3.11s/it]
6%|โ | 56/1000 [02:03<48:59, 3.11s/it]
6%|โ | 57/1000 [02:06<46:51, 2.98s/it]
6%|โ | 57/1000 [02:06<46:51, 2.98s/it]
6%|โ | 58/1000 [02:08<44:47, 2.85s/it]
6%|โ | 58/1000 [02:08<44:47, 2.85s/it]
6%|โ | 59/1000 [02:11<42:20, 2.70s/it]
6%|โ | 59/1000 [02:11<42:20, 2.70s/it]
6%|โ | 60/1000 [02:13<40:37, 2.59s/it]
6%|โ | 60/1000 [02:13<40:37, 2.59s/it]
6%|โ | 61/1000 [02:15<39:05, 2.50s/it]
6%|โ | 61/1000 [02:15<39:05, 2.50s/it]
6%|โ | 62/1000 [02:17<37:14, 2.38s/it]
6%|โ | 62/1000 [02:17<37:14, 2.38s/it]
6%|โ | 63/1000 [02:19<35:34, 2.28s/it]
6%|โ | 63/1000 [02:19<35:34, 2.28s/it]
6%|โ | 64/1000 [02:21<34:29, 2.21s/it]
6%|โ | 64/1000 [02:21<34:29, 2.21s/it]
6%|โ | 65/1000 [02:24<33:42, 2.16s/it]
6%|โ | 65/1000 [02:24<33:42, 2.16s/it]
7%|โ | 66/1000 [02:26<33:11, 2.13s/it]
7%|โ | 66/1000 [02:26<33:11, 2.13s/it]
7%|โ | 67/1000 [02:27<31:36, 2.03s/it]
7%|โ | 67/1000 [02:27<31:36, 2.03s/it]
7%|โ | 68/1000 [02:29<30:12, 1.94s/it]
7%|โ | 68/1000 [02:29<30:12, 1.94s/it]
7%|โ | 69/1000 [02:31<29:27, 1.90s/it]
7%|โ | 69/1000 [02:31<29:27, 1.90s/it]
7%|โ | 70/1000 [02:33<28:38, 1.85s/it]
7%|โ | 70/1000 [02:33<28:38, 1.85s/it]
7%|โ | 71/1000 [02:34<28:05, 1.81s/it]
7%|โ | 71/1000 [02:34<28:05, 1.81s/it]
7%|โ | 72/1000 [02:36<27:45, 1.79s/it]
7%|โ | 72/1000 [02:36<27:45, 1.79s/it]
7%|โ | 73/1000 [02:38<27:30, 1.78s/it]
7%|โ | 73/1000 [02:38<27:30, 1.78s/it]
7%|โ | 74/1000 [02:39<26:31, 1.72s/it]
7%|โ | 74/1000 [02:39<26:31, 1.72s/it]
8%|โ | 75/1000 [02:41<25:19, 1.64s/it]
8%|โ | 75/1000 [02:41<25:19, 1.64s/it]
8%|โ | 76/1000 [02:42<24:31, 1.59s/it]
8%|โ | 76/1000 [02:42<24:31, 1.59s/it]
8%|โ | 77/1000 [02:44<23:57, 1.56s/it]
8%|โ | 77/1000 [02:44<23:57, 1.56s/it]
8%|โ | 78/1000 [02:45<23:29, 1.53s/it]
8%|โ | 78/1000 [02:45<23:29, 1.53s/it]
8%|โ | 79/1000 [02:47<23:10, 1.51s/it]
8%|โ | 79/1000 [02:47<23:10, 1.51s/it]
8%|โ | 80/1000 [02:48<22:56, 1.50s/it]
8%|โ | 80/1000 [02:48<22:56, 1.50s/it]
8%|โ | 81/1000 [02:50<22:47, 1.49s/it]
8%|โ | 81/1000 [02:50<22:47, 1.49s/it]
8%|โ | 82/1000 [02:51<22:01, 1.44s/it]
8%|โ | 82/1000 [02:51<22:01, 1.44s/it]
8%|โ | 83/1000 [02:52<20:53, 1.37s/it]
8%|โ | 83/1000 [02:52<20:53, 1.37s/it]
8%|โ | 84/1000 [02:53<20:07, 1.32s/it]
8%|โ | 84/1000 [02:53<20:07, 1.32s/it]
8%|โ | 85/1000 [02:55<19:35, 1.28s/it]
8%|โ | 85/1000 [02:55<19:35, 1.28s/it]
9%|โ | 86/1000 [02:56<19:10, 1.26s/it]
9%|โ | 86/1000 [02:56<19:10, 1.26s/it]
9%|โ | 87/1000 [02:57<18:53, 1.24s/it]
9%|โ | 87/1000 [02:57<18:53, 1.24s/it]
9%|โ | 88/1000 [02:58<18:41, 1.23s/it]
9%|โ | 88/1000 [02:58<18:41, 1.23s/it]
9%|โ | 89/1000 [02:59<18:31, 1.22s/it]
9%|โ | 89/1000 [02:59<18:31, 1.22s/it]
9%|โ | 90/1000 [03:00<17:23, 1.15s/it]
9%|โ | 90/1000 [03:00<17:23, 1.15s/it]
9%|โ | 91/1000 [03:01<16:34, 1.09s/it]
9%|โ | 91/1000 [03:01<16:34, 1.09s/it]
9%|โ | 92/1000 [03:02<15:44, 1.04s/it]
9%|โ | 92/1000 [03:02<15:44, 1.04s/it]
9%|โ | 93/1000 [03:03<15:09, 1.00s/it]
9%|โ | 93/1000 [03:03<15:09, 1.00s/it]
9%|โ | 94/1000 [03:04<14:47, 1.02it/s]
9%|โ | 94/1000 [03:04<14:47, 1.02it/s]
10%|โ | 95/1000 [03:05<14:32, 1.04it/s]
10%|โ | 95/1000 [03:05<14:32, 1.04it/s]
10%|โ | 96/1000 [03:06<14:09, 1.06it/s]
10%|โ | 96/1000 [03:06<14:09, 1.06it/s]
10%|โ | 97/1000 [03:07<13:08, 1.15it/s]
10%|โ | 97/1000 [03:07<13:08, 1.15it/s]
10%|โ | 98/1000 [03:07<12:13, 1.23it/s]
10%|โ | 98/1000 [03:07<12:13, 1.23it/s]
10%|โ | 99/1000 [03:08<11:33, 1.30it/s]
10%|โ | 99/1000 [03:08<11:33, 1.30it/s]
10%|โ | 100/1000 [03:10<18:58, 1.27s/it]
10%|โ | 100/1000 [03:10<18:58, 1.27s/it]
10%|โ | 101/1000 [03:17<42:00, 2.80s/it]
10%|โ | 101/1000 [03:17<42:00, 2.80s/it]
10%|โ | 102/1000 [03:21<47:22, 3.17s/it]
10%|โ | 102/1000 [03:21<47:22, 3.17s/it]
10%|โ | 103/1000 [03:24<48:57, 3.28s/it]
10%|โ | 103/1000 [03:24<48:57, 3.28s/it]
10%|โ | 104/1000 [03:28<48:25, 3.24s/it]
10%|โ | 104/1000 [03:28<48:25, 3.24s/it]
10%|โ | 105/1000 [03:30<46:45, 3.13s/it]
10%|โ | 105/1000 [03:30<46:45, 3.13s/it]
11%|โ | 106/1000 [03:33<45:01, 3.02s/it]
11%|โ | 106/1000 [03:33<45:01, 3.02s/it]
11%|โ | 107/1000 [03:36<43:02, 2.89s/it]
11%|โ | 107/1000 [03:36<43:02, 2.89s/it]
11%|โ | 108/1000 [03:38<40:49, 2.75s/it]
11%|โ | 108/1000 [03:38<40:49, 2.75s/it]
11%|โ | 109/1000 [03:41<38:55, 2.62s/it]
11%|โ | 109/1000 [03:41<38:55, 2.62s/it]
11%|โ | 110/1000 [03:43<37:39, 2.54s/it]
11%|โ | 110/1000 [03:43<37:39, 2.54s/it]
11%|โ | 111/1000 [03:45<36:29, 2.46s/it]
11%|โ | 111/1000 [03:45<36:29, 2.46s/it]
11%|โ | 112/1000 [03:47<34:53, 2.36s/it]
11%|โ | 112/1000 [03:47<34:53, 2.36s/it]
11%|โโ | 113/1000 [03:49<33:34, 2.27s/it]
11%|โโ | 113/1000 [03:49<33:34, 2.27s/it]
11%|โโ | 114/1000 [03:51<32:36, 2.21s/it]
11%|โโ | 114/1000 [03:51<32:36, 2.21s/it]
12%|โโ | 115/1000 [03:53<31:49, 2.16s/it]
12%|โโ | 115/1000 [03:53<31:49, 2.16s/it]
12%|โโ | 116/1000 [03:55<31:17, 2.12s/it]
12%|โโ | 116/1000 [03:55<31:17, 2.12s/it]
12%|โโ | 117/1000 [03:57<30:04, 2.04s/it]
12%|โโ | 117/1000 [03:57<30:04, 2.04s/it]
12%|โโ | 118/1000 [03:59<28:40, 1.95s/it]
12%|โโ | 118/1000 [03:59<28:40, 1.95s/it]
12%|โโ | 119/1000 [04:01<27:41, 1.89s/it]
12%|โโ | 119/1000 [04:01<27:41, 1.89s/it]
12%|โโ | 120/1000 [04:03<27:13, 1.86s/it]
12%|โโ | 120/1000 [04:03<27:13, 1.86s/it]
12%|โโ | 121/1000 [04:04<26:42, 1.82s/it]
12%|โโ | 121/1000 [04:04<26:42, 1.82s/it]
12%|โโ | 122/1000 [04:06<26:17, 1.80s/it]
12%|โโ | 122/1000 [04:06<26:17, 1.80s/it]
12%|โโ | 123/1000 [04:08<25:58, 1.78s/it]
12%|โโ | 123/1000 [04:08<25:58, 1.78s/it]
12%|โโ | 124/1000 [04:09<25:20, 1.74s/it]
12%|โโ | 124/1000 [04:09<25:20, 1.74s/it]
12%|โโ | 125/1000 [04:11<24:11, 1.66s/it]
12%|โโ | 125/1000 [04:11<24:11, 1.66s/it]
13%|โโ | 126/1000 [04:12<23:24, 1.61s/it]
13%|โโ | 126/1000 [04:12<23:24, 1.61s/it]
13%|โโ | 127/1000 [04:14<22:46, 1.57s/it]
13%|โโ | 127/1000 [04:14<22:46, 1.57s/it]
13%|โโ | 128/1000 [04:15<22:23, 1.54s/it]
13%|โโ | 128/1000 [04:15<22:23, 1.54s/it]
13%|โโ | 129/1000 [04:17<22:11, 1.53s/it]
13%|โโ | 129/1000 [04:17<22:11, 1.53s/it]
13%|โโ | 130/1000 [04:18<21:55, 1.51s/it]
13%|โโ | 130/1000 [04:18<21:55, 1.51s/it]
13%|โโ | 131/1000 [04:20<21:43, 1.50s/it]
13%|โโ | 131/1000 [04:20<21:43, 1.50s/it]
13%|โโ | 132/1000 [04:21<21:33, 1.49s/it]
13%|โโ | 132/1000 [04:21<21:33, 1.49s/it]
13%|โโ | 133/1000 [04:23<20:55, 1.45s/it]
13%|โโ | 133/1000 [04:23<20:55, 1.45s/it]
13%|โโ | 134/1000 [04:24<19:51, 1.38s/it]
13%|โโ | 134/1000 [04:24<19:51, 1.38s/it]
14%|โโ | 135/1000 [04:25<19:04, 1.32s/it]
14%|โโ | 135/1000 [04:25<19:04, 1.32s/it]
14%|โโ | 136/1000 [04:26<18:32, 1.29s/it]
14%|โโ | 136/1000 [04:26<18:32, 1.29s/it]
14%|โโ | 137/1000 [04:27<18:09, 1.26s/it]
14%|โโ | 137/1000 [04:27<18:09, 1.26s/it]
14%|โโ | 138/1000 [04:29<17:54, 1.25s/it]
14%|โโ | 138/1000 [04:29<17:54, 1.25s/it]
14%|โโ | 139/1000 [04:30<17:45, 1.24s/it]
14%|โโ | 139/1000 [04:30<17:45, 1.24s/it]
14%|โโ | 140/1000 [04:31<17:38, 1.23s/it]
14%|โโ | 140/1000 [04:31<17:38, 1.23s/it]
14%|โโ | 141/1000 [04:32<17:04, 1.19s/it]
14%|โโ | 141/1000 [04:32<17:04, 1.19s/it]
14%|โโ | 142/1000 [04:33<15:54, 1.11s/it]
14%|โโ | 142/1000 [04:33<15:54, 1.11s/it]
14%|โโ | 143/1000 [04:34<15:05, 1.06s/it]
14%|โโ | 143/1000 [04:34<15:05, 1.06s/it]
14%|โโ | 144/1000 [04:35<14:29, 1.02s/it]
14%|โโ | 144/1000 [04:35<14:29, 1.02s/it]
14%|โโ | 145/1000 [04:36<14:04, 1.01it/s]
14%|โโ | 145/1000 [04:36<14:04, 1.01it/s]
15%|โโ | 146/1000 [04:37<13:47, 1.03it/s]
15%|โโ | 146/1000 [04:37<13:47, 1.03it/s]
15%|โโ | 147/1000 [04:38<12:58, 1.10it/s]
15%|โโ | 147/1000 [04:38<12:58, 1.10it/s]
15%|โโ | 148/1000 [04:38<11:54, 1.19it/s]
15%|โโ | 148/1000 [04:38<11:54, 1.19it/s]
15%|โโ | 149/1000 [04:39<11:10, 1.27it/s]
15%|โโ | 149/1000 [04:39<11:10, 1.27it/s]
15%|โโ | 150/1000 [04:41<18:23, 1.30s/it]
15%|โโ | 150/1000 [04:41<18:23, 1.30s/it]
15%|โโ | 151/1000 [04:48<41:28, 2.93s/it]
15%|โโ | 151/1000 [04:48<41:28, 2.93s/it]
15%|โโ | 152/1000 [04:52<46:39, 3.30s/it]
15%|โโ | 152/1000 [04:52<46:39, 3.30s/it]
15%|โโ | 153/1000 [04:56<47:58, 3.40s/it]
15%|โโ | 153/1000 [04:56<47:58, 3.40s/it]
15%|โโ | 154/1000 [04:59<47:42, 3.38s/it]
15%|โโ | 154/1000 [04:59<47:42, 3.38s/it]
16%|โโ | 155/1000 [05:02<46:17, 3.29s/it]
16%|โโ | 155/1000 [05:02<46:17, 3.29s/it]
16%|โโ | 156/1000 [05:05<44:33, 3.17s/it]
16%|โโ | 156/1000 [05:05<44:33, 3.17s/it]
16%|โโ | 157/1000 [05:08<42:31, 3.03s/it]
16%|โโ | 157/1000 [05:08<42:31, 3.03s/it]
16%|โโ | 158/1000 [05:10<40:33, 2.89s/it]
16%|โโ | 158/1000 [05:11<40:33, 2.89s/it]
16%|โโ | 159/1000 [05:13<38:14, 2.73s/it]
16%|โโ | 159/1000 [05:13<38:14, 2.73s/it]
16%|โโ | 160/1000 [05:15<36:40, 2.62s/it]
16%|โโ | 160/1000 [05:15<36:40, 2.62s/it]
16%|โโ | 161/1000 [05:18<35:38, 2.55s/it]
16%|โโ | 161/1000 [05:18<35:38, 2.55s/it]
16%|โโ | 162/1000 [05:20<33:42, 2.41s/it]
16%|โโ | 162/1000 [05:20<33:42, 2.41s/it]
16%|โโ | 163/1000 [05:22<32:09, 2.31s/it]
16%|โโ | 163/1000 [05:22<32:09, 2.31s/it]
16%|โโ | 164/1000 [05:24<31:03, 2.23s/it]
16%|โโ | 164/1000 [05:24<31:03, 2.23s/it]
16%|โโ | 165/1000 [05:26<30:16, 2.18s/it]
16%|โโ | 165/1000 [05:26<30:16, 2.18s/it]
17%|โโ | 166/1000 [05:28<29:44, 2.14s/it]
17%|โโ | 166/1000 [05:28<29:44, 2.14s/it]
17%|โโ | 167/1000 [05:30<28:45, 2.07s/it]
17%|โโ | 167/1000 [05:30<28:45, 2.07s/it]
17%|โโ | 168/1000 [05:32<27:22, 1.97s/it]
17%|โโ | 168/1000 [05:32<27:22, 1.97s/it]
17%|โโ | 169/1000 [05:34<27:13, 1.97s/it]
17%|โโ | 169/1000 [05:34<27:13, 1.97s/it]
17%|โโ | 170/1000 [05:37<33:36, 2.43s/it]
17%|โโ | 170/1000 [05:37<33:36, 2.43s/it]
17%|โโ | 171/1000 [05:39<30:56, 2.24s/it]
17%|โโ | 171/1000 [05:39<30:56, 2.24s/it]
17%|โโ | 172/1000 [05:41<29:53, 2.17s/it]
17%|โโ | 172/1000 [05:41<29:53, 2.17s/it]
17%|โโ | 173/1000 [05:43<28:40, 2.08s/it]
17%|โโ | 173/1000 [05:43<28:40, 2.08s/it]
17%|โโ | 174/1000 [05:44<26:43, 1.94s/it]
17%|โโ | 174/1000 [05:44<26:43, 1.94s/it]
18%|โโ | 175/1000 [05:46<25:27, 1.85s/it]
18%|โโ | 175/1000 [05:46<25:27, 1.85s/it]
18%|โโ | 176/1000 [05:47<24:03, 1.75s/it]
18%|โโ | 176/1000 [05:48<24:03, 1.75s/it]
18%|โโ | 177/1000 [05:49<23:05, 1.68s/it]
18%|โโ | 177/1000 [05:49<23:05, 1.68s/it]
18%|โโ | 178/1000 [05:50<22:13, 1.62s/it]
18%|โโ | 178/1000 [05:51<22:13, 1.62s/it]
18%|โโ | 179/1000 [05:52<21:48, 1.59s/it]
18%|โโ | 179/1000 [05:52<21:48, 1.59s/it]
18%|โโ | 180/1000 [05:54<21:36, 1.58s/it]
18%|โโ | 180/1000 [05:54<21:36, 1.58s/it]
18%|โโ | 181/1000 [05:55<21:41, 1.59s/it]
18%|โโ | 181/1000 [05:55<21:41, 1.59s/it]
18%|โโ | 182/1000 [05:57<20:41, 1.52s/it]
18%|โโ | 182/1000 [05:57<20:41, 1.52s/it]
18%|โโ | 183/1000 [05:58<19:33, 1.44s/it]
18%|โโ | 183/1000 [05:58<19:33, 1.44s/it]
18%|โโ | 184/1000 [05:59<18:48, 1.38s/it]
18%|โโ | 184/1000 [05:59<18:48, 1.38s/it]
18%|โโ | 185/1000 [06:00<18:06, 1.33s/it]
18%|โโ | 185/1000 [06:00<18:06, 1.33s/it]
19%|โโ | 186/1000 [06:01<17:38, 1.30s/it]
19%|โโ | 186/1000 [06:01<17:38, 1.30s/it]
19%|โโ | 187/1000 [06:03<17:22, 1.28s/it]
19%|โโ | 187/1000 [06:03<17:22, 1.28s/it]
19%|โโ | 188/1000 [06:04<17:27, 1.29s/it]
19%|โโ | 188/1000 [06:04<17:27, 1.29s/it]
19%|โโ | 189/1000 [06:05<17:07, 1.27s/it]
19%|โโ | 189/1000 [06:05<17:07, 1.27s/it]
19%|โโ | 190/1000 [06:06<16:40, 1.24s/it]
19%|โโ | 190/1000 [06:06<16:40, 1.24s/it]
19%|โโ | 191/1000 [06:07<15:47, 1.17s/it]
19%|โโ | 191/1000 [06:07<15:47, 1.17s/it]
19%|โโ | 192/1000 [06:08<15:25, 1.14s/it]
19%|โโ | 192/1000 [06:09<15:25, 1.14s/it]
19%|โโ | 193/1000 [06:09<14:30, 1.08s/it]
19%|โโ | 193/1000 [06:09<14:30, 1.08s/it]
19%|โโ | 194/1000 [06:10<14:12, 1.06s/it]
19%|โโ | 194/1000 [06:10<14:12, 1.06s/it]
20%|โโ | 195/1000 [06:11<13:38, 1.02s/it]
20%|โโ | 195/1000 [06:11<13:38, 1.02s/it]
20%|โโ | 196/1000 [06:12<12:50, 1.04it/s]
20%|โโ | 196/1000 [06:12<12:50, 1.04it/s]
20%|โโ | 197/1000 [06:13<11:38, 1.15it/s]
20%|โโ | 197/1000 [06:13<11:38, 1.15it/s]
20%|โโ | 198/1000 [06:13<10:47, 1.24it/s]
20%|โโ | 198/1000 [06:14<10:47, 1.24it/s]
20%|โโ | 199/1000 [06:14<10:15, 1.30it/s]
20%|โโ | 199/1000 [06:14<10:15, 1.30it/s]
20%|โโ | 200/1000 [06:17<17:18, 1.30s/it]
20%|โโ | 200/1000 [06:17<17:18, 1.30s/it]
20%|โโ | 201/1000 [06:23<38:40, 2.90s/it]
20%|โโ | 201/1000 [06:23<38:40, 2.90s/it]
20%|โโ | 202/1000 [06:28<45:00, 3.38s/it]
20%|โโ | 202/1000 [06:28<45:00, 3.38s/it]
20%|โโ | 203/1000 [06:32<46:38, 3.51s/it]
20%|โโ | 203/1000 [06:32<46:38, 3.51s/it]
20%|โโ | 204/1000 [06:35<45:54, 3.46s/it]
20%|โโ | 204/1000 [06:35<45:54, 3.46s/it]
20%|โโ | 205/1000 [06:38<44:36, 3.37s/it]
20%|โโ | 205/1000 [06:38<44:36, 3.37s/it]
21%|โโ | 206/1000 [06:41<42:56, 3.25s/it]
21%|โโ | 206/1000 [06:41<42:56, 3.25s/it]
21%|โโ | 207/1000 [06:44<41:04, 3.11s/it]
21%|โโ | 207/1000 [06:44<41:04, 3.11s/it]
21%|โโ | 208/1000 [06:47<39:19, 2.98s/it]
21%|โโ | 208/1000 [06:47<39:19, 2.98s/it]
21%|โโ | 209/1000 [06:49<37:40, 2.86s/it]
21%|โโ | 209/1000 [06:49<37:40, 2.86s/it]
21%|โโ | 210/1000 [06:52<35:54, 2.73s/it]
21%|โโ | 210/1000 [06:52<35:54, 2.73s/it]
21%|โโ | 211/1000 [06:54<35:09, 2.67s/it]
21%|โโ | 211/1000 [06:54<35:09, 2.67s/it]
21%|โโ | 212/1000 [06:57<34:17, 2.61s/it]
21%|โโ | 212/1000 [06:57<34:17, 2.61s/it]
21%|โโโ | 213/1000 [06:59<32:36, 2.49s/it]
21%|โโโ | 213/1000 [06:59<32:36, 2.49s/it]
21%|โโโ | 214/1000 [07:01<31:06, 2.37s/it]
21%|โโโ | 214/1000 [07:01<31:06, 2.37s/it]
22%|โโโ | 215/1000 [07:03<30:14, 2.31s/it]
22%|โโโ | 215/1000 [07:03<30:14, 2.31s/it]
22%|โโโ | 216/1000 [07:05<29:15, 2.24s/it]
22%|โโโ | 216/1000 [07:05<29:15, 2.24s/it]
22%|โโโ | 217/1000 [07:07<28:21, 2.17s/it]
22%|โโโ | 217/1000 [07:07<28:21, 2.17s/it]
22%|โโโ | 218/1000 [07:09<26:38, 2.04s/it]
22%|โโโ | 218/1000 [07:09<26:38, 2.04s/it]
22%|โโโ | 219/1000 [07:11<25:37, 1.97s/it]
22%|โโโ | 219/1000 [07:11<25:37, 1.97s/it]
22%|โโโ | 220/1000 [07:13<25:04, 1.93s/it]
22%|โโโ | 220/1000 [07:13<25:04, 1.93s/it]
22%|โโโ | 221/1000 [07:14<24:18, 1.87s/it]
22%|โโโ | 221/1000 [07:14<24:18, 1.87s/it]
22%|โโโ | 222/1000 [07:16<23:45, 1.83s/it]
22%|โโโ | 222/1000 [07:16<23:45, 1.83s/it]
22%|โโโ | 223/1000 [07:18<23:27, 1.81s/it]
22%|โโโ | 223/1000 [07:18<23:27, 1.81s/it]
22%|โโโ | 224/1000 [07:20<23:09, 1.79s/it]
22%|โโโ | 224/1000 [07:20<23:09, 1.79s/it]
22%|โโโ | 225/1000 [07:21<22:07, 1.71s/it]
22%|โโโ | 225/1000 [07:21<22:07, 1.71s/it]
23%|โโโ | 226/1000 [07:23<21:15, 1.65s/it]
23%|โโโ | 226/1000 [07:23<21:15, 1.65s/it]
23%|โโโ | 227/1000 [07:24<20:34, 1.60s/it]
23%|โโโ | 227/1000 [07:24<20:34, 1.60s/it]
23%|โโโ | 228/1000 [07:27<24:17, 1.89s/it]
23%|โโโ | 228/1000 [07:27<24:17, 1.89s/it]
23%|โโโ | 229/1000 [07:28<22:53, 1.78s/it]
23%|โโโ | 229/1000 [07:28<22:53, 1.78s/it]
23%|โโโ | 230/1000 [07:30<21:50, 1.70s/it]
23%|โโโ | 230/1000 [07:30<21:50, 1.70s/it]
23%|โโโ | 231/1000 [07:31<21:05, 1.65s/it]
23%|โโโ | 231/1000 [07:31<21:05, 1.65s/it]
23%|โโโ | 232/1000 [07:33<20:13, 1.58s/it]
23%|โโโ | 232/1000 [07:33<20:13, 1.58s/it]
23%|โโโ | 233/1000 [07:34<18:49, 1.47s/it]
23%|โโโ | 233/1000 [07:34<18:49, 1.47s/it]
23%|โโโ | 234/1000 [07:35<18:04, 1.42s/it]
23%|โโโ | 234/1000 [07:35<18:04, 1.42s/it]
24%|โโโ | 235/1000 [07:36<17:34, 1.38s/it]
24%|โโโ | 235/1000 [07:36<17:34, 1.38s/it]
24%|โโโ | 236/1000 [07:38<17:07, 1.35s/it]
24%|โโโ | 236/1000 [07:38<17:07, 1.35s/it]
24%|โโโ | 237/1000 [07:39<18:54, 1.49s/it]
24%|โโโ | 237/1000 [07:39<18:54, 1.49s/it]
24%|โโโ | 238/1000 [07:41<17:53, 1.41s/it]
24%|โโโ | 238/1000 [07:41<17:53, 1.41s/it]
24%|โโโ | 239/1000 [07:42<17:12, 1.36s/it]
24%|โโโ | 239/1000 [07:42<17:12, 1.36s/it]
24%|โโโ | 240/1000 [07:43<16:42, 1.32s/it]
24%|โโโ | 240/1000 [07:43<16:42, 1.32s/it]
24%|โโโ | 241/1000 [07:44<16:05, 1.27s/it]
24%|โโโ | 241/1000 [07:44<16:05, 1.27s/it]
24%|โโโ | 242/1000 [07:45<14:49, 1.17s/it]
24%|โโโ | 242/1000 [07:45<14:49, 1.17s/it]
24%|โโโ | 243/1000 [07:46<13:51, 1.10s/it]
24%|โโโ | 243/1000 [07:46<13:51, 1.10s/it]
24%|โโโ | 244/1000 [07:47<13:10, 1.05s/it]
24%|โโโ | 244/1000 [07:47<13:10, 1.05s/it]
24%|โโโ | 245/1000 [07:48<12:46, 1.02s/it]
24%|โโโ | 245/1000 [07:48<12:46, 1.02s/it]
25%|โโโ | 246/1000 [07:49<12:17, 1.02it/s]
25%|โโโ | 246/1000 [07:49<12:17, 1.02it/s]
25%|โโโ | 247/1000 [07:50<11:30, 1.09it/s]
25%|โโโ | 247/1000 [07:50<11:30, 1.09it/s]
25%|โโโ | 248/1000 [07:50<10:32, 1.19it/s]
25%|โโโ | 248/1000 [07:50<10:32, 1.19it/s]
25%|โโโ | 249/1000 [07:51<09:52, 1.27it/s]
25%|โโโ | 249/1000 [07:51<09:52, 1.27it/s]
25%|โโโ | 250/1000 [07:54<16:26, 1.31s/it]
25%|โโโ | 250/1000 [07:54<16:26, 1.31s/it]
25%|โโโ | 251/1000 [08:00<37:03, 2.97s/it]
25%|โโโ | 251/1000 [08:00<37:03, 2.97s/it]
25%|โโโ | 252/1000 [08:05<42:15, 3.39s/it]
25%|โโโ | 252/1000 [08:05<42:15, 3.39s/it]
25%|โโโ | 253/1000 [08:09<43:26, 3.49s/it]
25%|โโโ | 253/1000 [08:09<43:26, 3.49s/it]
25%|โโโ | 254/1000 [08:12<42:51, 3.45s/it]
25%|โโโ | 254/1000 [08:12<42:51, 3.45s/it]
26%|โโโ | 255/1000 [08:15<41:51, 3.37s/it]
26%|โโโ | 255/1000 [08:15<41:51, 3.37s/it]
26%|โโโ | 256/1000 [08:18<40:04, 3.23s/it]
26%|โโโ | 256/1000 [08:18<40:04, 3.23s/it]
26%|โโโ | 257/1000 [08:21<38:23, 3.10s/it]
26%|โโโ | 257/1000 [08:21<38:23, 3.10s/it]
26%|โโโ | 258/1000 [08:23<36:56, 2.99s/it]
26%|โโโ | 258/1000 [08:23<36:56, 2.99s/it]
26%|โโโ | 259/1000 [08:26<35:27, 2.87s/it]
26%|โโโ | 259/1000 [08:26<35:27, 2.87s/it]
26%|โโโ | 260/1000 [08:28<33:27, 2.71s/it]
26%|โโโ | 260/1000 [08:28<33:27, 2.71s/it]
26%|โโโ | 261/1000 [08:31<32:27, 2.64s/it]
26%|โโโ | 261/1000 [08:31<32:27, 2.64s/it]
26%|โโโ | 262/1000 [08:33<31:44, 2.58s/it]
26%|โโโ | 262/1000 [08:33<31:44, 2.58s/it]
26%|โโโ | 263/1000 [08:36<30:14, 2.46s/it]
26%|โโโ | 263/1000 [08:36<30:14, 2.46s/it]
26%|โโโ | 264/1000 [08:38<28:39, 2.34s/it]
26%|โโโ | 264/1000 [08:38<28:39, 2.34s/it]
26%|โโโ | 265/1000 [08:40<27:35, 2.25s/it]
26%|โโโ | 265/1000 [08:40<27:35, 2.25s/it]
27%|โโโ | 266/1000 [08:42<27:14, 2.23s/it]
27%|โโโ | 266/1000 [08:42<27:14, 2.23s/it]
27%|โโโ | 267/1000 [08:44<26:38, 2.18s/it]
27%|โโโ | 267/1000 [08:44<26:38, 2.18s/it]
27%|โโโ | 268/1000 [08:46<25:28, 2.09s/it]
27%|โโโ | 268/1000 [08:46<25:28, 2.09s/it]
27%|โโโ | 269/1000 [08:48<24:28, 2.01s/it]
27%|โโโ | 269/1000 [08:48<24:28, 2.01s/it]
27%|โโโ | 270/1000 [08:49<23:47, 1.96s/it]
27%|โโโ | 270/1000 [08:49<23:47, 1.96s/it]
27%|โโโ | 271/1000 [08:51<23:14, 1.91s/it]
27%|โโโ | 271/1000 [08:51<23:14, 1.91s/it]
27%|โโโ | 272/1000 [08:53<22:43, 1.87s/it]
27%|โโโ | 272/1000 [08:53<22:43, 1.87s/it]
27%|โโโ | 273/1000 [08:55<22:24, 1.85s/it]
27%|โโโ | 273/1000 [08:55<22:24, 1.85s/it]
27%|โโโ | 274/1000 [08:57<22:18, 1.84s/it]
27%|โโโ | 274/1000 [08:57<22:18, 1.84s/it]
28%|โโโ | 275/1000 [08:58<21:16, 1.76s/it]
28%|โโโ | 275/1000 [08:58<21:16, 1.76s/it]
28%|โโโ | 276/1000 [09:00<20:14, 1.68s/it]
28%|โโโ | 276/1000 [09:00<20:14, 1.68s/it]
28%|โโโ | 277/1000 [09:01<19:32, 1.62s/it]
28%|โโโ | 277/1000 [09:01<19:32, 1.62s/it]
28%|โโโ | 278/1000 [09:03<19:14, 1.60s/it]
28%|โโโ | 278/1000 [09:03<19:14, 1.60s/it]
28%|โโโ | 279/1000 [09:04<18:47, 1.56s/it]
28%|โโโ | 279/1000 [09:04<18:47, 1.56s/it]
28%|โโโ | 280/1000 [09:06<18:29, 1.54s/it]
28%|โโโ | 280/1000 [09:06<18:29, 1.54s/it]
28%|โโโ | 281/1000 [09:07<18:16, 1.52s/it]
28%|โโโ | 281/1000 [09:07<18:16, 1.52s/it]
28%|โโโ | 282/1000 [09:09<17:57, 1.50s/it]
28%|โโโ | 282/1000 [09:09<17:57, 1.50s/it]
28%|โโโ | 283/1000 [09:10<17:09, 1.44s/it]
28%|โโโ | 283/1000 [09:10<17:09, 1.44s/it]
28%|โโโ | 284/1000 [09:11<16:45, 1.40s/it]
28%|โโโ | 284/1000 [09:11<16:45, 1.40s/it]
28%|โโโ | 285/1000 [09:12<16:10, 1.36s/it]
28%|โโโ | 285/1000 [09:12<16:10, 1.36s/it]
29%|โโโ | 286/1000 [09:14<15:41, 1.32s/it]
29%|โโโ | 286/1000 [09:14<15:41, 1.32s/it]
29%|โโโ | 287/1000 [09:15<15:19, 1.29s/it]
29%|โโโ | 287/1000 [09:15<15:19, 1.29s/it]
29%|โโโ | 288/1000 [09:16<15:18, 1.29s/it]
29%|โโโ | 288/1000 [09:16<15:18, 1.29s/it]
29%|โโโ | 289/1000 [09:17<15:14, 1.29s/it]
29%|โโโ | 289/1000 [09:17<15:14, 1.29s/it]
29%|โโโ | 290/1000 [09:19<14:41, 1.24s/it]
29%|โโโ | 290/1000 [09:19<14:41, 1.24s/it]
29%|โโโ | 291/1000 [09:20<13:36, 1.15s/it]
29%|โโโ | 291/1000 [09:20<13:36, 1.15s/it]
29%|โโโ | 292/1000 [09:20<12:46, 1.08s/it]
29%|โโโ | 292/1000 [09:20<12:46, 1.08s/it]
29%|โโโ | 293/1000 [09:21<12:19, 1.05s/it]
29%|โโโ | 293/1000 [09:21<12:19, 1.05s/it]
29%|โโโ | 294/1000 [09:22<11:56, 1.02s/it]
29%|โโโ | 294/1000 [09:22<11:56, 1.02s/it]
30%|โโโ | 295/1000 [09:23<11:36, 1.01it/s]
30%|โโโ | 295/1000 [09:23<11:36, 1.01it/s]
30%|โโโ | 296/1000 [09:24<11:30, 1.02it/s]
30%|โโโ | 296/1000 [09:24<11:30, 1.02it/s]
30%|โโโ | 297/1000 [09:25<10:33, 1.11it/s]
30%|โโโ | 297/1000 [09:25<10:33, 1.11it/s]
30%|โโโ | 298/1000 [09:26<09:43, 1.20it/s]
30%|โโโ | 298/1000 [09:26<09:43, 1.20it/s]
30%|โโโ | 299/1000 [09:26<09:13, 1.27it/s]
30%|โโโ | 299/1000 [09:26<09:13, 1.27it/s]
30%|โโโ | 300/1000 [09:29<16:55, 1.45s/it]
30%|โโโ | 300/1000 [09:29<16:55, 1.45s/it]
30%|โโโ | 301/1000 [09:37<39:23, 3.38s/it]
30%|โโโ | 301/1000 [09:37<39:23, 3.38s/it]
30%|โโโ | 302/1000 [09:42<42:57, 3.69s/it]
30%|โโโ | 302/1000 [09:42<42:57, 3.69s/it]
30%|โโโ | 303/1000 [09:46<43:36, 3.75s/it]
30%|โโโ | 303/1000 [09:46<43:36, 3.75s/it]
30%|โโโ | 304/1000 [09:49<42:39, 3.68s/it]
30%|โโโ | 304/1000 [09:49<42:39, 3.68s/it]
30%|โโโ | 305/1000 [09:52<40:56, 3.53s/it]
30%|โโโ | 305/1000 [09:52<40:56, 3.53s/it]
31%|โโโ | 306/1000 [09:55<39:03, 3.38s/it]
31%|โโโ | 306/1000 [09:55<39:03, 3.38s/it]
31%|โโโ | 307/1000 [09:58<37:08, 3.22s/it]
31%|โโโ | 307/1000 [09:58<37:08, 3.22s/it]
31%|โโโ | 308/1000 [10:01<35:16, 3.06s/it]
31%|โโโ | 308/1000 [10:01<35:16, 3.06s/it]
31%|โโโ | 309/1000 [10:03<34:00, 2.95s/it]
31%|โโโ | 309/1000 [10:04<34:00, 2.95s/it]
31%|โโโ | 310/1000 [10:06<32:15, 2.80s/it]
31%|โโโ | 310/1000 [10:06<32:15, 2.80s/it]
31%|โโโ | 311/1000 [10:08<30:36, 2.67s/it]
31%|โโโ | 311/1000 [10:08<30:36, 2.67s/it]
31%|โโโ | 312/1000 [10:11<29:30, 2.57s/it]
31%|โโโ | 312/1000 [10:11<29:30, 2.57s/it]
31%|โโโโ | 313/1000 [10:13<28:02, 2.45s/it]
31%|โโโโ | 313/1000 [10:13<28:02, 2.45s/it]
31%|โโโโ | 314/1000 [10:15<26:58, 2.36s/it]
31%|โโโโ | 314/1000 [10:15<26:58, 2.36s/it]
32%|โโโโ | 315/1000 [10:17<26:06, 2.29s/it]
32%|โโโโ | 315/1000 [10:17<26:06, 2.29s/it]
32%|โโโโ | 316/1000 [10:19<25:15, 2.22s/it]
32%|โโโโ | 316/1000 [10:19<25:15, 2.22s/it]
32%|โโโโ | 317/1000 [10:21<24:50, 2.18s/it]
32%|โโโโ | 317/1000 [10:21<24:50, 2.18s/it]
32%|โโโโ | 318/1000 [10:23<24:10, 2.13s/it]
32%|โโโโ | 318/1000 [10:23<24:10, 2.13s/it]
32%|โโโโ | 319/1000 [10:25<23:09, 2.04s/it]
32%|โโโโ | 319/1000 [10:25<23:09, 2.04s/it]
32%|โโโโ | 320/1000 [10:27<22:04, 1.95s/it]
32%|โโโโ | 320/1000 [10:27<22:04, 1.95s/it]
32%|โโโโ | 321/1000 [10:29<21:34, 1.91s/it]
32%|โโโโ | 321/1000 [10:29<21:34, 1.91s/it]
32%|โโโโ | 322/1000 [10:31<21:36, 1.91s/it]
32%|โโโโ | 322/1000 [10:31<21:36, 1.91s/it]
32%|โโโโ | 323/1000 [10:32<20:59, 1.86s/it]
32%|โโโโ | 323/1000 [10:32<20:59, 1.86s/it]
32%|โโโโ | 324/1000 [10:34<20:38, 1.83s/it]
32%|โโโโ | 324/1000 [10:34<20:38, 1.83s/it]
32%|โโโโ | 325/1000 [10:36<19:43, 1.75s/it]
32%|โโโโ | 325/1000 [10:36<19:43, 1.75s/it]
33%|โโโโ | 326/1000 [10:37<18:54, 1.68s/it]
33%|โโโโ | 326/1000 [10:37<18:54, 1.68s/it]
33%|โโโโ | 327/1000 [10:39<18:30, 1.65s/it]
33%|โโโโ | 327/1000 [10:39<18:30, 1.65s/it]
33%|โโโโ | 328/1000 [10:40<18:22, 1.64s/it]
33%|โโโโ | 328/1000 [10:40<18:22, 1.64s/it]
33%|โโโโ | 329/1000 [10:42<17:52, 1.60s/it]
33%|โโโโ | 329/1000 [10:42<17:52, 1.60s/it]
33%|โโโโ | 330/1000 [10:43<17:28, 1.56s/it]
33%|โโโโ | 330/1000 [10:43<17:28, 1.56s/it]
33%|โโโโ | 331/1000 [10:45<17:16, 1.55s/it]
33%|โโโโ | 331/1000 [10:45<17:16, 1.55s/it]
33%|โโโโ | 332/1000 [10:46<16:57, 1.52s/it]
33%|โโโโ | 332/1000 [10:46<16:57, 1.52s/it]
33%|โโโโ | 333/1000 [10:48<16:14, 1.46s/it]
33%|โโโโ | 333/1000 [10:48<16:14, 1.46s/it]
33%|โโโโ | 334/1000 [10:49<15:21, 1.38s/it]
33%|โโโโ | 334/1000 [10:49<15:21, 1.38s/it]
34%|โโโโ | 335/1000 [10:50<14:51, 1.34s/it]
34%|โโโโ | 335/1000 [10:50<14:51, 1.34s/it]
34%|โโโโ | 336/1000 [10:51<14:24, 1.30s/it]
34%|โโโโ | 336/1000 [10:51<14:24, 1.30s/it]
34%|โโโโ | 337/1000 [10:52<14:04, 1.27s/it]
34%|โโโโ | 337/1000 [10:52<14:04, 1.27s/it]
34%|โโโโ | 338/1000 [10:54<13:49, 1.25s/it]
34%|โโโโ | 338/1000 [10:54<13:49, 1.25s/it]
34%|โโโโ | 339/1000 [10:55<13:44, 1.25s/it]
34%|โโโโ | 339/1000 [10:55<13:44, 1.25s/it]
34%|โโโโ | 340/1000 [10:56<13:35, 1.24s/it]
34%|โโโโ | 340/1000 [10:56<13:35, 1.24s/it]
34%|โโโโ | 341/1000 [10:57<13:08, 1.20s/it]
34%|โโโโ | 341/1000 [10:57<13:08, 1.20s/it]
34%|โโโโ | 342/1000 [10:58<12:14, 1.12s/it]
34%|โโโโ | 342/1000 [10:58<12:14, 1.12s/it]
34%|โโโโ | 343/1000 [10:59<11:36, 1.06s/it]
34%|โโโโ | 343/1000 [10:59<11:36, 1.06s/it]
34%|โโโโ | 344/1000 [11:00<11:11, 1.02s/it]
34%|โโโโ | 344/1000 [11:00<11:11, 1.02s/it]
34%|โโโโ | 345/1000 [11:01<10:50, 1.01it/s]
34%|โโโโ | 345/1000 [11:01<10:50, 1.01it/s]
35%|โโโโ | 346/1000 [11:02<10:35, 1.03it/s]
35%|โโโโ | 346/1000 [11:02<10:35, 1.03it/s]
35%|โโโโ | 347/1000 [11:03<10:01, 1.09it/s]
35%|โโโโ | 347/1000 [11:03<10:01, 1.09it/s]
35%|โโโโ | 348/1000 [11:03<09:19, 1.17it/s]
35%|โโโโ | 348/1000 [11:03<09:19, 1.17it/s]
35%|โโโโ | 349/1000 [11:04<08:41, 1.25it/s]
35%|โโโโ | 349/1000 [11:04<08:41, 1.25it/s]
35%|โโโโ | 350/1000 [11:07<15:31, 1.43s/it]
35%|โโโโ | 350/1000 [11:07<15:31, 1.43s/it]
35%|โโโโ | 351/1000 [11:18<46:16, 4.28s/it]
35%|โโโโ | 351/1000 [11:18<46:16, 4.28s/it]
35%|โโโโ | 352/1000 [11:22<46:13, 4.28s/it]
35%|โโโโ | 352/1000 [11:22<46:13, 4.28s/it]
35%|โโโโ | 353/1000 [11:26<44:29, 4.13s/it]
35%|โโโโ | 353/1000 [11:26<44:29, 4.13s/it]
35%|โโโโ | 354/1000 [11:29<41:50, 3.89s/it]
35%|โโโโ | 354/1000 [11:29<41:50, 3.89s/it]
36%|โโโโ | 355/1000 [11:32<39:00, 3.63s/it]
36%|โโโโ | 355/1000 [11:32<39:00, 3.63s/it]
36%|โโโโ | 356/1000 [11:35<37:05, 3.46s/it]
36%|โโโโ | 356/1000 [11:35<37:05, 3.46s/it]
36%|โโโโ | 357/1000 [11:38<35:14, 3.29s/it]
36%|โโโโ | 357/1000 [11:38<35:14, 3.29s/it]
36%|โโโโ | 358/1000 [11:41<33:15, 3.11s/it]
36%|โโโโ | 358/1000 [11:41<33:15, 3.11s/it]
36%|โโโโ | 359/1000 [11:43<31:24, 2.94s/it]
36%|โโโโ | 359/1000 [11:43<31:24, 2.94s/it]
36%|โโโโ | 360/1000 [11:46<29:30, 2.77s/it]
36%|โโโโ | 360/1000 [11:46<29:30, 2.77s/it]
36%|โโโโ | 361/1000 [11:48<28:33, 2.68s/it]
36%|โโโโ | 361/1000 [11:48<28:33, 2.68s/it]
36%|โโโโ | 362/1000 [11:51<27:31, 2.59s/it]
36%|โโโโ | 362/1000 [11:51<27:31, 2.59s/it]
36%|โโโโ | 363/1000 [11:53<26:35, 2.51s/it]
36%|โโโโ | 363/1000 [11:53<26:35, 2.51s/it]
36%|โโโโ | 364/1000 [11:55<25:12, 2.38s/it]
36%|โโโโ | 364/1000 [11:55<25:12, 2.38s/it]
36%|โโโโ | 365/1000 [11:57<24:15, 2.29s/it]
36%|โโโโ | 365/1000 [11:57<24:15, 2.29s/it]
37%|โโโโ | 366/1000 [11:59<23:27, 2.22s/it]
37%|โโโโ | 366/1000 [11:59<23:27, 2.22s/it]
37%|โโโโ | 367/1000 [12:01<23:20, 2.21s/it]
37%|โโโโ | 367/1000 [12:01<23:20, 2.21s/it]
37%|โโโโ | 368/1000 [12:03<22:35, 2.14s/it]
37%|โโโโ | 368/1000 [12:03<22:35, 2.14s/it]
37%|โโโโ | 369/1000 [12:05<21:29, 2.04s/it]
37%|โโโโ | 369/1000 [12:05<21:29, 2.04s/it]
37%|โโโโ | 370/1000 [12:07<20:45, 1.98s/it]
37%|โโโโ | 370/1000 [12:07<20:45, 1.98s/it]
37%|โโโโ | 371/1000 [12:09<20:01, 1.91s/it]
37%|โโโโ | 371/1000 [12:09<20:01, 1.91s/it]
37%|โโโโ | 372/1000 [12:11<19:40, 1.88s/it]
37%|โโโโ | 372/1000 [12:11<19:40, 1.88s/it]
37%|โโโโ | 373/1000 [12:12<19:22, 1.85s/it]
37%|โโโโ | 373/1000 [12:12<19:22, 1.85s/it]
37%|โโโโ | 374/1000 [12:14<19:12, 1.84s/it]
37%|โโโโ | 374/1000 [12:14<19:12, 1.84s/it]
38%|โโโโ | 375/1000 [12:16<18:30, 1.78s/it]
38%|โโโโ | 375/1000 [12:16<18:30, 1.78s/it]
38%|โโโโ | 376/1000 [12:17<17:36, 1.69s/it]
38%|โโโโ | 376/1000 [12:17<17:36, 1.69s/it]
38%|โโโโ | 377/1000 [12:19<16:55, 1.63s/it]
38%|โโโโ | 377/1000 [12:19<16:55, 1.63s/it]
38%|โโโโ | 378/1000 [12:20<16:34, 1.60s/it]
38%|โโโโ | 378/1000 [12:20<16:34, 1.60s/it]
38%|โโโโ | 379/1000 [12:22<16:20, 1.58s/it]
38%|โโโโ | 379/1000 [12:22<16:20, 1.58s/it]
38%|โโโโ | 380/1000 [12:23<16:05, 1.56s/it]
38%|โโโโ | 380/1000 [12:23<16:05, 1.56s/it]
38%|โโโโ | 381/1000 [12:25<15:57, 1.55s/it]
38%|โโโโ | 381/1000 [12:25<15:57, 1.55s/it]
38%|โโโโ | 382/1000 [12:26<15:22, 1.49s/it]
38%|โโโโ | 382/1000 [12:26<15:22, 1.49s/it]
38%|โโโโ | 383/1000 [12:27<14:35, 1.42s/it]
38%|โโโโ | 383/1000 [12:28<14:35, 1.42s/it]
38%|โโโโ | 384/1000 [12:29<14:01, 1.37s/it]
38%|โโโโ | 384/1000 [12:29<14:01, 1.37s/it]
38%|โโโโ | 385/1000 [12:30<13:55, 1.36s/it]
38%|โโโโ | 385/1000 [12:30<13:55, 1.36s/it]
39%|โโโโ | 386/1000 [12:31<13:30, 1.32s/it]
39%|โโโโ | 386/1000 [12:31<13:30, 1.32s/it]
39%|โโโโ | 387/1000 [12:33<13:21, 1.31s/it]
39%|โโโโ | 387/1000 [12:33<13:21, 1.31s/it]
39%|โโโโ | 388/1000 [12:34<13:18, 1.31s/it]
39%|โโโโ | 388/1000 [12:34<13:18, 1.31s/it]
39%|โโโโ | 389/1000 [12:35<13:09, 1.29s/it]
39%|โโโโ | 389/1000 [12:35<13:09, 1.29s/it]
39%|โโโโ | 390/1000 [12:36<12:51, 1.26s/it]
39%|โโโโ | 390/1000 [12:36<12:51, 1.26s/it]
39%|โโโโ | 391/1000 [12:37<12:26, 1.23s/it]
39%|โโโโ | 391/1000 [12:37<12:26, 1.23s/it]
39%|โโโโ | 392/1000 [12:38<11:30, 1.14s/it]
39%|โโโโ | 392/1000 [12:38<11:30, 1.14s/it]
39%|โโโโ | 393/1000 [12:39<10:57, 1.08s/it]
39%|โโโโ | 393/1000 [12:39<10:57, 1.08s/it]
39%|โโโโ | 394/1000 [12:40<10:31, 1.04s/it]
39%|โโโโ | 394/1000 [12:40<10:31, 1.04s/it]
40%|โโโโ | 395/1000 [12:41<10:16, 1.02s/it]
40%|โโโโ | 395/1000 [12:41<10:16, 1.02s/it]
40%|โโโโ | 396/1000 [12:42<10:16, 1.02s/it]
40%|โโโโ | 396/1000 [12:42<10:16, 1.02s/it]
40%|โโโโ | 397/1000 [12:43<09:35, 1.05it/s]
40%|โโโโ | 397/1000 [12:43<09:35, 1.05it/s]
40%|โโโโ | 398/1000 [12:44<08:52, 1.13it/s]
40%|โโโโ | 398/1000 [12:44<08:52, 1.13it/s]
40%|โโโโ | 399/1000 [12:44<08:12, 1.22it/s]
40%|โโโโ | 399/1000 [12:45<08:12, 1.22it/s]
40%|โโโโ | 400/1000 [12:47<13:49, 1.38s/it]
40%|โโโโ | 400/1000 [12:47<13:49, 1.38s/it]
40%|โโโโ | 401/1000 [12:56<37:28, 3.75s/it]
40%|โโโโ | 401/1000 [12:56<37:28, 3.75s/it]
40%|โโโโ | 402/1000 [13:01<38:25, 3.85s/it]
40%|โโโโ | 402/1000 [13:01<38:25, 3.85s/it]
40%|โโโโ | 403/1000 [13:04<37:55, 3.81s/it]
40%|โโโโ | 403/1000 [13:04<37:55, 3.81s/it]
40%|โโโโ | 404/1000 [13:07<36:08, 3.64s/it]
40%|โโโโ | 404/1000 [13:08<36:08, 3.64s/it]
40%|โโโโ | 405/1000 [13:11<34:17, 3.46s/it]
40%|โโโโ | 405/1000 [13:11<34:17, 3.46s/it]
41%|โโโโ | 406/1000 [13:13<32:33, 3.29s/it]
41%|โโโโ | 406/1000 [13:13<32:33, 3.29s/it]
41%|โโโโ | 407/1000 [13:16<30:41, 3.10s/it]
41%|โโโโ | 407/1000 [13:16<30:41, 3.10s/it]
41%|โโโโ | 408/1000 [13:19<29:09, 2.96s/it]
41%|โโโโ | 408/1000 [13:19<29:09, 2.96s/it]
41%|โโโโ | 409/1000 [13:21<27:34, 2.80s/it]
41%|โโโโ | 409/1000 [13:21<27:34, 2.80s/it]
41%|โโโโ | 410/1000 [13:23<26:10, 2.66s/it]
41%|โโโโ | 410/1000 [13:24<26:10, 2.66s/it]
41%|โโโโ | 411/1000 [13:26<25:16, 2.57s/it]
41%|โโโโ | 411/1000 [13:26<25:16, 2.57s/it]
41%|โโโโ | 412/1000 [13:28<24:13, 2.47s/it]
41%|โโโโ | 412/1000 [13:28<24:13, 2.47s/it]
41%|โโโโโ | 413/1000 [13:30<23:08, 2.36s/it]
41%|โโโโโ | 413/1000 [13:30<23:08, 2.36s/it]
41%|โโโโโ | 414/1000 [13:32<22:26, 2.30s/it]
41%|โโโโโ | 414/1000 [13:32<22:26, 2.30s/it]
42%|โโโโโ | 415/1000 [13:34<21:56, 2.25s/it]
42%|โโโโโ | 415/1000 [13:35<21:56, 2.25s/it]
42%|โโโโโ | 416/1000 [13:37<21:15, 2.18s/it]
42%|โโโโโ | 416/1000 [13:37<21:15, 2.18s/it]
42%|โโโโโ | 417/1000 [13:38<20:21, 2.09s/it]
42%|โโโโโ | 417/1000 [13:38<20:21, 2.09s/it]
42%|โโโโโ | 418/1000 [13:40<19:20, 1.99s/it]
42%|โโโโโ | 418/1000 [13:40<19:20, 1.99s/it]
42%|โโโโโ | 419/1000 [13:42<18:43, 1.93s/it]
42%|โโโโโ | 419/1000 [13:42<18:43, 1.93s/it]
42%|โโโโโ | 420/1000 [13:44<18:18, 1.89s/it]
42%|โโโโโ | 420/1000 [13:44<18:18, 1.89s/it]
42%|โโโโโ | 421/1000 [13:46<17:54, 1.86s/it]
42%|โโโโโ | 421/1000 [13:46<17:54, 1.86s/it]
42%|โโโโโ | 422/1000 [13:47<17:40, 1.84s/it]
42%|โโโโโ | 422/1000 [13:47<17:40, 1.84s/it]
42%|โโโโโ | 423/1000 [13:49<17:09, 1.78s/it]
42%|โโโโโ | 423/1000 [13:49<17:09, 1.78s/it]
42%|โโโโโ | 424/1000 [13:51<16:32, 1.72s/it]
42%|โโโโโ | 424/1000 [13:51<16:32, 1.72s/it]
42%|โโโโโ | 425/1000 [13:52<15:52, 1.66s/it]
42%|โโโโโ | 425/1000 [13:52<15:52, 1.66s/it]
43%|โโโโโ | 426/1000 [13:54<15:23, 1.61s/it]
43%|โโโโโ | 426/1000 [13:54<15:23, 1.61s/it]
43%|โโโโโ | 427/1000 [13:55<15:06, 1.58s/it]
43%|โโโโโ | 427/1000 [13:55<15:06, 1.58s/it]
43%|โโโโโ | 428/1000 [13:57<14:46, 1.55s/it]
43%|โโโโโ | 428/1000 [13:57<14:46, 1.55s/it]
43%|โโโโโ | 429/1000 [13:58<14:37, 1.54s/it]
43%|โโโโโ | 429/1000 [13:58<14:37, 1.54s/it]
43%|โโโโโ | 430/1000 [14:00<14:35, 1.54s/it]
43%|โโโโโ | 430/1000 [14:00<14:35, 1.54s/it]
43%|โโโโโ | 431/1000 [14:01<14:40, 1.55s/it]
43%|โโโโโ | 431/1000 [14:01<14:40, 1.55s/it]
43%|โโโโโ | 432/1000 [14:02<13:58, 1.48s/it]
43%|โโโโโ | 432/1000 [14:02<13:58, 1.48s/it]
43%|โโโโโ | 433/1000 [14:04<13:16, 1.40s/it]
43%|โโโโโ | 433/1000 [14:04<13:16, 1.40s/it]
43%|โโโโโ | 434/1000 [14:05<13:05, 1.39s/it]
43%|โโโโโ | 434/1000 [14:05<13:05, 1.39s/it]
44%|โโโโโ | 435/1000 [14:06<12:40, 1.35s/it]
44%|โโโโโ | 435/1000 [14:06<12:40, 1.35s/it]
44%|โโโโโ | 436/1000 [14:08<12:25, 1.32s/it]
44%|โโโโโ | 436/1000 [14:08<12:25, 1.32s/it]
44%|โโโโโ | 437/1000 [14:09<12:13, 1.30s/it]
44%|โโโโโ | 437/1000 [14:09<12:13, 1.30s/it]
44%|โโโโโ | 438/1000 [14:10<12:03, 1.29s/it]
44%|โโโโโ | 438/1000 [14:10<12:03, 1.29s/it]
44%|โโโโโ | 439/1000 [14:11<11:55, 1.28s/it]
44%|โโโโโ | 439/1000 [14:11<11:55, 1.28s/it]
44%|โโโโโ | 440/1000 [14:12<11:27, 1.23s/it]
44%|โโโโโ | 440/1000 [14:12<11:27, 1.23s/it]
44%|โโโโโ | 441/1000 [14:13<10:41, 1.15s/it]
44%|โโโโโ | 441/1000 [14:13<10:41, 1.15s/it]
44%|โโโโโ | 442/1000 [14:14<10:12, 1.10s/it]
44%|โโโโโ | 442/1000 [14:14<10:12, 1.10s/it]
44%|โโโโโ | 443/1000 [14:15<09:51, 1.06s/it]
44%|โโโโโ | 443/1000 [14:15<09:51, 1.06s/it]
44%|โโโโโ | 444/1000 [14:16<09:31, 1.03s/it]
44%|โโโโโ | 444/1000 [14:16<09:31, 1.03s/it]
44%|โโโโโ | 445/1000 [14:17<09:20, 1.01s/it]
44%|โโโโโ | 445/1000 [14:17<09:20, 1.01s/it]
45%|โโโโโ | 446/1000 [14:18<09:01, 1.02it/s]
45%|โโโโโ | 446/1000 [14:18<09:01, 1.02it/s]
45%|โโโโโ | 447/1000 [14:19<08:16, 1.11it/s]
45%|โโโโโ | 447/1000 [14:19<08:16, 1.11it/s]
45%|โโโโโ | 448/1000 [14:20<07:38, 1.20it/s]
45%|โโโโโ | 448/1000 [14:20<07:38, 1.20it/s]
45%|โโโโโ | 449/1000 [14:20<07:11, 1.28it/s]
45%|โโโโโ | 449/1000 [14:20<07:11, 1.28it/s]
45%|โโโโโ | 450/1000 [14:23<12:53, 1.41s/it]
45%|โโโโโ | 450/1000 [14:23<12:53, 1.41s/it]
45%|โโโโโ | 451/1000 [14:31<31:57, 3.49s/it]
45%|โโโโโ | 451/1000 [14:31<31:57, 3.49s/it]
45%|โโโโโ | 452/1000 [14:36<34:14, 3.75s/it]
45%|โโโโโ | 452/1000 [14:36<34:14, 3.75s/it]
45%|โโโโโ | 453/1000 [14:39<33:53, 3.72s/it]
45%|โโโโโ | 453/1000 [14:39<33:53, 3.72s/it]
45%|โโโโโ | 454/1000 [14:43<32:44, 3.60s/it]
45%|โโโโโ | 454/1000 [14:43<32:44, 3.60s/it]
46%|โโโโโ | 455/1000 [14:46<31:19, 3.45s/it]
46%|โโโโโ | 455/1000 [14:46<31:19, 3.45s/it]
46%|โโโโโ | 456/1000 [14:49<29:56, 3.30s/it]
46%|โโโโโ | 456/1000 [14:49<29:56, 3.30s/it]
46%|โโโโโ | 457/1000 [14:52<28:24, 3.14s/it]
46%|โโโโโ | 457/1000 [14:52<28:24, 3.14s/it]
46%|โโโโโ | 458/1000 [14:54<26:38, 2.95s/it]
46%|โโโโโ | 458/1000 [14:54<26:38, 2.95s/it]
46%|โโโโโ | 459/1000 [14:57<25:08, 2.79s/it]
46%|โโโโโ | 459/1000 [14:57<25:08, 2.79s/it]
46%|โโโโโ | 460/1000 [14:59<24:01, 2.67s/it]
46%|โโโโโ | 460/1000 [14:59<24:01, 2.67s/it]
46%|โโโโโ | 461/1000 [15:01<22:49, 2.54s/it]
46%|โโโโโ | 461/1000 [15:01<22:49, 2.54s/it]
46%|โโโโโ | 462/1000 [15:03<21:28, 2.39s/it]
46%|โโโโโ | 462/1000 [15:03<21:28, 2.39s/it]
46%|โโโโโ | 463/1000 [15:05<20:46, 2.32s/it]
46%|โโโโโ | 463/1000 [15:05<20:46, 2.32s/it]
46%|โโโโโ | 464/1000 [15:07<20:04, 2.25s/it]
46%|โโโโโ | 464/1000 [15:07<20:04, 2.25s/it]
46%|โโโโโ | 465/1000 [15:10<19:42, 2.21s/it]
46%|โโโโโ | 465/1000 [15:10<19:42, 2.21s/it]
47%|โโโโโ | 466/1000 [15:12<19:12, 2.16s/it]
47%|โโโโโ | 466/1000 [15:12<19:12, 2.16s/it]
47%|โโโโโ | 467/1000 [15:13<18:21, 2.07s/it]
47%|โโโโโ | 467/1000 [15:13<18:21, 2.07s/it]
47%|โโโโโ | 468/1000 [15:15<17:26, 1.97s/it]
47%|โโโโโ | 468/1000 [15:15<17:26, 1.97s/it]
47%|โโโโโ | 469/1000 [15:17<16:50, 1.90s/it]
47%|โโโโโ | 469/1000 [15:17<16:50, 1.90s/it]
47%|โโโโโ | 470/1000 [15:19<16:22, 1.85s/it]
47%|โโโโโ | 470/1000 [15:19<16:22, 1.85s/it]
47%|โโโโโ | 471/1000 [15:20<16:01, 1.82s/it]
47%|โโโโโ | 471/1000 [15:20<16:01, 1.82s/it]
47%|โโโโโ | 472/1000 [15:22<15:51, 1.80s/it]
47%|โโโโโ | 472/1000 [15:22<15:51, 1.80s/it]
47%|โโโโโ | 473/1000 [15:24<15:49, 1.80s/it]
47%|โโโโโ | 473/1000 [15:24<15:49, 1.80s/it]
47%|โโโโโ | 474/1000 [15:25<15:04, 1.72s/it]
47%|โโโโโ | 474/1000 [15:26<15:04, 1.72s/it]
48%|โโโโโ | 475/1000 [15:27<14:32, 1.66s/it]
48%|โโโโโ | 475/1000 [15:27<14:32, 1.66s/it]
48%|โโโโโ | 476/1000 [15:29<14:05, 1.61s/it]
48%|โโโโโ | 476/1000 [15:29<14:05, 1.61s/it]
48%|โโโโโ | 477/1000 [15:30<13:49, 1.59s/it]
48%|โโโโโ | 477/1000 [15:30<13:49, 1.59s/it]
48%|โโโโโ | 478/1000 [15:32<13:47, 1.59s/it]
48%|โโโโโ | 478/1000 [15:32<13:47, 1.59s/it]
48%|โโโโโ | 479/1000 [15:33<13:34, 1.56s/it]
48%|โโโโโ | 479/1000 [15:33<13:34, 1.56s/it]
48%|โโโโโ | 480/1000 [15:35<13:31, 1.56s/it]
48%|โโโโโ | 480/1000 [15:35<13:31, 1.56s/it]
48%|โโโโโ | 481/1000 [15:36<13:16, 1.53s/it]
48%|โโโโโ | 481/1000 [15:36<13:16, 1.53s/it]
48%|โโโโโ | 482/1000 [15:37<12:40, 1.47s/it]
48%|โโโโโ | 482/1000 [15:38<12:40, 1.47s/it]
48%|โโโโโ | 483/1000 [15:39<12:00, 1.39s/it]
48%|โโโโโ | 483/1000 [15:39<12:00, 1.39s/it]
48%|โโโโโ | 484/1000 [15:40<11:39, 1.36s/it]
48%|โโโโโ | 484/1000 [15:40<11:39, 1.36s/it]
48%|โโโโโ | 485/1000 [15:41<11:16, 1.31s/it]
48%|โโโโโ | 485/1000 [15:41<11:16, 1.31s/it]
49%|โโโโโ | 486/1000 [15:42<11:01, 1.29s/it]
49%|โโโโโ | 486/1000 [15:42<11:01, 1.29s/it]
49%|โโโโโ | 487/1000 [15:44<10:48, 1.26s/it]
49%|โโโโโ | 487/1000 [15:44<10:48, 1.26s/it]
49%|โโโโโ | 488/1000 [15:45<10:39, 1.25s/it]
49%|โโโโโ | 488/1000 [15:45<10:39, 1.25s/it]
49%|โโโโโ | 489/1000 [15:46<10:38, 1.25s/it]
49%|โโโโโ | 489/1000 [15:46<10:38, 1.25s/it]
49%|โโโโโ | 490/1000 [15:47<10:17, 1.21s/it]
49%|โโโโโ | 490/1000 [15:47<10:17, 1.21s/it]
49%|โโโโโ | 491/1000 [15:48<09:38, 1.14s/it]
49%|โโโโโ | 491/1000 [15:48<09:38, 1.14s/it]
49%|โโโโโ | 492/1000 [15:49<09:11, 1.09s/it]
49%|โโโโโ | 492/1000 [15:49<09:11, 1.09s/it]
49%|โโโโโ | 493/1000 [15:50<08:55, 1.06s/it]
49%|โโโโโ | 493/1000 [15:50<08:55, 1.06s/it]
49%|โโโโโ | 494/1000 [15:51<08:41, 1.03s/it]
49%|โโโโโ | 494/1000 [15:51<08:41, 1.03s/it]
50%|โโโโโ | 495/1000 [15:52<08:24, 1.00it/s]
50%|โโโโโ | 495/1000 [15:52<08:24, 1.00it/s]
50%|โโโโโ | 496/1000 [15:53<08:13, 1.02it/s]
50%|โโโโโ | 496/1000 [15:53<08:13, 1.02it/s]
50%|โโโโโ | 497/1000 [15:54<07:58, 1.05it/s]
50%|โโโโโ | 497/1000 [15:54<07:58, 1.05it/s]
50%|โโโโโ | 498/1000 [15:55<07:15, 1.15it/s]
50%|โโโโโ | 498/1000 [15:55<07:15, 1.15it/s]
50%|โโโโโ | 499/1000 [15:55<06:45, 1.24it/s]
50%|โโโโโ | 499/1000 [15:55<06:45, 1.24it/s]
50%|โโโโโ | 500/1000 [15:58<11:36, 1.39s/it]
50%|โโโโโ | 500/1000 [15:58<11:36, 1.39s/it]
50%|โโโโโ | 501/1000 [16:07<29:53, 3.59s/it]
50%|โโโโโ | 501/1000 [16:07<29:53, 3.59s/it]
50%|โโโโโ | 502/1000 [16:11<31:17, 3.77s/it]
50%|โโโโโ | 502/1000 [16:11<31:17, 3.77s/it]
50%|โโโโโ | 503/1000 [16:15<31:07, 3.76s/it]
50%|โโโโโ | 503/1000 [16:15<31:07, 3.76s/it]
50%|โโโโโ | 504/1000 [16:18<29:58, 3.63s/it]
50%|โโโโโ | 504/1000 [16:18<29:58, 3.63s/it]
50%|โโโโโ | 505/1000 [16:21<28:53, 3.50s/it]
50%|โโโโโ | 505/1000 [16:21<28:53, 3.50s/it]
51%|โโโโโ | 506/1000 [16:24<27:27, 3.34s/it]
51%|โโโโโ | 506/1000 [16:24<27:27, 3.34s/it]
51%|โโโโโ | 507/1000 [16:27<26:15, 3.20s/it]
51%|โโโโโ | 507/1000 [16:27<26:15, 3.20s/it]
51%|โโโโโ | 508/1000 [16:30<24:56, 3.04s/it]
51%|โโโโโ | 508/1000 [16:30<24:56, 3.04s/it]
51%|โโโโโ | 509/1000 [16:32<23:36, 2.89s/it]
51%|โโโโโ | 509/1000 [16:32<23:36, 2.89s/it]
51%|โโโโโ | 510/1000 [16:35<22:30, 2.76s/it]
51%|โโโโโ | 510/1000 [16:35<22:30, 2.76s/it]
51%|โโโโโ | 511/1000 [16:37<21:39, 2.66s/it]
51%|โโโโโ | 511/1000 [16:37<21:39, 2.66s/it]
51%|โโโโโ | 512/1000 [16:39<20:46, 2.55s/it]
51%|โโโโโ | 512/1000 [16:39<20:46, 2.55s/it]
51%|โโโโโโ | 513/1000 [16:41<19:34, 2.41s/it]
51%|โโโโโโ | 513/1000 [16:41<19:34, 2.41s/it]
51%|โโโโโโ | 514/1000 [16:43<18:43, 2.31s/it]
51%|โโโโโโ | 514/1000 [16:43<18:43, 2.31s/it]
52%|โโโโโโ | 515/1000 [16:46<18:16, 2.26s/it]
52%|โโโโโโ | 515/1000 [16:46<18:16, 2.26s/it]
52%|โโโโโโ | 516/1000 [16:48<17:52, 2.22s/it]
52%|โโโโโโ | 516/1000 [16:48<17:52, 2.22s/it]
52%|โโโโโโ | 517/1000 [16:50<17:21, 2.16s/it]
52%|โโโโโโ | 517/1000 [16:50<17:21, 2.16s/it]
52%|โโโโโโ | 518/1000 [16:52<16:29, 2.05s/it]
52%|โโโโโโ | 518/1000 [16:52<16:29, 2.05s/it]
52%|โโโโโโ | 519/1000 [16:53<15:58, 1.99s/it]
52%|โโโโโโ | 519/1000 [16:53<15:58, 1.99s/it]
52%|โโโโโโ | 520/1000 [16:55<15:28, 1.93s/it]
52%|โโโโโโ | 520/1000 [16:55<15:28, 1.93s/it]
52%|โโโโโโ | 521/1000 [16:57<15:06, 1.89s/it]
52%|โโโโโโ | 521/1000 [16:57<15:06, 1.89s/it]
52%|โโโโโโ | 522/1000 [16:59<14:47, 1.86s/it]
52%|โโโโโโ | 522/1000 [16:59<14:47, 1.86s/it]
52%|โโโโโโ | 523/1000 [17:01<14:35, 1.84s/it]
52%|โโโโโโ | 523/1000 [17:01<14:35, 1.84s/it]
52%|โโโโโโ | 524/1000 [17:02<14:04, 1.77s/it]
52%|โโโโโโ | 524/1000 [17:02<14:04, 1.77s/it]
52%|โโโโโโ | 525/1000 [17:04<13:20, 1.69s/it]
52%|โโโโโโ | 525/1000 [17:04<13:20, 1.69s/it]
53%|โโโโโโ | 526/1000 [17:05<12:55, 1.64s/it]
53%|โโโโโโ | 526/1000 [17:05<12:55, 1.64s/it]
53%|โโโโโโ | 527/1000 [17:07<12:41, 1.61s/it]
53%|โโโโโโ | 527/1000 [17:07<12:41, 1.61s/it]
53%|โโโโโโ | 528/1000 [17:08<12:26, 1.58s/it]
53%|โโโโโโ | 528/1000 [17:08<12:26, 1.58s/it]
53%|โโโโโโ | 529/1000 [17:10<12:18, 1.57s/it]
53%|โโโโโโ | 529/1000 [17:10<12:18, 1.57s/it]
53%|โโโโโโ | 530/1000 [17:11<12:11, 1.56s/it]
53%|โโโโโโ | 530/1000 [17:11<12:11, 1.56s/it]
53%|โโโโโโ | 531/1000 [17:13<12:07, 1.55s/it]
53%|โโโโโโ | 531/1000 [17:13<12:07, 1.55s/it]
53%|โโโโโโ | 532/1000 [17:14<11:41, 1.50s/it]
53%|โโโโโโ | 532/1000 [17:14<11:41, 1.50s/it]
53%|โโโโโโ | 533/1000 [17:15<11:03, 1.42s/it]
53%|โโโโโโ | 533/1000 [17:15<11:03, 1.42s/it]
53%|โโโโโโ | 534/1000 [17:17<10:44, 1.38s/it]
53%|โโโโโโ | 534/1000 [17:17<10:44, 1.38s/it]
54%|โโโโโโ | 535/1000 [17:18<10:18, 1.33s/it]
54%|โโโโโโ | 535/1000 [17:18<10:18, 1.33s/it]
54%|โโโโโโ | 536/1000 [17:19<10:10, 1.32s/it]
54%|โโโโโโ | 536/1000 [17:19<10:10, 1.32s/it]
54%|โโโโโโ | 537/1000 [17:20<09:57, 1.29s/it]
54%|โโโโโโ | 537/1000 [17:21<09:57, 1.29s/it]
54%|โโโโโโ | 538/1000 [17:22<09:50, 1.28s/it]
54%|โโโโโโ | 538/1000 [17:22<09:50, 1.28s/it]
54%|โโโโโโ | 539/1000 [17:23<09:40, 1.26s/it]
54%|โโโโโโ | 539/1000 [17:23<09:40, 1.26s/it]
54%|โโโโโโ | 540/1000 [17:24<09:25, 1.23s/it]
54%|โโโโโโ | 540/1000 [17:24<09:25, 1.23s/it]
54%|โโโโโโ | 541/1000 [17:25<08:45, 1.15s/it]
54%|โโโโโโ | 541/1000 [17:25<08:45, 1.15s/it]
54%|โโโโโโ | 542/1000 [17:26<08:14, 1.08s/it]
54%|โโโโโโ | 542/1000 [17:26<08:14, 1.08s/it]
54%|โโโโโโ | 543/1000 [17:27<07:52, 1.03s/it]
54%|โโโโโโ | 543/1000 [17:27<07:52, 1.03s/it]
54%|โโโโโโ | 544/1000 [17:28<07:38, 1.01s/it]
54%|โโโโโโ | 544/1000 [17:28<07:38, 1.01s/it]
55%|โโโโโโ | 545/1000 [17:29<07:32, 1.01it/s]
55%|โโโโโโ | 545/1000 [17:29<07:32, 1.01it/s]
55%|โโโโโโ | 546/1000 [17:30<07:18, 1.04it/s]
55%|โโโโโโ | 546/1000 [17:30<07:18, 1.04it/s]
55%|โโโโโโ | 547/1000 [17:30<06:43, 1.12it/s]
55%|โโโโโโ | 547/1000 [17:30<06:43, 1.12it/s]
55%|โโโโโโ | 548/1000 [17:31<06:16, 1.20it/s]
55%|โโโโโโ | 548/1000 [17:31<06:16, 1.20it/s]
55%|โโโโโโ | 549/1000 [17:32<05:55, 1.27it/s]
55%|โโโโโโ | 549/1000 [17:32<05:55, 1.27it/s]
55%|โโโโโโ | 550/1000 [17:35<10:38, 1.42s/it]
55%|โโโโโโ | 550/1000 [17:35<10:38, 1.42s/it]
55%|โโโโโโ | 551/1000 [17:43<25:33, 3.41s/it]
55%|โโโโโโ | 551/1000 [17:43<25:33, 3.41s/it]
55%|โโโโโโ | 552/1000 [17:47<28:14, 3.78s/it]
55%|โโโโโโ | 552/1000 [17:47<28:14, 3.78s/it]
55%|โโโโโโ | 553/1000 [17:51<28:22, 3.81s/it]
55%|โโโโโโ | 553/1000 [17:51<28:22, 3.81s/it]
55%|โโโโโโ | 554/1000 [17:55<27:42, 3.73s/it]
55%|โโโโโโ | 554/1000 [17:55<27:42, 3.73s/it]
56%|โโโโโโ | 555/1000 [17:58<26:44, 3.61s/it]
56%|โโโโโโ | 555/1000 [17:58<26:44, 3.61s/it]
56%|โโโโโโ | 556/1000 [18:01<25:31, 3.45s/it]
56%|โโโโโโ | 556/1000 [18:01<25:31, 3.45s/it]
56%|โโโโโโ | 557/1000 [18:04<24:20, 3.30s/it]
56%|โโโโโโ | 557/1000 [18:04<24:20, 3.30s/it]
56%|โโโโโโ | 558/1000 [18:07<23:04, 3.13s/it]
56%|โโโโโโ | 558/1000 [18:07<23:04, 3.13s/it]
56%|โโโโโโ | 559/1000 [18:10<22:03, 3.00s/it]
56%|โโโโโโ | 559/1000 [18:10<22:03, 3.00s/it]
56%|โโโโโโ | 560/1000 [18:12<20:44, 2.83s/it]
56%|โโโโโโ | 560/1000 [18:12<20:44, 2.83s/it]
56%|โโโโโโ | 561/1000 [18:14<19:44, 2.70s/it]
56%|โโโโโโ | 561/1000 [18:14<19:44, 2.70s/it]
56%|โโโโโโ | 562/1000 [18:17<18:56, 2.59s/it]
56%|โโโโโโ | 562/1000 [18:17<18:56, 2.59s/it]
56%|โโโโโโ | 563/1000 [18:19<18:19, 2.52s/it]
56%|โโโโโโ | 563/1000 [18:19<18:19, 2.52s/it]
56%|โโโโโโ | 564/1000 [18:21<17:29, 2.41s/it]
56%|โโโโโโ | 564/1000 [18:21<17:29, 2.41s/it]
56%|โโโโโโ | 565/1000 [18:23<16:50, 2.32s/it]
56%|โโโโโโ | 565/1000 [18:23<16:50, 2.32s/it]
57%|โโโโโโ | 566/1000 [18:26<16:19, 2.26s/it]
57%|โโโโโโ | 566/1000 [18:26<16:19, 2.26s/it]
57%|โโโโโโ | 567/1000 [18:28<15:53, 2.20s/it]
57%|โโโโโโ | 567/1000 [18:28<15:53, 2.20s/it]
57%|โโโโโโ | 568/1000 [18:30<15:43, 2.18s/it]
57%|โโโโโโ | 568/1000 [18:30<15:43, 2.18s/it]
57%|โโโโโโ | 569/1000 [18:32<14:54, 2.07s/it]
57%|โโโโโโ | 569/1000 [18:32<14:54, 2.07s/it]
57%|โโโโโโ | 570/1000 [18:33<14:08, 1.97s/it]
57%|โโโโโโ | 570/1000 [18:33<14:08, 1.97s/it]
57%|โโโโโโ | 571/1000 [18:35<13:42, 1.92s/it]
57%|โโโโโโ | 571/1000 [18:35<13:42, 1.92s/it]
57%|โโโโโโ | 572/1000 [18:37<13:25, 1.88s/it]
57%|โโโโโโ | 572/1000 [18:37<13:25, 1.88s/it]
57%|โโโโโโ | 573/1000 [18:39<13:12, 1.85s/it]
57%|โโโโโโ | 573/1000 [18:39<13:12, 1.85s/it]
57%|โโโโโโ | 574/1000 [18:41<13:10, 1.86s/it]
57%|โโโโโโ | 574/1000 [18:41<13:10, 1.86s/it]
57%|โโโโโโ | 575/1000 [18:42<12:42, 1.79s/it]
57%|โโโโโโ | 575/1000 [18:42<12:42, 1.79s/it]
58%|โโโโโโ | 576/1000 [18:44<12:05, 1.71s/it]
58%|โโโโโโ | 576/1000 [18:44<12:05, 1.71s/it]
58%|โโโโโโ | 577/1000 [18:45<11:39, 1.65s/it]
58%|โโโโโโ | 577/1000 [18:45<11:39, 1.65s/it]
58%|โโโโโโ | 578/1000 [18:47<11:19, 1.61s/it]
58%|โโโโโโ | 578/1000 [18:47<11:19, 1.61s/it]
58%|โโโโโโ | 579/1000 [18:48<11:05, 1.58s/it]
58%|โโโโโโ | 579/1000 [18:48<11:05, 1.58s/it]
58%|โโโโโโ | 580/1000 [18:50<10:56, 1.56s/it]
58%|โโโโโโ | 580/1000 [18:50<10:56, 1.56s/it]
58%|โโโโโโ | 581/1000 [18:51<10:57, 1.57s/it]
58%|โโโโโโ | 581/1000 [18:51<10:57, 1.57s/it]
58%|โโโโโโ | 582/1000 [18:53<10:52, 1.56s/it]
58%|โโโโโโ | 582/1000 [18:53<10:52, 1.56s/it]
58%|โโโโโโ | 583/1000 [18:54<10:16, 1.48s/it]
58%|โโโโโโ | 583/1000 [18:54<10:16, 1.48s/it]
58%|โโโโโโ | 584/1000 [18:55<09:42, 1.40s/it]
58%|โโโโโโ | 584/1000 [18:55<09:42, 1.40s/it]
58%|โโโโโโ | 585/1000 [18:57<09:23, 1.36s/it]
58%|โโโโโโ | 585/1000 [18:57<09:23, 1.36s/it]
59%|โโโโโโ | 586/1000 [18:58<09:07, 1.32s/it]
59%|โโโโโโ | 586/1000 [18:58<09:07, 1.32s/it]
59%|โโโโโโ | 587/1000 [18:59<08:51, 1.29s/it]
59%|โโโโโโ | 587/1000 [18:59<08:51, 1.29s/it]
59%|โโโโโโ | 588/1000 [19:00<08:41, 1.27s/it]
59%|โโโโโโ | 588/1000 [19:00<08:41, 1.27s/it]
59%|โโโโโโ | 589/1000 [19:02<08:34, 1.25s/it]
59%|โโโโโโ | 589/1000 [19:02<08:34, 1.25s/it]
59%|โโโโโโ | 590/1000 [19:03<08:30, 1.25s/it]
59%|โโโโโโ | 590/1000 [19:03<08:30, 1.25s/it]
59%|โโโโโโ | 591/1000 [19:04<08:08, 1.19s/it]
59%|โโโโโโ | 591/1000 [19:04<08:08, 1.19s/it]
59%|โโโโโโ | 592/1000 [19:05<07:37, 1.12s/it]
59%|โโโโโโ | 592/1000 [19:05<07:37, 1.12s/it]
59%|โโโโโโ | 593/1000 [19:06<07:17, 1.07s/it]
59%|โโโโโโ | 593/1000 [19:06<07:17, 1.07s/it]
59%|โโโโโโ | 594/1000 [19:07<06:58, 1.03s/it]
59%|โโโโโโ | 594/1000 [19:07<06:58, 1.03s/it]
60%|โโโโโโ | 595/1000 [19:08<06:46, 1.00s/it]
60%|โโโโโโ | 595/1000 [19:08<06:46, 1.00s/it]
60%|โโโโโโ | 596/1000 [19:09<06:35, 1.02it/s]
60%|โโโโโโ | 596/1000 [19:09<06:35, 1.02it/s]
60%|โโโโโโ | 597/1000 [19:09<06:16, 1.07it/s]
60%|โโโโโโ | 597/1000 [19:09<06:16, 1.07it/s]
60%|โโโโโโ | 598/1000 [19:10<05:45, 1.16it/s]
60%|โโโโโโ | 598/1000 [19:10<05:45, 1.16it/s]
60%|โโโโโโ | 599/1000 [19:11<05:28, 1.22it/s]
60%|โโโโโโ | 599/1000 [19:11<05:28, 1.22it/s]
60%|โโโโโโ | 600/1000 [19:13<08:22, 1.26s/it]
60%|โโโโโโ | 600/1000 [19:13<08:22, 1.26s/it]
60%|โโโโโโ | 601/1000 [19:20<19:09, 2.88s/it]
60%|โโโโโโ | 601/1000 [19:20<19:09, 2.88s/it]
60%|โโโโโโ | 602/1000 [19:23<20:30, 3.09s/it]
60%|โโโโโโ | 602/1000 [19:23<20:30, 3.09s/it]
60%|โโโโโโ | 603/1000 [19:26<20:30, 3.10s/it]
60%|โโโโโโ | 603/1000 [19:26<20:30, 3.10s/it]
60%|โโโโโโ | 604/1000 [19:29<19:40, 2.98s/it]
60%|โโโโโโ | 604/1000 [19:29<19:40, 2.98s/it]
60%|โโโโโโ | 605/1000 [19:32<18:33, 2.82s/it]
60%|โโโโโโ | 605/1000 [19:32<18:33, 2.82s/it]
61%|โโโโโโ | 606/1000 [19:34<17:27, 2.66s/it]
61%|โโโโโโ | 606/1000 [19:34<17:27, 2.66s/it]
61%|โโโโโโ | 607/1000 [19:36<16:28, 2.51s/it]
61%|โโโโโโ | 607/1000 [19:36<16:28, 2.51s/it]
61%|โโโโโโ | 608/1000 [19:38<15:33, 2.38s/it]
61%|โโโโโโ | 608/1000 [19:38<15:33, 2.38s/it]
61%|โโโโโโ | 609/1000 [19:40<14:27, 2.22s/it]
61%|โโโโโโ | 609/1000 [19:40<14:27, 2.22s/it]
61%|โโโโโโ | 610/1000 [19:42<13:28, 2.07s/it]
61%|โโโโโโ | 610/1000 [19:42<13:28, 2.07s/it]
61%|โโโโโโ | 611/1000 [19:43<12:49, 1.98s/it]
61%|โโโโโโ | 611/1000 [19:43<12:49, 1.98s/it]
61%|โโโโโโ | 612/1000 [19:45<12:15, 1.90s/it]
61%|โโโโโโ | 612/1000 [19:45<12:15, 1.90s/it]
61%|โโโโโโโ | 613/1000 [19:47<11:39, 1.81s/it]
61%|โโโโโโโ | 613/1000 [19:47<11:39, 1.81s/it]
61%|โโโโโโโ | 614/1000 [19:48<11:07, 1.73s/it]
61%|โโโโโโโ | 614/1000 [19:48<11:07, 1.73s/it]
62%|โโโโโโโ | 615/1000 [19:50<10:40, 1.66s/it]
62%|โโโโโโโ | 615/1000 [19:50<10:40, 1.66s/it]
62%|โโโโโโโ | 616/1000 [19:51<10:06, 1.58s/it]
62%|โโโโโโโ | 616/1000 [19:51<10:06, 1.58s/it]
62%|โโโโโโโ | 617/1000 [19:52<09:23, 1.47s/it]
62%|โโโโโโโ | 617/1000 [19:52<09:23, 1.47s/it]
62%|โโโโโโโ | 618/1000 [19:54<08:52, 1.39s/it]
62%|โโโโโโโ | 618/1000 [19:54<08:52, 1.39s/it]
62%|โโโโโโโ | 619/1000 [19:55<08:36, 1.35s/it]
62%|โโโโโโโ | 619/1000 [19:55<08:36, 1.35s/it]
62%|โโโโโโโ | 620/1000 [19:56<08:16, 1.31s/it]
62%|โโโโโโโ | 620/1000 [19:56<08:16, 1.31s/it]
62%|โโโโโโโ | 621/1000 [19:57<07:41, 1.22s/it]
62%|โโโโโโโ | 621/1000 [19:57<07:41, 1.22s/it]
62%|โโโโโโโ | 622/1000 [19:58<07:17, 1.16s/it]
62%|โโโโโโโ | 622/1000 [19:58<07:17, 1.16s/it]
62%|โโโโโโโ | 623/1000 [19:59<06:55, 1.10s/it]
62%|โโโโโโโ | 623/1000 [19:59<06:55, 1.10s/it]
62%|โโโโโโโ | 624/1000 [20:00<06:11, 1.01it/s]
62%|โโโโโโโ | 624/1000 [20:00<06:11, 1.01it/s]
62%|โโโโโโโ | 625/1000 [20:00<05:12, 1.20it/s]
62%|โโโโโโโ | 625/1000 [20:00<05:12, 1.20it/s]
63%|โโโโโโโ | 626/1000 [20:14<28:53, 4.64s/it]
63%|โโโโโโโ | 626/1000 [20:14<28:53, 4.64s/it]
63%|โโโโโโโ | 627/1000 [20:18<28:35, 4.60s/it]
63%|โโโโโโโ | 627/1000 [20:18<28:35, 4.60s/it]
63%|โโโโโโโ | 628/1000 [20:22<26:51, 4.33s/it]
63%|โโโโโโโ | 628/1000 [20:22<26:51, 4.33s/it]
63%|โโโโโโโ | 629/1000 [20:25<24:56, 4.03s/it]
63%|โโโโโโโ | 629/1000 [20:25<24:56, 4.03s/it]
63%|โโโโโโโ | 630/1000 [20:28<23:12, 3.76s/it]
63%|โโโโโโโ | 630/1000 [20:28<23:12, 3.76s/it]
63%|โโโโโโโ | 631/1000 [20:31<21:40, 3.52s/it]
63%|โโโโโโโ | 631/1000 [20:31<21:40, 3.52s/it]
63%|โโโโโโโ | 632/1000 [20:34<20:11, 3.29s/it]
63%|โโโโโโโ | 632/1000 [20:34<20:11, 3.29s/it]
63%|โโโโโโโ | 633/1000 [20:37<19:05, 3.12s/it]
63%|โโโโโโโ | 633/1000 [20:37<19:05, 3.12s/it]
63%|โโโโโโโ | 634/1000 [20:39<17:58, 2.95s/it]
63%|โโโโโโโ | 634/1000 [20:39<17:58, 2.95s/it]
64%|โโโโโโโ | 635/1000 [20:42<16:52, 2.78s/it]
64%|โโโโโโโ | 635/1000 [20:42<16:52, 2.78s/it]
64%|โโโโโโโ | 636/1000 [20:44<16:07, 2.66s/it]
64%|โโโโโโโ | 636/1000 [20:44<16:07, 2.66s/it]
64%|โโโโโโโ | 637/1000 [20:46<15:14, 2.52s/it]
64%|โโโโโโโ | 637/1000 [20:46<15:14, 2.52s/it]
64%|โโโโโโโ | 638/1000 [20:48<14:20, 2.38s/it]
64%|โโโโโโโ | 638/1000 [20:48<14:20, 2.38s/it]
64%|โโโโโโโ | 639/1000 [20:51<13:48, 2.30s/it]
64%|โโโโโโโ | 639/1000 [20:51<13:48, 2.30s/it]
64%|โโโโโโโ | 640/1000 [20:53<13:20, 2.22s/it]
64%|โโโโโโโ | 640/1000 [20:53<13:20, 2.22s/it]
64%|โโโโโโโ | 641/1000 [20:55<13:01, 2.18s/it]
64%|โโโโโโโ | 641/1000 [20:55<13:01, 2.18s/it]
64%|โโโโโโโ | 642/1000 [20:57<12:59, 2.18s/it]
64%|โโโโโโโ | 642/1000 [20:57<12:59, 2.18s/it]
64%|โโโโโโโ | 643/1000 [20:59<12:18, 2.07s/it]
64%|โโโโโโโ | 643/1000 [20:59<12:18, 2.07s/it]
64%|โโโโโโโ | 644/1000 [21:00<11:47, 1.99s/it]
64%|โโโโโโโ | 644/1000 [21:00<11:47, 1.99s/it]
64%|โโโโโโโ | 645/1000 [21:02<11:19, 1.91s/it]
64%|โโโโโโโ | 645/1000 [21:02<11:19, 1.91s/it]
65%|โโโโโโโ | 646/1000 [21:04<11:04, 1.88s/it]
65%|โโโโโโโ | 646/1000 [21:04<11:04, 1.88s/it]
65%|โโโโโโโ | 647/1000 [21:06<10:50, 1.84s/it]
65%|โโโโโโโ | 647/1000 [21:06<10:50, 1.84s/it]
65%|โโโโโโโ | 648/1000 [21:08<10:46, 1.84s/it]
65%|โโโโโโโ | 648/1000 [21:08<10:46, 1.84s/it]
65%|โโโโโโโ | 649/1000 [21:09<10:32, 1.80s/it]
65%|โโโโโโโ | 649/1000 [21:09<10:32, 1.80s/it]
65%|โโโโโโโ | 650/1000 [21:11<10:02, 1.72s/it]
65%|โโโโโโโ | 650/1000 [21:11<10:02, 1.72s/it]
65%|โโโโโโโ | 651/1000 [21:12<09:35, 1.65s/it]
65%|โโโโโโโ | 651/1000 [21:12<09:35, 1.65s/it]
65%|โโโโโโโ | 652/1000 [21:14<09:16, 1.60s/it]
65%|โโโโโโโ | 652/1000 [21:14<09:16, 1.60s/it]
65%|โโโโโโโ | 653/1000 [21:15<09:04, 1.57s/it]
65%|โโโโโโโ | 653/1000 [21:15<09:04, 1.57s/it]
65%|โโโโโโโ | 654/1000 [21:17<08:53, 1.54s/it]
65%|โโโโโโโ | 654/1000 [21:17<08:53, 1.54s/it]
66%|โโโโโโโ | 655/1000 [21:18<08:46, 1.53s/it]
66%|โโโโโโโ | 655/1000 [21:18<08:46, 1.53s/it]
66%|โโโโโโโ | 656/1000 [21:20<08:40, 1.51s/it]
66%|โโโโโโโ | 656/1000 [21:20<08:40, 1.51s/it]
66%|โโโโโโโ | 657/1000 [21:21<08:31, 1.49s/it]
66%|โโโโโโโ | 657/1000 [21:21<08:31, 1.49s/it]
66%|โโโโโโโ | 658/1000 [21:22<08:06, 1.42s/it]
66%|โโโโโโโ | 658/1000 [21:22<08:06, 1.42s/it]
66%|โโโโโโโ | 659/1000 [21:24<07:47, 1.37s/it]
66%|โโโโโโโ | 659/1000 [21:24<07:47, 1.37s/it]
66%|โโโโโโโ | 660/1000 [21:25<07:30, 1.32s/it]
66%|โโโโโโโ | 660/1000 [21:25<07:30, 1.32s/it]
66%|โโโโโโโ | 661/1000 [21:26<07:18, 1.29s/it]
66%|โโโโโโโ | 661/1000 [21:26<07:18, 1.29s/it]
66%|โโโโโโโ | 662/1000 [21:27<07:11, 1.28s/it]
66%|โโโโโโโ | 662/1000 [21:27<07:11, 1.28s/it]
66%|โโโโโโโ | 663/1000 [21:29<07:07, 1.27s/it]
66%|โโโโโโโ | 663/1000 [21:29<07:07, 1.27s/it]
66%|โโโโโโโ | 664/1000 [21:30<07:00, 1.25s/it]
66%|โโโโโโโ | 664/1000 [21:30<07:00, 1.25s/it]
66%|โโโโโโโ | 665/1000 [21:31<06:52, 1.23s/it]
66%|โโโโโโโ | 665/1000 [21:31<06:52, 1.23s/it]
67%|โโโโโโโ | 666/1000 [21:32<06:27, 1.16s/it]
67%|โโโโโโโ | 666/1000 [21:32<06:27, 1.16s/it]
67%|โโโโโโโ | 667/1000 [21:33<06:04, 1.09s/it]
67%|โโโโโโโ | 667/1000 [21:33<06:04, 1.09s/it]
67%|โโโโโโโ | 668/1000 [21:34<05:46, 1.04s/it]
67%|โโโโโโโ | 668/1000 [21:34<05:46, 1.04s/it]
67%|โโโโโโโ | 669/1000 [21:35<05:33, 1.01s/it]
67%|โโโโโโโ | 669/1000 [21:35<05:33, 1.01s/it]
67%|โโโโโโโ | 670/1000 [21:36<05:24, 1.02it/s]
67%|โโโโโโโ | 670/1000 [21:36<05:24, 1.02it/s]
67%|โโโโโโโ | 671/1000 [21:37<05:22, 1.02it/s]
67%|โโโโโโโ | 671/1000 [21:37<05:22, 1.02it/s]
67%|โโโโโโโ | 672/1000 [21:37<05:02, 1.08it/s]
67%|โโโโโโโ | 672/1000 [21:38<05:02, 1.08it/s]
67%|โโโโโโโ | 673/1000 [21:38<04:37, 1.18it/s]
67%|โโโโโโโ | 673/1000 [21:38<04:37, 1.18it/s]
67%|โโโโโโโ | 674/1000 [21:39<04:19, 1.26it/s]
67%|โโโโโโโ | 674/1000 [21:39<04:19, 1.26it/s]
68%|โโโโโโโ | 675/1000 [21:41<07:10, 1.33s/it]
68%|โโโโโโโ | 675/1000 [21:41<07:10, 1.33s/it]
68%|โโโโโโโ | 676/1000 [21:48<15:43, 2.91s/it]
68%|โโโโโโโ | 676/1000 [21:48<15:43, 2.91s/it]
68%|โโโโโโโ | 677/1000 [21:52<17:39, 3.28s/it]
68%|โโโโโโโ | 677/1000 [21:52<17:39, 3.28s/it]
68%|โโโโโโโ | 678/1000 [21:56<18:06, 3.37s/it]
68%|โโโโโโโ | 678/1000 [21:56<18:06, 3.37s/it]
68%|โโโโโโโ | 679/1000 [21:59<17:57, 3.36s/it]
68%|โโโโโโโ | 679/1000 [21:59<17:57, 3.36s/it]
68%|โโโโโโโ | 680/1000 [22:02<17:23, 3.26s/it]
68%|โโโโโโโ | 680/1000 [22:02<17:23, 3.26s/it]
68%|โโโโโโโ | 681/1000 [22:05<16:51, 3.17s/it]
68%|โโโโโโโ | 681/1000 [22:05<16:51, 3.17s/it]
68%|โโโโโโโ | 682/1000 [22:08<16:08, 3.05s/it]
68%|โโโโโโโ | 682/1000 [22:08<16:08, 3.05s/it]
68%|โโโโโโโ | 683/1000 [22:11<15:33, 2.95s/it]
68%|โโโโโโโ | 683/1000 [22:11<15:33, 2.95s/it]
68%|โโโโโโโ | 684/1000 [22:13<14:59, 2.85s/it]
68%|โโโโโโโ | 684/1000 [22:13<14:59, 2.85s/it]
68%|โโโโโโโ | 685/1000 [22:16<14:16, 2.72s/it]
68%|โโโโโโโ | 685/1000 [22:16<14:16, 2.72s/it]
69%|โโโโโโโ | 686/1000 [22:18<13:39, 2.61s/it]
69%|โโโโโโโ | 686/1000 [22:18<13:39, 2.61s/it]
69%|โโโโโโโ | 687/1000 [22:20<13:18, 2.55s/it]
69%|โโโโโโโ | 687/1000 [22:20<13:18, 2.55s/it]
69%|โโโโโโโ | 688/1000 [22:23<12:48, 2.46s/it]
69%|โโโโโโโ | 688/1000 [22:23<12:48, 2.46s/it]
69%|โโโโโโโ | 689/1000 [22:25<12:09, 2.34s/it]
69%|โโโโโโโ | 689/1000 [22:25<12:09, 2.34s/it]
69%|โโโโโโโ | 690/1000 [22:27<11:43, 2.27s/it]
69%|โโโโโโโ | 690/1000 [22:27<11:43, 2.27s/it]
69%|โโโโโโโ | 691/1000 [22:29<11:23, 2.21s/it]
69%|โโโโโโโ | 691/1000 [22:29<11:23, 2.21s/it]
69%|โโโโโโโ | 692/1000 [22:31<11:12, 2.18s/it]
69%|โโโโโโโ | 692/1000 [22:31<11:12, 2.18s/it]
69%|โโโโโโโ | 693/1000 [22:33<10:49, 2.12s/it]
69%|โโโโโโโ | 693/1000 [22:33<10:49, 2.12s/it]
69%|โโโโโโโ | 694/1000 [22:35<10:16, 2.01s/it]
69%|โโโโโโโ | 694/1000 [22:35<10:16, 2.01s/it]
70%|โโโโโโโ | 695/1000 [22:36<09:48, 1.93s/it]
70%|โโโโโโโ | 695/1000 [22:36<09:48, 1.93s/it]
70%|โโโโโโโ | 696/1000 [22:38<09:30, 1.88s/it]
70%|โโโโโโโ | 696/1000 [22:38<09:30, 1.88s/it]
70%|โโโโโโโ | 697/1000 [22:40<09:16, 1.84s/it]
70%|โโโโโโโ | 697/1000 [22:40<09:16, 1.84s/it]
70%|โโโโโโโ | 698/1000 [22:42<09:06, 1.81s/it]
70%|โโโโโโโ | 698/1000 [22:42<09:06, 1.81s/it]
70%|โโโโโโโ | 699/1000 [22:43<08:57, 1.79s/it]
70%|โโโโโโโ | 699/1000 [22:43<08:57, 1.79s/it]
70%|โโโโโโโ | 700/1000 [22:45<08:45, 1.75s/it]
70%|โโโโโโโ | 700/1000 [22:45<08:45, 1.75s/it]
70%|โโโโโโโ | 701/1000 [22:47<08:22, 1.68s/it]
70%|โโโโโโโ | 701/1000 [22:47<08:22, 1.68s/it]
70%|โโโโโโโ | 702/1000 [22:48<08:03, 1.62s/it]
70%|โโโโโโโ | 702/1000 [22:48<08:03, 1.62s/it]
70%|โโโโโโโ | 703/1000 [22:50<07:51, 1.59s/it]
70%|โโโโโโโ | 703/1000 [22:50<07:51, 1.59s/it]
70%|โโโโโโโ | 704/1000 [22:51<07:40, 1.56s/it]
70%|โโโโโโโ | 704/1000 [22:51<07:40, 1.56s/it]
70%|โโโโโโโ | 705/1000 [22:53<07:31, 1.53s/it]
70%|โโโโโโโ | 705/1000 [22:53<07:31, 1.53s/it]
71%|โโโโโโโ | 706/1000 [22:54<07:25, 1.51s/it]
71%|โโโโโโโ | 706/1000 [22:54<07:25, 1.51s/it]
71%|โโโโโโโ | 707/1000 [22:55<07:19, 1.50s/it]
71%|โโโโโโโ | 707/1000 [22:55<07:19, 1.50s/it]
71%|โโโโโโโ | 708/1000 [22:57<06:57, 1.43s/it]
71%|โโโโโโโ | 708/1000 [22:57<06:57, 1.43s/it]
71%|โโโโโโโ | 709/1000 [22:58<06:38, 1.37s/it]
71%|โโโโโโโ | 709/1000 [22:58<06:38, 1.37s/it]
71%|โโโโโโโ | 710/1000 [22:59<06:23, 1.32s/it]
71%|โโโโโโโ | 710/1000 [22:59<06:23, 1.32s/it]
71%|โโโโโโโ | 711/1000 [23:00<06:16, 1.30s/it]
71%|โโโโโโโ | 711/1000 [23:00<06:16, 1.30s/it]
71%|โโโโโโโ | 712/1000 [23:02<06:07, 1.28s/it]
71%|โโโโโโโ | 712/1000 [23:02<06:07, 1.28s/it]
71%|โโโโโโโโ | 713/1000 [23:03<06:01, 1.26s/it]
71%|โโโโโโโโ | 713/1000 [23:03<06:01, 1.26s/it]
71%|โโโโโโโโ | 714/1000 [23:04<05:56, 1.24s/it]
71%|โโโโโโโโ | 714/1000 [23:04<05:56, 1.24s/it]
72%|โโโโโโโโ | 715/1000 [23:05<05:55, 1.25s/it]
72%|โโโโโโโโ | 715/1000 [23:05<05:55, 1.25s/it]
72%|โโโโโโโโ | 716/1000 [23:06<05:39, 1.19s/it]
72%|โโโโโโโโ | 716/1000 [23:06<05:39, 1.19s/it]
72%|โโโโโโโโ | 717/1000 [23:07<05:17, 1.12s/it]
72%|โโโโโโโโ | 717/1000 [23:07<05:17, 1.12s/it]
72%|โโโโโโโโ | 718/1000 [23:08<05:00, 1.06s/it]
72%|โโโโโโโโ | 718/1000 [23:08<05:00, 1.06s/it]
72%|โโโโโโโโ | 719/1000 [23:09<04:47, 1.02s/it]
72%|โโโโโโโโ | 719/1000 [23:09<04:47, 1.02s/it]
72%|โโโโโโโโ | 720/1000 [23:10<04:39, 1.00it/s]
72%|โโโโโโโโ | 720/1000 [23:10<04:39, 1.00it/s]
72%|โโโโโโโโ | 721/1000 [23:11<04:34, 1.02it/s]
72%|โโโโโโโโ | 721/1000 [23:11<04:34, 1.02it/s]
72%|โโโโโโโโ | 722/1000 [23:12<04:17, 1.08it/s]
72%|โโโโโโโโ | 722/1000 [23:12<04:17, 1.08it/s]
72%|โโโโโโโโ | 723/1000 [23:13<03:55, 1.17it/s]
72%|โโโโโโโโ | 723/1000 [23:13<03:55, 1.17it/s]
72%|โโโโโโโโ | 724/1000 [23:13<03:39, 1.26it/s]
72%|โโโโโโโโ | 724/1000 [23:13<03:39, 1.26it/s]
72%|โโโโโโโโ | 725/1000 [23:16<06:55, 1.51s/it]
72%|โโโโโโโโ | 725/1000 [23:16<06:55, 1.51s/it]
73%|โโโโโโโโ | 726/1000 [23:28<20:06, 4.40s/it]
73%|โโโโโโโโ | 726/1000 [23:28<20:06, 4.40s/it]
73%|โโโโโโโโ | 727/1000 [23:32<20:15, 4.45s/it]
73%|โโโโโโโโ | 727/1000 [23:32<20:15, 4.45s/it]
73%|โโโโโโโโ | 728/1000 [23:36<19:13, 4.24s/it]
73%|โโโโโโโโ | 728/1000 [23:36<19:13, 4.24s/it]
73%|โโโโโโโโ | 729/1000 [23:39<18:03, 4.00s/it]
73%|โโโโโโโโ | 729/1000 [23:39<18:03, 4.00s/it]
73%|โโโโโโโโ | 730/1000 [23:42<16:42, 3.71s/it]
73%|โโโโโโโโ | 730/1000 [23:42<16:42, 3.71s/it]
73%|โโโโโโโโ | 731/1000 [23:45<15:31, 3.46s/it]
73%|โโโโโโโโ | 731/1000 [23:45<15:31, 3.46s/it]
73%|โโโโโโโโ | 732/1000 [23:48<14:24, 3.22s/it]
73%|โโโโโโโโ | 732/1000 [23:48<14:24, 3.22s/it]
73%|โโโโโโโโ | 733/1000 [23:50<13:26, 3.02s/it]
73%|โโโโโโโโ | 733/1000 [23:50<13:26, 3.02s/it]
73%|โโโโโโโโ | 734/1000 [23:53<12:29, 2.82s/it]
73%|โโโโโโโโ | 734/1000 [23:53<12:29, 2.82s/it]
74%|โโโโโโโโ | 735/1000 [23:55<11:49, 2.68s/it]
74%|โโโโโโโโ | 735/1000 [23:55<11:49, 2.68s/it]
74%|โโโโโโโโ | 736/1000 [23:57<11:20, 2.58s/it]
74%|โโโโโโโโ | 736/1000 [23:58<11:20, 2.58s/it]
74%|โโโโโโโโ | 737/1000 [24:00<10:42, 2.44s/it]
74%|โโโโโโโโ | 737/1000 [24:00<10:42, 2.44s/it]
74%|โโโโโโโโ | 738/1000 [24:02<10:09, 2.33s/it]
74%|โโโโโโโโ | 738/1000 [24:02<10:09, 2.33s/it]
74%|โโโโโโโโ | 739/1000 [24:04<09:47, 2.25s/it]
74%|โโโโโโโโ | 739/1000 [24:04<09:47, 2.25s/it]
74%|โโโโโโโโ | 740/1000 [24:06<09:32, 2.20s/it]
74%|โโโโโโโโ | 740/1000 [24:06<09:32, 2.20s/it]
74%|โโโโโโโโ | 741/1000 [24:08<09:11, 2.13s/it]
74%|โโโโโโโโ | 741/1000 [24:08<09:11, 2.13s/it]
74%|โโโโโโโโ | 742/1000 [24:10<08:40, 2.02s/it]
74%|โโโโโโโโ | 742/1000 [24:10<08:40, 2.02s/it]
74%|โโโโโโโโ | 743/1000 [24:11<08:16, 1.93s/it]
74%|โโโโโโโโ | 743/1000 [24:11<08:16, 1.93s/it]
74%|โโโโโโโโ | 744/1000 [24:13<08:03, 1.89s/it]
74%|โโโโโโโโ | 744/1000 [24:13<08:03, 1.89s/it]
74%|โโโโโโโโ | 745/1000 [24:15<07:50, 1.84s/it]
74%|โโโโโโโโ | 745/1000 [24:15<07:50, 1.84s/it]
75%|โโโโโโโโ | 746/1000 [24:17<07:43, 1.83s/it]
75%|โโโโโโโโ | 746/1000 [24:17<07:43, 1.83s/it]
75%|โโโโโโโโ | 747/1000 [24:18<07:39, 1.81s/it]
75%|โโโโโโโโ | 747/1000 [24:18<07:39, 1.81s/it]
75%|โโโโโโโโ | 748/1000 [24:20<07:15, 1.73s/it]
75%|โโโโโโโโ | 748/1000 [24:20<07:15, 1.73s/it]
75%|โโโโโโโโ | 749/1000 [24:21<06:55, 1.66s/it]
75%|โโโโโโโโ | 749/1000 [24:21<06:55, 1.66s/it]
75%|โโโโโโโโ | 750/1000 [24:23<06:41, 1.61s/it]
75%|โโโโโโโโ | 750/1000 [24:23<06:41, 1.61s/it]
75%|โโโโโโโโ | 751/1000 [24:24<06:30, 1.57s/it]
75%|โโโโโโโโ | 751/1000 [24:24<06:30, 1.57s/it]
75%|โโโโโโโโ | 752/1000 [24:26<06:22, 1.54s/it]
75%|โโโโโโโโ | 752/1000 [24:26<06:22, 1.54s/it]
75%|โโโโโโโโ | 753/1000 [24:27<06:17, 1.53s/it]
75%|โโโโโโโโ | 753/1000 [24:27<06:17, 1.53s/it]
75%|โโโโโโโโ | 754/1000 [24:29<06:44, 1.64s/it]
75%|โโโโโโโโ | 754/1000 [24:29<06:44, 1.64s/it]
76%|โโโโโโโโ | 755/1000 [24:31<06:31, 1.60s/it]
76%|โโโโโโโโ | 755/1000 [24:31<06:31, 1.60s/it]
76%|โโโโโโโโ | 756/1000 [24:32<06:14, 1.53s/it]
76%|โโโโโโโโ | 756/1000 [24:32<06:14, 1.53s/it]
76%|โโโโโโโโ | 757/1000 [24:33<05:49, 1.44s/it]
76%|โโโโโโโโ | 757/1000 [24:33<05:49, 1.44s/it]
76%|โโโโโโโโ | 758/1000 [24:35<05:31, 1.37s/it]
76%|โโโโโโโโ | 758/1000 [24:35<05:31, 1.37s/it]
76%|โโโโโโโโ | 759/1000 [24:36<05:19, 1.33s/it]
76%|โโโโโโโโ | 759/1000 [24:36<05:19, 1.33s/it]
76%|โโโโโโโโ | 760/1000 [24:37<05:10, 1.29s/it]
76%|โโโโโโโโ | 760/1000 [24:37<05:10, 1.29s/it]
76%|โโโโโโโโ | 761/1000 [24:38<05:03, 1.27s/it]
76%|โโโโโโโโ | 761/1000 [24:38<05:03, 1.27s/it]
76%|โโโโโโโโ | 762/1000 [24:39<05:00, 1.26s/it]
76%|โโโโโโโโ | 762/1000 [24:39<05:00, 1.26s/it]
76%|โโโโโโโโ | 763/1000 [24:41<04:59, 1.26s/it]
76%|โโโโโโโโ | 763/1000 [24:41<04:59, 1.26s/it]
76%|โโโโโโโโ | 764/1000 [24:42<04:53, 1.24s/it]
76%|โโโโโโโโ | 764/1000 [24:42<04:53, 1.24s/it]
76%|โโโโโโโโ | 765/1000 [24:43<04:34, 1.17s/it]
76%|โโโโโโโโ | 765/1000 [24:43<04:34, 1.17s/it]
77%|โโโโโโโโ | 766/1000 [24:44<04:16, 1.10s/it]
77%|โโโโโโโโ | 766/1000 [24:44<04:16, 1.10s/it]
77%|โโโโโโโโ | 767/1000 [24:45<04:04, 1.05s/it]
77%|โโโโโโโโ | 767/1000 [24:45<04:04, 1.05s/it]
77%|โโโโโโโโ | 768/1000 [24:46<03:55, 1.01s/it]
77%|โโโโโโโโ | 768/1000 [24:46<03:55, 1.01s/it]
77%|โโโโโโโโ | 769/1000 [24:47<03:48, 1.01it/s]
77%|โโโโโโโโ | 769/1000 [24:47<03:48, 1.01it/s]
77%|โโโโโโโโ | 770/1000 [24:48<03:43, 1.03it/s]
77%|โโโโโโโโ | 770/1000 [24:48<03:43, 1.03it/s]
77%|โโโโโโโโ | 771/1000 [24:48<03:32, 1.08it/s]
77%|โโโโโโโโ | 771/1000 [24:48<03:32, 1.08it/s]
77%|โโโโโโโโ | 772/1000 [24:49<03:14, 1.17it/s]
77%|โโโโโโโโ | 772/1000 [24:49<03:14, 1.17it/s]
77%|โโโโโโโโ | 773/1000 [24:50<03:01, 1.25it/s]
77%|โโโโโโโโ | 773/1000 [24:50<03:01, 1.25it/s]
77%|โโโโโโโโ | 774/1000 [24:50<02:52, 1.31it/s]
77%|โโโโโโโโ | 774/1000 [24:50<02:52, 1.31it/s]
78%|โโโโโโโโ | 775/1000 [24:53<04:59, 1.33s/it]
78%|โโโโโโโโ | 775/1000 [24:53<04:59, 1.33s/it]
78%|โโโโโโโโ | 776/1000 [25:00<11:44, 3.14s/it]
78%|โโโโโโโโ | 776/1000 [25:00<11:44, 3.14s/it]
78%|โโโโโโโโ | 777/1000 [25:05<13:22, 3.60s/it]
78%|โโโโโโโโ | 777/1000 [25:05<13:22, 3.60s/it]
78%|โโโโโโโโ | 778/1000 [25:09<13:38, 3.69s/it]
78%|โโโโโโโโ | 778/1000 [25:09<13:38, 3.69s/it]
78%|โโโโโโโโ | 779/1000 [25:12<13:20, 3.62s/it]
78%|โโโโโโโโ | 779/1000 [25:13<13:20, 3.62s/it]
78%|โโโโโโโโ | 780/1000 [25:16<12:48, 3.49s/it]
78%|โโโโโโโโ | 780/1000 [25:16<12:48, 3.49s/it]
78%|โโโโโโโโ | 781/1000 [25:19<12:04, 3.31s/it]
78%|โโโโโโโโ | 781/1000 [25:19<12:04, 3.31s/it]
78%|โโโโโโโโ | 782/1000 [25:21<11:24, 3.14s/it]
78%|โโโโโโโโ | 782/1000 [25:21<11:24, 3.14s/it]
78%|โโโโโโโโ | 783/1000 [25:24<10:51, 3.00s/it]
78%|โโโโโโโโ | 783/1000 [25:24<10:51, 3.00s/it]
78%|โโโโโโโโ | 784/1000 [25:27<10:18, 2.86s/it]
78%|โโโโโโโโ | 784/1000 [25:27<10:18, 2.86s/it]
78%|โโโโโโโโ | 785/1000 [25:29<09:42, 2.71s/it]
78%|โโโโโโโโ | 785/1000 [25:29<09:42, 2.71s/it]
79%|โโโโโโโโ | 786/1000 [25:31<09:17, 2.60s/it]
79%|โโโโโโโโ | 786/1000 [25:31<09:17, 2.60s/it]
79%|โโโโโโโโ | 787/1000 [25:34<08:53, 2.51s/it]
79%|โโโโโโโโ | 787/1000 [25:34<08:53, 2.51s/it]
79%|โโโโโโโโ | 788/1000 [25:36<08:26, 2.39s/it]
79%|โโโโโโโโ | 788/1000 [25:36<08:26, 2.39s/it]
79%|โโโโโโโโ | 789/1000 [25:38<08:07, 2.31s/it]
79%|โโโโโโโโ | 789/1000 [25:38<08:07, 2.31s/it]
79%|โโโโโโโโ | 790/1000 [25:40<07:53, 2.26s/it]
79%|โโโโโโโโ | 790/1000 [25:40<07:53, 2.26s/it]
79%|โโโโโโโโ | 791/1000 [25:42<07:38, 2.19s/it]
79%|โโโโโโโโ | 791/1000 [25:42<07:38, 2.19s/it]
79%|โโโโโโโโ | 792/1000 [25:44<07:23, 2.13s/it]
79%|โโโโโโโโ | 792/1000 [25:44<07:23, 2.13s/it]
79%|โโโโโโโโ | 793/1000 [25:46<07:04, 2.05s/it]
79%|โโโโโโโโ | 793/1000 [25:46<07:04, 2.05s/it]
79%|โโโโโโโโ | 794/1000 [25:47<06:42, 1.95s/it]
79%|โโโโโโโโ | 794/1000 [25:48<06:42, 1.95s/it]
80%|โโโโโโโโ | 795/1000 [25:49<06:26, 1.89s/it]
80%|โโโโโโโโ | 795/1000 [25:49<06:26, 1.89s/it]
80%|โโโโโโโโ | 796/1000 [25:51<06:16, 1.85s/it]
80%|โโโโโโโโ | 796/1000 [25:51<06:16, 1.85s/it]
80%|โโโโโโโโ | 797/1000 [25:53<06:08, 1.81s/it]
80%|โโโโโโโโ | 797/1000 [25:53<06:08, 1.81s/it]
80%|โโโโโโโโ | 798/1000 [25:54<06:02, 1.79s/it]
80%|โโโโโโโโ | 798/1000 [25:54<06:02, 1.79s/it]
80%|โโโโโโโโ | 799/1000 [25:56<05:56, 1.77s/it]
80%|โโโโโโโโ | 799/1000 [25:56<05:56, 1.77s/it]
80%|โโโโโโโโ | 800/1000 [25:58<05:39, 1.70s/it]
80%|โโโโโโโโ | 800/1000 [25:58<05:39, 1.70s/it]
80%|โโโโโโโโ | 801/1000 [25:59<05:24, 1.63s/it]
80%|โโโโโโโโ | 801/1000 [25:59<05:24, 1.63s/it]
80%|โโโโโโโโ | 802/1000 [26:01<05:13, 1.58s/it]
80%|โโโโโโโโ | 802/1000 [26:01<05:13, 1.58s/it]
80%|โโโโโโโโ | 803/1000 [26:02<05:05, 1.55s/it]
80%|โโโโโโโโ | 803/1000 [26:02<05:05, 1.55s/it]
80%|โโโโโโโโ | 804/1000 [26:04<04:59, 1.53s/it]
80%|โโโโโโโโ | 804/1000 [26:04<04:59, 1.53s/it]
80%|โโโโโโโโ | 805/1000 [26:05<04:55, 1.51s/it]
80%|โโโโโโโโ | 805/1000 [26:05<04:55, 1.51s/it]
81%|โโโโโโโโ | 806/1000 [26:07<04:51, 1.50s/it]
81%|โโโโโโโโ | 806/1000 [26:07<04:51, 1.50s/it]
81%|โโโโโโโโ | 807/1000 [26:08<04:46, 1.48s/it]
81%|โโโโโโโโ | 807/1000 [26:08<04:46, 1.48s/it]
81%|โโโโโโโโ | 808/1000 [26:09<04:35, 1.44s/it]
81%|โโโโโโโโ | 808/1000 [26:09<04:35, 1.44s/it]
81%|โโโโโโโโ | 809/1000 [26:11<04:21, 1.37s/it]
81%|โโโโโโโโ | 809/1000 [26:11<04:21, 1.37s/it]
81%|โโโโโโโโ | 810/1000 [26:12<04:11, 1.32s/it]
81%|โโโโโโโโ | 810/1000 [26:12<04:11, 1.32s/it]
81%|โโโโโโโโ | 811/1000 [26:13<04:04, 1.29s/it]
81%|โโโโโโโโ | 811/1000 [26:13<04:04, 1.29s/it]
81%|โโโโโโโโ | 812/1000 [26:14<03:58, 1.27s/it]
81%|โโโโโโโโ | 812/1000 [26:14<03:58, 1.27s/it]
81%|โโโโโโโโโ | 813/1000 [26:15<03:55, 1.26s/it]
81%|โโโโโโโโโ | 813/1000 [26:15<03:55, 1.26s/it]
81%|โโโโโโโโโ | 814/1000 [26:17<03:53, 1.25s/it]
81%|โโโโโโโโโ | 814/1000 [26:17<03:53, 1.25s/it]
82%|โโโโโโโโโ | 815/1000 [26:18<03:50, 1.24s/it]
82%|โโโโโโโโโ | 815/1000 [26:18<03:50, 1.24s/it]
82%|โโโโโโโโโ | 816/1000 [26:19<03:39, 1.19s/it]
82%|โโโโโโโโโ | 816/1000 [26:19<03:39, 1.19s/it]
82%|โโโโโโโโโ | 817/1000 [26:20<03:24, 1.11s/it]
82%|โโโโโโโโโ | 817/1000 [26:20<03:24, 1.11s/it]
82%|โโโโโโโโโ | 818/1000 [26:21<03:12, 1.06s/it]
82%|โโโโโโโโโ | 818/1000 [26:21<03:12, 1.06s/it]
82%|โโโโโโโโโ | 819/1000 [26:22<03:04, 1.02s/it]
82%|โโโโโโโโโ | 819/1000 [26:22<03:04, 1.02s/it]
82%|โโโโโโโโโ | 820/1000 [26:23<02:58, 1.01it/s]
82%|โโโโโโโโโ | 820/1000 [26:23<02:58, 1.01it/s]
82%|โโโโโโโโโ | 821/1000 [26:24<02:55, 1.02it/s]
82%|โโโโโโโโโ | 821/1000 [26:24<02:55, 1.02it/s]
82%|โโโโโโโโโ | 822/1000 [26:24<02:43, 1.09it/s]
82%|โโโโโโโโโ | 822/1000 [26:24<02:43, 1.09it/s]
82%|โโโโโโโโโ | 823/1000 [26:25<02:29, 1.19it/s]
82%|โโโโโโโโโ | 823/1000 [26:25<02:29, 1.19it/s]
82%|โโโโโโโโโ | 824/1000 [26:26<02:19, 1.26it/s]
82%|โโโโโโโโโ | 824/1000 [26:26<02:19, 1.26it/s]
82%|โโโโโโโโโ | 825/1000 [26:28<03:50, 1.32s/it]
82%|โโโโโโโโโ | 825/1000 [26:28<03:50, 1.32s/it]
83%|โโโโโโโโโ | 826/1000 [26:35<08:50, 3.05s/it]
83%|โโโโโโโโโ | 826/1000 [26:35<08:50, 3.05s/it]
83%|โโโโโโโโโ | 827/1000 [26:40<09:50, 3.41s/it]
83%|โโโโโโโโโ | 827/1000 [26:40<09:50, 3.41s/it]
83%|โโโโโโโโโ | 828/1000 [26:43<09:59, 3.48s/it]
83%|โโโโโโโโโ | 828/1000 [26:43<09:59, 3.48s/it]
83%|โโโโโโโโโ | 829/1000 [26:47<09:51, 3.46s/it]
83%|โโโโโโโโโ | 829/1000 [26:47<09:51, 3.46s/it]
83%|โโโโโโโโโ | 830/1000 [26:50<09:25, 3.33s/it]
83%|โโโโโโโโโ | 830/1000 [26:50<09:25, 3.33s/it]
83%|โโโโโโโโโ | 831/1000 [26:53<08:57, 3.18s/it]
83%|โโโโโโโโโ | 831/1000 [26:53<08:57, 3.18s/it]
83%|โโโโโโโโโ | 832/1000 [26:55<08:30, 3.04s/it]
83%|โโโโโโโโโ | 832/1000 [26:55<08:30, 3.04s/it]
83%|โโโโโโโโโ | 833/1000 [26:58<08:04, 2.90s/it]
83%|โโโโโโโโโ | 833/1000 [26:58<08:04, 2.90s/it]
83%|โโโโโโโโโ | 834/1000 [27:00<07:34, 2.74s/it]
83%|โโโโโโโโโ | 834/1000 [27:00<07:34, 2.74s/it]
84%|โโโโโโโโโ | 835/1000 [27:03<07:14, 2.63s/it]
84%|โโโโโโโโโ | 835/1000 [27:03<07:14, 2.63s/it]
84%|โโโโโโโโโ | 836/1000 [27:05<06:59, 2.56s/it]
84%|โโโโโโโโโ | 836/1000 [27:05<06:59, 2.56s/it]
84%|โโโโโโโโโ | 837/1000 [27:07<06:40, 2.46s/it]
84%|โโโโโโโโโ | 837/1000 [27:07<06:40, 2.46s/it]
84%|โโโโโโโโโ | 838/1000 [27:09<06:21, 2.35s/it]
84%|โโโโโโโโโ | 838/1000 [27:09<06:21, 2.35s/it]
84%|โโโโโโโโโ | 839/1000 [27:11<06:05, 2.27s/it]
84%|โโโโโโโโโ | 839/1000 [27:11<06:05, 2.27s/it]
84%|โโโโโโโโโ | 840/1000 [27:13<05:53, 2.21s/it]
84%|โโโโโโโโโ | 840/1000 [27:13<05:53, 2.21s/it]
84%|โโโโโโโโโ | 841/1000 [27:16<05:45, 2.18s/it]
84%|โโโโโโโโโ | 841/1000 [27:16<05:45, 2.18s/it]
84%|โโโโโโโโโ | 842/1000 [27:17<05:31, 2.10s/it]
84%|โโโโโโโโโ | 842/1000 [27:17<05:31, 2.10s/it]
84%|โโโโโโโโโ | 843/1000 [27:19<05:12, 1.99s/it]
84%|โโโโโโโโโ | 843/1000 [27:19<05:12, 1.99s/it]
84%|โโโโโโโโโ | 844/1000 [27:21<05:00, 1.93s/it]
84%|โโโโโโโโโ | 844/1000 [27:21<05:00, 1.93s/it]
84%|โโโโโโโโโ | 845/1000 [27:23<04:49, 1.87s/it]
84%|โโโโโโโโโ | 845/1000 [27:23<04:49, 1.87s/it]
85%|โโโโโโโโโ | 846/1000 [27:24<04:41, 1.83s/it]
85%|โโโโโโโโโ | 846/1000 [27:24<04:41, 1.83s/it]
85%|โโโโโโโโโ | 847/1000 [27:26<04:37, 1.82s/it]
85%|โโโโโโโโโ | 847/1000 [27:26<04:37, 1.82s/it]
85%|โโโโโโโโโ | 848/1000 [27:28<04:33, 1.80s/it]
85%|โโโโโโโโโ | 848/1000 [27:28<04:33, 1.80s/it]
85%|โโโโโโโโโ | 849/1000 [27:30<04:24, 1.75s/it]
85%|โโโโโโโโโ | 849/1000 [27:30<04:24, 1.75s/it]
85%|โโโโโโโโโ | 850/1000 [27:31<04:12, 1.68s/it]
85%|โโโโโโโโโ | 850/1000 [27:31<04:12, 1.68s/it]
85%|โโโโโโโโโ | 851/1000 [27:33<04:02, 1.62s/it]
85%|โโโโโโโโโ | 851/1000 [27:33<04:02, 1.62s/it]
85%|โโโโโโโโโ | 852/1000 [27:34<03:54, 1.58s/it]
85%|โโโโโโโโโ | 852/1000 [27:34<03:54, 1.58s/it]
85%|โโโโโโโโโ | 853/1000 [27:36<03:48, 1.55s/it]
85%|โโโโโโโโโ | 853/1000 [27:36<03:48, 1.55s/it]
85%|โโโโโโโโโ | 854/1000 [27:37<03:43, 1.53s/it]
85%|โโโโโโโโโ | 854/1000 [27:37<03:43, 1.53s/it]
86%|โโโโโโโโโ | 855/1000 [27:39<03:42, 1.53s/it]
86%|โโโโโโโโโ | 855/1000 [27:39<03:42, 1.53s/it]
86%|โโโโโโโโโ | 856/1000 [27:40<03:38, 1.52s/it]
86%|โโโโโโโโโ | 856/1000 [27:40<03:38, 1.52s/it]
86%|โโโโโโโโโ | 857/1000 [27:41<03:26, 1.44s/it]
86%|โโโโโโโโโ | 857/1000 [27:41<03:26, 1.44s/it]
86%|โโโโโโโโโ | 858/1000 [27:43<03:15, 1.37s/it]
86%|โโโโโโโโโ | 858/1000 [27:43<03:15, 1.37s/it]
86%|โโโโโโโโโ | 859/1000 [27:44<03:06, 1.32s/it]
86%|โโโโโโโโโ | 859/1000 [27:44<03:06, 1.32s/it]
86%|โโโโโโโโโ | 860/1000 [27:45<03:00, 1.29s/it]
86%|โโโโโโโโโ | 860/1000 [27:45<03:00, 1.29s/it]
86%|โโโโโโโโโ | 861/1000 [27:46<02:56, 1.27s/it]
86%|โโโโโโโโโ | 861/1000 [27:46<02:56, 1.27s/it]
86%|โโโโโโโโโ | 862/1000 [27:47<02:53, 1.26s/it]
86%|โโโโโโโโโ | 862/1000 [27:48<02:53, 1.26s/it]
86%|โโโโโโโโโ | 863/1000 [27:49<02:50, 1.25s/it]
86%|โโโโโโโโโ | 863/1000 [27:49<02:50, 1.25s/it]
86%|โโโโโโโโโ | 864/1000 [27:50<02:49, 1.24s/it]
86%|โโโโโโโโโ | 864/1000 [27:50<02:49, 1.24s/it]
86%|โโโโโโโโโ | 865/1000 [27:51<02:41, 1.20s/it]
86%|โโโโโโโโโ | 865/1000 [27:51<02:41, 1.20s/it]
87%|โโโโโโโโโ | 866/1000 [27:52<02:29, 1.11s/it]
87%|โโโโโโโโโ | 866/1000 [27:52<02:29, 1.11s/it]
87%|โโโโโโโโโ | 867/1000 [27:53<02:20, 1.06s/it]
87%|โโโโโโโโโ | 867/1000 [27:53<02:20, 1.06s/it]
87%|โโโโโโโโโ | 868/1000 [27:54<02:14, 1.02s/it]
87%|โโโโโโโโโ | 868/1000 [27:54<02:14, 1.02s/it]
87%|โโโโโโโโโ | 869/1000 [27:55<02:09, 1.01it/s]
87%|โโโโโโโโโ | 869/1000 [27:55<02:09, 1.01it/s]
87%|โโโโโโโโโ | 870/1000 [27:56<02:06, 1.03it/s]
87%|โโโโโโโโโ | 870/1000 [27:56<02:06, 1.03it/s]
87%|โโโโโโโโโ | 871/1000 [27:56<01:59, 1.08it/s]
87%|โโโโโโโโโ | 871/1000 [27:56<01:59, 1.08it/s]
87%|โโโโโโโโโ | 872/1000 [27:57<01:48, 1.18it/s]
87%|โโโโโโโโโ | 872/1000 [27:57<01:48, 1.18it/s]
87%|โโโโโโโโโ | 873/1000 [27:58<01:40, 1.26it/s]
87%|โโโโโโโโโ | 873/1000 [27:58<01:40, 1.26it/s]
87%|โโโโโโโโโ | 874/1000 [27:58<01:35, 1.32it/s]
87%|โโโโโโโโโ | 874/1000 [27:59<01:35, 1.32it/s]
88%|โโโโโโโโโ | 875/1000 [28:01<02:54, 1.40s/it]
88%|โโโโโโโโโ | 875/1000 [28:01<02:54, 1.40s/it]
88%|โโโโโโโโโ | 876/1000 [28:09<06:28, 3.13s/it]
88%|โโโโโโโโโ | 876/1000 [28:09<06:28, 3.13s/it]
88%|โโโโโโโโโ | 877/1000 [28:13<07:03, 3.44s/it]
88%|โโโโโโโโโ | 877/1000 [28:13<07:03, 3.44s/it]
88%|โโโโโโโโโ | 878/1000 [28:16<07:07, 3.51s/it]
88%|โโโโโโโโโ | 878/1000 [28:16<07:07, 3.51s/it]
88%|โโโโโโโโโ | 879/1000 [28:20<07:00, 3.48s/it]
88%|โโโโโโโโโ | 879/1000 [28:20<07:00, 3.48s/it]
88%|โโโโโโโโโ | 880/1000 [28:23<06:42, 3.36s/it]
88%|โโโโโโโโโ | 880/1000 [28:23<06:42, 3.36s/it]
88%|โโโโโโโโโ | 881/1000 [28:26<06:20, 3.20s/it]
88%|โโโโโโโโโ | 881/1000 [28:26<06:20, 3.20s/it]
88%|โโโโโโโโโ | 882/1000 [28:28<05:59, 3.04s/it]
88%|โโโโโโโโโ | 882/1000 [28:28<05:59, 3.04s/it]
88%|โโโโโโโโโ | 883/1000 [28:31<05:39, 2.90s/it]
88%|โโโโโโโโโ | 883/1000 [28:31<05:39, 2.90s/it]
88%|โโโโโโโโโ | 884/1000 [28:33<05:19, 2.76s/it]
88%|โโโโโโโโโ | 884/1000 [28:33<05:19, 2.76s/it]
88%|โโโโโโโโโ | 885/1000 [28:36<05:02, 2.63s/it]
88%|โโโโโโโโโ | 885/1000 [28:36<05:02, 2.63s/it]
89%|โโโโโโโโโ | 886/1000 [28:38<04:48, 2.53s/it]
89%|โโโโโโโโโ | 886/1000 [28:38<04:48, 2.53s/it]
89%|โโโโโโโโโ | 887/1000 [28:40<04:32, 2.41s/it]
89%|โโโโโโโโโ | 887/1000 [28:40<04:32, 2.41s/it]
89%|โโโโโโโโโ | 888/1000 [28:42<04:18, 2.31s/it]
89%|โโโโโโโโโ | 888/1000 [28:42<04:18, 2.31s/it]
89%|โโโโโโโโโ | 889/1000 [28:44<04:07, 2.23s/it]
89%|โโโโโโโโโ | 889/1000 [28:44<04:07, 2.23s/it]
89%|โโโโโโโโโ | 890/1000 [28:46<03:59, 2.18s/it]
89%|โโโโโโโโโ | 890/1000 [28:46<03:59, 2.18s/it]
89%|โโโโโโโโโ | 891/1000 [28:48<03:53, 2.14s/it]
89%|โโโโโโโโโ | 891/1000 [28:48<03:53, 2.14s/it]
89%|โโโโโโโโโ | 892/1000 [28:50<03:45, 2.09s/it]
89%|โโโโโโโโโ | 892/1000 [28:50<03:45, 2.09s/it]
89%|โโโโโโโโโ | 893/1000 [28:52<03:32, 1.98s/it]
89%|โโโโโโโโโ | 893/1000 [28:52<03:32, 1.98s/it]
89%|โโโโโโโโโ | 894/1000 [28:54<03:22, 1.91s/it]
89%|โโโโโโโโโ | 894/1000 [28:54<03:22, 1.91s/it]
90%|โโโโโโโโโ | 895/1000 [28:56<03:15, 1.86s/it]
90%|โโโโโโโโโ | 895/1000 [28:56<03:15, 1.86s/it]
90%|โโโโโโโโโ | 896/1000 [28:57<03:09, 1.82s/it]
90%|โโโโโโโโโ | 896/1000 [28:57<03:09, 1.82s/it]
90%|โโโโโโโโโ | 897/1000 [28:59<03:05, 1.80s/it]
90%|โโโโโโโโโ | 897/1000 [28:59<03:05, 1.80s/it]
90%|โโโโโโโโโ | 898/1000 [29:01<03:01, 1.78s/it]
90%|โโโโโโโโโ | 898/1000 [29:01<03:01, 1.78s/it]
90%|โโโโโโโโโ | 899/1000 [29:02<02:57, 1.76s/it]
90%|โโโโโโโโโ | 899/1000 [29:02<02:57, 1.76s/it]
90%|โโโโโโโโโ | 900/1000 [29:04<02:48, 1.69s/it]
90%|โโโโโโโโโ | 900/1000 [29:04<02:48, 1.69s/it]
90%|โโโโโโโโโ | 901/1000 [29:05<02:40, 1.63s/it]
90%|โโโโโโโโโ | 901/1000 [29:05<02:40, 1.63s/it]
90%|โโโโโโโโโ | 902/1000 [29:07<02:35, 1.59s/it]
90%|โโโโโโโโโ | 902/1000 [29:07<02:35, 1.59s/it]
90%|โโโโโโโโโ | 903/1000 [29:08<02:32, 1.57s/it]
90%|โโโโโโโโโ | 903/1000 [29:09<02:32, 1.57s/it]
90%|โโโโโโโโโ | 904/1000 [29:10<02:28, 1.55s/it]
90%|โโโโโโโโโ | 904/1000 [29:10<02:28, 1.55s/it]
90%|โโโโโโโโโ | 905/1000 [29:11<02:25, 1.53s/it]
90%|โโโโโโโโโ | 905/1000 [29:11<02:25, 1.53s/it]
91%|โโโโโโโโโ | 906/1000 [29:13<02:22, 1.52s/it]
91%|โโโโโโโโโ | 906/1000 [29:13<02:22, 1.52s/it]
91%|โโโโโโโโโ | 907/1000 [29:14<02:18, 1.49s/it]
91%|โโโโโโโโโ | 907/1000 [29:14<02:18, 1.49s/it]
91%|โโโโโโโโโ | 908/1000 [29:16<02:09, 1.41s/it]
91%|โโโโโโโโโ | 908/1000 [29:16<02:09, 1.41s/it]
91%|โโโโโโโโโ | 909/1000 [29:17<02:02, 1.35s/it]
91%|โโโโโโโโโ | 909/1000 [29:17<02:02, 1.35s/it]
91%|โโโโโโโโโ | 910/1000 [29:18<01:58, 1.32s/it]
91%|โโโโโโโโโ | 910/1000 [29:18<01:58, 1.32s/it]
91%|โโโโโโโโโ | 911/1000 [29:19<01:54, 1.29s/it]
91%|โโโโโโโโโ | 911/1000 [29:19<01:54, 1.29s/it]
91%|โโโโโโโโโ | 912/1000 [29:21<01:51, 1.27s/it]
91%|โโโโโโโโโ | 912/1000 [29:21<01:51, 1.27s/it]
91%|โโโโโโโโโโ| 913/1000 [29:22<01:48, 1.25s/it]
91%|โโโโโโโโโโ| 913/1000 [29:22<01:48, 1.25s/it]
91%|โโโโโโโโโโ| 914/1000 [29:23<01:46, 1.24s/it]
91%|โโโโโโโโโโ| 914/1000 [29:23<01:46, 1.24s/it]
92%|โโโโโโโโโโ| 915/1000 [29:24<01:46, 1.25s/it]
92%|โโโโโโโโโโ| 915/1000 [29:24<01:46, 1.25s/it]
92%|โโโโโโโโโโ| 916/1000 [29:25<01:40, 1.20s/it]
92%|โโโโโโโโโโ| 916/1000 [29:25<01:40, 1.20s/it]
92%|โโโโโโโโโโ| 917/1000 [29:26<01:32, 1.12s/it]
92%|โโโโโโโโโโ| 917/1000 [29:26<01:32, 1.12s/it]
92%|โโโโโโโโโโ| 918/1000 [29:27<01:26, 1.06s/it]
92%|โโโโโโโโโโ| 918/1000 [29:27<01:26, 1.06s/it]
92%|โโโโโโโโโโ| 919/1000 [29:28<01:22, 1.02s/it]
92%|โโโโโโโโโโ| 919/1000 [29:28<01:22, 1.02s/it]
92%|โโโโโโโโโโ| 920/1000 [29:29<01:19, 1.01it/s]
92%|โโโโโโโโโโ| 920/1000 [29:29<01:19, 1.01it/s]
92%|โโโโโโโโโโ| 921/1000 [29:30<01:17, 1.03it/s]
92%|โโโโโโโโโโ| 921/1000 [29:30<01:17, 1.03it/s]
92%|โโโโโโโโโโ| 922/1000 [29:31<01:12, 1.07it/s]
92%|โโโโโโโโโโ| 922/1000 [29:31<01:12, 1.07it/s]
92%|โโโโโโโโโโ| 923/1000 [29:31<01:05, 1.17it/s]
92%|โโโโโโโโโโ| 923/1000 [29:31<01:05, 1.17it/s]
92%|โโโโโโโโโโ| 924/1000 [29:32<01:00, 1.25it/s]
92%|โโโโโโโโโโ| 924/1000 [29:32<01:00, 1.25it/s]
92%|โโโโโโโโโโ| 925/1000 [29:35<01:39, 1.32s/it]
92%|โโโโโโโโโโ| 925/1000 [29:35<01:39, 1.32s/it]
93%|โโโโโโโโโโ| 926/1000 [29:43<04:15, 3.45s/it]
93%|โโโโโโโโโโ| 926/1000 [29:43<04:15, 3.45s/it]
93%|โโโโโโโโโโ| 927/1000 [29:47<04:26, 3.66s/it]
93%|โโโโโโโโโโ| 927/1000 [29:47<04:26, 3.66s/it]
93%|โโโโโโโโโโ| 928/1000 [29:51<04:28, 3.73s/it]
93%|โโโโโโโโโโ| 928/1000 [29:51<04:28, 3.73s/it]
93%|โโโโโโโโโโ| 929/1000 [29:54<04:16, 3.61s/it]
93%|โโโโโโโโโโ| 929/1000 [29:54<04:16, 3.61s/it]
93%|โโโโโโโโโโ| 930/1000 [29:57<04:00, 3.44s/it]
93%|โโโโโโโโโโ| 930/1000 [29:57<04:00, 3.44s/it]
93%|โโโโโโโโโโ| 931/1000 [30:00<03:45, 3.26s/it]
93%|โโโโโโโโโโ| 931/1000 [30:00<03:45, 3.26s/it]
93%|โโโโโโโโโโ| 932/1000 [30:03<03:29, 3.08s/it]
93%|โโโโโโโโโโ| 932/1000 [30:03<03:29, 3.08s/it]
93%|โโโโโโโโโโ| 933/1000 [30:06<03:15, 2.92s/it]
93%|โโโโโโโโโโ| 933/1000 [30:06<03:15, 2.92s/it]
93%|โโโโโโโโโโ| 934/1000 [30:08<03:01, 2.75s/it]
93%|โโโโโโโโโโ| 934/1000 [30:08<03:01, 2.75s/it]
94%|โโโโโโโโโโ| 935/1000 [30:10<02:51, 2.64s/it]
94%|โโโโโโโโโโ| 935/1000 [30:10<02:51, 2.64s/it]
94%|โโโโโโโโโโ| 936/1000 [30:13<02:43, 2.55s/it]
94%|โโโโโโโโโโ| 936/1000 [30:13<02:43, 2.55s/it]
94%|โโโโโโโโโโ| 937/1000 [30:15<02:33, 2.43s/it]
94%|โโโโโโโโโโ| 937/1000 [30:15<02:33, 2.43s/it]
94%|โโโโโโโโโโ| 938/1000 [30:17<02:23, 2.32s/it]
94%|โโโโโโโโโโ| 938/1000 [30:17<02:23, 2.32s/it]
94%|โโโโโโโโโโ| 939/1000 [30:19<02:16, 2.24s/it]
94%|โโโโโโโโโโ| 939/1000 [30:19<02:16, 2.24s/it]
94%|โโโโโโโโโโ| 940/1000 [30:21<02:10, 2.18s/it]
94%|โโโโโโโโโโ| 940/1000 [30:21<02:10, 2.18s/it]
94%|โโโโโโโโโโ| 941/1000 [30:23<02:06, 2.14s/it]
94%|โโโโโโโโโโ| 941/1000 [30:23<02:06, 2.14s/it]
94%|โโโโโโโโโโ| 942/1000 [30:25<01:58, 2.05s/it]
94%|โโโโโโโโโโ| 942/1000 [30:25<01:58, 2.05s/it]
94%|โโโโโโโโโโ| 943/1000 [30:27<01:51, 1.96s/it]
94%|โโโโโโโโโโ| 943/1000 [30:27<01:51, 1.96s/it]
94%|โโโโโโโโโโ| 944/1000 [30:28<01:45, 1.89s/it]
94%|โโโโโโโโโโ| 944/1000 [30:28<01:45, 1.89s/it]
94%|โโโโโโโโโโ| 945/1000 [30:30<01:41, 1.85s/it]
94%|โโโโโโโโโโ| 945/1000 [30:30<01:41, 1.85s/it]
95%|โโโโโโโโโโ| 946/1000 [30:32<01:38, 1.82s/it]
95%|โโโโโโโโโโ| 946/1000 [30:32<01:38, 1.82s/it]
95%|โโโโโโโโโโ| 947/1000 [30:34<01:35, 1.80s/it]
95%|โโโโโโโโโโ| 947/1000 [30:34<01:35, 1.80s/it]
95%|โโโโโโโโโโ| 948/1000 [30:35<01:32, 1.78s/it]
95%|โโโโโโโโโโ| 948/1000 [30:35<01:32, 1.78s/it]
95%|โโโโโโโโโโ| 949/1000 [30:37<01:27, 1.71s/it]
95%|โโโโโโโโโโ| 949/1000 [30:37<01:27, 1.71s/it]
95%|โโโโโโโโโโ| 950/1000 [30:38<01:21, 1.64s/it]
95%|โโโโโโโโโโ| 950/1000 [30:38<01:21, 1.64s/it]
95%|โโโโโโโโโโ| 951/1000 [30:40<01:19, 1.61s/it]
95%|โโโโโโโโโโ| 951/1000 [30:40<01:19, 1.61s/it]
95%|โโโโโโโโโโ| 952/1000 [30:41<01:15, 1.57s/it]
95%|โโโโโโโโโโ| 952/1000 [30:41<01:15, 1.57s/it]
95%|โโโโโโโโโโ| 953/1000 [30:43<01:12, 1.55s/it]
95%|โโโโโโโโโโ| 953/1000 [30:43<01:12, 1.55s/it]
95%|โโโโโโโโโโ| 954/1000 [30:44<01:10, 1.53s/it]
95%|โโโโโโโโโโ| 954/1000 [30:44<01:10, 1.53s/it]
96%|โโโโโโโโโโ| 955/1000 [30:46<01:08, 1.52s/it]
96%|โโโโโโโโโโ| 955/1000 [30:46<01:08, 1.52s/it]
96%|โโโโโโโโโโ| 956/1000 [30:47<01:06, 1.50s/it]
96%|โโโโโโโโโโ| 956/1000 [30:47<01:06, 1.50s/it]
96%|โโโโโโโโโโ| 957/1000 [30:49<01:01, 1.43s/it]
96%|โโโโโโโโโโ| 957/1000 [30:49<01:01, 1.43s/it]
96%|โโโโโโโโโโ| 958/1000 [30:50<00:57, 1.36s/it]
96%|โโโโโโโโโโ| 958/1000 [30:50<00:57, 1.36s/it]
96%|โโโโโโโโโโ| 959/1000 [30:51<00:54, 1.32s/it]
96%|โโโโโโโโโโ| 959/1000 [30:51<00:54, 1.32s/it]
96%|โโโโโโโโโโ| 960/1000 [30:52<00:51, 1.29s/it]
96%|โโโโโโโโโโ| 960/1000 [30:52<00:51, 1.29s/it]
96%|โโโโโโโโโโ| 961/1000 [30:53<00:49, 1.27s/it]
96%|โโโโโโโโโโ| 961/1000 [30:53<00:49, 1.27s/it]
96%|โโโโโโโโโโ| 962/1000 [30:55<00:47, 1.26s/it]
96%|โโโโโโโโโโ| 962/1000 [30:55<00:47, 1.26s/it]
96%|โโโโโโโโโโ| 963/1000 [30:56<00:45, 1.24s/it]
96%|โโโโโโโโโโ| 963/1000 [30:56<00:45, 1.24s/it]
96%|โโโโโโโโโโ| 964/1000 [30:57<00:44, 1.24s/it]
96%|โโโโโโโโโโ| 964/1000 [30:57<00:44, 1.24s/it]
96%|โโโโโโโโโโ| 965/1000 [30:58<00:41, 1.20s/it]
96%|โโโโโโโโโโ| 965/1000 [30:58<00:41, 1.20s/it]
97%|โโโโโโโโโโ| 966/1000 [30:59<00:37, 1.12s/it]
97%|โโโโโโโโโโ| 966/1000 [30:59<00:37, 1.12s/it]
97%|โโโโโโโโโโ| 967/1000 [31:00<00:35, 1.06s/it]
97%|โโโโโโโโโโ| 967/1000 [31:00<00:35, 1.06s/it]
97%|โโโโโโโโโโ| 968/1000 [31:01<00:33, 1.04s/it]
97%|โโโโโโโโโโ| 968/1000 [31:01<00:33, 1.04s/it]
97%|โโโโโโโโโโ| 969/1000 [31:02<00:31, 1.01s/it]
97%|โโโโโโโโโโ| 969/1000 [31:02<00:31, 1.01s/it]
97%|โโโโโโโโโโ| 970/1000 [31:03<00:29, 1.01it/s]
97%|โโโโโโโโโโ| 970/1000 [31:03<00:29, 1.01it/s]
97%|โโโโโโโโโโ| 971/1000 [31:04<00:28, 1.03it/s]
97%|โโโโโโโโโโ| 971/1000 [31:04<00:28, 1.03it/s]
97%|โโโโโโโโโโ| 972/1000 [31:05<00:25, 1.09it/s]
97%|โโโโโโโโโโ| 972/1000 [31:05<00:25, 1.09it/s]
97%|โโโโโโโโโโ| 973/1000 [31:05<00:22, 1.19it/s]
97%|โโโโโโโโโโ| 973/1000 [31:05<00:22, 1.19it/s]
97%|โโโโโโโโโโ| 974/1000 [31:06<00:20, 1.27it/s]
97%|โโโโโโโโโโ| 974/1000 [31:06<00:20, 1.27it/s]
98%|โโโโโโโโโโ| 975/1000 [31:08<00:32, 1.31s/it]
98%|โโโโโโโโโโ| 975/1000 [31:08<00:32, 1.31s/it]
98%|โโโโโโโโโโ| 976/1000 [31:15<01:12, 3.00s/it]
98%|โโโโโโโโโโ| 976/1000 [31:15<01:12, 3.00s/it]
98%|โโโโโโโโโโ| 977/1000 [31:20<01:18, 3.41s/it]
98%|โโโโโโโโโโ| 977/1000 [31:20<01:18, 3.41s/it]
98%|โโโโโโโโโโ| 978/1000 [31:24<01:17, 3.53s/it]
98%|โโโโโโโโโโ| 978/1000 [31:24<01:17, 3.53s/it]
98%|โโโโโโโโโโ| 979/1000 [31:27<01:13, 3.48s/it]
98%|โโโโโโโโโโ| 979/1000 [31:27<01:13, 3.48s/it]
98%|โโโโโโโโโโ| 980/1000 [31:30<01:07, 3.38s/it]
98%|โโโโโโโโโโ| 980/1000 [31:30<01:07, 3.38s/it]
98%|โโโโโโโโโโ| 981/1000 [31:33<01:01, 3.25s/it]
98%|โโโโโโโโโโ| 981/1000 [31:33<01:01, 3.25s/it]
98%|โโโโโโโโโโ| 982/1000 [31:36<00:55, 3.09s/it]
98%|โโโโโโโโโโ| 982/1000 [31:36<00:55, 3.09s/it]
98%|โโโโโโโโโโ| 983/1000 [31:38<00:50, 2.96s/it]
98%|โโโโโโโโโโ| 983/1000 [31:38<00:50, 2.96s/it]
98%|โโโโโโโโโโ| 984/1000 [31:41<00:45, 2.85s/it]
98%|โโโโโโโโโโ| 984/1000 [31:41<00:45, 2.85s/it]
98%|โโโโโโโโโโ| 985/1000 [31:43<00:40, 2.70s/it]
98%|โโโโโโโโโโ| 985/1000 [31:43<00:40, 2.70s/it]
99%|โโโโโโโโโโ| 986/1000 [31:46<00:36, 2.60s/it]
99%|โโโโโโโโโโ| 986/1000 [31:46<00:36, 2.60s/it]
99%|โโโโโโโโโโ| 987/1000 [31:48<00:32, 2.52s/it]
99%|โโโโโโโโโโ| 987/1000 [31:48<00:32, 2.52s/it]
99%|โโโโโโโโโโ| 988/1000 [31:50<00:28, 2.41s/it]
99%|โโโโโโโโโโ| 988/1000 [31:50<00:28, 2.41s/it]
99%|โโโโโโโโโโ| 989/1000 [31:52<00:25, 2.30s/it]
99%|โโโโโโโโโโ| 989/1000 [31:52<00:25, 2.30s/it]
99%|โโโโโโโโโโ| 990/1000 [31:54<00:22, 2.23s/it]
99%|โโโโโโโโโโ| 990/1000 [31:54<00:22, 2.23s/it]
99%|โโโโโโโโโโ| 991/1000 [31:56<00:19, 2.17s/it]
99%|โโโโโโโโโโ| 991/1000 [31:56<00:19, 2.17s/it]
99%|โโโโโโโโโโ| 992/1000 [31:58<00:16, 2.12s/it]
99%|โโโโโโโโโโ| 992/1000 [31:58<00:16, 2.12s/it]
99%|โโโโโโโโโโ| 993/1000 [32:00<00:14, 2.02s/it]
99%|โโโโโโโโโโ| 993/1000 [32:00<00:14, 2.02s/it]
99%|โโโโโโโโโโ| 994/1000 [32:02<00:11, 1.94s/it]
99%|โโโโโโโโโโ| 994/1000 [32:02<00:11, 1.94s/it]
100%|โโโโโโโโโโ| 995/1000 [32:04<00:09, 1.89s/it]
100%|โโโโโโโโโโ| 995/1000 [32:04<00:09, 1.89s/it]
100%|โโโโโโโโโโ| 996/1000 [32:05<00:07, 1.85s/it]
100%|โโโโโโโโโโ| 996/1000 [32:05<00:07, 1.85s/it]
100%|โโโโโโโโโโ| 997/1000 [32:07<00:05, 1.82s/it]
100%|โโโโโโโโโโ| 997/1000 [32:07<00:05, 1.82s/it]
100%|โโโโโโโโโโ| 998/1000 [32:09<00:03, 1.81s/it]
100%|โโโโโโโโโโ| 998/1000 [32:09<00:03, 1.81s/it]
100%|โโโโโโโโโโ| 999/1000 [32:11<00:01, 1.77s/it]
100%|โโโโโโโโโโ| 999/1000 [32:11<00:01, 1.77s/it]
100%|โโโโโโโโโโ| 1000/1000 [32:12<00:00, 1.68s/it]
100%|โโโโโโโโโโ| 1000/1000 [32:12<00:00, 1.68s/it]{'loss': 76.924, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
{'loss': 40.9666, 'grad_norm': inf, 'learning_rate': 0.0, 'epoch': 0.0}
{'loss': 40.3514, 'grad_norm': 22.267667770385742, 'learning_rate': 3e-07, 'epoch': 0.0}
{'loss': 28.7886, 'grad_norm': 11.958697319030762, 'learning_rate': 6e-07, 'epoch': 0.01}
{'loss': 33.1337, 'grad_norm': 14.436713218688965, 'learning_rate': 9e-07, 'epoch': 0.01}
{'loss': 29.2715, 'grad_norm': 15.921396255493164, 'learning_rate': 1.2e-06, 'epoch': 0.01}
{'loss': 28.6694, 'grad_norm': 11.616898536682129, 'learning_rate': 1.4999999999999998e-06, 'epoch': 0.01}
{'loss': 26.7664, 'grad_norm': 12.15279483795166, 'learning_rate': 1.8e-06, 'epoch': 0.01}
{'loss': 27.2963, 'grad_norm': 15.99345874786377, 'learning_rate': 2.1e-06, 'epoch': 0.01}
{'loss': 22.7932, 'grad_norm': 10.025712966918945, 'learning_rate': 2.4e-06, 'epoch': 0.02}
{'loss': 20.7226, 'grad_norm': 9.379335403442383, 'learning_rate': 2.6999999999999996e-06, 'epoch': 0.02}
{'loss': 27.5995, 'grad_norm': 12.390824317932129, 'learning_rate': 2.9999999999999997e-06, 'epoch': 0.02}
{'loss': 23.3013, 'grad_norm': 10.201970100402832, 'learning_rate': 3.2999999999999993e-06, 'epoch': 0.02}
{'loss': 24.6987, 'grad_norm': 11.483911514282227, 'learning_rate': 3.6e-06, 'epoch': 0.02}
{'loss': 22.0543, 'grad_norm': 9.661028861999512, 'learning_rate': 3.899999999999999e-06, 'epoch': 0.02}
{'loss': 20.3867, 'grad_norm': 9.904827117919922, 'learning_rate': 4.2e-06, 'epoch': 0.03}
{'loss': 24.6232, 'grad_norm': 10.597962379455566, 'learning_rate': 4.499999999999999e-06, 'epoch': 0.03}
{'loss': 25.3891, 'grad_norm': 12.7444486618042, 'learning_rate': 4.8e-06, 'epoch': 0.03}
{'loss': 21.5661, 'grad_norm': 10.090996742248535, 'learning_rate': 5.1e-06, 'epoch': 0.03}
{'loss': 23.0623, 'grad_norm': 10.649155616760254, 'learning_rate': 5.399999999999999e-06, 'epoch': 0.03}
{'loss': 20.7193, 'grad_norm': 10.286359786987305, 'learning_rate': 5.7e-06, 'epoch': 0.03}
{'loss': 24.0174, 'grad_norm': 10.968955993652344, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.04}
{'loss': 21.454, 'grad_norm': 9.74566650390625, 'learning_rate': 6.3e-06, 'epoch': 0.04}
{'loss': 23.5266, 'grad_norm': 11.162517547607422, 'learning_rate': 6.599999999999999e-06, 'epoch': 0.04}
{'loss': 20.214, 'grad_norm': 9.547463417053223, 'learning_rate': 6.899999999999999e-06, 'epoch': 0.04}
{'loss': 22.6765, 'grad_norm': 10.754602432250977, 'learning_rate': 7.2e-06, 'epoch': 0.04}
{'loss': 20.4099, 'grad_norm': 9.74982738494873, 'learning_rate': 7.499999999999999e-06, 'epoch': 0.04}
{'loss': 21.5807, 'grad_norm': 10.397897720336914, 'learning_rate': 7.799999999999998e-06, 'epoch': 0.04}
{'loss': 23.4123, 'grad_norm': 10.956497192382812, 'learning_rate': 8.099999999999999e-06, 'epoch': 0.05}
{'loss': 21.6038, 'grad_norm': 10.610095977783203, 'learning_rate': 8.4e-06, 'epoch': 0.05}
{'loss': 21.7059, 'grad_norm': 10.559882164001465, 'learning_rate': 8.7e-06, 'epoch': 0.05}
{'loss': 21.5684, 'grad_norm': 10.241806983947754, 'learning_rate': 8.999999999999999e-06, 'epoch': 0.05}
{'loss': 19.0525, 'grad_norm': 9.802021980285645, 'learning_rate': 9.299999999999999e-06, 'epoch': 0.05}
{'loss': 20.7641, 'grad_norm': 10.859997749328613, 'learning_rate': 9.6e-06, 'epoch': 0.05}
{'loss': 21.9332, 'grad_norm': 11.377524375915527, 'learning_rate': 9.9e-06, 'epoch': 0.06}
{'loss': 19.4306, 'grad_norm': 10.088302612304688, 'learning_rate': 1.02e-05, 'epoch': 0.06}
{'loss': 23.6146, 'grad_norm': 12.069904327392578, 'learning_rate': 1.05e-05, 'epoch': 0.06}
{'loss': 22.8087, 'grad_norm': 12.05452823638916, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.06}
{'loss': 21.6699, 'grad_norm': 12.891792297363281, 'learning_rate': 1.1099999999999999e-05, 'epoch': 0.06}
{'loss': 19.0892, 'grad_norm': 10.262922286987305, 'learning_rate': 1.14e-05, 'epoch': 0.06}
{'loss': 21.5905, 'grad_norm': 11.921724319458008, 'learning_rate': 1.17e-05, 'epoch': 0.07}
{'loss': 20.87, 'grad_norm': 11.676680564880371, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.07}
{'loss': 18.0263, 'grad_norm': 10.26872730255127, 'learning_rate': 1.2299999999999999e-05, 'epoch': 0.07}
{'loss': 18.7622, 'grad_norm': 10.563227653503418, 'learning_rate': 1.26e-05, 'epoch': 0.07}
{'loss': 24.0105, 'grad_norm': 14.507094383239746, 'learning_rate': 1.2899999999999998e-05, 'epoch': 0.07}
{'loss': 19.3601, 'grad_norm': 11.43386173248291, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.07}
{'loss': 19.0576, 'grad_norm': 11.63315200805664, 'learning_rate': 1.3499999999999998e-05, 'epoch': 0.08}
{'loss': 19.2927, 'grad_norm': 12.388842582702637, 'learning_rate': 1.3799999999999998e-05, 'epoch': 0.08}
{'loss': 19.936, 'grad_norm': 12.819602966308594, 'learning_rate': 1.4099999999999999e-05, 'epoch': 0.08}
{'loss': 17.9793, 'grad_norm': nan, 'learning_rate': 1.4099999999999999e-05, 'epoch': 0.08}
{'loss': 64.1187, 'grad_norm': 65.82632446289062, 'learning_rate': 1.44e-05, 'epoch': 0.08}
{'loss': 33.92, 'grad_norm': 26.94750213623047, 'learning_rate': 1.47e-05, 'epoch': 0.08}
{'loss': 34.5358, 'grad_norm': 24.70115852355957, 'learning_rate': 1.4999999999999999e-05, 'epoch': 0.08}
{'loss': 25.5629, 'grad_norm': 18.708255767822266, 'learning_rate': 1.53e-05, 'epoch': 0.09}
{'loss': 27.8492, 'grad_norm': 21.256839752197266, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.09}
{'loss': 22.1176, 'grad_norm': 17.251680374145508, 'learning_rate': 1.5899999999999997e-05, 'epoch': 0.09}
{'loss': 26.8606, 'grad_norm': 31.902353286743164, 'learning_rate': 1.6199999999999997e-05, 'epoch': 0.09}
{'loss': 23.1075, 'grad_norm': 20.44807243347168, 'learning_rate': 1.6499999999999998e-05, 'epoch': 0.09}
{'loss': 21.0526, 'grad_norm': 17.042905807495117, 'learning_rate': 1.68e-05, 'epoch': 0.09}
{'loss': 20.8373, 'grad_norm': 18.13207244873047, 'learning_rate': 1.71e-05, 'epoch': 0.1}
{'loss': 21.2095, 'grad_norm': 17.839736938476562, 'learning_rate': 1.74e-05, 'epoch': 0.1}
{'loss': 21.5782, 'grad_norm': 18.765409469604492, 'learning_rate': 1.7699999999999997e-05, 'epoch': 0.1}
{'loss': 21.009, 'grad_norm': 18.407758712768555, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.1}
{'loss': 21.9343, 'grad_norm': 38.16777038574219, 'learning_rate': 1.8299999999999998e-05, 'epoch': 0.1}
{'loss': 22.2912, 'grad_norm': 21.490079879760742, 'learning_rate': 1.8599999999999998e-05, 'epoch': 0.1}
{'loss': 20.3447, 'grad_norm': 22.932668685913086, 'learning_rate': 1.89e-05, 'epoch': 0.11}
{'loss': 23.8814, 'grad_norm': 26.10978126525879, 'learning_rate': 1.92e-05, 'epoch': 0.11}
{'loss': 18.7612, 'grad_norm': 18.075897216796875, 'learning_rate': 1.95e-05, 'epoch': 0.11}
{'loss': 18.8199, 'grad_norm': 18.735963821411133, 'learning_rate': 1.98e-05, 'epoch': 0.11}
{'loss': 20.6774, 'grad_norm': 22.017709732055664, 'learning_rate': 2.01e-05, 'epoch': 0.11}
{'loss': 30.1672, 'grad_norm': 38.08246994018555, 'learning_rate': 2.04e-05, 'epoch': 0.11}
{'loss': 20.0791, 'grad_norm': 22.627145767211914, 'learning_rate': 2.07e-05, 'epoch': 0.12}
{'loss': 23.1779, 'grad_norm': 30.097496032714844, 'learning_rate': 2.1e-05, 'epoch': 0.12}
{'loss': 19.4401, 'grad_norm': 22.679004669189453, 'learning_rate': 2.1299999999999996e-05, 'epoch': 0.12}
{'loss': 19.3537, 'grad_norm': 24.041168212890625, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.12}
{'loss': 20.2714, 'grad_norm': 26.076839447021484, 'learning_rate': 2.1899999999999997e-05, 'epoch': 0.12}
{'loss': 19.6379, 'grad_norm': 25.533342361450195, 'learning_rate': 2.2199999999999998e-05, 'epoch': 0.12}
{'loss': 18.0205, 'grad_norm': 23.547039031982422, 'learning_rate': 2.2499999999999998e-05, 'epoch': 0.12}
{'loss': 17.6504, 'grad_norm': 23.1020565032959, 'learning_rate': 2.28e-05, 'epoch': 0.13}
{'loss': 19.9713, 'grad_norm': 28.12115478515625, 'learning_rate': 2.31e-05, 'epoch': 0.13}
{'loss': 17.293, 'grad_norm': 24.276756286621094, 'learning_rate': 2.34e-05, 'epoch': 0.13}
{'loss': 15.7224, 'grad_norm': 21.40571403503418, 'learning_rate': 2.3699999999999997e-05, 'epoch': 0.13}
{'loss': 16.4272, 'grad_norm': 24.049413681030273, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.13}
{'loss': 17.5712, 'grad_norm': 27.002574920654297, 'learning_rate': 2.4299999999999998e-05, 'epoch': 0.13}
{'loss': 19.1111, 'grad_norm': 31.374860763549805, 'learning_rate': 2.4599999999999998e-05, 'epoch': 0.14}
{'loss': 17.1805, 'grad_norm': 28.4317684173584, 'learning_rate': 2.49e-05, 'epoch': 0.14}
{'loss': 18.6232, 'grad_norm': 32.47872543334961, 'learning_rate': 2.52e-05, 'epoch': 0.14}
{'loss': 16.3721, 'grad_norm': 28.26717185974121, 'learning_rate': 2.55e-05, 'epoch': 0.14}
{'loss': 16.6354, 'grad_norm': 29.546110153198242, 'learning_rate': 2.5799999999999997e-05, 'epoch': 0.14}
{'loss': 16.9808, 'grad_norm': 32.13431930541992, 'learning_rate': 2.6099999999999997e-05, 'epoch': 0.14}
{'loss': 17.5935, 'grad_norm': 36.368682861328125, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.15}
{'loss': 14.6106, 'grad_norm': 28.789241790771484, 'learning_rate': 2.6699999999999995e-05, 'epoch': 0.15}
{'loss': 14.5306, 'grad_norm': 30.914873123168945, 'learning_rate': 2.6999999999999996e-05, 'epoch': 0.15}
{'loss': 14.7256, 'grad_norm': 31.848777770996094, 'learning_rate': 2.7299999999999996e-05, 'epoch': 0.15}
{'loss': 16.3519, 'grad_norm': 43.699851989746094, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.15}
{'loss': 15.9264, 'grad_norm': 39.825836181640625, 'learning_rate': 2.7899999999999997e-05, 'epoch': 0.15}
{'loss': 13.4326, 'grad_norm': 32.04133224487305, 'learning_rate': 2.8199999999999998e-05, 'epoch': 0.16}
{'loss': 14.3427, 'grad_norm': 39.8133659362793, 'learning_rate': 2.8499999999999998e-05, 'epoch': 0.16}
{'loss': 13.5702, 'grad_norm': 36.54108810424805, 'learning_rate': 2.88e-05, 'epoch': 0.16}
{'loss': 14.6284, 'grad_norm': nan, 'learning_rate': 2.88e-05, 'epoch': 0.16}
{'loss': 25.1519, 'grad_norm': nan, 'learning_rate': 2.88e-05, 'epoch': 0.16}
{'loss': 26.3907, 'grad_norm': 146.48204040527344, 'learning_rate': 2.91e-05, 'epoch': 0.16}
{'loss': 17.1257, 'grad_norm': 56.64327621459961, 'learning_rate': 2.94e-05, 'epoch': 0.16}
{'loss': 18.9131, 'grad_norm': 87.11421966552734, 'learning_rate': 2.97e-05, 'epoch': 0.17}
{'loss': 15.569, 'grad_norm': 57.33453369140625, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.17}
{'loss': 13.1879, 'grad_norm': 46.68961715698242, 'learning_rate': 3.0299999999999998e-05, 'epoch': 0.17}
{'loss': 14.6438, 'grad_norm': 59.92051315307617, 'learning_rate': 3.06e-05, 'epoch': 0.17}
{'loss': 14.3459, 'grad_norm': 57.27889633178711, 'learning_rate': 3.09e-05, 'epoch': 0.17}
{'loss': 12.7327, 'grad_norm': 51.79650115966797, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.17}
{'loss': 10.6128, 'grad_norm': 45.90155029296875, 'learning_rate': 3.149999999999999e-05, 'epoch': 0.18}
{'loss': 11.1419, 'grad_norm': 46.71571350097656, 'learning_rate': 3.1799999999999994e-05, 'epoch': 0.18}
{'loss': 11.3816, 'grad_norm': 54.34334182739258, 'learning_rate': 3.2099999999999994e-05, 'epoch': 0.18}
{'loss': 9.99, 'grad_norm': 44.52326965332031, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.18}
{'loss': 10.7379, 'grad_norm': 51.66781997680664, 'learning_rate': 3.2699999999999995e-05, 'epoch': 0.18}
{'loss': 9.5815, 'grad_norm': 44.501441955566406, 'learning_rate': 3.2999999999999996e-05, 'epoch': 0.18}
{'loss': 9.265, 'grad_norm': 42.56653594970703, 'learning_rate': 3.3299999999999996e-05, 'epoch': 0.19}
{'loss': 8.6506, 'grad_norm': 40.3764762878418, 'learning_rate': 3.36e-05, 'epoch': 0.19}
{'loss': 8.5488, 'grad_norm': 40.9335823059082, 'learning_rate': 3.39e-05, 'epoch': 0.19}
{'loss': 8.5519, 'grad_norm': 42.77170181274414, 'learning_rate': 3.42e-05, 'epoch': 0.19}
{'loss': 8.0759, 'grad_norm': 39.98923873901367, 'learning_rate': 3.45e-05, 'epoch': 0.19}
{'loss': 7.3643, 'grad_norm': 33.6198844909668, 'learning_rate': 3.48e-05, 'epoch': 0.19}
{'loss': 7.4889, 'grad_norm': 36.385223388671875, 'learning_rate': 3.51e-05, 'epoch': 0.2}
{'loss': 7.0802, 'grad_norm': 34.519630432128906, 'learning_rate': 3.539999999999999e-05, 'epoch': 0.2}
{'loss': 6.8235, 'grad_norm': 31.894567489624023, 'learning_rate': 3.5699999999999994e-05, 'epoch': 0.2}
{'loss': 6.9291, 'grad_norm': 34.02376174926758, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.2}
{'loss': 6.4299, 'grad_norm': 28.912235260009766, 'learning_rate': 3.6299999999999995e-05, 'epoch': 0.2}
{'loss': 6.3964, 'grad_norm': 28.84571647644043, 'learning_rate': 3.6599999999999995e-05, 'epoch': 0.2}
{'loss': 6.2274, 'grad_norm': 27.383811950683594, 'learning_rate': 3.6899999999999996e-05, 'epoch': 0.2}
{'loss': 6.0653, 'grad_norm': 29.78708267211914, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.21}
{'loss': 6.2053, 'grad_norm': 28.544218063354492, 'learning_rate': 3.75e-05, 'epoch': 0.21}
{'loss': 5.7141, 'grad_norm': 22.004798889160156, 'learning_rate': 3.78e-05, 'epoch': 0.21}
{'loss': 5.6288, 'grad_norm': 20.87236785888672, 'learning_rate': 3.81e-05, 'epoch': 0.21}
{'loss': 5.5556, 'grad_norm': 21.300033569335938, 'learning_rate': 3.84e-05, 'epoch': 0.21}
{'loss': 5.4672, 'grad_norm': 19.316028594970703, 'learning_rate': 3.87e-05, 'epoch': 0.21}
{'loss': 5.4904, 'grad_norm': 19.701513290405273, 'learning_rate': 3.9e-05, 'epoch': 0.22}
{'loss': 5.1972, 'grad_norm': 13.995134353637695, 'learning_rate': 3.93e-05, 'epoch': 0.22}
{'loss': 5.1985, 'grad_norm': 14.500862121582031, 'learning_rate': 3.96e-05, 'epoch': 0.22}
{'loss': 5.0034, 'grad_norm': 10.669529914855957, 'learning_rate': 3.99e-05, 'epoch': 0.22}
{'loss': 4.9248, 'grad_norm': 8.051897048950195, 'learning_rate': 4.02e-05, 'epoch': 0.22}
{'loss': 5.0594, 'grad_norm': 11.402167320251465, 'learning_rate': 4.05e-05, 'epoch': 0.22}
{'loss': 5.037, 'grad_norm': 10.03395938873291, 'learning_rate': 4.08e-05, 'epoch': 0.23}
{'loss': 4.9605, 'grad_norm': 8.426224708557129, 'learning_rate': 4.11e-05, 'epoch': 0.23}
{'loss': 4.7972, 'grad_norm': 4.501130104064941, 'learning_rate': 4.14e-05, 'epoch': 0.23}
{'loss': 4.8065, 'grad_norm': 4.365025520324707, 'learning_rate': 4.17e-05, 'epoch': 0.23}
{'loss': 4.8179, 'grad_norm': 4.868807792663574, 'learning_rate': 4.2e-05, 'epoch': 0.23}
{'loss': 4.7889, 'grad_norm': 3.3663101196289062, 'learning_rate': 4.229999999999999e-05, 'epoch': 0.23}
{'loss': 4.702, 'grad_norm': 3.2163665294647217, 'learning_rate': 4.259999999999999e-05, 'epoch': 0.24}
{'loss': 4.7035, 'grad_norm': 3.1945879459381104, 'learning_rate': 4.289999999999999e-05, 'epoch': 0.24}
{'loss': 4.7546, 'grad_norm': 4.427632808685303, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.24}
{'loss': 4.9709, 'grad_norm': 5.550114631652832, 'learning_rate': 4.3499999999999993e-05, 'epoch': 0.24}
{'loss': 5.9402, 'grad_norm': 53.31546401977539, 'learning_rate': 4.3799999999999994e-05, 'epoch': 0.24}
{'loss': 4.5481, 'grad_norm': 7.296631336212158, 'learning_rate': 4.4099999999999995e-05, 'epoch': 0.24}
{'loss': 4.4998, 'grad_norm': 5.802248954772949, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.24}
{'loss': 4.4536, 'grad_norm': 3.7592978477478027, 'learning_rate': 4.4699999999999996e-05, 'epoch': 0.25}
{'loss': 4.391, 'grad_norm': 3.3045403957366943, 'learning_rate': 4.4999999999999996e-05, 'epoch': 0.25}
{'loss': 4.459, 'grad_norm': 5.204708099365234, 'learning_rate': 4.5299999999999997e-05, 'epoch': 0.25}
{'loss': 4.3071, 'grad_norm': 4.284322261810303, 'learning_rate': 4.56e-05, 'epoch': 0.25}
{'loss': 4.3388, 'grad_norm': 3.191441059112549, 'learning_rate': 4.59e-05, 'epoch': 0.25}
{'loss': 4.2491, 'grad_norm': 3.909501552581787, 'learning_rate': 4.62e-05, 'epoch': 0.25}
{'loss': 4.3493, 'grad_norm': 3.5245823860168457, 'learning_rate': 4.65e-05, 'epoch': 0.26}
{'loss': 4.2599, 'grad_norm': 2.955253839492798, 'learning_rate': 4.68e-05, 'epoch': 0.26}
{'loss': 4.161, 'grad_norm': 3.2109367847442627, 'learning_rate': 4.709999999999999e-05, 'epoch': 0.26}
{'loss': 4.1815, 'grad_norm': 2.6348652839660645, 'learning_rate': 4.7399999999999993e-05, 'epoch': 0.26}
{'loss': 4.0801, 'grad_norm': 2.593337297439575, 'learning_rate': 4.7699999999999994e-05, 'epoch': 0.26}
{'loss': 4.1635, 'grad_norm': 3.77801251411438, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.26}
{'loss': 4.0901, 'grad_norm': 2.2782046794891357, 'learning_rate': 4.8299999999999995e-05, 'epoch': 0.27}
{'loss': 4.0705, 'grad_norm': 1.8724416494369507, 'learning_rate': 4.8599999999999995e-05, 'epoch': 0.27}
{'loss': 4.0042, 'grad_norm': 1.7749762535095215, 'learning_rate': 4.8899999999999996e-05, 'epoch': 0.27}
{'loss': 4.0104, 'grad_norm': 1.4947004318237305, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.27}
{'loss': 4.0004, 'grad_norm': 3.1837706565856934, 'learning_rate': 4.95e-05, 'epoch': 0.27}
{'loss': 3.9682, 'grad_norm': 1.914663553237915, 'learning_rate': 4.98e-05, 'epoch': 0.27}
{'loss': 3.9609, 'grad_norm': 1.708173394203186, 'learning_rate': 5.01e-05, 'epoch': 0.28}
{'loss': 3.9917, 'grad_norm': 4.2649407386779785, 'learning_rate': 5.04e-05, 'epoch': 0.28}
{'loss': 3.9464, 'grad_norm': 1.626754641532898, 'learning_rate': 5.07e-05, 'epoch': 0.28}
{'loss': 3.9311, 'grad_norm': 1.2504980564117432, 'learning_rate': 5.1e-05, 'epoch': 0.28}
{'loss': 3.9733, 'grad_norm': 1.5902968645095825, 'learning_rate': 5.13e-05, 'epoch': 0.28}
{'loss': 3.9358, 'grad_norm': 1.160041093826294, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.28}
{'loss': 3.9375, 'grad_norm': 1.2470163106918335, 'learning_rate': 5.1899999999999994e-05, 'epoch': 0.28}
{'loss': 3.9701, 'grad_norm': 1.0665581226348877, 'learning_rate': 5.2199999999999995e-05, 'epoch': 0.29}
{'loss': 3.8957, 'grad_norm': 1.6660319566726685, 'learning_rate': 5.2499999999999995e-05, 'epoch': 0.29}
{'loss': 3.9527, 'grad_norm': 1.1934682130813599, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.29}
{'loss': 3.9198, 'grad_norm': 2.6113617420196533, 'learning_rate': 5.309999999999999e-05, 'epoch': 0.29}
{'loss': 3.8525, 'grad_norm': 1.4902148246765137, 'learning_rate': 5.339999999999999e-05, 'epoch': 0.29}
{'loss': 3.8462, 'grad_norm': 1.645369529724121, 'learning_rate': 5.369999999999999e-05, 'epoch': 0.29}
{'loss': 3.9076, 'grad_norm': 1.7309008836746216, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.3}
{'loss': 3.9207, 'grad_norm': 1.9582569599151611, 'learning_rate': 5.429999999999999e-05, 'epoch': 0.3}
{'loss': 3.9195, 'grad_norm': 1.795342206954956, 'learning_rate': 5.459999999999999e-05, 'epoch': 0.3}
{'loss': 3.8484, 'grad_norm': 0.6605049967765808, 'learning_rate': 5.489999999999999e-05, 'epoch': 0.3}
{'loss': 3.8709, 'grad_norm': 1.3379170894622803, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.3}
{'loss': 3.8463, 'grad_norm': 2.7950329780578613, 'learning_rate': 5.5499999999999994e-05, 'epoch': 0.3}
{'loss': 4.0707, 'grad_norm': 4.116920471191406, 'learning_rate': 5.5799999999999994e-05, 'epoch': 0.31}
{'loss': 3.9311, 'grad_norm': 1.450844168663025, 'learning_rate': 5.6099999999999995e-05, 'epoch': 0.31}
{'loss': 4.0222, 'grad_norm': 3.2481865882873535, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.31}
{'loss': 3.9005, 'grad_norm': 1.377772331237793, 'learning_rate': 5.6699999999999996e-05, 'epoch': 0.31}
{'loss': 3.9021, 'grad_norm': 2.0002799034118652, 'learning_rate': 5.6999999999999996e-05, 'epoch': 0.31}
{'loss': 3.8869, 'grad_norm': 2.1365325450897217, 'learning_rate': 5.73e-05, 'epoch': 0.31}
{'loss': 3.8563, 'grad_norm': 2.5995476245880127, 'learning_rate': 5.76e-05, 'epoch': 0.32}
{'loss': 3.9452, 'grad_norm': 3.046848773956299, 'learning_rate': 5.79e-05, 'epoch': 0.32}
{'loss': 3.9164, 'grad_norm': 2.9868597984313965, 'learning_rate': 5.82e-05, 'epoch': 0.32}
{'loss': 3.8911, 'grad_norm': nan, 'learning_rate': 5.82e-05, 'epoch': 0.32}
{'loss': 4.3327, 'grad_norm': 22.723224639892578, 'learning_rate': 5.85e-05, 'epoch': 0.32}
{'loss': 4.0732, 'grad_norm': 14.148520469665527, 'learning_rate': 5.88e-05, 'epoch': 0.32}
{'loss': 4.0389, 'grad_norm': 12.10940170288086, 'learning_rate': 5.91e-05, 'epoch': 0.32}
{'loss': 3.938, 'grad_norm': 7.240406513214111, 'learning_rate': 5.94e-05, 'epoch': 0.33}
{'loss': 3.911, 'grad_norm': 4.678879261016846, 'learning_rate': 5.97e-05, 'epoch': 0.33}
{'loss': 3.9436, 'grad_norm': 2.724951982498169, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.33}
{'loss': 3.8465, 'grad_norm': 4.7506279945373535, 'learning_rate': 6.0299999999999995e-05, 'epoch': 0.33}
{'loss': 3.932, 'grad_norm': 2.6390953063964844, 'learning_rate': 6.0599999999999996e-05, 'epoch': 0.33}
{'loss': 3.8498, 'grad_norm': 3.661578893661499, 'learning_rate': 6.0899999999999996e-05, 'epoch': 0.33}
{'loss': 3.9245, 'grad_norm': 2.446004867553711, 'learning_rate': 6.12e-05, 'epoch': 0.34}
{'loss': 4.0049, 'grad_norm': 1.197083592414856, 'learning_rate': 6.149999999999999e-05, 'epoch': 0.34}
{'loss': 3.8129, 'grad_norm': 3.957880735397339, 'learning_rate': 6.18e-05, 'epoch': 0.34}
{'loss': 3.8419, 'grad_norm': 2.243058681488037, 'learning_rate': 6.209999999999999e-05, 'epoch': 0.34}
{'loss': 3.8015, 'grad_norm': 0.8457456827163696, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.34}
{'loss': 3.7757, 'grad_norm': 2.7040092945098877, 'learning_rate': 6.269999999999999e-05, 'epoch': 0.34}
{'loss': 3.748, 'grad_norm': 2.867565155029297, 'learning_rate': 6.299999999999999e-05, 'epoch': 0.35}
{'loss': 4.0417, 'grad_norm': 9.108602523803711, 'learning_rate': 6.33e-05, 'epoch': 0.35}
{'loss': 3.7908, 'grad_norm': 2.7541725635528564, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.35}
{'loss': 3.7637, 'grad_norm': 1.1848869323730469, 'learning_rate': 6.39e-05, 'epoch': 0.35}
{'loss': 3.8055, 'grad_norm': 0.6500396132469177, 'learning_rate': 6.419999999999999e-05, 'epoch': 0.35}
{'loss': 3.7637, 'grad_norm': 2.706550359725952, 'learning_rate': 6.45e-05, 'epoch': 0.35}
{'loss': 3.7861, 'grad_norm': 5.064160346984863, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.36}
{'loss': 3.7752, 'grad_norm': 3.20385479927063, 'learning_rate': 6.51e-05, 'epoch': 0.36}
{'loss': 3.7934, 'grad_norm': 2.3726119995117188, 'learning_rate': 6.539999999999999e-05, 'epoch': 0.36}
{'loss': 3.8806, 'grad_norm': 1.985705852508545, 'learning_rate': 6.57e-05, 'epoch': 0.36}
{'loss': 3.7576, 'grad_norm': 0.669208288192749, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.36}
{'loss': 3.7382, 'grad_norm': 1.7072322368621826, 'learning_rate': 6.63e-05, 'epoch': 0.36}
{'loss': 3.8001, 'grad_norm': 2.339816093444824, 'learning_rate': 6.659999999999999e-05, 'epoch': 0.36}
{'loss': 3.7473, 'grad_norm': 0.6553944945335388, 'learning_rate': 6.69e-05, 'epoch': 0.37}
{'loss': 3.79, 'grad_norm': 1.8117849826812744, 'learning_rate': 6.72e-05, 'epoch': 0.37}
{'loss': 3.7968, 'grad_norm': 1.0229136943817139, 'learning_rate': 6.75e-05, 'epoch': 0.37}
{'loss': 3.7716, 'grad_norm': 1.6037867069244385, 'learning_rate': 6.78e-05, 'epoch': 0.37}
{'loss': 3.8464, 'grad_norm': 1.716901183128357, 'learning_rate': 6.81e-05, 'epoch': 0.37}
{'loss': 3.8106, 'grad_norm': 9.919891357421875, 'learning_rate': 6.84e-05, 'epoch': 0.37}
{'loss': 3.7871, 'grad_norm': 1.2543926239013672, 'learning_rate': 6.87e-05, 'epoch': 0.38}
{'loss': 3.9449, 'grad_norm': 5.111069202423096, 'learning_rate': 6.9e-05, 'epoch': 0.38}
{'loss': 3.784, 'grad_norm': 0.940678060054779, 'learning_rate': 6.93e-05, 'epoch': 0.38}
{'loss': 3.8137, 'grad_norm': 0.9248812794685364, 'learning_rate': 6.96e-05, 'epoch': 0.38}
{'loss': 3.7626, 'grad_norm': 0.8821243643760681, 'learning_rate': 6.989999999999999e-05, 'epoch': 0.38}
{'loss': 3.7819, 'grad_norm': 1.0918103456497192, 'learning_rate': 7.02e-05, 'epoch': 0.38}
{'loss': 3.7891, 'grad_norm': 0.6585227251052856, 'learning_rate': 7.049999999999999e-05, 'epoch': 0.39}
{'loss': 3.7803, 'grad_norm': 3.0343358516693115, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.39}
{'loss': 3.8404, 'grad_norm': 2.1487510204315186, 'learning_rate': 7.11e-05, 'epoch': 0.39}
{'loss': 3.7602, 'grad_norm': 1.0203007459640503, 'learning_rate': 7.139999999999999e-05, 'epoch': 0.39}
{'loss': 3.7826, 'grad_norm': 0.8433353900909424, 'learning_rate': 7.17e-05, 'epoch': 0.39}
{'loss': 3.7436, 'grad_norm': 2.8857128620147705, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.39}
{'loss': 4.0391, 'grad_norm': 6.611523628234863, 'learning_rate': 7.23e-05, 'epoch': 0.4}
{'loss': 3.8167, 'grad_norm': 0.7234116196632385, 'learning_rate': 7.259999999999999e-05, 'epoch': 0.4}
{'loss': 3.8963, 'grad_norm': 0.973664402961731, 'learning_rate': 7.29e-05, 'epoch': 0.4}
{'loss': 3.9033, 'grad_norm': 1.6993762254714966, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.4}
{'loss': 4.2596, 'grad_norm': 17.571664810180664, 'learning_rate': 7.35e-05, 'epoch': 0.4}
{'loss': 4.1186, 'grad_norm': 11.271060943603516, 'learning_rate': 7.379999999999999e-05, 'epoch': 0.4}
{'loss': 4.013, 'grad_norm': 8.646568298339844, 'learning_rate': 7.41e-05, 'epoch': 0.4}
{'loss': 3.8974, 'grad_norm': 2.02486252784729, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.41}
{'loss': 3.8285, 'grad_norm': 3.4109764099121094, 'learning_rate': 7.47e-05, 'epoch': 0.41}
{'loss': 3.9306, 'grad_norm': 3.8505735397338867, 'learning_rate': 7.5e-05, 'epoch': 0.41}
{'loss': 3.8432, 'grad_norm': 7.018677234649658, 'learning_rate': 7.529999999999999e-05, 'epoch': 0.41}
{'loss': 3.8534, 'grad_norm': 4.351247310638428, 'learning_rate': 7.56e-05, 'epoch': 0.41}
{'loss': 3.8408, 'grad_norm': 5.365427494049072, 'learning_rate': 7.589999999999999e-05, 'epoch': 0.41}
{'loss': 3.7589, 'grad_norm': 3.984861135482788, 'learning_rate': 7.62e-05, 'epoch': 0.42}
{'loss': 3.748, 'grad_norm': 1.2847763299942017, 'learning_rate': 7.649999999999999e-05, 'epoch': 0.42}
{'loss': 3.8104, 'grad_norm': 4.559200286865234, 'learning_rate': 7.68e-05, 'epoch': 0.42}
{'loss': 3.7676, 'grad_norm': 4.230029106140137, 'learning_rate': 7.709999999999999e-05, 'epoch': 0.42}
{'loss': 3.7336, 'grad_norm': 6.13962984085083, 'learning_rate': 7.74e-05, 'epoch': 0.42}
{'loss': 3.744, 'grad_norm': 4.625703811645508, 'learning_rate': 7.769999999999999e-05, 'epoch': 0.42}
{'loss': 3.7662, 'grad_norm': 4.050301551818848, 'learning_rate': 7.8e-05, 'epoch': 0.43}
{'loss': 3.7469, 'grad_norm': 3.0125648975372314, 'learning_rate': 7.829999999999999e-05, 'epoch': 0.43}
{'loss': 3.7913, 'grad_norm': 0.6710224747657776, 'learning_rate': 7.86e-05, 'epoch': 0.43}
{'loss': 3.7765, 'grad_norm': 0.7062709927558899, 'learning_rate': 7.89e-05, 'epoch': 0.43}
{'loss': 3.7567, 'grad_norm': 5.028995990753174, 'learning_rate': 7.92e-05, 'epoch': 0.43}
{'loss': 3.7673, 'grad_norm': 4.44848108291626, 'learning_rate': 7.95e-05, 'epoch': 0.43}
{'loss': 3.7462, 'grad_norm': 4.467078685760498, 'learning_rate': 7.98e-05, 'epoch': 0.44}
{'loss': 3.715, 'grad_norm': 3.1866374015808105, 'learning_rate': 8.01e-05, 'epoch': 0.44}
{'loss': 3.6984, 'grad_norm': 2.605476140975952, 'learning_rate': 8.04e-05, 'epoch': 0.44}
{'loss': 3.7325, 'grad_norm': 0.6094714999198914, 'learning_rate': 8.07e-05, 'epoch': 0.44}
{'loss': 3.8765, 'grad_norm': 6.599428653717041, 'learning_rate': 8.1e-05, 'epoch': 0.44}
{'loss': 3.7577, 'grad_norm': 2.6780223846435547, 'learning_rate': 8.13e-05, 'epoch': 0.44}
{'loss': 3.8035, 'grad_norm': 3.663605213165283, 'learning_rate': 8.16e-05, 'epoch': 0.44}
{'loss': 3.749, 'grad_norm': 2.812157392501831, 'learning_rate': 8.19e-05, 'epoch': 0.45}
{'loss': 3.7149, 'grad_norm': 2.2692039012908936, 'learning_rate': 8.22e-05, 'epoch': 0.45}
{'loss': 3.7246, 'grad_norm': 1.1938503980636597, 'learning_rate': 8.25e-05, 'epoch': 0.45}
{'loss': 3.6932, 'grad_norm': 1.3016897439956665, 'learning_rate': 8.28e-05, 'epoch': 0.45}
{'loss': 3.7896, 'grad_norm': 2.0602409839630127, 'learning_rate': 8.31e-05, 'epoch': 0.45}
{'loss': 3.7896, 'grad_norm': 1.2453322410583496, 'learning_rate': 8.34e-05, 'epoch': 0.45}
{'loss': 3.7406, 'grad_norm': 0.7699930667877197, 'learning_rate': 8.37e-05, 'epoch': 0.46}
{'loss': 3.7951, 'grad_norm': 0.9949842691421509, 'learning_rate': 8.4e-05, 'epoch': 0.46}
{'loss': 3.7142, 'grad_norm': 1.2708395719528198, 'learning_rate': 8.43e-05, 'epoch': 0.46}
{'loss': 3.7042, 'grad_norm': 1.6578696966171265, 'learning_rate': 8.459999999999998e-05, 'epoch': 0.46}
{'loss': 3.6875, 'grad_norm': 0.9027276635169983, 'learning_rate': 8.489999999999999e-05, 'epoch': 0.46}
{'loss': 3.7219, 'grad_norm': 1.3110026121139526, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.46}
{'loss': 3.7555, 'grad_norm': 0.9840269088745117, 'learning_rate': 8.549999999999999e-05, 'epoch': 0.47}
{'loss': 3.7981, 'grad_norm': 1.4040346145629883, 'learning_rate': 8.579999999999998e-05, 'epoch': 0.47}
{'loss': 3.7075, 'grad_norm': 1.0543975830078125, 'learning_rate': 8.609999999999999e-05, 'epoch': 0.47}
{'loss': 3.677, 'grad_norm': 0.9345111846923828, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.47}
{'loss': 3.7533, 'grad_norm': 1.007042646408081, 'learning_rate': 8.669999999999998e-05, 'epoch': 0.47}
{'loss': 3.6897, 'grad_norm': 1.7284626960754395, 'learning_rate': 8.699999999999999e-05, 'epoch': 0.47}
{'loss': 3.8189, 'grad_norm': 2.507981538772583, 'learning_rate': 8.729999999999998e-05, 'epoch': 0.48}
{'loss': 3.8095, 'grad_norm': 2.26454496383667, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.48}
{'loss': 3.8321, 'grad_norm': 1.5712822675704956, 'learning_rate': 8.789999999999998e-05, 'epoch': 0.48}
{'loss': 3.9162, 'grad_norm': 1.8837485313415527, 'learning_rate': 8.819999999999999e-05, 'epoch': 0.48}
{'loss': 4.0945, 'grad_norm': 14.770750999450684, 'learning_rate': 8.849999999999998e-05, 'epoch': 0.48}
{'loss': 4.0664, 'grad_norm': 14.976526260375977, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.48}
{'loss': 4.0088, 'grad_norm': 9.496882438659668, 'learning_rate': 8.909999999999998e-05, 'epoch': 0.48}
{'loss': 4.1825, 'grad_norm': 13.879667282104492, 'learning_rate': 8.939999999999999e-05, 'epoch': 0.49}
{'loss': 3.883, 'grad_norm': 6.049519062042236, 'learning_rate': 8.969999999999998e-05, 'epoch': 0.49}
{'loss': 3.8272, 'grad_norm': 1.975704312324524, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.49}
{'loss': 3.8001, 'grad_norm': 5.8130598068237305, 'learning_rate': 9.029999999999999e-05, 'epoch': 0.49}
{'loss': 3.8353, 'grad_norm': 3.5878612995147705, 'learning_rate': 9.059999999999999e-05, 'epoch': 0.49}
{'loss': 3.9413, 'grad_norm': 4.1221513748168945, 'learning_rate': 9.089999999999999e-05, 'epoch': 0.49}
{'loss': 3.7904, 'grad_norm': 5.489438533782959, 'learning_rate': 9.12e-05, 'epoch': 0.5}
{'loss': 3.7937, 'grad_norm': 1.6620556116104126, 'learning_rate': 9.149999999999999e-05, 'epoch': 0.5}
{'loss': 3.7336, 'grad_norm': 1.13966703414917, 'learning_rate': 9.18e-05, 'epoch': 0.5}
{'loss': 3.7161, 'grad_norm': 1.5242611169815063, 'learning_rate': 9.209999999999999e-05, 'epoch': 0.5}
{'loss': 3.7, 'grad_norm': 3.9798734188079834, 'learning_rate': 9.24e-05, 'epoch': 0.5}
{'loss': 3.7537, 'grad_norm': 7.939405918121338, 'learning_rate': 9.269999999999999e-05, 'epoch': 0.5}
{'loss': 3.708, 'grad_norm': 4.0154709815979, 'learning_rate': 9.3e-05, 'epoch': 0.51}
{'loss': 3.7166, 'grad_norm': 4.138357639312744, 'learning_rate': 9.329999999999999e-05, 'epoch': 0.51}
{'loss': 4.0627, 'grad_norm': 8.64471435546875, 'learning_rate': 9.36e-05, 'epoch': 0.51}
{'loss': 3.7427, 'grad_norm': 0.7231702208518982, 'learning_rate': 9.389999999999999e-05, 'epoch': 0.51}
{'loss': 3.7203, 'grad_norm': 2.371631622314453, 'learning_rate': 9.419999999999999e-05, 'epoch': 0.51}
{'loss': 3.7413, 'grad_norm': 4.284900188446045, 'learning_rate': 9.449999999999999e-05, 'epoch': 0.51}
{'loss': 3.6992, 'grad_norm': 3.0372443199157715, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.52}
{'loss': 3.7184, 'grad_norm': 1.9789845943450928, 'learning_rate': 9.51e-05, 'epoch': 0.52}
{'loss': 3.6749, 'grad_norm': 1.624227523803711, 'learning_rate': 9.539999999999999e-05, 'epoch': 0.52}
{'loss': 3.7581, 'grad_norm': 1.5696678161621094, 'learning_rate': 9.57e-05, 'epoch': 0.52}
{'loss': 3.6773, 'grad_norm': 2.7740790843963623, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.52}
{'loss': 3.6821, 'grad_norm': 2.1769227981567383, 'learning_rate': 9.63e-05, 'epoch': 0.52}
{'loss': 3.6977, 'grad_norm': 3.454484224319458, 'learning_rate': 9.659999999999999e-05, 'epoch': 0.52}
{'loss': 3.6816, 'grad_norm': 1.035311222076416, 'learning_rate': 9.69e-05, 'epoch': 0.53}
{'loss': 3.7105, 'grad_norm': 1.0064358711242676, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.53}
{'loss': 3.7867, 'grad_norm': 2.302251100540161, 'learning_rate': 9.75e-05, 'epoch': 0.53}
{'loss': 3.7186, 'grad_norm': 2.8935694694519043, 'learning_rate': 9.779999999999999e-05, 'epoch': 0.53}
{'loss': 3.6946, 'grad_norm': 4.943471908569336, 'learning_rate': 9.81e-05, 'epoch': 0.53}
{'loss': 3.7091, 'grad_norm': 2.8398258686065674, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.53}
{'loss': 3.7574, 'grad_norm': 3.0762977600097656, 'learning_rate': 9.87e-05, 'epoch': 0.54}
{'loss': 3.7118, 'grad_norm': 1.8813797235488892, 'learning_rate': 9.9e-05, 'epoch': 0.54}
{'loss': 3.77, 'grad_norm': 0.8849917054176331, 'learning_rate': 9.93e-05, 'epoch': 0.54}
{'loss': 3.6983, 'grad_norm': 1.4980673789978027, 'learning_rate': 9.96e-05, 'epoch': 0.54}
{'loss': 3.6434, 'grad_norm': 1.593652367591858, 'learning_rate': 9.99e-05, 'epoch': 0.54}
{'loss': 3.6421, 'grad_norm': 1.0899137258529663, 'learning_rate': 0.0001002, 'epoch': 0.54}
{'loss': 3.6891, 'grad_norm': 0.6649819016456604, 'learning_rate': 0.0001005, 'epoch': 0.55}
{'loss': 3.794, 'grad_norm': 1.5821571350097656, 'learning_rate': 0.0001008, 'epoch': 0.55}
{'loss': 3.6779, 'grad_norm': 2.7996299266815186, 'learning_rate': 0.0001011, 'epoch': 0.55}
{'loss': 3.7879, 'grad_norm': 2.5575685501098633, 'learning_rate': 0.0001014, 'epoch': 0.55}
{'loss': 3.7208, 'grad_norm': 1.2596614360809326, 'learning_rate': 0.00010169999999999999, 'epoch': 0.55}
{'loss': 3.6811, 'grad_norm': 0.8037718534469604, 'learning_rate': 0.000102, 'epoch': 0.55}
{'loss': 3.6959, 'grad_norm': 1.3349064588546753, 'learning_rate': 0.00010229999999999999, 'epoch': 0.56}
{'loss': 3.7447, 'grad_norm': 1.269572138786316, 'learning_rate': 0.0001026, 'epoch': 0.56}
{'loss': 3.6698, 'grad_norm': 1.022356629371643, 'learning_rate': 0.0001029, 'epoch': 0.56}
{'loss': 3.7888, 'grad_norm': 1.5080015659332275, 'learning_rate': 0.00010319999999999999, 'epoch': 0.56}
{'loss': 5.0541, 'grad_norm': 39.285152435302734, 'learning_rate': 0.00010349999999999998, 'epoch': 0.56}
{'loss': 4.014, 'grad_norm': 9.576460838317871, 'learning_rate': 0.00010379999999999999, 'epoch': 0.56}
{'loss': 3.9312, 'grad_norm': 6.356123447418213, 'learning_rate': 0.00010409999999999998, 'epoch': 0.56}
{'loss': 3.7221, 'grad_norm': 2.139646291732788, 'learning_rate': 0.00010439999999999999, 'epoch': 0.57}
{'loss': 3.8395, 'grad_norm': 1.8156242370605469, 'learning_rate': 0.00010469999999999998, 'epoch': 0.57}
{'loss': 3.719, 'grad_norm': 4.785361289978027, 'learning_rate': 0.00010499999999999999, 'epoch': 0.57}
{'loss': 3.7428, 'grad_norm': 3.600017786026001, 'learning_rate': 0.00010529999999999998, 'epoch': 0.57}
{'loss': 3.6832, 'grad_norm': 2.4187095165252686, 'learning_rate': 0.00010559999999999998, 'epoch': 0.57}
{'loss': 3.6504, 'grad_norm': 1.5843887329101562, 'learning_rate': 0.00010589999999999999, 'epoch': 0.57}
{'loss': 3.6816, 'grad_norm': 1.5045654773712158, 'learning_rate': 0.00010619999999999998, 'epoch': 0.58}
{'loss': 3.642, 'grad_norm': 2.58827543258667, 'learning_rate': 0.00010649999999999999, 'epoch': 0.58}
{'loss': 3.6578, 'grad_norm': 2.5386884212493896, 'learning_rate': 0.00010679999999999998, 'epoch': 0.58}
{'loss': 3.6694, 'grad_norm': 2.9344706535339355, 'learning_rate': 0.00010709999999999999, 'epoch': 0.58}
{'loss': 3.6504, 'grad_norm': 2.340221643447876, 'learning_rate': 0.00010739999999999998, 'epoch': 0.58}
{'loss': 3.6654, 'grad_norm': 2.816999912261963, 'learning_rate': 0.00010769999999999999, 'epoch': 0.58}
{'loss': 3.6406, 'grad_norm': 1.5071390867233276, 'learning_rate': 0.00010799999999999998, 'epoch': 0.59}
{'loss': 3.6683, 'grad_norm': 0.7593219876289368, 'learning_rate': 0.00010829999999999999, 'epoch': 0.59}
{'loss': 3.6844, 'grad_norm': 2.646967887878418, 'learning_rate': 0.00010859999999999998, 'epoch': 0.59}
{'loss': 3.6159, 'grad_norm': 2.8628735542297363, 'learning_rate': 0.00010889999999999999, 'epoch': 0.59}
{'loss': 3.6951, 'grad_norm': 2.4796457290649414, 'learning_rate': 0.00010919999999999998, 'epoch': 0.59}
{'loss': 3.5725, 'grad_norm': 1.1962988376617432, 'learning_rate': 0.00010949999999999999, 'epoch': 0.59}
{'loss': 3.5847, 'grad_norm': 0.9031145572662354, 'learning_rate': 0.00010979999999999999, 'epoch': 0.6}
{'loss': 3.6181, 'grad_norm': 2.3092095851898193, 'learning_rate': 0.00011009999999999999, 'epoch': 0.6}
{'loss': 3.6774, 'grad_norm': 1.1398162841796875, 'learning_rate': 0.00011039999999999999, 'epoch': 0.6}
{'loss': 3.5872, 'grad_norm': 1.0708636045455933, 'learning_rate': 0.0001107, 'epoch': 0.6}
{'loss': 3.6512, 'grad_norm': 0.873319149017334, 'learning_rate': 0.00011099999999999999, 'epoch': 0.6}
{'loss': 3.6434, 'grad_norm': 0.8766927123069763, 'learning_rate': 0.0001113, 'epoch': 0.6}
{'loss': 3.5572, 'grad_norm': 0.7983845472335815, 'learning_rate': 0.00011159999999999999, 'epoch': 0.6}
{'loss': 3.7195, 'grad_norm': 6.645163059234619, 'learning_rate': 0.0001119, 'epoch': 0.61}
{'loss': 3.7342, 'grad_norm': 4.845424652099609, 'learning_rate': 0.00011219999999999999, 'epoch': 0.61}
{'loss': 3.5633, 'grad_norm': 0.7528507709503174, 'learning_rate': 0.0001125, 'epoch': 0.61}
{'loss': 3.6274, 'grad_norm': 0.69414883852005, 'learning_rate': 0.00011279999999999999, 'epoch': 0.61}
{'loss': 3.5491, 'grad_norm': 2.0266685485839844, 'learning_rate': 0.00011309999999999998, 'epoch': 0.61}
{'loss': 3.6293, 'grad_norm': 0.7420620918273926, 'learning_rate': 0.00011339999999999999, 'epoch': 0.61}
{'loss': 3.5036, 'grad_norm': 1.1609050035476685, 'learning_rate': 0.00011369999999999999, 'epoch': 0.62}
{'loss': 3.5909, 'grad_norm': 1.6696407794952393, 'learning_rate': 0.00011399999999999999, 'epoch': 0.62}
{'loss': 3.6343, 'grad_norm': 1.1470685005187988, 'learning_rate': 0.00011429999999999999, 'epoch': 0.62}
{'loss': 3.5755, 'grad_norm': 1.3622722625732422, 'learning_rate': 0.0001146, 'epoch': 0.62}
{'loss': 3.5538, 'grad_norm': 1.2317267656326294, 'learning_rate': 0.00011489999999999999, 'epoch': 0.62}
{'loss': 3.5555, 'grad_norm': 1.1414676904678345, 'learning_rate': 0.0001152, 'epoch': 0.62}
{'loss': 3.5465, 'grad_norm': 1.998960018157959, 'learning_rate': 0.00011549999999999999, 'epoch': 0.63}
{'loss': 3.5777, 'grad_norm': 1.4650264978408813, 'learning_rate': 0.0001158, 'epoch': 0.63}
{'loss': 3.6034, 'grad_norm': 1.5700796842575073, 'learning_rate': 0.00011609999999999999, 'epoch': 0.63}
{'loss': 3.5582, 'grad_norm': 2.38299298286438, 'learning_rate': 0.0001164, 'epoch': 0.63}
{'loss': 3.4869, 'grad_norm': 1.2898112535476685, 'learning_rate': 0.00011669999999999999, 'epoch': 0.63}
{'loss': 3.5423, 'grad_norm': 1.2601486444473267, 'learning_rate': 0.000117, 'epoch': 0.63}
{'loss': 3.5019, 'grad_norm': 1.907885193824768, 'learning_rate': 0.00011729999999999999, 'epoch': 0.64}
{'loss': 3.6299, 'grad_norm': 1.2280569076538086, 'learning_rate': 0.0001176, 'epoch': 0.64}
{'loss': 3.5979, 'grad_norm': 2.214331865310669, 'learning_rate': 0.00011789999999999999, 'epoch': 0.64}
{'loss': 3.4218, 'grad_norm': nan, 'learning_rate': 0.00011789999999999999, 'epoch': 0.64}
{'loss': 4.5562, 'grad_norm': 38.77112579345703, 'learning_rate': 0.0001182, 'epoch': 0.64}
{'loss': 3.7699, 'grad_norm': 8.848291397094727, 'learning_rate': 0.0001185, 'epoch': 0.64}
{'loss': 3.539, 'grad_norm': 6.007197856903076, 'learning_rate': 0.0001188, 'epoch': 0.64}
{'loss': 3.5382, 'grad_norm': 3.0180368423461914, 'learning_rate': 0.0001191, 'epoch': 0.65}
{'loss': 3.5857, 'grad_norm': 2.071746587753296, 'learning_rate': 0.0001194, 'epoch': 0.65}
{'loss': 3.526, 'grad_norm': 4.427801132202148, 'learning_rate': 0.0001197, 'epoch': 0.65}
{'loss': 3.4296, 'grad_norm': 5.680927753448486, 'learning_rate': 0.00011999999999999999, 'epoch': 0.65}
{'loss': 3.4657, 'grad_norm': 2.7837042808532715, 'learning_rate': 0.0001203, 'epoch': 0.65}
{'loss': 3.4279, 'grad_norm': 4.605573654174805, 'learning_rate': 0.00012059999999999999, 'epoch': 0.65}
{'loss': 3.3618, 'grad_norm': 1.96554696559906, 'learning_rate': 0.0001209, 'epoch': 0.66}
{'loss': 3.4163, 'grad_norm': 5.76222038269043, 'learning_rate': 0.00012119999999999999, 'epoch': 0.66}
{'loss': 3.4429, 'grad_norm': 4.640344619750977, 'learning_rate': 0.0001215, 'epoch': 0.66}
{'loss': 3.3255, 'grad_norm': 4.301933288574219, 'learning_rate': 0.00012179999999999999, 'epoch': 0.66}
{'loss': 3.3261, 'grad_norm': 3.781334638595581, 'learning_rate': 0.00012209999999999999, 'epoch': 0.66}
{'loss': 3.2962, 'grad_norm': 3.663053035736084, 'learning_rate': 0.0001224, 'epoch': 0.66}
{'loss': 3.333, 'grad_norm': 3.2776567935943604, 'learning_rate': 0.00012269999999999997, 'epoch': 0.67}
{'loss': 3.2321, 'grad_norm': 1.000927209854126, 'learning_rate': 0.00012299999999999998, 'epoch': 0.67}
{'loss': 3.3121, 'grad_norm': 1.561220407485962, 'learning_rate': 0.0001233, 'epoch': 0.67}
{'loss': 3.3394, 'grad_norm': 0.8714520931243896, 'learning_rate': 0.0001236, 'epoch': 0.67}
{'loss': 3.1645, 'grad_norm': 1.1457229852676392, 'learning_rate': 0.00012389999999999998, 'epoch': 0.67}
{'loss': 3.2115, 'grad_norm': 2.054020881652832, 'learning_rate': 0.00012419999999999998, 'epoch': 0.67}
{'loss': 3.3334, 'grad_norm': 3.8146936893463135, 'learning_rate': 0.0001245, 'epoch': 0.68}
{'loss': 3.2264, 'grad_norm': 2.3825631141662598, 'learning_rate': 0.00012479999999999997, 'epoch': 0.68}
{'loss': 3.3354, 'grad_norm': 1.282517671585083, 'learning_rate': 0.00012509999999999998, 'epoch': 0.68}
{'loss': 3.1819, 'grad_norm': 1.5535123348236084, 'learning_rate': 0.00012539999999999999, 'epoch': 0.68}
{'loss': 3.1989, 'grad_norm': 1.8400110006332397, 'learning_rate': 0.0001257, 'epoch': 0.68}
{'loss': 3.2336, 'grad_norm': 1.3851298093795776, 'learning_rate': 0.00012599999999999997, 'epoch': 0.68}
{'loss': 3.2123, 'grad_norm': 1.884459376335144, 'learning_rate': 0.00012629999999999998, 'epoch': 0.68}
{'loss': 3.0558, 'grad_norm': 1.7640012502670288, 'learning_rate': 0.0001266, 'epoch': 0.69}
{'loss': 3.0314, 'grad_norm': 2.564265489578247, 'learning_rate': 0.0001269, 'epoch': 0.69}
{'loss': 3.0916, 'grad_norm': 1.8793052434921265, 'learning_rate': 0.00012719999999999997, 'epoch': 0.69}
{'loss': 3.0977, 'grad_norm': 1.3174560070037842, 'learning_rate': 0.00012749999999999998, 'epoch': 0.69}
{'loss': 3.1459, 'grad_norm': 0.9135323166847229, 'learning_rate': 0.0001278, 'epoch': 0.69}
{'loss': 3.1823, 'grad_norm': 1.05746591091156, 'learning_rate': 0.0001281, 'epoch': 0.69}
{'loss': 2.9603, 'grad_norm': 1.2425645589828491, 'learning_rate': 0.00012839999999999998, 'epoch': 0.7}
{'loss': 2.9414, 'grad_norm': 1.2454054355621338, 'learning_rate': 0.00012869999999999998, 'epoch': 0.7}
{'loss': 3.1432, 'grad_norm': 0.9464673399925232, 'learning_rate': 0.000129, 'epoch': 0.7}
{'loss': 3.0063, 'grad_norm': 1.5856995582580566, 'learning_rate': 0.0001293, 'epoch': 0.7}
{'loss': 2.9146, 'grad_norm': 1.043485403060913, 'learning_rate': 0.00012959999999999998, 'epoch': 0.7}
{'loss': 2.9979, 'grad_norm': 1.240867257118225, 'learning_rate': 0.00012989999999999999, 'epoch': 0.7}
{'loss': 2.8699, 'grad_norm': 1.7289670705795288, 'learning_rate': 0.0001302, 'epoch': 0.71}
{'loss': 2.7802, 'grad_norm': 1.728317141532898, 'learning_rate': 0.0001305, 'epoch': 0.71}
{'loss': 2.9141, 'grad_norm': 0.960502028465271, 'learning_rate': 0.00013079999999999998, 'epoch': 0.71}
{'loss': 3.1318, 'grad_norm': 2.093698501586914, 'learning_rate': 0.0001311, 'epoch': 0.71}
{'loss': 2.9467, 'grad_norm': 1.6515812873840332, 'learning_rate': 0.0001314, 'epoch': 0.71}
{'loss': 2.7909, 'grad_norm': 1.4129968881607056, 'learning_rate': 0.00013169999999999998, 'epoch': 0.71}
{'loss': 3.1262, 'grad_norm': 1.5885038375854492, 'learning_rate': 0.00013199999999999998, 'epoch': 0.72}
{'loss': 3.2029, 'grad_norm': 1.222842812538147, 'learning_rate': 0.0001323, 'epoch': 0.72}
{'loss': 3.0013, 'grad_norm': 1.3282477855682373, 'learning_rate': 0.0001326, 'epoch': 0.72}
{'loss': 3.4352, 'grad_norm': nan, 'learning_rate': 0.0001326, 'epoch': 0.72}
{'loss': 4.3657, 'grad_norm': 27.799081802368164, 'learning_rate': 0.00013289999999999998, 'epoch': 0.72}
{'loss': 2.9244, 'grad_norm': 5.403924465179443, 'learning_rate': 0.00013319999999999999, 'epoch': 0.72}
{'loss': 2.927, 'grad_norm': 3.8071448802948, 'learning_rate': 0.0001335, 'epoch': 0.72}
{'loss': 2.9719, 'grad_norm': 3.504509210586548, 'learning_rate': 0.0001338, 'epoch': 0.73}
{'loss': 3.0386, 'grad_norm': 3.500847578048706, 'learning_rate': 0.00013409999999999998, 'epoch': 0.73}
{'loss': 2.9468, 'grad_norm': 3.5392863750457764, 'learning_rate': 0.0001344, 'epoch': 0.73}
{'loss': 2.7885, 'grad_norm': 5.1045732498168945, 'learning_rate': 0.0001347, 'epoch': 0.73}
{'loss': 2.9067, 'grad_norm': 6.027789115905762, 'learning_rate': 0.000135, 'epoch': 0.73}
{'loss': 2.8379, 'grad_norm': 5.094452381134033, 'learning_rate': 0.00013529999999999998, 'epoch': 0.73}
{'loss': 2.8325, 'grad_norm': 2.6457953453063965, 'learning_rate': 0.0001356, 'epoch': 0.74}
{'loss': 2.8004, 'grad_norm': 1.5734143257141113, 'learning_rate': 0.0001359, 'epoch': 0.74}
{'loss': 2.5294, 'grad_norm': 2.7408978939056396, 'learning_rate': 0.0001362, 'epoch': 0.74}
{'loss': 2.5774, 'grad_norm': 3.2462551593780518, 'learning_rate': 0.00013649999999999998, 'epoch': 0.74}
{'loss': 2.5412, 'grad_norm': 5.122827529907227, 'learning_rate': 0.0001368, 'epoch': 0.74}
{'loss': 2.5768, 'grad_norm': 6.828001976013184, 'learning_rate': 0.0001371, 'epoch': 0.74}
{'loss': 2.5803, 'grad_norm': 5.996628761291504, 'learning_rate': 0.0001374, 'epoch': 0.75}
{'loss': 2.3747, 'grad_norm': 3.842134714126587, 'learning_rate': 0.00013769999999999999, 'epoch': 0.75}
{'loss': 2.4186, 'grad_norm': 1.4524292945861816, 'learning_rate': 0.000138, 'epoch': 0.75}
{'loss': 2.3012, 'grad_norm': 1.6084707975387573, 'learning_rate': 0.0001383, 'epoch': 0.75}
{'loss': 2.442, 'grad_norm': 2.121351718902588, 'learning_rate': 0.0001386, 'epoch': 0.75}
{'loss': 2.2728, 'grad_norm': 1.5034464597702026, 'learning_rate': 0.0001389, 'epoch': 0.75}
{'loss': 2.3669, 'grad_norm': 1.2867931127548218, 'learning_rate': 0.0001392, 'epoch': 0.76}
{'loss': 2.3831, 'grad_norm': 1.8455201387405396, 'learning_rate': 0.0001395, 'epoch': 0.76}
{'loss': 2.6884, 'grad_norm': 1.4569259881973267, 'learning_rate': 0.00013979999999999998, 'epoch': 0.76}
{'loss': 2.4852, 'grad_norm': 1.9550684690475464, 'learning_rate': 0.0001401, 'epoch': 0.76}
{'loss': 2.5227, 'grad_norm': 2.876927137374878, 'learning_rate': 0.0001404, 'epoch': 0.76}
{'loss': 2.5994, 'grad_norm': 1.2651807069778442, 'learning_rate': 0.00014069999999999998, 'epoch': 0.76}
{'loss': 2.2933, 'grad_norm': 1.26189386844635, 'learning_rate': 0.00014099999999999998, 'epoch': 0.76}
{'loss': 2.3087, 'grad_norm': 1.3137550354003906, 'learning_rate': 0.0001413, 'epoch': 0.77}
{'loss': 2.4592, 'grad_norm': 1.7220642566680908, 'learning_rate': 0.00014159999999999997, 'epoch': 0.77}
{'loss': 2.0056, 'grad_norm': 1.3261381387710571, 'learning_rate': 0.00014189999999999998, 'epoch': 0.77}
{'loss': 2.2005, 'grad_norm': 2.571230173110962, 'learning_rate': 0.0001422, 'epoch': 0.77}
{'loss': 2.444, 'grad_norm': 1.9342719316482544, 'learning_rate': 0.0001425, 'epoch': 0.77}
{'loss': 2.5657, 'grad_norm': 1.9060297012329102, 'learning_rate': 0.00014279999999999997, 'epoch': 0.77}
{'loss': 2.2488, 'grad_norm': 1.7057262659072876, 'learning_rate': 0.00014309999999999998, 'epoch': 0.78}
{'loss': 2.3053, 'grad_norm': 1.5254745483398438, 'learning_rate': 0.0001434, 'epoch': 0.78}
{'loss': 2.7327, 'grad_norm': 1.2841426134109497, 'learning_rate': 0.00014369999999999997, 'epoch': 0.78}
{'loss': 2.1748, 'grad_norm': 1.2939062118530273, 'learning_rate': 0.00014399999999999998, 'epoch': 0.78}
{'loss': 2.2685, 'grad_norm': 1.041858434677124, 'learning_rate': 0.00014429999999999998, 'epoch': 0.78}
{'loss': 2.6499, 'grad_norm': 1.1529954671859741, 'learning_rate': 0.0001446, 'epoch': 0.78}
{'loss': 2.4287, 'grad_norm': 1.2997585535049438, 'learning_rate': 0.00014489999999999997, 'epoch': 0.79}
{'loss': 2.4024, 'grad_norm': 1.8214664459228516, 'learning_rate': 0.00014519999999999998, 'epoch': 0.79}
{'loss': 2.3568, 'grad_norm': 2.8641598224639893, 'learning_rate': 0.00014549999999999999, 'epoch': 0.79}
{'loss': 2.635, 'grad_norm': 2.793945789337158, 'learning_rate': 0.0001458, 'epoch': 0.79}
{'loss': 2.4789, 'grad_norm': 1.2558726072311401, 'learning_rate': 0.00014609999999999997, 'epoch': 0.79}
{'loss': 2.0977, 'grad_norm': 1.8537378311157227, 'learning_rate': 0.00014639999999999998, 'epoch': 0.79}
{'loss': 2.168, 'grad_norm': 1.3181400299072266, 'learning_rate': 0.0001467, 'epoch': 0.8}
{'loss': 3.4399, 'grad_norm': 9.861762046813965, 'learning_rate': 0.000147, 'epoch': 0.8}
{'loss': 2.4976, 'grad_norm': 2.7572944164276123, 'learning_rate': 0.00014729999999999998, 'epoch': 0.8}
{'loss': 3.0006, 'grad_norm': 3.072735071182251, 'learning_rate': 0.00014759999999999998, 'epoch': 0.8}
{'loss': 2.4371, 'grad_norm': 3.723292350769043, 'learning_rate': 0.0001479, 'epoch': 0.8}
{'loss': 3.0689, 'grad_norm': 5.342506408691406, 'learning_rate': 0.0001482, 'epoch': 0.8}
{'loss': 2.8854, 'grad_norm': 5.763881683349609, 'learning_rate': 0.00014849999999999998, 'epoch': 0.8}
{'loss': 2.4936, 'grad_norm': 1.8335249423980713, 'learning_rate': 0.00014879999999999998, 'epoch': 0.81}
{'loss': 2.4671, 'grad_norm': 2.8503644466400146, 'learning_rate': 0.0001491, 'epoch': 0.81}
{'loss': 2.2154, 'grad_norm': 5.93911600112915, 'learning_rate': 0.0001494, 'epoch': 0.81}
{'loss': 2.2564, 'grad_norm': 4.656365871429443, 'learning_rate': 0.00014969999999999998, 'epoch': 0.81}
{'loss': 2.4022, 'grad_norm': 4.47904109954834, 'learning_rate': 0.00015, 'epoch': 0.81}
{'loss': 1.9681, 'grad_norm': 2.0499017238616943, 'learning_rate': 0.0001503, 'epoch': 0.81}
{'loss': 2.0941, 'grad_norm': 1.0935138463974, 'learning_rate': 0.00015059999999999997, 'epoch': 0.82}
{'loss': 2.0268, 'grad_norm': 2.3944854736328125, 'learning_rate': 0.00015089999999999998, 'epoch': 0.82}
{'loss': 2.3145, 'grad_norm': 6.021939277648926, 'learning_rate': 0.0001512, 'epoch': 0.82}
{'loss': 2.038, 'grad_norm': 5.291767120361328, 'learning_rate': 0.0001515, 'epoch': 0.82}
{'loss': 1.8124, 'grad_norm': 4.051759719848633, 'learning_rate': 0.00015179999999999998, 'epoch': 0.82}
{'loss': 2.114, 'grad_norm': 6.387513637542725, 'learning_rate': 0.00015209999999999998, 'epoch': 0.82}
{'loss': 1.9412, 'grad_norm': 3.993975877761841, 'learning_rate': 0.0001524, 'epoch': 0.83}
{'loss': 1.8678, 'grad_norm': 2.036212682723999, 'learning_rate': 0.0001527, 'epoch': 0.83}
{'loss': 2.1287, 'grad_norm': 1.404420256614685, 'learning_rate': 0.00015299999999999998, 'epoch': 0.83}
{'loss': 1.9134, 'grad_norm': 1.0048662424087524, 'learning_rate': 0.00015329999999999999, 'epoch': 0.83}
{'loss': 1.8799, 'grad_norm': 2.347856044769287, 'learning_rate': 0.0001536, 'epoch': 0.83}
{'loss': 1.9441, 'grad_norm': 3.0598201751708984, 'learning_rate': 0.0001539, 'epoch': 0.83}
{'loss': 1.7355, 'grad_norm': 2.636126756668091, 'learning_rate': 0.00015419999999999998, 'epoch': 0.84}
{'loss': 1.9851, 'grad_norm': 1.8599352836608887, 'learning_rate': 0.0001545, 'epoch': 0.84}
{'loss': 1.7774, 'grad_norm': 0.9748109579086304, 'learning_rate': 0.0001548, 'epoch': 0.84}
{'loss': 2.1997, 'grad_norm': 1.414323091506958, 'learning_rate': 0.0001551, 'epoch': 0.84}
{'loss': 2.0179, 'grad_norm': 2.8852648735046387, 'learning_rate': 0.00015539999999999998, 'epoch': 0.84}
{'loss': 1.9451, 'grad_norm': 2.0136239528656006, 'learning_rate': 0.0001557, 'epoch': 0.84}
{'loss': 1.7522, 'grad_norm': 2.07312273979187, 'learning_rate': 0.000156, 'epoch': 0.84}
{'loss': 1.6561, 'grad_norm': 1.4143507480621338, 'learning_rate': 0.0001563, 'epoch': 0.85}
{'loss': 1.913, 'grad_norm': 3.017238140106201, 'learning_rate': 0.00015659999999999998, 'epoch': 0.85}
{'loss': 1.8592, 'grad_norm': 0.9368352293968201, 'learning_rate': 0.0001569, 'epoch': 0.85}
{'loss': 2.2341, 'grad_norm': 1.308072566986084, 'learning_rate': 0.0001572, 'epoch': 0.85}
{'loss': 1.9506, 'grad_norm': 2.2798593044281006, 'learning_rate': 0.00015749999999999998, 'epoch': 0.85}
{'loss': 1.9343, 'grad_norm': 2.6132118701934814, 'learning_rate': 0.0001578, 'epoch': 0.85}
{'loss': 1.9341, 'grad_norm': 1.162194848060608, 'learning_rate': 0.0001581, 'epoch': 0.86}
{'loss': 1.7395, 'grad_norm': 1.3427730798721313, 'learning_rate': 0.0001584, 'epoch': 0.86}
{'loss': 2.3282, 'grad_norm': 2.1670310497283936, 'learning_rate': 0.00015869999999999998, 'epoch': 0.86}
{'loss': 2.09, 'grad_norm': 1.257582187652588, 'learning_rate': 0.000159, 'epoch': 0.86}
{'loss': 1.8402, 'grad_norm': 1.4573386907577515, 'learning_rate': 0.0001593, 'epoch': 0.86}
{'loss': 1.7193, 'grad_norm': 1.3384615182876587, 'learning_rate': 0.0001596, 'epoch': 0.86}
{'loss': 1.5656, 'grad_norm': 2.220402479171753, 'learning_rate': 0.00015989999999999998, 'epoch': 0.87}
{'loss': 2.0628, 'grad_norm': 2.4653773307800293, 'learning_rate': 0.0001602, 'epoch': 0.87}
{'loss': 1.8363, 'grad_norm': 1.280678391456604, 'learning_rate': 0.0001605, 'epoch': 0.87}
{'loss': 1.7545, 'grad_norm': 2.4655933380126953, 'learning_rate': 0.0001608, 'epoch': 0.87}
{'loss': 1.8381, 'grad_norm': 1.506415605545044, 'learning_rate': 0.00016109999999999999, 'epoch': 0.87}
{'loss': 1.829, 'grad_norm': 1.1475555896759033, 'learning_rate': 0.0001614, 'epoch': 0.87}
{'loss': 1.8184, 'grad_norm': 1.4434545040130615, 'learning_rate': 0.0001617, 'epoch': 0.88}
{'loss': 1.9946, 'grad_norm': 1.8260152339935303, 'learning_rate': 0.000162, 'epoch': 0.88}
{'loss': 2.031, 'grad_norm': 1.8104926347732544, 'learning_rate': 0.0001623, 'epoch': 0.88}
{'loss': 2.2711, 'grad_norm': 2.094877243041992, 'learning_rate': 0.0001626, 'epoch': 0.88}
{'loss': 4.8174, 'grad_norm': 23.733247756958008, 'learning_rate': 0.0001629, 'epoch': 0.88}
{'loss': 3.3335, 'grad_norm': 12.243576049804688, 'learning_rate': 0.0001632, 'epoch': 0.88}
{'loss': 2.3234, 'grad_norm': 3.982137441635132, 'learning_rate': 0.0001635, 'epoch': 0.88}
{'loss': 2.1768, 'grad_norm': 2.5422203540802, 'learning_rate': 0.0001638, 'epoch': 0.89}
{'loss': 2.022, 'grad_norm': 2.649517059326172, 'learning_rate': 0.0001641, 'epoch': 0.89}
{'loss': 1.8511, 'grad_norm': 4.723710536956787, 'learning_rate': 0.0001644, 'epoch': 0.89}
{'loss': 1.9528, 'grad_norm': 2.3035788536071777, 'learning_rate': 0.0001647, 'epoch': 0.89}
{'loss': 1.9104, 'grad_norm': 3.8410518169403076, 'learning_rate': 0.000165, 'epoch': 0.89}
{'loss': 1.7834, 'grad_norm': 3.0108225345611572, 'learning_rate': 0.0001653, 'epoch': 0.89}
{'loss': 1.883, 'grad_norm': 1.3487671613693237, 'learning_rate': 0.0001656, 'epoch': 0.9}
{'loss': 1.5688, 'grad_norm': 1.061733365058899, 'learning_rate': 0.0001659, 'epoch': 0.9}
{'loss': 1.6914, 'grad_norm': 2.0784027576446533, 'learning_rate': 0.0001662, 'epoch': 0.9}
{'loss': 2.3407, 'grad_norm': 6.085043907165527, 'learning_rate': 0.0001665, 'epoch': 0.9}
{'loss': 1.7104, 'grad_norm': 1.459148645401001, 'learning_rate': 0.0001668, 'epoch': 0.9}
{'loss': 1.5955, 'grad_norm': 1.9622076749801636, 'learning_rate': 0.0001671, 'epoch': 0.9}
{'loss': 1.4071, 'grad_norm': 1.2756608724594116, 'learning_rate': 0.0001674, 'epoch': 0.91}
{'loss': 1.6557, 'grad_norm': 0.940319299697876, 'learning_rate': 0.0001677, 'epoch': 0.91}
{'loss': 1.774, 'grad_norm': 0.9497667551040649, 'learning_rate': 0.000168, 'epoch': 0.91}
{'loss': 1.8378, 'grad_norm': 1.1930807828903198, 'learning_rate': 0.0001683, 'epoch': 0.91}
{'loss': 1.6816, 'grad_norm': 1.7330429553985596, 'learning_rate': 0.0001686, 'epoch': 0.91}
{'loss': 1.6782, 'grad_norm': 0.9604584574699402, 'learning_rate': 0.00016889999999999996, 'epoch': 0.91}
{'loss': 1.5947, 'grad_norm': 0.9503042101860046, 'learning_rate': 0.00016919999999999997, 'epoch': 0.92}
{'loss': 1.6978, 'grad_norm': 1.1088024377822876, 'learning_rate': 0.00016949999999999997, 'epoch': 0.92}
{'loss': 1.656, 'grad_norm': 1.118318796157837, 'learning_rate': 0.00016979999999999998, 'epoch': 0.92}
{'loss': 1.6588, 'grad_norm': 1.5163230895996094, 'learning_rate': 0.00017009999999999996, 'epoch': 0.92}
{'loss': 1.9119, 'grad_norm': 1.4612356424331665, 'learning_rate': 0.00017039999999999997, 'epoch': 0.92}
{'loss': 1.4299, 'grad_norm': 1.2807903289794922, 'learning_rate': 0.00017069999999999998, 'epoch': 0.92}
{'loss': 1.3226, 'grad_norm': 1.049907922744751, 'learning_rate': 0.00017099999999999998, 'epoch': 0.92}
{'loss': 1.8021, 'grad_norm': 1.0162078142166138, 'learning_rate': 0.00017129999999999996, 'epoch': 0.93}
{'loss': 1.6087, 'grad_norm': 1.3673537969589233, 'learning_rate': 0.00017159999999999997, 'epoch': 0.93}
{'loss': 1.6225, 'grad_norm': 1.2779172658920288, 'learning_rate': 0.00017189999999999998, 'epoch': 0.93}
{'loss': 1.5889, 'grad_norm': 1.2135735750198364, 'learning_rate': 0.00017219999999999998, 'epoch': 0.93}
{'loss': 2.1697, 'grad_norm': 1.45180344581604, 'learning_rate': 0.00017249999999999996, 'epoch': 0.93}
{'loss': 1.79, 'grad_norm': 1.1630367040634155, 'learning_rate': 0.00017279999999999997, 'epoch': 0.93}
{'loss': 1.5455, 'grad_norm': 2.428530693054199, 'learning_rate': 0.00017309999999999998, 'epoch': 0.94}
{'loss': 1.7658, 'grad_norm': 1.3975725173950195, 'learning_rate': 0.00017339999999999996, 'epoch': 0.94}
{'loss': 1.8039, 'grad_norm': 1.242210865020752, 'learning_rate': 0.00017369999999999997, 'epoch': 0.94}
{'loss': 1.7215, 'grad_norm': 1.071577787399292, 'learning_rate': 0.00017399999999999997, 'epoch': 0.94}
{'loss': 1.8733, 'grad_norm': 1.208039402961731, 'learning_rate': 0.00017429999999999998, 'epoch': 0.94}
{'loss': 1.4408, 'grad_norm': 1.5233865976333618, 'learning_rate': 0.00017459999999999996, 'epoch': 0.94}
{'loss': 1.8393, 'grad_norm': 1.411783218383789, 'learning_rate': 0.00017489999999999997, 'epoch': 0.95}
{'loss': 1.679, 'grad_norm': 1.629401683807373, 'learning_rate': 0.00017519999999999998, 'epoch': 0.95}
{'loss': 1.9937, 'grad_norm': 1.487720012664795, 'learning_rate': 0.00017549999999999998, 'epoch': 0.95}
{'loss': 1.8585, 'grad_norm': 1.7428632974624634, 'learning_rate': 0.00017579999999999996, 'epoch': 0.95}
{'loss': 1.758, 'grad_norm': 1.5290313959121704, 'learning_rate': 0.00017609999999999997, 'epoch': 0.95}
{'loss': 1.6403, 'grad_norm': 1.4210582971572876, 'learning_rate': 0.00017639999999999998, 'epoch': 0.95}
{'loss': 2.0706, 'grad_norm': 1.487386703491211, 'learning_rate': 0.00017669999999999999, 'epoch': 0.96}
{'loss': 2.0324, 'grad_norm': 1.789679765701294, 'learning_rate': 0.00017699999999999997, 'epoch': 0.96}
{'loss': 2.4765, 'grad_norm': 3.552408456802368, 'learning_rate': 0.00017729999999999997, 'epoch': 0.96}
{'loss': 2.49, 'grad_norm': 2.6970980167388916, 'learning_rate': 0.00017759999999999998, 'epoch': 0.96}
{'loss': 2.2124, 'grad_norm': 6.3989667892456055, 'learning_rate': 0.0001779, 'epoch': 0.96}
{'loss': 1.9114, 'grad_norm': 3.559483528137207, 'learning_rate': 0.00017819999999999997, 'epoch': 0.96}
{'loss': 1.7274, 'grad_norm': 2.688811779022217, 'learning_rate': 0.00017849999999999997, 'epoch': 0.96}
{'loss': 1.5342, 'grad_norm': 1.4167048931121826, 'learning_rate': 0.00017879999999999998, 'epoch': 0.97}
{'loss': 1.6476, 'grad_norm': 1.0234233140945435, 'learning_rate': 0.0001791, 'epoch': 0.97}
{'loss': 1.8034, 'grad_norm': 2.3607473373413086, 'learning_rate': 0.00017939999999999997, 'epoch': 0.97}
{'loss': 1.2502, 'grad_norm': 1.8193793296813965, 'learning_rate': 0.00017969999999999998, 'epoch': 0.97}
{'loss': 1.7518, 'grad_norm': 2.5050389766693115, 'learning_rate': 0.00017999999999999998, 'epoch': 0.97}
{'loss': 2.2657, 'grad_norm': 1.852980375289917, 'learning_rate': 0.00018029999999999996, 'epoch': 0.97}
{'loss': 1.6213, 'grad_norm': 1.1846544742584229, 'learning_rate': 0.00018059999999999997, 'epoch': 0.98}
{'loss': 1.5566, 'grad_norm': 1.1806446313858032, 'learning_rate': 0.00018089999999999998, 'epoch': 0.98}
{'loss': 1.4004, 'grad_norm': 0.9722961187362671, 'learning_rate': 0.00018119999999999999, 'epoch': 0.98}
{'loss': 1.9613, 'grad_norm': 1.2534488439559937, 'learning_rate': 0.00018149999999999997, 'epoch': 0.98}
{'loss': 1.3668, 'grad_norm': 1.55427885055542, 'learning_rate': 0.00018179999999999997, 'epoch': 0.98}
{'loss': 1.153, 'grad_norm': 1.8559104204177856, 'learning_rate': 0.00018209999999999998, 'epoch': 0.98}
{'loss': 1.6635, 'grad_norm': 1.3127942085266113, 'learning_rate': 0.0001824, 'epoch': 0.99}
{'loss': 1.5436, 'grad_norm': 1.3206202983856201, 'learning_rate': 0.00018269999999999997, 'epoch': 0.99}
{'loss': 1.6072, 'grad_norm': 1.0405744314193726, 'learning_rate': 0.00018299999999999998, 'epoch': 0.99}
{'loss': 1.3522, 'grad_norm': 1.1208364963531494, 'learning_rate': 0.00018329999999999998, 'epoch': 0.99}
{'loss': 1.8288, 'grad_norm': 1.4611485004425049, 'learning_rate': 0.0001836, 'epoch': 0.99}
{'loss': 2.2311, 'grad_norm': 2.102464199066162, 'learning_rate': 0.00018389999999999997, 'epoch': 0.99}
{'loss': 1.6955, 'grad_norm': 1.3121858835220337, 'learning_rate': 0.00018419999999999998, 'epoch': 1.0}
{'loss': 2.066, 'grad_norm': 1.732784390449524, 'learning_rate': 0.00018449999999999999, 'epoch': 1.0}
{'loss': 1.7517, 'grad_norm': 1.474577784538269, 'learning_rate': 0.0001848, 'epoch': 1.0}
{'loss': 2.8279, 'grad_norm': nan, 'learning_rate': 0.0001848, 'epoch': 1.0}
{'loss': 4.359, 'grad_norm': 21.10396385192871, 'learning_rate': 0.00018509999999999997, 'epoch': 1.0}
{'loss': 1.5803, 'grad_norm': 2.5289759635925293, 'learning_rate': 0.00018539999999999998, 'epoch': 1.0}
{'loss': 4.1665, 'grad_norm': 17.63152503967285, 'learning_rate': 0.0001857, 'epoch': 1.0}
{'loss': 1.5211, 'grad_norm': 1.2565017938613892, 'learning_rate': 0.000186, 'epoch': 1.01}
{'loss': 1.6206, 'grad_norm': 0.9237573146820068, 'learning_rate': 0.00018629999999999997, 'epoch': 1.01}
{'loss': 1.7635, 'grad_norm': 1.304307222366333, 'learning_rate': 0.00018659999999999998, 'epoch': 1.01}
{'loss': 1.4183, 'grad_norm': 2.240795850753784, 'learning_rate': 0.0001869, 'epoch': 1.01}
{'loss': 1.8278, 'grad_norm': 1.2945712804794312, 'learning_rate': 0.0001872, 'epoch': 1.01}
{'loss': 1.8362, 'grad_norm': 2.4284050464630127, 'learning_rate': 0.00018749999999999998, 'epoch': 1.01}
{'loss': 1.3312, 'grad_norm': 1.5324746370315552, 'learning_rate': 0.00018779999999999998, 'epoch': 1.02}
{'loss': 1.5771, 'grad_norm': 0.9457862973213196, 'learning_rate': 0.0001881, 'epoch': 1.02}
{'loss': 1.3939, 'grad_norm': 1.761409878730774, 'learning_rate': 0.00018839999999999997, 'epoch': 1.02}
{'loss': 1.305, 'grad_norm': 2.4509124755859375, 'learning_rate': 0.00018869999999999998, 'epoch': 1.02}
{'loss': 1.2198, 'grad_norm': 1.434770941734314, 'learning_rate': 0.00018899999999999999, 'epoch': 1.02}
{'loss': 1.4401, 'grad_norm': 1.683680772781372, 'learning_rate': 0.0001893, 'epoch': 1.02}
{'loss': 1.3005, 'grad_norm': 1.468677282333374, 'learning_rate': 0.00018959999999999997, 'epoch': 1.03}
{'loss': 1.6153, 'grad_norm': 2.2306525707244873, 'learning_rate': 0.00018989999999999998, 'epoch': 1.03}
{'loss': 2.2058, 'grad_norm': 4.796661853790283, 'learning_rate': 0.0001902, 'epoch': 1.03}
{'loss': 1.3829, 'grad_norm': 1.139748454093933, 'learning_rate': 0.0001905, 'epoch': 1.03}
{'loss': 1.5598, 'grad_norm': 1.9971469640731812, 'learning_rate': 0.00019079999999999998, 'epoch': 1.03}
{'loss': 1.3654, 'grad_norm': 2.224128007888794, 'learning_rate': 0.00019109999999999998, 'epoch': 1.03}
{'loss': 1.6379, 'grad_norm': 2.5159313678741455, 'learning_rate': 0.0001914, 'epoch': 1.04}
{'loss': 1.5734, 'grad_norm': 1.9604592323303223, 'learning_rate': 0.0001917, 'epoch': 1.04}
{'loss': 1.1349, 'grad_norm': 1.4151877164840698, 'learning_rate': 0.00019199999999999998, 'epoch': 1.04}
{'loss': 1.7592, 'grad_norm': 1.21165931224823, 'learning_rate': 0.00019229999999999999, 'epoch': 1.04}
{'loss': 1.505, 'grad_norm': 2.344447135925293, 'learning_rate': 0.0001926, 'epoch': 1.04}
{'loss': 1.6673, 'grad_norm': 2.5432910919189453, 'learning_rate': 0.0001929, 'epoch': 1.04}
{'loss': 1.6617, 'grad_norm': 1.5895689725875854, 'learning_rate': 0.00019319999999999998, 'epoch': 1.04}
{'loss': 1.6216, 'grad_norm': 1.7360563278198242, 'learning_rate': 0.0001935, 'epoch': 1.05}
{'loss': 1.257, 'grad_norm': 1.3723790645599365, 'learning_rate': 0.0001938, 'epoch': 1.05}
{'loss': 1.4356, 'grad_norm': 0.8750591278076172, 'learning_rate': 0.0001941, 'epoch': 1.05}
{'loss': 1.346, 'grad_norm': 1.407861590385437, 'learning_rate': 0.00019439999999999998, 'epoch': 1.05}
{'loss': 1.2363, 'grad_norm': 1.2812424898147583, 'learning_rate': 0.0001947, 'epoch': 1.05}
{'loss': 1.4353, 'grad_norm': 1.2920845746994019, 'learning_rate': 0.000195, 'epoch': 1.05}
{'loss': 1.5272, 'grad_norm': 1.0122877359390259, 'learning_rate': 0.00019529999999999998, 'epoch': 1.06}
{'loss': 1.1926, 'grad_norm': 1.0607578754425049, 'learning_rate': 0.00019559999999999998, 'epoch': 1.06}
{'loss': 1.361, 'grad_norm': 1.2849078178405762, 'learning_rate': 0.0001959, 'epoch': 1.06}
{'loss': 1.4892, 'grad_norm': 2.199488401412964, 'learning_rate': 0.0001962, 'epoch': 1.06}
{'loss': 1.4795, 'grad_norm': 1.7300806045532227, 'learning_rate': 0.00019649999999999998, 'epoch': 1.06}
{'loss': 1.6863, 'grad_norm': 1.210700273513794, 'learning_rate': 0.00019679999999999999, 'epoch': 1.06}
{'loss': 1.3863, 'grad_norm': 1.1998845338821411, 'learning_rate': 0.0001971, 'epoch': 1.07}
{'loss': 1.9558, 'grad_norm': 1.5421574115753174, 'learning_rate': 0.0001974, 'epoch': 1.07}
{'loss': 1.3471, 'grad_norm': 2.3596279621124268, 'learning_rate': 0.00019769999999999998, 'epoch': 1.07}
{'loss': 1.3686, 'grad_norm': 1.3288168907165527, 'learning_rate': 0.000198, 'epoch': 1.07}
{'loss': 1.6142, 'grad_norm': 1.5977771282196045, 'learning_rate': 0.0001983, 'epoch': 1.07}
{'loss': 1.8817, 'grad_norm': 1.171886682510376, 'learning_rate': 0.0001986, 'epoch': 1.07}
{'loss': 1.502, 'grad_norm': 1.4820473194122314, 'learning_rate': 0.00019889999999999998, 'epoch': 1.08}
{'loss': 1.9869, 'grad_norm': 1.4286924600601196, 'learning_rate': 0.0001992, 'epoch': 1.08}
{'loss': 1.5545, 'grad_norm': 1.496476650238037, 'learning_rate': 0.0001995, 'epoch': 1.08}
{'loss': 3.5297, 'grad_norm': 11.650896072387695, 'learning_rate': 0.0001998, 'epoch': 1.08}
{'loss': 3.5244, 'grad_norm': 10.930564880371094, 'learning_rate': 0.00020009999999999998, 'epoch': 1.08}
{'loss': 1.948, 'grad_norm': 4.526219367980957, 'learning_rate': 0.0002004, 'epoch': 1.08}
{'loss': 1.6832, 'grad_norm': 1.8217471837997437, 'learning_rate': 0.0002007, 'epoch': 1.08}
{'loss': 2.3308, 'grad_norm': 2.5544323921203613, 'learning_rate': 0.000201, 'epoch': 1.09}
{'loss': 1.7663, 'grad_norm': 2.732450246810913, 'learning_rate': 0.0002013, 'epoch': 1.09}
{'loss': 1.9597, 'grad_norm': 4.002326488494873, 'learning_rate': 0.0002016, 'epoch': 1.09}
{'loss': 1.6625, 'grad_norm': 2.9579389095306396, 'learning_rate': 0.0002019, 'epoch': 1.09}
{'loss': 1.4949, 'grad_norm': 3.6762917041778564, 'learning_rate': 0.0002022, 'epoch': 1.09}
{'loss': 1.5695, 'grad_norm': 2.8355441093444824, 'learning_rate': 0.0002025, 'epoch': 1.09}
{'loss': 1.5717, 'grad_norm': 2.894350290298462, 'learning_rate': 0.0002028, 'epoch': 1.1}
{'loss': 1.7573, 'grad_norm': 4.992308616638184, 'learning_rate': 0.0002031, 'epoch': 1.1}
{'loss': 1.2767, 'grad_norm': 1.175133466720581, 'learning_rate': 0.00020339999999999998, 'epoch': 1.1}
{'loss': 1.4346, 'grad_norm': 0.7449688911437988, 'learning_rate': 0.0002037, 'epoch': 1.1}
{'loss': 1.5286, 'grad_norm': 2.100440740585327, 'learning_rate': 0.000204, 'epoch': 1.1}
{'loss': 1.4716, 'grad_norm': 1.06446373462677, 'learning_rate': 0.0002043, 'epoch': 1.1}
{'loss': 1.729, 'grad_norm': 1.1813894510269165, 'learning_rate': 0.00020459999999999999, 'epoch': 1.11}
{'loss': 1.5456, 'grad_norm': 1.2244285345077515, 'learning_rate': 0.0002049, 'epoch': 1.11}
{'loss': 1.6253, 'grad_norm': 1.395920991897583, 'learning_rate': 0.0002052, 'epoch': 1.11}
{'loss': 1.3474, 'grad_norm': 0.8973720073699951, 'learning_rate': 0.0002055, 'epoch': 1.11}
{'loss': 1.5375, 'grad_norm': 0.9351361393928528, 'learning_rate': 0.0002058, 'epoch': 1.11}
{'loss': 1.2332, 'grad_norm': 0.9488412737846375, 'learning_rate': 0.0002061, 'epoch': 1.11}
{'loss': 1.3265, 'grad_norm': 0.800336480140686, 'learning_rate': 0.00020639999999999998, 'epoch': 1.12}
{'loss': 1.3347, 'grad_norm': 1.771794319152832, 'learning_rate': 0.00020669999999999996, 'epoch': 1.12}
{'loss': 1.783, 'grad_norm': 3.4581542015075684, 'learning_rate': 0.00020699999999999996, 'epoch': 1.12}
{'loss': 1.3295, 'grad_norm': 0.837477445602417, 'learning_rate': 0.00020729999999999997, 'epoch': 1.12}
{'loss': 1.4163, 'grad_norm': 2.1295042037963867, 'learning_rate': 0.00020759999999999998, 'epoch': 1.12}
{'loss': 1.2891, 'grad_norm': 1.0342674255371094, 'learning_rate': 0.00020789999999999996, 'epoch': 1.12}
{'loss': 1.5386, 'grad_norm': 1.1783955097198486, 'learning_rate': 0.00020819999999999996, 'epoch': 1.12}
{'loss': 1.5942, 'grad_norm': 2.5988528728485107, 'learning_rate': 0.00020849999999999997, 'epoch': 1.13}
{'loss': 1.4828, 'grad_norm': 1.206281065940857, 'learning_rate': 0.00020879999999999998, 'epoch': 1.13}
{'loss': 1.6748, 'grad_norm': 1.60711669921875, 'learning_rate': 0.00020909999999999996, 'epoch': 1.13}
{'loss': 1.4464, 'grad_norm': 1.3890515565872192, 'learning_rate': 0.00020939999999999997, 'epoch': 1.13}
{'loss': 1.9039, 'grad_norm': 1.4788490533828735, 'learning_rate': 0.00020969999999999997, 'epoch': 1.13}
{'loss': 1.5258, 'grad_norm': 0.9197102189064026, 'learning_rate': 0.00020999999999999998, 'epoch': 1.13}
{'loss': 1.6637, 'grad_norm': 3.082664728164673, 'learning_rate': 0.00021029999999999996, 'epoch': 1.14}
{'loss': 1.3499, 'grad_norm': 1.3979014158248901, 'learning_rate': 0.00021059999999999997, 'epoch': 1.14}
{'loss': 1.7379, 'grad_norm': 2.7370402812957764, 'learning_rate': 0.00021089999999999998, 'epoch': 1.14}
{'loss': 1.3235, 'grad_norm': 1.36969792842865, 'learning_rate': 0.00021119999999999996, 'epoch': 1.14}
{'loss': 1.2209, 'grad_norm': 1.3009356260299683, 'learning_rate': 0.00021149999999999996, 'epoch': 1.14}
{'loss': 1.237, 'grad_norm': 1.0813698768615723, 'learning_rate': 0.00021179999999999997, 'epoch': 1.14}
{'loss': 1.5799, 'grad_norm': 1.2386032342910767, 'learning_rate': 0.00021209999999999998, 'epoch': 1.15}
{'loss': 1.852, 'grad_norm': 1.7847639322280884, 'learning_rate': 0.00021239999999999996, 'epoch': 1.15}
{'loss': 1.7199, 'grad_norm': 1.4111274480819702, 'learning_rate': 0.00021269999999999997, 'epoch': 1.15}
{'loss': 1.6921, 'grad_norm': 1.6253108978271484, 'learning_rate': 0.00021299999999999997, 'epoch': 1.15}
{'loss': 1.5512, 'grad_norm': 1.3691827058792114, 'learning_rate': 0.00021329999999999998, 'epoch': 1.15}
{'loss': 1.6953, 'grad_norm': 1.0425063371658325, 'learning_rate': 0.00021359999999999996, 'epoch': 1.15}
{'loss': 1.2235, 'grad_norm': 1.5456832647323608, 'learning_rate': 0.00021389999999999997, 'epoch': 1.16}
{'loss': 2.3722, 'grad_norm': 5.289543151855469, 'learning_rate': 0.00021419999999999998, 'epoch': 1.16}
{'loss': 1.7361, 'grad_norm': 3.060047149658203, 'learning_rate': 0.00021449999999999998, 'epoch': 1.16}
{'loss': 2.2835, 'grad_norm': 2.2316486835479736, 'learning_rate': 0.00021479999999999996, 'epoch': 1.16}
{'loss': 2.8832, 'grad_norm': 11.319620132446289, 'learning_rate': 0.00021509999999999997, 'epoch': 1.16}
{'loss': 2.4756, 'grad_norm': 4.8169121742248535, 'learning_rate': 0.00021539999999999998, 'epoch': 1.16}
{'loss': 2.5684, 'grad_norm': 4.998867511749268, 'learning_rate': 0.00021569999999999998, 'epoch': 1.16}
{'loss': 1.9992, 'grad_norm': 1.6369566917419434, 'learning_rate': 0.00021599999999999996, 'epoch': 1.17}
{'loss': 1.6888, 'grad_norm': 4.867010593414307, 'learning_rate': 0.00021629999999999997, 'epoch': 1.17}
{'loss': 1.703, 'grad_norm': 4.665241241455078, 'learning_rate': 0.00021659999999999998, 'epoch': 1.17}
{'loss': 1.8941, 'grad_norm': 4.923267364501953, 'learning_rate': 0.0002169, 'epoch': 1.17}
{'loss': 1.8063, 'grad_norm': 5.301763534545898, 'learning_rate': 0.00021719999999999997, 'epoch': 1.17}
{'loss': 1.6896, 'grad_norm': 5.480170726776123, 'learning_rate': 0.00021749999999999997, 'epoch': 1.17}
{'loss': 1.7705, 'grad_norm': 5.136298656463623, 'learning_rate': 0.00021779999999999998, 'epoch': 1.18}
{'loss': 1.29, 'grad_norm': 2.6885194778442383, 'learning_rate': 0.00021809999999999996, 'epoch': 1.18}
{'loss': 1.8537, 'grad_norm': 1.7481634616851807, 'learning_rate': 0.00021839999999999997, 'epoch': 1.18}
{'loss': 1.3772, 'grad_norm': 2.1533167362213135, 'learning_rate': 0.00021869999999999998, 'epoch': 1.18}
{'loss': 1.2517, 'grad_norm': 1.7290595769882202, 'learning_rate': 0.00021899999999999998, 'epoch': 1.18}
{'loss': 1.9578, 'grad_norm': 5.765242576599121, 'learning_rate': 0.00021929999999999996, 'epoch': 1.18}
{'loss': 1.6263, 'grad_norm': 5.171415328979492, 'learning_rate': 0.00021959999999999997, 'epoch': 1.19}
{'loss': 1.5452, 'grad_norm': 2.4269332885742188, 'learning_rate': 0.00021989999999999998, 'epoch': 1.19}
{'loss': 1.2282, 'grad_norm': 1.2465523481369019, 'learning_rate': 0.00022019999999999999, 'epoch': 1.19}
{'loss': 1.1983, 'grad_norm': 1.9669184684753418, 'learning_rate': 0.00022049999999999997, 'epoch': 1.19}
{'loss': 1.7768, 'grad_norm': 5.07749605178833, 'learning_rate': 0.00022079999999999997, 'epoch': 1.19}
{'loss': 1.504, 'grad_norm': 1.4985103607177734, 'learning_rate': 0.00022109999999999998, 'epoch': 1.19}
{'loss': 1.2868, 'grad_norm': 0.8555597066879272, 'learning_rate': 0.0002214, 'epoch': 1.2}
{'loss': 1.5408, 'grad_norm': 1.0134530067443848, 'learning_rate': 0.00022169999999999997, 'epoch': 1.2}
{'loss': 1.4542, 'grad_norm': 2.2932121753692627, 'learning_rate': 0.00022199999999999998, 'epoch': 1.2}
{'loss': 1.6303, 'grad_norm': 2.048572063446045, 'learning_rate': 0.00022229999999999998, 'epoch': 1.2}
{'loss': 1.6202, 'grad_norm': 1.3398712873458862, 'learning_rate': 0.0002226, 'epoch': 1.2}
{'loss': 1.114, 'grad_norm': 1.2826422452926636, 'learning_rate': 0.00022289999999999997, 'epoch': 1.2}
{'loss': 1.2535, 'grad_norm': 0.9887292385101318, 'learning_rate': 0.00022319999999999998, 'epoch': 1.2}
{'loss': 1.123, 'grad_norm': 0.8880885243415833, 'learning_rate': 0.00022349999999999998, 'epoch': 1.21}
{'loss': 1.7848, 'grad_norm': 4.056207180023193, 'learning_rate': 0.0002238, 'epoch': 1.21}
{'loss': 1.6084, 'grad_norm': 1.0242630243301392, 'learning_rate': 0.00022409999999999997, 'epoch': 1.21}
{'loss': 1.0884, 'grad_norm': 1.5216087102890015, 'learning_rate': 0.00022439999999999998, 'epoch': 1.21}
{'loss': 1.4366, 'grad_norm': 1.1595895290374756, 'learning_rate': 0.0002247, 'epoch': 1.21}
{'loss': 1.4678, 'grad_norm': 1.78994619846344, 'learning_rate': 0.000225, 'epoch': 1.21}
{'loss': 1.5742, 'grad_norm': 1.5748515129089355, 'learning_rate': 0.00022529999999999997, 'epoch': 1.22}
{'loss': 1.2028, 'grad_norm': 1.2527673244476318, 'learning_rate': 0.00022559999999999998, 'epoch': 1.22}
{'loss': 1.8887, 'grad_norm': 1.4951261281967163, 'learning_rate': 0.0002259, 'epoch': 1.22}
{'loss': 1.6479, 'grad_norm': 1.1303513050079346, 'learning_rate': 0.00022619999999999997, 'epoch': 1.22}
{'loss': 1.703, 'grad_norm': 1.3236031532287598, 'learning_rate': 0.00022649999999999998, 'epoch': 1.22}
{'loss': 1.8706, 'grad_norm': 1.5853848457336426, 'learning_rate': 0.00022679999999999998, 'epoch': 1.22}
{'loss': 1.495, 'grad_norm': 2.0144317150115967, 'learning_rate': 0.0002271, 'epoch': 1.23}
{'loss': 1.6167, 'grad_norm': 1.472916841506958, 'learning_rate': 0.00022739999999999997, 'epoch': 1.23}
{'loss': 1.5432, 'grad_norm': 1.3060656785964966, 'learning_rate': 0.00022769999999999998, 'epoch': 1.23}
{'loss': 2.3, 'grad_norm': 1.9118512868881226, 'learning_rate': 0.00022799999999999999, 'epoch': 1.23}
{'loss': 1.3154, 'grad_norm': 1.5411431789398193, 'learning_rate': 0.0002283, 'epoch': 1.23}
{'loss': 1.3445, 'grad_norm': 1.2540593147277832, 'learning_rate': 0.00022859999999999997, 'epoch': 1.23}
{'loss': 1.7902, 'grad_norm': 1.74718177318573, 'learning_rate': 0.00022889999999999998, 'epoch': 1.24}
{'loss': 1.7406, 'grad_norm': 1.5919808149337769, 'learning_rate': 0.0002292, 'epoch': 1.24}
{'loss': 2.3024, 'grad_norm': 2.1802892684936523, 'learning_rate': 0.0002295, 'epoch': 1.24}
{'loss': 2.2887, 'grad_norm': nan, 'learning_rate': 0.0002295, 'epoch': 1.24}
{'loss': 2.6305, 'grad_norm': 5.746895790100098, 'learning_rate': 0.00022979999999999997, 'epoch': 1.24}
{'loss': 2.3811, 'grad_norm': 5.819034099578857, 'learning_rate': 0.00023009999999999998, 'epoch': 1.24}
{'loss': 1.9592, 'grad_norm': 2.528698444366455, 'learning_rate': 0.0002304, 'epoch': 1.24}
{'loss': 2.035, 'grad_norm': 4.070464611053467, 'learning_rate': 0.0002307, 'epoch': 1.25}
{'loss': 1.8043, 'grad_norm': 1.93435800075531, 'learning_rate': 0.00023099999999999998, 'epoch': 1.25}
{'loss': 1.7722, 'grad_norm': 3.285830497741699, 'learning_rate': 0.00023129999999999998, 'epoch': 1.25}
{'loss': 1.6131, 'grad_norm': 4.356208324432373, 'learning_rate': 0.0002316, 'epoch': 1.25}
{'loss': 1.5492, 'grad_norm': 5.4774603843688965, 'learning_rate': 0.0002319, 'epoch': 1.25}
{'loss': 1.6548, 'grad_norm': 3.671088218688965, 'learning_rate': 0.00023219999999999998, 'epoch': 1.25}
{'loss': 1.3874, 'grad_norm': 3.7231082916259766, 'learning_rate': 0.00023249999999999999, 'epoch': 1.26}
{'loss': 1.3857, 'grad_norm': 1.782421588897705, 'learning_rate': 0.0002328, 'epoch': 1.26}
{'loss': 1.7764, 'grad_norm': 1.4939918518066406, 'learning_rate': 0.00023309999999999997, 'epoch': 1.26}
{'loss': 1.3059, 'grad_norm': 1.064145565032959, 'learning_rate': 0.00023339999999999998, 'epoch': 1.26}
{'loss': 1.3497, 'grad_norm': 2.0802013874053955, 'learning_rate': 0.0002337, 'epoch': 1.26}
{'loss': 1.6281, 'grad_norm': 2.4550795555114746, 'learning_rate': 0.000234, 'epoch': 1.26}
{'loss': 1.3037, 'grad_norm': 1.424136996269226, 'learning_rate': 0.00023429999999999998, 'epoch': 1.27}
{'loss': 1.2327, 'grad_norm': 2.6355724334716797, 'learning_rate': 0.00023459999999999998, 'epoch': 1.27}
{'loss': 1.1327, 'grad_norm': 1.9551432132720947, 'learning_rate': 0.0002349, 'epoch': 1.27}
{'loss': 1.329, 'grad_norm': 0.920864462852478, 'learning_rate': 0.0002352, 'epoch': 1.27}
{'loss': 1.4342, 'grad_norm': 0.8361489176750183, 'learning_rate': 0.00023549999999999998, 'epoch': 1.27}
{'loss': 1.2214, 'grad_norm': 1.4463287591934204, 'learning_rate': 0.00023579999999999999, 'epoch': 1.27}
{'loss': 1.126, 'grad_norm': 0.8743594884872437, 'learning_rate': 0.0002361, 'epoch': 1.28}
{'loss': 1.4563, 'grad_norm': 0.9425063133239746, 'learning_rate': 0.0002364, 'epoch': 1.28}
{'loss': 1.495, 'grad_norm': 1.1034338474273682, 'learning_rate': 0.00023669999999999998, 'epoch': 1.28}
{'loss': 1.2458, 'grad_norm': 1.235459804534912, 'learning_rate': 0.000237, 'epoch': 1.28}
{'loss': 1.2275, 'grad_norm': 1.0407472848892212, 'learning_rate': 0.0002373, 'epoch': 1.28}
{'loss': 1.2064, 'grad_norm': 1.0057398080825806, 'learning_rate': 0.0002376, 'epoch': 1.28}
{'loss': 1.457, 'grad_norm': 1.2582429647445679, 'learning_rate': 0.00023789999999999998, 'epoch': 1.28}
{'loss': 1.0123, 'grad_norm': 1.2544838190078735, 'learning_rate': 0.0002382, 'epoch': 1.29}
{'loss': 1.3412, 'grad_norm': 1.267555832862854, 'learning_rate': 0.0002385, 'epoch': 1.29}
{'loss': 1.3812, 'grad_norm': 1.585595726966858, 'learning_rate': 0.0002388, 'epoch': 1.29}
{'loss': 1.2368, 'grad_norm': 1.1115787029266357, 'learning_rate': 0.00023909999999999998, 'epoch': 1.29}
{'loss': 1.0813, 'grad_norm': 1.1539804935455322, 'learning_rate': 0.0002394, 'epoch': 1.29}
{'loss': 1.2567, 'grad_norm': 1.2517136335372925, 'learning_rate': 0.0002397, 'epoch': 1.29}
{'loss': 1.3813, 'grad_norm': 1.0020838975906372, 'learning_rate': 0.00023999999999999998, 'epoch': 1.3}
{'loss': 1.4291, 'grad_norm': 1.278122067451477, 'learning_rate': 0.00024029999999999999, 'epoch': 1.3}
{'loss': 1.5433, 'grad_norm': 1.1353975534439087, 'learning_rate': 0.0002406, 'epoch': 1.3}
{'loss': 1.4993, 'grad_norm': 1.0918465852737427, 'learning_rate': 0.0002409, 'epoch': 1.3}
{'loss': 1.442, 'grad_norm': 1.1691175699234009, 'learning_rate': 0.00024119999999999998, 'epoch': 1.3}
{'loss': 1.3307, 'grad_norm': 2.067641258239746, 'learning_rate': 0.0002415, 'epoch': 1.3}
{'loss': 1.3187, 'grad_norm': 1.2151570320129395, 'learning_rate': 0.0002418, 'epoch': 1.31}
{'loss': 1.1919, 'grad_norm': 1.3653641939163208, 'learning_rate': 0.0002421, 'epoch': 1.31}
{'loss': 1.5955, 'grad_norm': 1.193217158317566, 'learning_rate': 0.00024239999999999998, 'epoch': 1.31}
{'loss': 1.6028, 'grad_norm': 1.2559990882873535, 'learning_rate': 0.0002427, 'epoch': 1.31}
{'loss': 1.4464, 'grad_norm': 1.5885244607925415, 'learning_rate': 0.000243, 'epoch': 1.31}
{'loss': 1.743, 'grad_norm': 1.5733736753463745, 'learning_rate': 0.0002433, 'epoch': 1.31}
{'loss': 1.4574, 'grad_norm': 2.05718731880188, 'learning_rate': 0.00024359999999999999, 'epoch': 1.32}
{'loss': 1.9888, 'grad_norm': 1.5828289985656738, 'learning_rate': 0.00024389999999999997, 'epoch': 1.32}
{'loss': 1.3748, 'grad_norm': 1.8411847352981567, 'learning_rate': 0.00024419999999999997, 'epoch': 1.32}
{'loss': 2.2596, 'grad_norm': 2.4953489303588867, 'learning_rate': 0.0002445, 'epoch': 1.32}
{'loss': 5.1826, 'grad_norm': 22.735031127929688, 'learning_rate': 0.0002448, 'epoch': 1.32}
{'loss': 1.7049, 'grad_norm': 2.6146559715270996, 'learning_rate': 0.00024509999999999994, 'epoch': 1.32}
{'loss': 1.6428, 'grad_norm': 1.7866498231887817, 'learning_rate': 0.00024539999999999995, 'epoch': 1.32}
{'loss': 1.7732, 'grad_norm': 3.011427640914917, 'learning_rate': 0.00024569999999999995, 'epoch': 1.33}
{'loss': 1.7, 'grad_norm': 1.7671997547149658, 'learning_rate': 0.00024599999999999996, 'epoch': 1.33}
{'loss': 1.8395, 'grad_norm': 3.2919392585754395, 'learning_rate': 0.00024629999999999997, 'epoch': 1.33}
{'loss': 1.4656, 'grad_norm': 3.4365289211273193, 'learning_rate': 0.0002466, 'epoch': 1.33}
{'loss': 1.3553, 'grad_norm': 2.34206485748291, 'learning_rate': 0.0002469, 'epoch': 1.33}
{'loss': 1.6943, 'grad_norm': 1.3108103275299072, 'learning_rate': 0.0002472, 'epoch': 1.33}
{'loss': 1.6788, 'grad_norm': 1.1649718284606934, 'learning_rate': 0.00024749999999999994, 'epoch': 1.34}
{'loss': 1.064, 'grad_norm': 0.8755460977554321, 'learning_rate': 0.00024779999999999995, 'epoch': 1.34}
{'loss': 1.1169, 'grad_norm': 1.0399974584579468, 'learning_rate': 0.00024809999999999996, 'epoch': 1.34}
{'loss': 1.32, 'grad_norm': 1.590290904045105, 'learning_rate': 0.00024839999999999997, 'epoch': 1.34}
{'loss': 0.9774, 'grad_norm': 1.9613844156265259, 'learning_rate': 0.0002487, 'epoch': 1.34}
{'loss': 1.0947, 'grad_norm': 1.3067349195480347, 'learning_rate': 0.000249, 'epoch': 1.34}
{'loss': 1.4792, 'grad_norm': 3.495009422302246, 'learning_rate': 0.0002493, 'epoch': 1.35}
{'loss': 1.2189, 'grad_norm': 2.386378526687622, 'learning_rate': 0.00024959999999999994, 'epoch': 1.35}
{'loss': 1.383, 'grad_norm': 1.2430686950683594, 'learning_rate': 0.00024989999999999995, 'epoch': 1.35}
{'loss': 1.1695, 'grad_norm': 1.1015182733535767, 'learning_rate': 0.00025019999999999996, 'epoch': 1.35}
{'loss': 1.4384, 'grad_norm': 1.2849568128585815, 'learning_rate': 0.00025049999999999996, 'epoch': 1.35}
{'loss': 1.2806, 'grad_norm': 0.9367717504501343, 'learning_rate': 0.00025079999999999997, 'epoch': 1.35}
{'loss': 1.9186, 'grad_norm': 1.9065661430358887, 'learning_rate': 0.0002511, 'epoch': 1.36}
{'loss': 1.2997, 'grad_norm': 1.8349933624267578, 'learning_rate': 0.0002514, 'epoch': 1.36}
{'loss': 1.7798, 'grad_norm': 2.411646604537964, 'learning_rate': 0.0002517, 'epoch': 1.36}
{'loss': 1.2455, 'grad_norm': 1.3963836431503296, 'learning_rate': 0.00025199999999999995, 'epoch': 1.36}
{'loss': 1.5101, 'grad_norm': 1.7644349336624146, 'learning_rate': 0.00025229999999999995, 'epoch': 1.36}
{'loss': 1.3869, 'grad_norm': 1.1302613019943237, 'learning_rate': 0.00025259999999999996, 'epoch': 1.36}
{'loss': 1.4488, 'grad_norm': 2.062229633331299, 'learning_rate': 0.00025289999999999997, 'epoch': 1.36}
{'loss': 1.0541, 'grad_norm': 1.800642967224121, 'learning_rate': 0.0002532, 'epoch': 1.37}
{'loss': 1.4694, 'grad_norm': 3.4561281204223633, 'learning_rate': 0.0002535, 'epoch': 1.37}
{'loss': 1.5959, 'grad_norm': 2.443664073944092, 'learning_rate': 0.0002538, 'epoch': 1.37}
{'loss': 1.3463, 'grad_norm': 1.2733495235443115, 'learning_rate': 0.0002541, 'epoch': 1.37}
{'loss': 1.3913, 'grad_norm': 1.4782954454421997, 'learning_rate': 0.00025439999999999995, 'epoch': 1.37}
{'loss': 1.4062, 'grad_norm': 1.355779767036438, 'learning_rate': 0.00025469999999999996, 'epoch': 1.37}
{'loss': 1.0575, 'grad_norm': 0.991340696811676, 'learning_rate': 0.00025499999999999996, 'epoch': 1.38}
{'loss': 1.4418, 'grad_norm': 1.4136706590652466, 'learning_rate': 0.00025529999999999997, 'epoch': 1.38}
{'loss': 1.909, 'grad_norm': 1.5610219240188599, 'learning_rate': 0.0002556, 'epoch': 1.38}
{'loss': 1.4926, 'grad_norm': 1.4637738466262817, 'learning_rate': 0.0002559, 'epoch': 1.38}
{'loss': 1.444, 'grad_norm': 1.174544095993042, 'learning_rate': 0.0002562, 'epoch': 1.38}
{'loss': 1.211, 'grad_norm': 1.295507550239563, 'learning_rate': 0.00025649999999999995, 'epoch': 1.38}
{'loss': 1.5489, 'grad_norm': 1.341482162475586, 'learning_rate': 0.00025679999999999995, 'epoch': 1.39}
{'loss': 1.304, 'grad_norm': 1.5005024671554565, 'learning_rate': 0.00025709999999999996, 'epoch': 1.39}
{'loss': 1.411, 'grad_norm': 1.7614165544509888, 'learning_rate': 0.00025739999999999997, 'epoch': 1.39}
{'loss': 1.5675, 'grad_norm': 2.1121573448181152, 'learning_rate': 0.0002577, 'epoch': 1.39}
{'loss': 1.2976, 'grad_norm': 1.4016284942626953, 'learning_rate': 0.000258, 'epoch': 1.39}
{'loss': 1.5295, 'grad_norm': 1.4677424430847168, 'learning_rate': 0.0002583, 'epoch': 1.39}
{'loss': 1.6782, 'grad_norm': 1.7327654361724854, 'learning_rate': 0.0002586, 'epoch': 1.4}
{'loss': 2.1258, 'grad_norm': 1.684560775756836, 'learning_rate': 0.00025889999999999995, 'epoch': 1.4}
{'loss': 1.2016, 'grad_norm': 1.1350618600845337, 'learning_rate': 0.00025919999999999996, 'epoch': 1.4}
{'loss': 2.2616, 'grad_norm': 1.8442115783691406, 'learning_rate': 0.00025949999999999997, 'epoch': 1.4}
{'loss': 3.7807, 'grad_norm': 15.330982208251953, 'learning_rate': 0.00025979999999999997, 'epoch': 1.4}
{'loss': 2.7959, 'grad_norm': 9.512137413024902, 'learning_rate': 0.0002601, 'epoch': 1.4}
{'loss': 2.2513, 'grad_norm': 4.83724308013916, 'learning_rate': 0.0002604, 'epoch': 1.4}
{'loss': 1.1761, 'grad_norm': 1.0789581537246704, 'learning_rate': 0.0002607, 'epoch': 1.41}
{'loss': 1.3131, 'grad_norm': 1.283165693283081, 'learning_rate': 0.000261, 'epoch': 1.41}
{'loss': 1.4793, 'grad_norm': 1.3923134803771973, 'learning_rate': 0.00026129999999999995, 'epoch': 1.41}
{'loss': 1.4069, 'grad_norm': 1.2186331748962402, 'learning_rate': 0.00026159999999999996, 'epoch': 1.41}
{'loss': 1.6623, 'grad_norm': 1.7576051950454712, 'learning_rate': 0.00026189999999999997, 'epoch': 1.41}
{'loss': 0.9214, 'grad_norm': 2.6093623638153076, 'learning_rate': 0.0002622, 'epoch': 1.41}
{'loss': 1.4146, 'grad_norm': 1.0863568782806396, 'learning_rate': 0.0002625, 'epoch': 1.42}
{'loss': 1.8021, 'grad_norm': 2.363821506500244, 'learning_rate': 0.0002628, 'epoch': 1.42}
{'loss': 1.1834, 'grad_norm': 1.1821964979171753, 'learning_rate': 0.0002631, 'epoch': 1.42}
{'loss': 1.192, 'grad_norm': 1.32361900806427, 'learning_rate': 0.00026339999999999995, 'epoch': 1.42}
{'loss': 1.0575, 'grad_norm': 1.3281641006469727, 'learning_rate': 0.00026369999999999996, 'epoch': 1.42}
{'loss': 1.1708, 'grad_norm': 1.5585789680480957, 'learning_rate': 0.00026399999999999997, 'epoch': 1.42}
{'loss': 1.1794, 'grad_norm': 2.31046462059021, 'learning_rate': 0.0002643, 'epoch': 1.43}
{'loss': 1.3221, 'grad_norm': 1.7033979892730713, 'learning_rate': 0.0002646, 'epoch': 1.43}
{'loss': 1.4937, 'grad_norm': 2.653367519378662, 'learning_rate': 0.0002649, 'epoch': 1.43}
{'loss': 1.078, 'grad_norm': 0.9184427261352539, 'learning_rate': 0.0002652, 'epoch': 1.43}
{'loss': 1.186, 'grad_norm': 0.9819865226745605, 'learning_rate': 0.0002655, 'epoch': 1.43}
{'loss': 1.0641, 'grad_norm': 1.0578396320343018, 'learning_rate': 0.00026579999999999996, 'epoch': 1.43}
{'loss': 1.373, 'grad_norm': 1.4637776613235474, 'learning_rate': 0.00026609999999999996, 'epoch': 1.44}
{'loss': 1.1442, 'grad_norm': 0.9520303606987, 'learning_rate': 0.00026639999999999997, 'epoch': 1.44}
{'loss': 1.4782, 'grad_norm': 1.6817363500595093, 'learning_rate': 0.0002667, 'epoch': 1.44}
{'loss': 1.8022, 'grad_norm': 2.1572883129119873, 'learning_rate': 0.000267, 'epoch': 1.44}
{'loss': 1.4329, 'grad_norm': 0.8815500736236572, 'learning_rate': 0.0002673, 'epoch': 1.44}
{'loss': 1.1709, 'grad_norm': 1.2165837287902832, 'learning_rate': 0.0002676, 'epoch': 1.44}
{'loss': 1.3277, 'grad_norm': 2.121063470840454, 'learning_rate': 0.0002679, 'epoch': 1.44}
{'loss': 1.5098, 'grad_norm': 1.4610421657562256, 'learning_rate': 0.00026819999999999996, 'epoch': 1.45}
{'loss': 1.3525, 'grad_norm': 2.9947142601013184, 'learning_rate': 0.00026849999999999997, 'epoch': 1.45}
{'loss': 1.1726, 'grad_norm': 1.1811401844024658, 'learning_rate': 0.0002688, 'epoch': 1.45}
{'loss': 1.2433, 'grad_norm': 1.4365415573120117, 'learning_rate': 0.0002691, 'epoch': 1.45}
{'loss': 1.0205, 'grad_norm': 1.34075927734375, 'learning_rate': 0.0002694, 'epoch': 1.45}
{'loss': 1.0883, 'grad_norm': 2.7684597969055176, 'learning_rate': 0.0002697, 'epoch': 1.45}
{'loss': 1.6006, 'grad_norm': 1.557430624961853, 'learning_rate': 0.00027, 'epoch': 1.46}
{'loss': 1.4207, 'grad_norm': 1.616085410118103, 'learning_rate': 0.00027029999999999996, 'epoch': 1.46}
{'loss': 1.6985, 'grad_norm': 5.76104211807251, 'learning_rate': 0.00027059999999999996, 'epoch': 1.46}
{'loss': 1.1576, 'grad_norm': 1.2783349752426147, 'learning_rate': 0.00027089999999999997, 'epoch': 1.46}
{'loss': 1.4433, 'grad_norm': 1.2653543949127197, 'learning_rate': 0.0002712, 'epoch': 1.46}
{'loss': 1.5359, 'grad_norm': 1.2063896656036377, 'learning_rate': 0.0002715, 'epoch': 1.46}
{'loss': 1.5251, 'grad_norm': 2.794680118560791, 'learning_rate': 0.0002718, 'epoch': 1.47}
{'loss': 1.9892, 'grad_norm': 3.2242326736450195, 'learning_rate': 0.0002721, 'epoch': 1.47}
{'loss': 1.8354, 'grad_norm': 1.8846021890640259, 'learning_rate': 0.0002724, 'epoch': 1.47}
{'loss': 1.5269, 'grad_norm': 2.0368640422821045, 'learning_rate': 0.00027269999999999996, 'epoch': 1.47}
{'loss': 1.6935, 'grad_norm': 1.5392261743545532, 'learning_rate': 0.00027299999999999997, 'epoch': 1.47}
{'loss': 1.7796, 'grad_norm': 1.5438854694366455, 'learning_rate': 0.0002733, 'epoch': 1.47}
{'loss': 1.3982, 'grad_norm': 1.796651005744934, 'learning_rate': 0.0002736, 'epoch': 1.48}
{'loss': 1.7769, 'grad_norm': 2.2069437503814697, 'learning_rate': 0.0002739, 'epoch': 1.48}
{'loss': 1.4909, 'grad_norm': 1.9683245420455933, 'learning_rate': 0.0002742, 'epoch': 1.48}
{'loss': 2.0897, 'grad_norm': 1.911014199256897, 'learning_rate': 0.0002745, 'epoch': 1.48}
{'loss': 2.1389, 'grad_norm': 5.754384994506836, 'learning_rate': 0.0002748, 'epoch': 1.48}
{'loss': 1.5023, 'grad_norm': 1.59812331199646, 'learning_rate': 0.00027509999999999996, 'epoch': 1.48}
{'loss': 2.156, 'grad_norm': 3.8509624004364014, 'learning_rate': 0.00027539999999999997, 'epoch': 1.48}
{'loss': 1.6978, 'grad_norm': 1.6457704305648804, 'learning_rate': 0.0002757, 'epoch': 1.49}
{'loss': 3.222, 'grad_norm': 9.261984825134277, 'learning_rate': 0.000276, 'epoch': 1.49}
{'loss': 2.7299, 'grad_norm': 10.191606521606445, 'learning_rate': 0.0002763, 'epoch': 1.49}
{'loss': 1.363, 'grad_norm': 2.034604072570801, 'learning_rate': 0.0002766, 'epoch': 1.49}
{'loss': 1.4561, 'grad_norm': 2.7943766117095947, 'learning_rate': 0.0002769, 'epoch': 1.49}
{'loss': 1.5289, 'grad_norm': 2.739060640335083, 'learning_rate': 0.0002772, 'epoch': 1.49}
{'loss': 1.3459, 'grad_norm': 2.6572391986846924, 'learning_rate': 0.00027749999999999997, 'epoch': 1.5}
{'loss': 1.409, 'grad_norm': 2.4692184925079346, 'learning_rate': 0.0002778, 'epoch': 1.5}
{'loss': 1.1897, 'grad_norm': 1.569419264793396, 'learning_rate': 0.0002781, 'epoch': 1.5}
{'loss': 1.1971, 'grad_norm': 0.9803001880645752, 'learning_rate': 0.0002784, 'epoch': 1.5}
{'loss': 1.1573, 'grad_norm': 1.3759132623672485, 'learning_rate': 0.0002787, 'epoch': 1.5}
{'loss': 1.2441, 'grad_norm': 1.4470410346984863, 'learning_rate': 0.000279, 'epoch': 1.5}
{'loss': 1.2325, 'grad_norm': 1.9103741645812988, 'learning_rate': 0.0002793, 'epoch': 1.51}
{'loss': 1.0402, 'grad_norm': 1.5558336973190308, 'learning_rate': 0.00027959999999999997, 'epoch': 1.51}
{'loss': 1.2751, 'grad_norm': 2.0115926265716553, 'learning_rate': 0.0002799, 'epoch': 1.51}
{'loss': 1.6149, 'grad_norm': 1.6013593673706055, 'learning_rate': 0.0002802, 'epoch': 1.51}
{'loss': 1.2308, 'grad_norm': 1.3492580652236938, 'learning_rate': 0.0002805, 'epoch': 1.51}
{'loss': 1.1674, 'grad_norm': 1.3978670835494995, 'learning_rate': 0.0002808, 'epoch': 1.51}
{'loss': 1.2999, 'grad_norm': 1.257152795791626, 'learning_rate': 0.0002811, 'epoch': 1.52}
{'loss': 1.2184, 'grad_norm': 1.3785860538482666, 'learning_rate': 0.00028139999999999996, 'epoch': 1.52}
{'loss': 1.4197, 'grad_norm': 2.098989963531494, 'learning_rate': 0.00028169999999999996, 'epoch': 1.52}
{'loss': 1.3696, 'grad_norm': 1.411068320274353, 'learning_rate': 0.00028199999999999997, 'epoch': 1.52}
{'loss': 1.4752, 'grad_norm': 1.1803005933761597, 'learning_rate': 0.0002823, 'epoch': 1.52}
{'loss': 1.2319, 'grad_norm': 1.4621422290802002, 'learning_rate': 0.0002826, 'epoch': 1.52}
{'loss': 1.3185, 'grad_norm': 2.065951108932495, 'learning_rate': 0.00028289999999999994, 'epoch': 1.52}
{'loss': 1.3232, 'grad_norm': 2.077345371246338, 'learning_rate': 0.00028319999999999994, 'epoch': 1.53}
{'loss': 1.1082, 'grad_norm': 2.0758562088012695, 'learning_rate': 0.00028349999999999995, 'epoch': 1.53}
{'loss': 1.3383, 'grad_norm': 2.724622964859009, 'learning_rate': 0.00028379999999999996, 'epoch': 1.53}
{'loss': 1.514, 'grad_norm': 1.9979689121246338, 'learning_rate': 0.00028409999999999997, 'epoch': 1.53}
{'loss': 1.2723, 'grad_norm': 1.9366734027862549, 'learning_rate': 0.0002844, 'epoch': 1.53}
{'loss': 1.4332, 'grad_norm': 2.198087215423584, 'learning_rate': 0.0002847, 'epoch': 1.53}
{'loss': 1.3232, 'grad_norm': 1.5621610879898071, 'learning_rate': 0.000285, 'epoch': 1.54}
{'loss': 1.292, 'grad_norm': 1.4429649114608765, 'learning_rate': 0.00028529999999999994, 'epoch': 1.54}
{'loss': 1.3802, 'grad_norm': 1.7527788877487183, 'learning_rate': 0.00028559999999999995, 'epoch': 1.54}
{'loss': 1.5058, 'grad_norm': 2.562932252883911, 'learning_rate': 0.00028589999999999996, 'epoch': 1.54}
{'loss': 1.4053, 'grad_norm': 2.0278782844543457, 'learning_rate': 0.00028619999999999996, 'epoch': 1.54}
{'loss': 1.5985, 'grad_norm': 2.133039712905884, 'learning_rate': 0.00028649999999999997, 'epoch': 1.54}
{'loss': 1.7425, 'grad_norm': 1.7495462894439697, 'learning_rate': 0.0002868, 'epoch': 1.55}
{'loss': 1.1744, 'grad_norm': 1.314456582069397, 'learning_rate': 0.0002871, 'epoch': 1.55}
{'loss': 1.199, 'grad_norm': 1.5634371042251587, 'learning_rate': 0.00028739999999999994, 'epoch': 1.55}
{'loss': 1.3761, 'grad_norm': 1.5051501989364624, 'learning_rate': 0.00028769999999999995, 'epoch': 1.55}
{'loss': 1.7574, 'grad_norm': 1.4913947582244873, 'learning_rate': 0.00028799999999999995, 'epoch': 1.55}
{'loss': 1.6131, 'grad_norm': 2.0032637119293213, 'learning_rate': 0.00028829999999999996, 'epoch': 1.55}
{'loss': 1.5788, 'grad_norm': 1.4599378108978271, 'learning_rate': 0.00028859999999999997, 'epoch': 1.56}
{'loss': 1.4599, 'grad_norm': 1.526383638381958, 'learning_rate': 0.0002889, 'epoch': 1.56}
{'loss': 1.7604, 'grad_norm': 3.349010705947876, 'learning_rate': 0.0002892, 'epoch': 1.56}
{'loss': 2.0222, 'grad_norm': 3.1439058780670166, 'learning_rate': 0.0002895, 'epoch': 1.56}
{'loss': 2.2708, 'grad_norm': 5.448111057281494, 'learning_rate': 0.00028979999999999994, 'epoch': 1.56}
{'loss': 2.3857, 'grad_norm': 3.330211877822876, 'learning_rate': 0.00029009999999999995, 'epoch': 1.56}
{'loss': 1.8033, 'grad_norm': 1.844307541847229, 'learning_rate': 0.00029039999999999996, 'epoch': 1.56}
{'loss': 1.8416, 'grad_norm': 2.17771053314209, 'learning_rate': 0.00029069999999999996, 'epoch': 1.57}
{'loss': 1.4765, 'grad_norm': 1.889838695526123, 'learning_rate': 0.00029099999999999997, 'epoch': 1.57}
{'loss': 1.5771, 'grad_norm': 1.280713677406311, 'learning_rate': 0.0002913, 'epoch': 1.57}
{'loss': 1.4645, 'grad_norm': 1.2217782735824585, 'learning_rate': 0.0002916, 'epoch': 1.57}
{'loss': 1.3598, 'grad_norm': 1.493486762046814, 'learning_rate': 0.0002919, 'epoch': 1.57}
{'loss': 1.5287, 'grad_norm': 1.8840752840042114, 'learning_rate': 0.00029219999999999995, 'epoch': 1.57}
{'loss': 1.2946, 'grad_norm': 1.965975046157837, 'learning_rate': 0.00029249999999999995, 'epoch': 1.58}
{'loss': 1.0137, 'grad_norm': 1.5697219371795654, 'learning_rate': 0.00029279999999999996, 'epoch': 1.58}
{'loss': 1.1297, 'grad_norm': 1.665776014328003, 'learning_rate': 0.00029309999999999997, 'epoch': 1.58}
{'loss': 1.1271, 'grad_norm': 1.9357331991195679, 'learning_rate': 0.0002934, 'epoch': 1.58}
{'loss': 1.3413, 'grad_norm': 0.922601044178009, 'learning_rate': 0.0002937, 'epoch': 1.58}
{'loss': 1.1785, 'grad_norm': 1.0412627458572388, 'learning_rate': 0.000294, 'epoch': 1.58}
{'loss': 1.4531, 'grad_norm': 1.292492151260376, 'learning_rate': 0.00029429999999999994, 'epoch': 1.59}
{'loss': 1.4747, 'grad_norm': 1.4930530786514282, 'learning_rate': 0.00029459999999999995, 'epoch': 1.59}
{'loss': 1.2275, 'grad_norm': 1.398553729057312, 'learning_rate': 0.00029489999999999996, 'epoch': 1.59}
{'loss': 1.3404, 'grad_norm': 1.1149609088897705, 'learning_rate': 0.00029519999999999997, 'epoch': 1.59}
{'loss': 1.4117, 'grad_norm': 2.243300676345825, 'learning_rate': 0.00029549999999999997, 'epoch': 1.59}
{'loss': 1.2791, 'grad_norm': 0.9678653478622437, 'learning_rate': 0.0002958, 'epoch': 1.59}
{'loss': 1.54, 'grad_norm': 0.9126372337341309, 'learning_rate': 0.0002961, 'epoch': 1.6}
{'loss': 1.2979, 'grad_norm': 1.447344422340393, 'learning_rate': 0.0002964, 'epoch': 1.6}
{'loss': 1.6844, 'grad_norm': 2.5969924926757812, 'learning_rate': 0.00029669999999999995, 'epoch': 1.6}
{'loss': 1.2633, 'grad_norm': 1.3566679954528809, 'learning_rate': 0.00029699999999999996, 'epoch': 1.6}
0%| | 0/196 [00:00, ?it/s][A
1%| | 2/196 [00:00<01:16, 2.53it/s][A
2%|โ | 3/196 [00:01<01:41, 1.89it/s][A
2%|โ | 4/196 [00:02<01:58, 1.63it/s][A
3%|โ | 5/196 [00:03<02:08, 1.48it/s][A
3%|โ | 6/196 [00:04<02:27, 1.29it/s][A
4%|โ | 7/196 [00:04<02:28, 1.28it/s][A
4%|โ | 8/196 [00:05<02:37, 1.20it/s][A
5%|โ | 9/196 [00:07<03:27, 1.11s/it][A
5%|โ | 10/196 [00:09<03:59, 1.29s/it][A
6%|โ | 11/196 [00:11<04:38, 1.50s/it][A
6%|โ | 12/196 [00:12<04:40, 1.53s/it][A
7%|โ | 13/196 [00:13<04:02, 1.33s/it][A
7%|โ | 14/196 [00:14<03:25, 1.13s/it][A
8%|โ | 15/196 [00:14<02:54, 1.04it/s][A
8%|โ | 16/196 [00:15<02:42, 1.11it/s][A
9%|โ | 17/196 [00:16<02:40, 1.11it/s][A
9%|โ | 18/196 [00:17<03:04, 1.04s/it][A
10%|โ | 19/196 [00:19<03:52, 1.31s/it][A
10%|โ | 20/196 [00:21<04:02, 1.38s/it][A
11%|โ | 21/196 [00:22<04:10, 1.43s/it][A
11%|โ | 22/196 [00:24<03:53, 1.34s/it][A
12%|โโ | 23/196 [00:24<03:27, 1.20s/it][A
12%|โโ | 24/196 [00:25<02:47, 1.03it/s][A
13%|โโ | 25/196 [00:25<02:28, 1.15it/s][A
13%|โโ | 26/196 [00:26<02:10, 1.30it/s][A
14%|โโ | 27/196 [00:27<02:01, 1.39it/s][A
14%|โโ | 28/196 [00:27<01:56, 1.44it/s][A
15%|โโ | 29/196 [00:28<01:57, 1.43it/s][A
15%|โโ | 30/196 [00:29<01:55, 1.44it/s][A
16%|โโ | 31/196 [00:29<01:43, 1.59it/s][A
16%|โโ | 32/196 [00:30<01:44, 1.57it/s][A
17%|โโ | 33/196 [00:31<01:58, 1.38it/s][A
17%|โโ | 34/196 [00:32<02:24, 1.12it/s][A
18%|โโ | 35/196 [00:33<02:35, 1.03it/s][A
18%|โโ | 36/196 [00:34<02:51, 1.07s/it][A
19%|โโ | 37/196 [00:35<02:44, 1.04s/it][A
19%|โโ | 38/196 [00:36<02:33, 1.03it/s][A
20%|โโ | 39/196 [00:37<02:21, 1.11it/s][A
20%|โโ | 40/196 [00:38<02:12, 1.18it/s][A
21%|โโ | 41/196 [00:38<02:01, 1.28it/s][A
21%|โโโ | 42/196 [00:39<01:56, 1.32it/s][A
22%|โโโ | 43/196 [00:40<01:54, 1.34it/s][A
22%|โโโ | 44/196 [00:40<01:49, 1.39it/s][A
23%|โโโ | 45/196 [00:41<01:41, 1.48it/s][A
23%|โโโ | 46/196 [00:42<01:37, 1.53it/s][A
24%|โโโ | 47/196 [00:42<01:36, 1.54it/s][A
24%|โโโ | 48/196 [00:43<01:33, 1.59it/s][A
25%|โโโ | 49/196 [00:43<01:32, 1.59it/s][A
26%|โโโ | 50/196 [00:44<01:30, 1.61it/s][A
26%|โโโ | 51/196 [00:45<01:28, 1.64it/s][A
27%|โโโ | 52/196 [00:45<01:29, 1.61it/s][A
27%|โโโ | 53/196 [00:46<01:29, 1.59it/s][A
28%|โโโ | 54/196 [00:47<01:29, 1.58it/s][A
28%|โโโ | 55/196 [00:47<01:38, 1.43it/s][A
29%|โโโ | 56/196 [00:48<01:46, 1.32it/s][A
29%|โโโ | 57/196 [00:49<01:51, 1.25it/s][A
30%|โโโ | 58/196 [00:50<01:52, 1.23it/s][A
30%|โโโ | 59/196 [00:51<01:49, 1.25it/s][A
31%|โโโ | 60/196 [00:51<01:38, 1.38it/s][A
31%|โโโ | 61/196 [00:52<01:32, 1.46it/s][A
32%|โโโโ | 62/196 [00:53<01:39, 1.34it/s][A
32%|โโโโ | 63/196 [00:54<01:39, 1.34it/s][A
33%|โโโโ | 64/196 [00:54<01:37, 1.36it/s][A
33%|โโโโ | 65/196 [00:55<01:34, 1.38it/s][A
34%|โโโโ | 66/196 [00:56<01:40, 1.29it/s][A
34%|โโโโ | 67/196 [00:57<01:41, 1.26it/s][A
35%|โโโโ | 68/196 [00:58<01:52, 1.13it/s][A
35%|โโโโ | 69/196 [00:59<01:49, 1.16it/s][A
36%|โโโโ | 70/196 [00:59<01:42, 1.23it/s][A
36%|โโโโ | 71/196 [01:00<01:35, 1.31it/s][A
37%|โโโโ | 72/196 [01:01<01:29, 1.38it/s][A
37%|โโโโ | 73/196 [01:01<01:22, 1.49it/s][A
38%|โโโโ | 74/196 [01:02<01:17, 1.57it/s][A
38%|โโโโ | 75/196 [01:02<01:15, 1.60it/s][A
39%|โโโโ | 76/196 [01:03<01:13, 1.63it/s][A
39%|โโโโ | 77/196 [01:04<01:17, 1.54it/s][A
40%|โโโโ | 78/196 [01:04<01:18, 1.51it/s][A
40%|โโโโ | 79/196 [01:05<01:16, 1.53it/s][A
41%|โโโโ | 80/196 [01:06<01:20, 1.44it/s][A
41%|โโโโโ | 81/196 [01:07<01:22, 1.40it/s][A
42%|โโโโโ | 82/196 [01:07<01:20, 1.41it/s][A
42%|โโโโโ | 83/196 [01:08<01:22, 1.37it/s][A
43%|โโโโโ | 84/196 [01:09<01:21, 1.37it/s][A
43%|โโโโโ | 85/196 [01:09<01:21, 1.37it/s][A
44%|โโโโโ | 86/196 [01:10<01:22, 1.33it/s][A
44%|โโโโโ | 87/196 [01:11<01:21, 1.34it/s][A
45%|โโโโโ | 88/196 [01:12<01:22, 1.30it/s][A
45%|โโโโโ | 89/196 [01:13<01:24, 1.27it/s][A
46%|โโโโโ | 90/196 [01:13<01:22, 1.29it/s][A
46%|โโโโโ | 91/196 [01:14<01:17, 1.36it/s][A
47%|โโโโโ | 92/196 [01:15<01:14, 1.40it/s][A
47%|โโโโโ | 93/196 [01:16<01:17, 1.33it/s][A
48%|โโโโโ | 94/196 [01:16<01:16, 1.34it/s][A
48%|โโโโโ | 95/196 [01:17<01:14, 1.36it/s][A
49%|โโโโโ | 96/196 [01:18<01:17, 1.30it/s][A
49%|โโโโโ | 97/196 [01:18<01:13, 1.35it/s][A
50%|โโโโโ | 98/196 [01:19<01:14, 1.32it/s][A
51%|โโโโโ | 99/196 [01:20<01:08, 1.42it/s][A
51%|โโโโโ | 100/196 [01:20<01:00, 1.59it/s][A
52%|โโโโโโ | 101/196 [01:21<00:58, 1.62it/s][A
52%|โโโโโโ | 102/196 [01:22<01:02, 1.51it/s][A
53%|โโโโโโ | 103/196 [01:23<01:08, 1.36it/s][A
53%|โโโโโโ | 104/196 [01:24<01:15, 1.22it/s][A
54%|โโโโโโ | 105/196 [01:24<01:15, 1.20it/s][A
54%|โโโโโโ | 106/196 [01:25<01:13, 1.23it/s][A
55%|โโโโโโ | 107/196 [01:26<01:08, 1.31it/s][A
55%|โโโโโโ | 108/196 [01:26<01:00, 1.45it/s][A
56%|โโโโโโ | 109/196 [01:27<00:57, 1.50it/s][A
56%|โโโโโโ | 110/196 [01:28<00:56, 1.52it/s][A
57%|โโโโโโ | 111/196 [01:28<00:56, 1.50it/s][A
57%|โโโโโโ | 112/196 [01:29<00:58, 1.45it/s][A
58%|โโโโโโ | 113/196 [01:30<00:56, 1.47it/s][A
58%|โโโโโโ | 114/196 [01:30<00:52, 1.56it/s][A
59%|โโโโโโ | 115/196 [01:31<00:51, 1.59it/s][A
59%|โโโโโโ | 116/196 [01:32<00:50, 1.60it/s][A
60%|โโโโโโ | 117/196 [01:32<00:46, 1.71it/s][A
60%|โโโโโโ | 118/196 [01:32<00:41, 1.87it/s][A
61%|โโโโโโ | 119/196 [01:33<00:44, 1.72it/s][A
61%|โโโโโโ | 120/196 [01:34<00:45, 1.66it/s][A
62%|โโโโโโโ | 121/196 [01:34<00:46, 1.63it/s][A
62%|โโโโโโโ | 122/196 [01:35<00:46, 1.59it/s][A
63%|โโโโโโโ | 123/196 [01:36<00:44, 1.63it/s][A
63%|โโโโโโโ | 124/196 [01:36<00:45, 1.59it/s][A
64%|โโโโโโโ | 125/196 [01:37<00:47, 1.49it/s][A
64%|โโโโโโโ | 126/196 [01:38<00:52, 1.33it/s][A
65%|โโโโโโโ | 127/196 [01:39<00:49, 1.38it/s][A
65%|โโโโโโโ | 128/196 [01:39<00:46, 1.46it/s][A
66%|โโโโโโโ | 129/196 [01:40<00:45, 1.48it/s][A
66%|โโโโโโโ | 130/196 [01:41<00:45, 1.45it/s][A
67%|โโโโโโโ | 131/196 [01:41<00:43, 1.49it/s][A
67%|โโโโโโโ | 132/196 [01:42<00:40, 1.58it/s][A
68%|โโโโโโโ | 133/196 [01:42<00:39, 1.58it/s][A
68%|โโโโโโโ | 134/196 [01:43<00:40, 1.53it/s][A
69%|โโโโโโโ | 135/196 [01:44<00:39, 1.56it/s][A
69%|โโโโโโโ | 136/196 [01:44<00:38, 1.56it/s][A
70%|โโโโโโโ | 137/196 [01:45<00:37, 1.56it/s][A
70%|โโโโโโโ | 138/196 [01:46<00:36, 1.58it/s][A
71%|โโโโโโโ | 139/196 [01:46<00:37, 1.53it/s][A
71%|โโโโโโโโ | 140/196 [01:47<00:35, 1.58it/s][A
72%|โโโโโโโโ | 141/196 [01:48<00:34, 1.61it/s][A
72%|โโโโโโโโ | 142/196 [01:48<00:34, 1.55it/s][A
73%|โโโโโโโโ | 143/196 [01:49<00:35, 1.49it/s][A
73%|โโโโโโโโ | 144/196 [01:50<00:33, 1.55it/s][A
74%|โโโโโโโโ | 145/196 [01:50<00:30, 1.68it/s][A
74%|โโโโโโโโ | 146/196 [01:51<00:28, 1.74it/s][A
75%|โโโโโโโโ | 147/196 [01:51<00:27, 1.75it/s][A
76%|โโโโโโโโ | 148/196 [01:52<00:27, 1.72it/s][A
76%|โโโโโโโโ | 149/196 [01:52<00:25, 1.82it/s][A
77%|โโโโโโโโ | 150/196 [01:53<00:27, 1.67it/s][A
77%|โโโโโโโโ | 151/196 [01:54<00:28, 1.60it/s][A
78%|โโโโโโโโ | 152/196 [01:54<00:27, 1.60it/s][A
78%|โโโโโโโโ | 153/196 [01:55<00:26, 1.60it/s][A
79%|โโโโโโโโ | 154/196 [01:55<00:26, 1.60it/s][A
79%|โโโโโโโโ | 155/196 [01:56<00:27, 1.48it/s][A
80%|โโโโโโโโ | 156/196 [01:57<00:29, 1.35it/s][A
80%|โโโโโโโโ | 157/196 [01:58<00:30, 1.29it/s][A
81%|โโโโโโโโ | 158/196 [01:59<00:26, 1.43it/s][A
81%|โโโโโโโโ | 159/196 [01:59<00:24, 1.53it/s][A
82%|โโโโโโโโโ | 160/196 [02:00<00:23, 1.56it/s][A
82%|โโโโโโโโโ | 161/196 [02:00<00:22, 1.53it/s][A
83%|โโโโโโโโโ | 162/196 [02:01<00:21, 1.56it/s][A
83%|โโโโโโโโโ | 163/196 [02:02<00:20, 1.58it/s][A
84%|โโโโโโโโโ | 164/196 [02:02<00:20, 1.58it/s][A
84%|โโโโโโโโโ | 165/196 [02:03<00:20, 1.53it/s][A
85%|โโโโโโโโโ | 166/196 [02:04<00:19, 1.58it/s][A
85%|โโโโโโโโโ | 167/196 [02:04<00:17, 1.61it/s][A
86%|โโโโโโโโโ | 168/196 [02:05<00:16, 1.70it/s][A
86%|โโโโโโโโโ | 169/196 [02:05<00:16, 1.61it/s][A
87%|โโโโโโโโโ | 170/196 [02:06<00:17, 1.52it/s][A
87%|โโโโโโโโโ | 171/196 [02:07<00:16, 1.54it/s][A
88%|โโโโโโโโโ | 172/196 [02:07<00:15, 1.51it/s][A
88%|โโโโโโโโโ | 173/196 [02:08<00:15, 1.51it/s][A
89%|โโโโโโโโโ | 174/196 [02:09<00:15, 1.43it/s][A
89%|โโโโโโโโโ | 175/196 [02:10<00:18, 1.13it/s][A
90%|โโโโโโโโโ | 176/196 [02:12<00:26, 1.30s/it][A
90%|โโโโโโโโโ | 177/196 [02:14<00:28, 1.48s/it][A
91%|โโโโโโโโโ | 178/196 [02:16<00:29, 1.66s/it][A
91%|โโโโโโโโโโ| 179/196 [02:18<00:28, 1.65s/it][A
92%|โโโโโโโโโโ| 180/196 [02:19<00:21, 1.35s/it][A
92%|โโโโโโโโโโ| 181/196 [02:19<00:17, 1.14s/it][A
93%|โโโโโโโโโโ| 182/196 [02:20<00:13, 1.00it/s][A
93%|โโโโโโโโโโ| 183/196 [02:21<00:12, 1.02it/s][A
94%|โโโโโโโโโโ| 184/196 [02:22<00:10, 1.14it/s][A
94%|โโโโโโโโโโ| 185/196 [02:22<00:09, 1.18it/s][A
95%|โโโโโโโโโโ| 186/196 [02:23<00:08, 1.17it/s][A
95%|โโโโโโโโโโ| 187/196 [02:24<00:07, 1.22it/s][A
96%|โโโโโโโโโโ| 188/196 [02:25<00:06, 1.26it/s][A
96%|โโโโโโโโโโ| 189/196 [02:25<00:05, 1.32it/s][A
97%|โโโโโโโโโโ| 190/196 [02:26<00:04, 1.38it/s][A
97%|โโโโโโโโโโ| 191/196 [02:27<00:03, 1.47it/s][A
98%|โโโโโโโโโโ| 192/196 [02:27<00:02, 1.46it/s][A
98%|โโโโโโโโโโ| 193/196 [02:28<00:02, 1.46it/s][A
99%|โโโโโโโโโโ| 194/196 [02:29<00:01, 1.50it/s][A
99%|โโโโโโโโโโ| 195/196 [02:29<00:00, 1.54it/s][A
100%|โโโโโโโโโโ| 196/196 [02:29<00:00, 1.92it/s][A
[A
100%|โโโโโโโโโโ| 1000/1000 [34:52<00:00, 1.68s/it]
100%|โโโโโโโโโโ| 196/196 [02:37<00:00, 1.92it/s][A
[A
100%|โโโโโโโโโโ| 1000/1000 [35:00<00:00, 1.68s/it]
100%|โโโโโโโโโโ| 1000/1000 [35:00<00:00, 2.10s/it]
Printing predictions for a few samples:
Sample 1:
Reference: เคฒเคฟเคฌเคฐ เคเคซเคฟเคธ impress เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formatting เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ เคธเฅเคตเคพเคเคค เคนเฅ
######
Prediction: liber ofis impres เคฎเฅเค เคเค เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ document เคฌเคจเคพเคจเคพ เคเคฐ เคฌเฅเคจเคฟเคฏเคพเคฆเฅ formating เคเฅ เคเคธ spoken tutorial เคฎเฅเค เคเคชเคเคพ
Sample 2:
Reference: เคเคธ tutorial เคฎเฅเค เคนเคฎ impress window เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ เคธเฅเคฒเคพเคเคก เคเคจเฅเคธเคฐเฅเค เคเคฐเฅเค เคเคฐ เคเฅเคชเฅ เคเคฐเฅเค เคซเฅเคจเฅเค เคคเคฅเคพ เคซเฅเคจเฅเค เคเฅ เคซเฅเคฐเฅเคฎเฅเค เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
######
Prediction: เคเคธ tutorial เคฎเฅเค เคนเคฎ impres windw เคเฅ เคญเคพเคเฅเค เคเฅ เคฌเคพเคฐเฅ เคฎเฅเค เคธเฅเคเฅเคเคเฅ เคเคฐ เคเฅเคธเฅ slide insert เคเคฐเฅเค เคเคฐ copy เคเคฐเฅเคfornt เคคเคฅเคพ font เคเฅ format เคเคฐเคจเคพ เคธเฅเคเฅเคเคเฅ
Sample 3:
Reference: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ เคเคชเคฐเฅเคเคฟเคเค เคธเคฟเคธเฅเคเคฎ เคเฅ เคฐเฅเคช เคฎเฅเค gnu/linux เคเคฐ เคฒเคฟเคฌเคฐเคเคซเคฟเคธ เคตเคฐเฅเคเคจ 334 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคนเฅ เคนเฅเค
######
Prediction: เคฏเคนเคพเค เคนเคฎ เค
เคชเคจเฅ operเฅting เคธเคฟstem เคเฅ เคฐเฅเคช เคฎเฅเค gnu linixเคธ เคเคฐ libr ofis version 34 เคเคพ เคเคชเคฏเฅเค เคเคฐ เคฐเคน เคนเค
Sample 4:
Reference: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ เคชเฅเคฐเฅเคเฅเคเฅเคถเคจ sample impress open เคเคฐเคคเฅ เคนเฅเค เคเคฟเคธเฅ เคชเคฟเคเคฒเฅ tutorial เคฎเฅเค เคฌเคจเคพเคฏเคพ เคฅเคพ
######
Prediction: เคเคฒเคฟเค เค
เคชเคจเฅ เคชเฅเคฐเคธเฅเคคเฅเคคเคฟ sampal impres open เคเคฐเคคเฅ เคนเฅเค เคเคธเฅเคชเคเคฒเฅ
Sample 5:
Reference: เคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ screen เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
######
Prediction: เคพเคฏเคพ เคฅเคพเคเคฒเคฟเค เคฆเฅเคเคคเฅ เคนเฅเค เคเคฟ เคธเคrเฅเคจ เคชเคฐ เคเฅเคฏเคพ เคเฅเคฏเคพ เคนเฅ
last Reference string เคฏเคน เคธเฅเคเฅเคฐเคฟเคชเฅเค เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเคเคนเคฎเคธเฅ เคเฅเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string lเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค
เคจเฅเคตเคพเคฆเคฟเคค เคนเฅ เคเคเคเคเคเฅ เคฎเฅเคฎเคเคฌเค เคเฅ เคเคฐ เคธเฅ เคฎเฅเค เคฐเคตเคฟ เคเฅเคฎเคพเคฐ เค
เคฌ เคเคชเคธเฅ เคตเคฟเคฆเคพ เคฒเฅเคคเคพ เคนเฅเค เคนเคฎเคธเฅ เคเคกเคผเคจเฅ เคเฅ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
{'eval_loss': 1.7065902948379517, 'eval_cer': 0.342703815793579, 'eval_wer': 0.5115005185204882, 'eval_runtime': 159.4221, 'eval_samples_per_second': 19.671, 'eval_steps_per_second': 1.229, 'epoch': 1.6}
{'train_runtime': 2101.2175, 'train_samples_per_second': 15.229, 'train_steps_per_second': 0.476, 'train_loss': 4.768421524226666, 'epoch': 1.6}
***** train metrics *****
epoch = 1.6
total_flos = 5777637581GF
train_loss = 4.7684
train_runtime = 0:35:01.21
train_samples = 20000
train_samples_per_second = 15.229
train_steps_per_second = 0.476
08/21/2024 15:46:10 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/196 [00:00, ?it/s]
1%| | 2/196 [00:00<01:03, 3.08it/s]
2%|โ | 3/196 [00:01<01:31, 2.12it/s]
2%|โ | 4/196 [00:02<01:51, 1.72it/s]
3%|โ | 5/196 [00:02<02:05, 1.53it/s]
3%|โ | 6/196 [00:03<02:22, 1.34it/s]
4%|โ | 7/196 [00:04<02:24, 1.31it/s]
4%|โ | 8/196 [00:05<02:34, 1.22it/s]
5%|โ | 9/196 [00:07<03:23, 1.09s/it]
5%|โ | 10/196 [00:08<03:55, 1.27s/it]
6%|โ | 11/196 [00:10<04:29, 1.46s/it]
6%|โ | 12/196 [00:12<04:34, 1.49s/it]
7%|โ | 13/196 [00:13<03:58, 1.30s/it]
7%|โ | 14/196 [00:13<03:22, 1.11s/it]
8%|โ | 15/196 [00:14<02:52, 1.05it/s]
8%|โ | 16/196 [00:15<02:41, 1.11it/s]
9%|โ | 17/196 [00:16<02:40, 1.11it/s]
9%|โ | 18/196 [00:17<03:05, 1.04s/it]
10%|โ | 19/196 [00:19<03:52, 1.31s/it]
10%|โ | 20/196 [00:21<04:02, 1.38s/it]
11%|โ | 21/196 [00:22<04:09, 1.43s/it]
11%|โ | 22/196 [00:23<03:53, 1.34s/it]
12%|โโ | 23/196 [00:24<03:26, 1.19s/it]
12%|โโ | 24/196 [00:25<02:47, 1.03it/s]
13%|โโ | 25/196 [00:25<02:25, 1.17it/s]
13%|โโ | 26/196 [00:26<02:09, 1.32it/s]
14%|โโ | 27/196 [00:26<01:59, 1.41it/s]
14%|โโ | 28/196 [00:27<01:55, 1.45it/s]
15%|โโ | 29/196 [00:28<01:56, 1.43it/s]
15%|โโ | 30/196 [00:28<01:54, 1.45it/s]
16%|โโ | 31/196 [00:29<01:43, 1.59it/s]
16%|โโ | 32/196 [00:29<01:44, 1.57it/s]
17%|โโ | 33/196 [00:30<01:59, 1.36it/s]
17%|โโ | 34/196 [00:32<02:24, 1.12it/s]
18%|โโ | 35/196 [00:33<02:35, 1.04it/s]
18%|โโ | 36/196 [00:34<02:51, 1.07s/it]
19%|โโ | 37/196 [00:35<02:44, 1.03s/it]
19%|โโ | 38/196 [00:36<02:33, 1.03it/s]
20%|โโ | 39/196 [00:37<02:21, 1.11it/s]
20%|โโ | 40/196 [00:37<02:12, 1.17it/s]
21%|โโ | 41/196 [00:38<02:01, 1.28it/s]
21%|โโโ | 42/196 [00:39<01:56, 1.32it/s]
22%|โโโ | 43/196 [00:39<01:53, 1.35it/s]
22%|โโโ | 44/196 [00:40<01:49, 1.39it/s]
23%|โโโ | 45/196 [00:41<01:41, 1.50it/s]
23%|โโโ | 46/196 [00:41<01:37, 1.54it/s]
24%|โโโ | 47/196 [00:42<01:36, 1.54it/s]
24%|โโโ | 48/196 [00:42<01:32, 1.59it/s]
25%|โโโ | 49/196 [00:43<01:32, 1.60it/s]
26%|โโโ | 50/196 [00:44<01:30, 1.61it/s]
26%|โโโ | 51/196 [00:44<01:28, 1.64it/s]
27%|โโโ | 52/196 [00:45<01:29, 1.61it/s]
27%|โโโ | 53/196 [00:46<01:30, 1.59it/s]
28%|โโโ | 54/196 [00:46<01:30, 1.58it/s]
28%|โโโ | 55/196 [00:47<01:38, 1.43it/s]
29%|โโโ | 56/196 [00:48<01:46, 1.32it/s]
29%|โโโ | 57/196 [00:49<01:51, 1.25it/s]
30%|โโโ | 58/196 [00:50<01:52, 1.23it/s]
30%|โโโ | 59/196 [00:50<01:49, 1.25it/s]
31%|โโโ | 60/196 [00:51<01:37, 1.39it/s]
31%|โโโ | 61/196 [00:52<01:32, 1.47it/s]
32%|โโโโ | 62/196 [00:52<01:33, 1.44it/s]
32%|โโโโ | 63/196 [00:53<01:34, 1.41it/s]
33%|โโโโ | 64/196 [00:54<01:33, 1.41it/s]
33%|โโโโ | 65/196 [00:54<01:31, 1.43it/s]
34%|โโโโ | 66/196 [00:55<01:37, 1.34it/s]
34%|โโโโ | 67/196 [00:56<01:39, 1.30it/s]
35%|โโโโ | 68/196 [00:57<01:50, 1.16it/s]
35%|โโโโ | 69/196 [00:58<01:48, 1.17it/s]
36%|โโโโ | 70/196 [00:59<01:41, 1.24it/s]
36%|โโโโ | 71/196 [00:59<01:35, 1.32it/s]
37%|โโโโ | 72/196 [01:00<01:29, 1.39it/s]
37%|โโโโ | 73/196 [01:01<01:21, 1.50it/s]
38%|โโโโ | 74/196 [01:01<01:17, 1.57it/s]
38%|โโโโ | 75/196 [01:02<01:15, 1.60it/s]
39%|โโโโ | 76/196 [01:02<01:13, 1.62it/s]
39%|โโโโ | 77/196 [01:03<01:17, 1.54it/s]
40%|โโโโ | 78/196 [01:04<01:18, 1.51it/s]
40%|โโโโ | 79/196 [01:04<01:16, 1.53it/s]
41%|โโโโ | 80/196 [01:05<01:20, 1.43it/s]
41%|โโโโโ | 81/196 [01:06<01:21, 1.42it/s]
42%|โโโโโ | 82/196 [01:07<01:19, 1.43it/s]
42%|โโโโโ | 83/196 [01:07<01:21, 1.38it/s]
43%|โโโโโ | 84/196 [01:08<01:21, 1.38it/s]
43%|โโโโโ | 85/196 [01:09<01:20, 1.37it/s]
44%|โโโโโ | 86/196 [01:10<01:22, 1.33it/s]
44%|โโโโโ | 87/196 [01:10<01:21, 1.34it/s]
45%|โโโโโ | 88/196 [01:11<01:22, 1.31it/s]
45%|โโโโโ | 89/196 [01:12<01:24, 1.27it/s]
46%|โโโโโ | 90/196 [01:13<01:22, 1.29it/s]
46%|โโโโโ | 91/196 [01:13<01:17, 1.36it/s]
47%|โโโโโ | 92/196 [01:14<01:13, 1.41it/s]
47%|โโโโโ | 93/196 [01:15<01:17, 1.33it/s]
48%|โโโโโ | 94/196 [01:16<01:15, 1.34it/s]
48%|โโโโโ | 95/196 [01:16<01:14, 1.36it/s]
49%|โโโโโ | 96/196 [01:17<01:16, 1.30it/s]
49%|โโโโโ | 97/196 [01:18<01:13, 1.35it/s]
50%|โโโโโ | 98/196 [01:19<01:13, 1.33it/s]
51%|โโโโโ | 99/196 [01:19<01:09, 1.39it/s]
51%|โโโโโ | 100/196 [01:20<01:01, 1.57it/s]
52%|โโโโโโ | 101/196 [01:20<00:59, 1.60it/s]
52%|โโโโโโ | 102/196 [01:21<01:02, 1.50it/s]
53%|โโโโโโ | 103/196 [01:22<01:08, 1.36it/s]
53%|โโโโโโ | 104/196 [01:23<01:15, 1.22it/s]
54%|โโโโโโ | 105/196 [01:24<01:15, 1.20it/s]
54%|โโโโโโ | 106/196 [01:25<01:13, 1.22it/s]
55%|โโโโโโ | 107/196 [01:25<01:08, 1.30it/s]
55%|โโโโโโ | 108/196 [01:26<01:01, 1.44it/s]
56%|โโโโโโ | 109/196 [01:26<00:57, 1.51it/s]
56%|โโโโโโ | 110/196 [01:27<00:56, 1.52it/s]
57%|โโโโโโ | 111/196 [01:28<00:56, 1.51it/s]
57%|โโโโโโ | 112/196 [01:28<00:57, 1.45it/s]
58%|โโโโโโ | 113/196 [01:29<00:56, 1.47it/s]
58%|โโโโโโ | 114/196 [01:30<00:52, 1.57it/s]
59%|โโโโโโ | 115/196 [01:30<00:50, 1.59it/s]
59%|โโโโโโ | 116/196 [01:31<00:49, 1.60it/s]
60%|โโโโโโ | 117/196 [01:31<00:46, 1.70it/s]
60%|โโโโโโ | 118/196 [01:32<00:41, 1.86it/s]
61%|โโโโโโ | 119/196 [01:32<00:44, 1.72it/s]
61%|โโโโโโ | 120/196 [01:33<00:45, 1.66it/s]
62%|โโโโโโโ | 121/196 [01:34<00:46, 1.63it/s]
62%|โโโโโโโ | 122/196 [01:34<00:46, 1.59it/s]
63%|โโโโโโโ | 123/196 [01:35<00:44, 1.63it/s]
63%|โโโโโโโ | 124/196 [01:36<00:45, 1.58it/s]
64%|โโโโโโโ | 125/196 [01:36<00:45, 1.57it/s]
64%|โโโโโโโ | 126/196 [01:37<00:51, 1.37it/s]
65%|โโโโโโโ | 127/196 [01:38<00:48, 1.41it/s]
65%|โโโโโโโ | 128/196 [01:39<00:46, 1.47it/s]
66%|โโโโโโโ | 129/196 [01:39<00:44, 1.49it/s]
66%|โโโโโโโ | 130/196 [01:40<00:45, 1.46it/s]
67%|โโโโโโโ | 131/196 [01:41<00:43, 1.49it/s]
67%|โโโโโโโ | 132/196 [01:41<00:40, 1.58it/s]
68%|โโโโโโโ | 133/196 [01:42<00:39, 1.58it/s]
68%|โโโโโโโ | 134/196 [01:42<00:40, 1.53it/s]
69%|โโโโโโโ | 135/196 [01:43<00:39, 1.56it/s]
69%|โโโโโโโ | 136/196 [01:44<00:38, 1.57it/s]
70%|โโโโโโโ | 137/196 [01:44<00:37, 1.57it/s]
70%|โโโโโโโ | 138/196 [01:45<00:36, 1.58it/s]
71%|โโโโโโโ | 139/196 [01:46<00:37, 1.53it/s]
71%|โโโโโโโโ | 140/196 [01:46<00:35, 1.58it/s]
72%|โโโโโโโโ | 141/196 [01:47<00:34, 1.61it/s]
72%|โโโโโโโโ | 142/196 [01:47<00:34, 1.57it/s]
73%|โโโโโโโโ | 143/196 [01:48<00:35, 1.50it/s]
73%|โโโโโโโโ | 144/196 [01:49<00:33, 1.55it/s]
74%|โโโโโโโโ | 145/196 [01:49<00:31, 1.63it/s]
74%|โโโโโโโโ | 146/196 [01:50<00:29, 1.70it/s]
75%|โโโโโโโโ | 147/196 [01:50<00:28, 1.72it/s]
76%|โโโโโโโโ | 148/196 [01:51<00:28, 1.70it/s]
76%|โโโโโโโโ | 149/196 [01:52<00:26, 1.79it/s]
77%|โโโโโโโโ | 150/196 [01:52<00:27, 1.65it/s]
77%|โโโโโโโโ | 151/196 [01:53<00:28, 1.60it/s]
78%|โโโโโโโโ | 152/196 [01:54<00:27, 1.59it/s]
78%|โโโโโโโโ | 153/196 [01:54<00:27, 1.59it/s]
79%|โโโโโโโโ | 154/196 [01:55<00:26, 1.59it/s]
79%|โโโโโโโโ | 155/196 [01:56<00:27, 1.47it/s]
80%|โโโโโโโโ | 156/196 [01:57<00:29, 1.35it/s]
80%|โโโโโโโโ | 157/196 [01:57<00:30, 1.30it/s]
81%|โโโโโโโโ | 158/196 [01:58<00:26, 1.44it/s]
81%|โโโโโโโโ | 159/196 [01:58<00:23, 1.54it/s]
82%|โโโโโโโโโ | 160/196 [01:59<00:22, 1.57it/s]
82%|โโโโโโโโโ | 161/196 [02:00<00:22, 1.54it/s]
83%|โโโโโโโโโ | 162/196 [02:00<00:21, 1.57it/s]
83%|โโโโโโโโโ | 163/196 [02:01<00:20, 1.59it/s]
84%|โโโโโโโโโ | 164/196 [02:02<00:20, 1.59it/s]
84%|โโโโโโโโโ | 165/196 [02:02<00:20, 1.54it/s]
85%|โโโโโโโโโ | 166/196 [02:03<00:19, 1.58it/s]
85%|โโโโโโโโโ | 167/196 [02:03<00:18, 1.61it/s]
86%|โโโโโโโโโ | 168/196 [02:04<00:16, 1.70it/s]
86%|โโโโโโโโโ | 169/196 [02:05<00:16, 1.61it/s]
87%|โโโโโโโโโ | 170/196 [02:05<00:17, 1.51it/s]
87%|โโโโโโโโโ | 171/196 [02:06<00:16, 1.53it/s]
88%|โโโโโโโโโ | 172/196 [02:07<00:16, 1.50it/s]
88%|โโโโโโโโโ | 173/196 [02:07<00:15, 1.50it/s]
89%|โโโโโโโโโ | 174/196 [02:08<00:15, 1.42it/s]
89%|โโโโโโโโโ | 175/196 [02:09<00:18, 1.14it/s]
90%|โโโโโโโโโ | 176/196 [02:12<00:25, 1.28s/it]
90%|โโโโโโโโโ | 177/196 [02:14<00:27, 1.45s/it]
91%|โโโโโโโโโ | 178/196 [02:16<00:29, 1.62s/it]
91%|โโโโโโโโโโ| 179/196 [02:17<00:27, 1.62s/it]
92%|โโโโโโโโโโ| 180/196 [02:18<00:21, 1.33s/it]
92%|โโโโโโโโโโ| 181/196 [02:18<00:16, 1.13s/it]
93%|โโโโโโโโโโ| 182/196 [02:19<00:13, 1.01it/s]
93%|โโโโโโโโโโ| 183/196 [02:20<00:12, 1.02it/s]
94%|โโโโโโโโโโ| 184/196 [02:21<00:10, 1.14it/s]
94%|โโโโโโโโโโ| 185/196 [02:22<00:09, 1.18it/s]
95%|โโโโโโโโโโ| 186/196 [02:22<00:08, 1.17it/s]
95%|โโโโโโโโโโ| 187/196 [02:23<00:07, 1.26it/s]
96%|โโโโโโโโโโ| 188/196 [02:24<00:05, 1.34it/s]
96%|โโโโโโโโโโ| 189/196 [02:24<00:05, 1.38it/s]
97%|โโโโโโโโโโ| 190/196 [02:25<00:04, 1.46it/s]
97%|โโโโโโโโโโ| 191/196 [02:26<00:03, 1.53it/s]
98%|โโโโโโโโโโ| 192/196 [02:26<00:02, 1.51it/s]
98%|โโโโโโโโโโ| 193/196 [02:27<00:02, 1.50it/s]
99%|โโโโโโโโโโ| 194/196 [02:28<00:01, 1.52it/s]
99%|โโโโโโโโโโ| 195/196 [02:28<00:00, 1.57it/s]
100%|โโโโโโโโโโ| 196/196 [02:28<00:00, 1.95it/s]
100%|โโโโโโโโโโ| 196/196 [02:36<00:00, 1.26it/s]