diff --git "a/indicwav2vec_MUCS_warmup2000_s400shuff42_2129999.out" "b/indicwav2vec_MUCS_warmup2000_s400shuff42_2129999.out"
new file mode 100644--- /dev/null
+++ "b/indicwav2vec_MUCS_warmup2000_s400shuff42_2129999.out"
@@ -0,0 +1,2814 @@
+wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
+wandb: wandb version 0.17.7 is available! To upgrade, please run:
+wandb: $ pip install wandb --upgrade
+wandb: Tracking run with wandb version 0.17.6
+wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240821_150645-61u02e49
+wandb: Run `wandb offline` to turn off syncing.
+wandb: Syncing run laced-universe-26
+wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
+wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/61u02e49
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
+ warnings.warn(
+08/21/2024 15:06:48 - WARNING - __main__ - device: cuda:0, n_gpu: 116-bits training: True
+
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 52825 examples [00:01, 46900.67 examples/s]
Generating train split: 52825 examples [00:01, 45501.90 examples/s]
+
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 3136 examples [00:00, 29662.78 examples/s]
Generating train split: 3136 examples [00:00, 29053.45 examples/s]
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
+ warnings.warn(
+/scratch/elec/puhe/p/palp3/MUCS/finetune_script_indicw2v_partdata.py:508: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
+ state_dict = torch.load(f"{model_args.model_name_or_path}/pytorch_model.bin")
+Some weights of the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi were not used when initializing Wav2Vec2ForCTC: ['wav2vec2.encoder.pos_conv_embed.conv.weight_g', 'wav2vec2.encoder.pos_conv_embed.conv.weight_v']
+- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
+- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
+Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at /m/triton/scratch/elec/puhe/p/palp3/MUCS/indicwav2vec-hindi and are newly initialized: ['lm_head.bias', 'lm_head.weight', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'wav2vec2.encoder.pos_conv_embed.conv.parametrizations.weight.original1']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
+ self.scaler = torch.cuda.amp.GradScaler(**kwargs)
+max_steps is given, it will override any value given in num_train_epochs
+Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
+ 147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
+ 149: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+ 150: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
+}
+CHECK MODEL PARAMS Wav2Vec2ForCTC(
+ (wav2vec2): Wav2Vec2Model(
+ (feature_extractor): Wav2Vec2FeatureEncoder(
+ (conv_layers): ModuleList(
+ (0): Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (activation): GELUActivation()
+ )
+ )
+ )
+ (feature_projection): Wav2Vec2FeatureProjection(
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
+ (projection): Linear(in_features=512, out_features=1024, bias=True)
+ (dropout): Dropout(p=0.3, inplace=False)
+ )
+ (encoder): Wav2Vec2EncoderStableLayerNorm(
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
+ (conv): ParametrizedConv1d(
+ 1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
+ (parametrizations): ModuleDict(
+ (weight): ParametrizationList(
+ (0): _WeightNorm()
+ )
+ )
+ )
+ (padding): Wav2Vec2SamePadLayer()
+ (activation): GELUActivation()
+ )
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layers): ModuleList(
+ (0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
+ (attention): Wav2Vec2SdpaAttention(
+ (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
+ )
+ (dropout): Dropout(p=0.2, inplace=False)
+ (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ (feed_forward): Wav2Vec2FeedForward(
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
+ (intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
+ (intermediate_act_fn): GELUActivation()
+ (output_dense): Linear(in_features=4096, out_features=1024, bias=True)
+ (output_dropout): Dropout(p=0.2, inplace=False)
+ )
+ (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
+ )
+ )
+ )
+ )
+ (dropout): Dropout(p=0.0, inplace=False)
+ (lm_head): Linear(in_features=1024, out_features=151, bias=True)
+)
+
0%| | 0/5000 [00:00, ?it/s]/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
+ return fn(*args, **kwargs)
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
0%| | 1/5000 [00:24<34:15:36, 24.67s/it]
0%| | 1/5000 [00:24<34:15:36, 24.67s/it]
0%| | 2/5000 [00:28<17:23:22, 12.53s/it]
0%| | 2/5000 [00:28<17:23:22, 12.53s/it]
0%| | 3/5000 [00:32<11:52:38, 8.56s/it]
0%| | 3/5000 [00:32<11:52:38, 8.56s/it]
0%| | 4/5000 [00:35<8:55:46, 6.43s/it]
0%| | 4/5000 [00:35<8:55:46, 6.43s/it]
0%| | 5/5000 [00:38<7:13:01, 5.20s/it]
0%| | 5/5000 [00:38<7:13:01, 5.20s/it]
0%| | 6/5000 [00:41<6:04:27, 4.38s/it]
0%| | 6/5000 [00:41<6:04:27, 4.38s/it]
0%| | 7/5000 [00:44<5:17:28, 3.82s/it]
0%| | 7/5000 [00:44<5:17:28, 3.82s/it]
0%| | 8/5000 [00:46<4:44:22, 3.42s/it]
0%| | 8/5000 [00:46<4:44:22, 3.42s/it]
0%| | 9/5000 [00:49<4:16:15, 3.08s/it]
0%| | 9/5000 [00:49<4:16:15, 3.08s/it]
0%| | 10/5000 [00:51<3:57:12, 2.85s/it]
0%| | 10/5000 [00:51<3:57:12, 2.85s/it]
0%| | 11/5000 [00:53<3:43:55, 2.69s/it]
0%| | 11/5000 [00:53<3:43:55, 2.69s/it]
0%| | 12/5000 [00:55<3:29:14, 2.52s/it]
0%| | 12/5000 [00:55<3:29:14, 2.52s/it]
0%| | 13/5000 [00:57<3:18:57, 2.39s/it]
0%| | 13/5000 [00:57<3:18:57, 2.39s/it]
0%| | 14/5000 [01:00<3:11:15, 2.30s/it]
0%| | 14/5000 [01:00<3:11:15, 2.30s/it]
0%| | 15/5000 [01:02<3:05:04, 2.23s/it]
0%| | 15/5000 [01:02<3:05:04, 2.23s/it]
0%| | 16/5000 [01:04<3:01:24, 2.18s/it]
0%| | 16/5000 [01:04<3:01:24, 2.18s/it]
0%| | 17/5000 [01:06<2:54:52, 2.11s/it]
0%| | 17/5000 [01:06<2:54:52, 2.11s/it]
0%| | 18/5000 [01:07<2:45:39, 2.00s/it]
0%| | 18/5000 [01:07<2:45:39, 2.00s/it]
0%| | 19/5000 [01:09<2:39:00, 1.92s/it]
0%| | 19/5000 [01:09<2:39:00, 1.92s/it]
0%| | 20/5000 [01:11<2:34:16, 1.86s/it]
0%| | 20/5000 [01:11<2:34:16, 1.86s/it]
0%| | 21/5000 [01:13<2:30:51, 1.82s/it]
0%| | 21/5000 [01:13<2:30:51, 1.82s/it]
0%| | 22/5000 [01:14<2:28:46, 1.79s/it]
0%| | 22/5000 [01:14<2:28:46, 1.79s/it]
0%| | 23/5000 [01:16<2:26:09, 1.76s/it]
0%| | 23/5000 [01:16<2:26:09, 1.76s/it]
0%| | 24/5000 [01:17<2:19:52, 1.69s/it]
0%| | 24/5000 [01:17<2:19:52, 1.69s/it]
0%| | 25/5000 [01:19<2:14:26, 1.62s/it]
0%| | 25/5000 [01:19<2:14:26, 1.62s/it]
1%| | 26/5000 [01:20<2:10:40, 1.58s/it]
1%| | 26/5000 [01:20<2:10:40, 1.58s/it]
1%| | 27/5000 [01:22<2:07:56, 1.54s/it]
1%| | 27/5000 [01:22<2:07:56, 1.54s/it]
1%| | 28/5000 [01:23<2:05:54, 1.52s/it]
1%| | 28/5000 [01:23<2:05:54, 1.52s/it]
1%| | 29/5000 [01:25<2:04:30, 1.50s/it]
1%| | 29/5000 [01:25<2:04:30, 1.50s/it]
1%| | 30/5000 [01:26<2:03:29, 1.49s/it]
1%| | 30/5000 [01:26<2:03:29, 1.49s/it]
1%| | 31/5000 [01:28<2:03:04, 1.49s/it]
1%| | 31/5000 [01:28<2:03:04, 1.49s/it]
1%| | 32/5000 [01:29<1:59:21, 1.44s/it]
1%| | 32/5000 [01:29<1:59:21, 1.44s/it]
1%| | 33/5000 [01:30<1:53:12, 1.37s/it]
1%| | 33/5000 [01:30<1:53:12, 1.37s/it]
1%| | 34/5000 [01:31<1:48:49, 1.31s/it]
1%| | 34/5000 [01:31<1:48:49, 1.31s/it]
1%| | 35/5000 [01:33<1:45:54, 1.28s/it]
1%| | 35/5000 [01:33<1:45:54, 1.28s/it]
1%| | 36/5000 [01:34<1:43:46, 1.25s/it]
1%| | 36/5000 [01:34<1:43:46, 1.25s/it]
1%| | 37/5000 [01:35<1:42:10, 1.24s/it]
1%| | 37/5000 [01:35<1:42:10, 1.24s/it]
1%| | 38/5000 [01:36<1:41:19, 1.23s/it]
1%| | 38/5000 [01:36<1:41:19, 1.23s/it]
1%| | 39/5000 [01:37<1:40:36, 1.22s/it]
1%| | 39/5000 [01:37<1:40:36, 1.22s/it]
1%| | 40/5000 [01:39<1:37:03, 1.17s/it]
1%| | 40/5000 [01:39<1:37:03, 1.17s/it]
1%| | 41/5000 [01:39<1:30:42, 1.10s/it]
1%| | 41/5000 [01:39<1:30:42, 1.10s/it]
1%| | 42/5000 [01:40<1:26:09, 1.04s/it]
1%| | 42/5000 [01:40<1:26:09, 1.04s/it]
1%| | 43/5000 [01:41<1:23:01, 1.01s/it]
1%| | 43/5000 [01:41<1:23:01, 1.01s/it]
1%| | 44/5000 [01:42<1:20:57, 1.02it/s]
1%| | 44/5000 [01:42<1:20:57, 1.02it/s]
1%| | 45/5000 [01:43<1:19:23, 1.04it/s]
1%| | 45/5000 [01:43<1:19:23, 1.04it/s]
1%| | 46/5000 [01:44<1:15:19, 1.10it/s]
1%| | 46/5000 [01:44<1:15:19, 1.10it/s]
1%| | 47/5000 [01:45<1:10:52, 1.16it/s]
1%| | 47/5000 [01:45<1:10:52, 1.16it/s]
1%| | 48/5000 [01:45<1:06:11, 1.25it/s]
1%| | 48/5000 [01:45<1:06:11, 1.25it/s]
1%| | 49/5000 [01:46<1:02:41, 1.32it/s]
1%| | 49/5000 [01:46<1:02:41, 1.32it/s]
1%| | 50/5000 [01:48<1:43:37, 1.26s/it]
1%| | 50/5000 [01:48<1:43:37, 1.26s/it]
1%| | 51/5000 [01:56<4:11:06, 3.04s/it]
1%| | 51/5000 [01:56<4:11:06, 3.04s/it]
1%| | 52/5000 [02:00<4:40:21, 3.40s/it]
1%| | 52/5000 [02:00<4:40:21, 3.40s/it]
1%| | 53/5000 [02:03<4:45:47, 3.47s/it]
1%| | 53/5000 [02:03<4:45:47, 3.47s/it]
1%| | 54/5000 [02:07<4:42:35, 3.43s/it]
1%| | 54/5000 [02:07<4:42:35, 3.43s/it]
1%| | 55/5000 [02:10<4:34:32, 3.33s/it]
1%| | 55/5000 [02:10<4:34:32, 3.33s/it]
1%| | 56/5000 [02:13<4:24:16, 3.21s/it]
1%| | 56/5000 [02:13<4:24:16, 3.21s/it]
1%| | 57/5000 [02:16<4:11:47, 3.06s/it]
1%| | 57/5000 [02:16<4:11:47, 3.06s/it]
1%| | 58/5000 [02:18<4:01:46, 2.94s/it]
1%| | 58/5000 [02:18<4:01:46, 2.94s/it]
1%| | 59/5000 [02:21<3:50:39, 2.80s/it]
1%| | 59/5000 [02:21<3:50:39, 2.80s/it]
1%| | 60/5000 [02:23<3:39:22, 2.66s/it]
1%| | 60/5000 [02:23<3:39:22, 2.66s/it]
1%| | 61/5000 [02:25<3:31:43, 2.57s/it]
1%| | 61/5000 [02:25<3:31:43, 2.57s/it]
1%| | 62/5000 [02:28<3:26:03, 2.50s/it]
1%| | 62/5000 [02:28<3:26:03, 2.50s/it]
1%|▏ | 63/5000 [02:30<3:16:55, 2.39s/it]
1%|▏ | 63/5000 [02:30<3:16:55, 2.39s/it]
1%|▏ | 64/5000 [02:32<3:08:33, 2.29s/it]
1%|▏ | 64/5000 [02:32<3:08:33, 2.29s/it]
1%|▏ | 65/5000 [02:34<3:02:34, 2.22s/it]
1%|▏ | 65/5000 [02:34<3:02:34, 2.22s/it]
1%|▏ | 66/5000 [02:36<2:58:16, 2.17s/it]
1%|▏ | 66/5000 [02:36<2:58:16, 2.17s/it]
1%|▏ | 67/5000 [02:38<2:55:17, 2.13s/it]
1%|▏ | 67/5000 [02:38<2:55:17, 2.13s/it]
1%|▏ | 68/5000 [02:40<2:50:23, 2.07s/it]
1%|▏ | 68/5000 [02:40<2:50:23, 2.07s/it]
1%|▏ | 69/5000 [02:42<2:42:04, 1.97s/it]
1%|▏ | 69/5000 [02:42<2:42:04, 1.97s/it]
1%|▏ | 70/5000 [02:43<2:36:41, 1.91s/it]
1%|▏ | 70/5000 [02:43<2:36:41, 1.91s/it]
1%|▏ | 71/5000 [02:45<2:32:29, 1.86s/it]
1%|▏ | 71/5000 [02:45<2:32:29, 1.86s/it]
1%|▏ | 72/5000 [02:47<2:29:36, 1.82s/it]
1%|▏ | 72/5000 [02:47<2:29:36, 1.82s/it]
1%|▏ | 73/5000 [02:49<2:27:37, 1.80s/it]
1%|▏ | 73/5000 [02:49<2:27:37, 1.80s/it]
1%|▏ | 74/5000 [02:50<2:25:08, 1.77s/it]
1%|▏ | 74/5000 [02:50<2:25:08, 1.77s/it]
2%|▏ | 75/5000 [02:52<2:18:49, 1.69s/it]
2%|▏ | 75/5000 [02:52<2:18:49, 1.69s/it]
2%|▏ | 76/5000 [02:53<2:13:08, 1.62s/it]
2%|▏ | 76/5000 [02:53<2:13:08, 1.62s/it]
2%|▏ | 77/5000 [02:55<2:09:25, 1.58s/it]
2%|▏ | 77/5000 [02:55<2:09:25, 1.58s/it]
2%|▏ | 78/5000 [02:56<2:06:55, 1.55s/it]
2%|▏ | 78/5000 [02:56<2:06:55, 1.55s/it]
2%|▏ | 79/5000 [02:58<2:06:16, 1.54s/it]
2%|▏ | 79/5000 [02:58<2:06:16, 1.54s/it]
2%|▏ | 80/5000 [02:59<2:04:28, 1.52s/it]
2%|▏ | 80/5000 [02:59<2:04:28, 1.52s/it]
2%|▏ | 81/5000 [03:01<2:03:20, 1.50s/it]
2%|▏ | 81/5000 [03:01<2:03:20, 1.50s/it]
2%|▏ | 82/5000 [03:02<2:00:43, 1.47s/it]
2%|▏ | 82/5000 [03:02<2:00:43, 1.47s/it]
2%|▏ | 83/5000 [03:03<1:55:15, 1.41s/it]
2%|▏ | 83/5000 [03:03<1:55:15, 1.41s/it]
2%|▏ | 84/5000 [03:05<1:50:26, 1.35s/it]
2%|▏ | 84/5000 [03:05<1:50:26, 1.35s/it]
2%|▏ | 85/5000 [03:06<1:46:57, 1.31s/it]
2%|▏ | 85/5000 [03:06<1:46:57, 1.31s/it]
2%|▏ | 86/5000 [03:07<1:44:30, 1.28s/it]
2%|▏ | 86/5000 [03:07<1:44:30, 1.28s/it]
2%|▏ | 87/5000 [03:08<1:42:45, 1.25s/it]
2%|▏ | 87/5000 [03:08<1:42:45, 1.25s/it]
2%|▏ | 88/5000 [03:09<1:41:44, 1.24s/it]
2%|▏ | 88/5000 [03:09<1:41:44, 1.24s/it]
2%|▏ | 89/5000 [03:11<1:40:43, 1.23s/it]
2%|▏ | 89/5000 [03:11<1:40:43, 1.23s/it]
2%|▏ | 90/5000 [03:12<1:38:55, 1.21s/it]
2%|▏ | 90/5000 [03:12<1:38:55, 1.21s/it]
2%|▏ | 91/5000 [03:13<1:33:16, 1.14s/it]
2%|▏ | 91/5000 [03:13<1:33:16, 1.14s/it]
2%|▏ | 92/5000 [03:14<1:27:47, 1.07s/it]
2%|▏ | 92/5000 [03:14<1:27:47, 1.07s/it]
2%|▏ | 93/5000 [03:15<1:24:08, 1.03s/it]
2%|▏ | 93/5000 [03:15<1:24:08, 1.03s/it]
2%|▏ | 94/5000 [03:16<1:21:29, 1.00it/s]
2%|▏ | 94/5000 [03:16<1:21:29, 1.00it/s]
2%|▏ | 95/5000 [03:16<1:19:30, 1.03it/s]
2%|▏ | 95/5000 [03:17<1:19:30, 1.03it/s]
2%|▏ | 96/5000 [03:17<1:15:54, 1.08it/s]
2%|▏ | 96/5000 [03:17<1:15:54, 1.08it/s]
2%|▏ | 97/5000 [03:18<1:09:21, 1.18it/s]
2%|▏ | 97/5000 [03:18<1:09:21, 1.18it/s]
2%|▏ | 98/5000 [03:19<1:04:46, 1.26it/s]
2%|▏ | 98/5000 [03:19<1:04:46, 1.26it/s]
2%|▏ | 99/5000 [03:19<1:01:30, 1.33it/s]
2%|▏ | 99/5000 [03:19<1:01:30, 1.33it/s]
2%|▏ | 100/5000 [03:22<1:43:46, 1.27s/it]
2%|▏ | 100/5000 [03:22<1:43:46, 1.27s/it]
2%|▏ | 101/5000 [03:30<4:28:48, 3.29s/it]
2%|▏ | 101/5000 [03:30<4:28:48, 3.29s/it]
2%|▏ | 102/5000 [03:34<4:56:31, 3.63s/it]
2%|▏ | 102/5000 [03:34<4:56:31, 3.63s/it]
2%|▏ | 103/5000 [03:38<5:01:58, 3.70s/it]
2%|▏ | 103/5000 [03:38<5:01:58, 3.70s/it]
2%|▏ | 104/5000 [03:42<4:56:22, 3.63s/it]
2%|▏ | 104/5000 [03:42<4:56:22, 3.63s/it]
2%|▏ | 105/5000 [03:45<4:45:03, 3.49s/it]
2%|▏ | 105/5000 [03:45<4:45:03, 3.49s/it]
2%|▏ | 106/5000 [03:48<4:30:56, 3.32s/it]
2%|▏ | 106/5000 [03:48<4:30:56, 3.32s/it]
2%|▏ | 107/5000 [03:50<4:17:49, 3.16s/it]
2%|▏ | 107/5000 [03:50<4:17:49, 3.16s/it]
2%|▏ | 108/5000 [03:53<4:05:59, 3.02s/it]
2%|▏ | 108/5000 [03:53<4:05:59, 3.02s/it]
2%|▏ | 109/5000 [03:56<3:55:14, 2.89s/it]
2%|▏ | 109/5000 [03:56<3:55:14, 2.89s/it]
2%|▏ | 110/5000 [03:58<3:43:09, 2.74s/it]
2%|▏ | 110/5000 [03:58<3:43:09, 2.74s/it]
2%|▏ | 111/5000 [04:00<3:33:53, 2.62s/it]
2%|▏ | 111/5000 [04:00<3:33:53, 2.62s/it]
2%|▏ | 112/5000 [04:03<3:25:55, 2.53s/it]
2%|▏ | 112/5000 [04:03<3:25:55, 2.53s/it]
2%|▏ | 113/5000 [04:05<3:15:34, 2.40s/it]
2%|▏ | 113/5000 [04:05<3:15:34, 2.40s/it]
2%|▏ | 114/5000 [04:07<3:06:43, 2.29s/it]
2%|▏ | 114/5000 [04:07<3:06:43, 2.29s/it]
2%|▏ | 115/5000 [04:09<3:00:42, 2.22s/it]
2%|▏ | 115/5000 [04:09<3:00:42, 2.22s/it]
2%|▏ | 116/5000 [04:11<2:56:46, 2.17s/it]
2%|▏ | 116/5000 [04:11<2:56:46, 2.17s/it]
2%|▏ | 117/5000 [04:13<2:53:15, 2.13s/it]
2%|▏ | 117/5000 [04:13<2:53:15, 2.13s/it]
2%|▏ | 118/5000 [04:15<2:45:53, 2.04s/it]
2%|▏ | 118/5000 [04:15<2:45:53, 2.04s/it]
2%|▏ | 119/5000 [04:17<2:38:28, 1.95s/it]
2%|▏ | 119/5000 [04:17<2:38:28, 1.95s/it]
2%|▏ | 120/5000 [04:18<2:33:24, 1.89s/it]
2%|▏ | 120/5000 [04:18<2:33:24, 1.89s/it]
2%|▏ | 121/5000 [04:20<2:29:50, 1.84s/it]
2%|▏ | 121/5000 [04:20<2:29:50, 1.84s/it]
2%|▏ | 122/5000 [04:22<2:27:11, 1.81s/it]
2%|▏ | 122/5000 [04:22<2:27:11, 1.81s/it]
2%|▏ | 123/5000 [04:24<2:25:36, 1.79s/it]
2%|▏ | 123/5000 [04:24<2:25:36, 1.79s/it]
2%|▏ | 124/5000 [04:25<2:23:17, 1.76s/it]
2%|▏ | 124/5000 [04:25<2:23:17, 1.76s/it]
2%|▎ | 125/5000 [04:27<2:17:14, 1.69s/it]
2%|▎ | 125/5000 [04:27<2:17:14, 1.69s/it]
3%|▎ | 126/5000 [04:28<2:13:04, 1.64s/it]
3%|▎ | 126/5000 [04:28<2:13:04, 1.64s/it]
3%|▎ | 127/5000 [04:30<2:08:53, 1.59s/it]
3%|▎ | 127/5000 [04:30<2:08:53, 1.59s/it]
3%|▎ | 128/5000 [04:31<2:06:04, 1.55s/it]
3%|▎ | 128/5000 [04:31<2:06:04, 1.55s/it]
3%|▎ | 129/5000 [04:33<2:04:04, 1.53s/it]
3%|▎ | 129/5000 [04:33<2:04:04, 1.53s/it]
3%|▎ | 130/5000 [04:34<2:02:59, 1.52s/it]
3%|▎ | 130/5000 [04:34<2:02:59, 1.52s/it]
3%|▎ | 131/5000 [04:36<2:01:56, 1.50s/it]
3%|▎ | 131/5000 [04:36<2:01:56, 1.50s/it]
3%|▎ | 132/5000 [04:37<2:01:21, 1.50s/it]
3%|▎ | 132/5000 [04:37<2:01:21, 1.50s/it]
3%|▎ | 133/5000 [04:38<1:55:25, 1.42s/it]
3%|▎ | 133/5000 [04:38<1:55:25, 1.42s/it]
3%|▎ | 134/5000 [04:40<1:50:03, 1.36s/it]
3%|▎ | 134/5000 [04:40<1:50:03, 1.36s/it]
3%|▎ | 135/5000 [04:41<1:46:25, 1.31s/it]
3%|▎ | 135/5000 [04:41<1:46:25, 1.31s/it]
3%|▎ | 136/5000 [04:42<1:43:40, 1.28s/it]
3%|▎ | 136/5000 [04:42<1:43:40, 1.28s/it]
3%|▎ | 137/5000 [04:43<1:41:47, 1.26s/it]
3%|▎ | 137/5000 [04:43<1:41:47, 1.26s/it]
3%|▎ | 138/5000 [04:44<1:40:28, 1.24s/it]
3%|▎ | 138/5000 [04:44<1:40:28, 1.24s/it]
3%|▎ | 139/5000 [04:46<1:39:38, 1.23s/it]
3%|▎ | 139/5000 [04:46<1:39:38, 1.23s/it]
3%|▎ | 140/5000 [04:47<1:36:56, 1.20s/it]
3%|▎ | 140/5000 [04:47<1:36:56, 1.20s/it]
3%|▎ | 141/5000 [04:48<1:30:06, 1.11s/it]
3%|▎ | 141/5000 [04:48<1:30:06, 1.11s/it]
3%|▎ | 142/5000 [04:49<1:25:36, 1.06s/it]
3%|▎ | 142/5000 [04:49<1:25:36, 1.06s/it]
3%|▎ | 143/5000 [04:50<1:22:18, 1.02s/it]
3%|▎ | 143/5000 [04:50<1:22:18, 1.02s/it]
3%|▎ | 144/5000 [04:50<1:20:03, 1.01it/s]
3%|▎ | 144/5000 [04:50<1:20:03, 1.01it/s]
3%|▎ | 145/5000 [04:51<1:18:20, 1.03it/s]
3%|▎ | 145/5000 [04:51<1:18:20, 1.03it/s]
3%|▎ | 146/5000 [04:52<1:17:05, 1.05it/s]
3%|▎ | 146/5000 [04:52<1:17:05, 1.05it/s]
3%|▎ | 147/5000 [04:53<1:12:25, 1.12it/s]
3%|▎ | 147/5000 [04:53<1:12:25, 1.12it/s]
3%|▎ | 148/5000 [04:54<1:06:49, 1.21it/s]
3%|▎ | 148/5000 [04:54<1:06:49, 1.21it/s]
3%|▎ | 149/5000 [04:54<1:02:59, 1.28it/s]
3%|▎ | 149/5000 [04:54<1:02:59, 1.28it/s]
3%|▎ | 150/5000 [04:57<1:41:09, 1.25s/it]
3%|▎ | 150/5000 [04:57<1:41:09, 1.25s/it]
3%|▎ | 151/5000 [05:03<3:48:42, 2.83s/it]
3%|▎ | 151/5000 [05:03<3:48:42, 2.83s/it]
3%|▎ | 152/5000 [05:07<4:19:58, 3.22s/it]
3%|▎ | 152/5000 [05:07<4:19:58, 3.22s/it]
3%|▎ | 153/5000 [05:11<4:30:42, 3.35s/it]
3%|▎ | 153/5000 [05:11<4:30:42, 3.35s/it]
3%|▎ | 154/5000 [05:14<4:30:09, 3.35s/it]
3%|▎ | 154/5000 [05:14<4:30:09, 3.35s/it]
3%|▎ | 155/5000 [05:17<4:25:02, 3.28s/it]
3%|▎ | 155/5000 [05:18<4:25:02, 3.28s/it]
3%|▎ | 156/5000 [05:20<4:15:01, 3.16s/it]
3%|▎ | 156/5000 [05:20<4:15:01, 3.16s/it]
3%|▎ | 157/5000 [05:23<4:04:05, 3.02s/it]
3%|▎ | 157/5000 [05:23<4:04:05, 3.02s/it]
3%|▎ | 158/5000 [05:26<3:54:58, 2.91s/it]
3%|▎ | 158/5000 [05:26<3:54:58, 2.91s/it]
3%|▎ | 159/5000 [05:28<3:45:35, 2.80s/it]
3%|▎ | 159/5000 [05:28<3:45:35, 2.80s/it]
3%|▎ | 160/5000 [05:31<3:34:13, 2.66s/it]
3%|▎ | 160/5000 [05:31<3:34:13, 2.66s/it]
3%|▎ | 161/5000 [05:33<3:26:24, 2.56s/it]
3%|▎ | 161/5000 [05:33<3:26:24, 2.56s/it]
3%|▎ | 162/5000 [05:35<3:19:32, 2.47s/it]
3%|▎ | 162/5000 [05:35<3:19:32, 2.47s/it]
3%|▎ | 163/5000 [05:37<3:10:35, 2.36s/it]
3%|▎ | 163/5000 [05:37<3:10:35, 2.36s/it]
3%|▎ | 164/5000 [05:39<3:03:06, 2.27s/it]
3%|▎ | 164/5000 [05:39<3:03:06, 2.27s/it]
3%|▎ | 165/5000 [05:41<2:57:26, 2.20s/it]
3%|▎ | 165/5000 [05:41<2:57:26, 2.20s/it]
3%|▎ | 166/5000 [05:43<2:53:50, 2.16s/it]
3%|▎ | 166/5000 [05:43<2:53:50, 2.16s/it]
3%|▎ | 167/5000 [05:45<2:48:56, 2.10s/it]
3%|▎ | 167/5000 [05:45<2:48:56, 2.10s/it]
3%|▎ | 168/5000 [05:47<2:39:56, 1.99s/it]
3%|▎ | 168/5000 [05:47<2:39:56, 1.99s/it]
3%|▎ | 169/5000 [05:49<2:33:49, 1.91s/it]
3%|▎ | 169/5000 [05:49<2:33:49, 1.91s/it]
3%|▎ | 170/5000 [05:51<2:29:33, 1.86s/it]
3%|▎ | 170/5000 [05:51<2:29:33, 1.86s/it]
3%|▎ | 171/5000 [05:52<2:26:28, 1.82s/it]
3%|▎ | 171/5000 [05:52<2:26:28, 1.82s/it]
3%|▎ | 172/5000 [05:54<2:24:19, 1.79s/it]
3%|▎ | 172/5000 [05:54<2:24:19, 1.79s/it]
3%|▎ | 173/5000 [05:56<2:23:00, 1.78s/it]
3%|▎ | 173/5000 [05:56<2:23:00, 1.78s/it]
3%|▎ | 174/5000 [05:57<2:18:38, 1.72s/it]
3%|▎ | 174/5000 [05:57<2:18:38, 1.72s/it]
4%|▎ | 175/5000 [05:59<2:12:58, 1.65s/it]
4%|▎ | 175/5000 [05:59<2:12:58, 1.65s/it]
4%|▎ | 176/5000 [06:00<2:08:44, 1.60s/it]
4%|▎ | 176/5000 [06:00<2:08:44, 1.60s/it]
4%|▎ | 177/5000 [06:02<2:05:33, 1.56s/it]
4%|▎ | 177/5000 [06:02<2:05:33, 1.56s/it]
4%|▎ | 178/5000 [06:03<2:03:34, 1.54s/it]
4%|▎ | 178/5000 [06:03<2:03:34, 1.54s/it]
4%|▎ | 179/5000 [06:05<2:02:04, 1.52s/it]
4%|▎ | 179/5000 [06:05<2:02:04, 1.52s/it]
4%|▎ | 180/5000 [06:06<2:00:52, 1.50s/it]
4%|▎ | 180/5000 [06:06<2:00:52, 1.50s/it]
4%|▎ | 181/5000 [06:08<2:00:04, 1.50s/it]
4%|▎ | 181/5000 [06:08<2:00:04, 1.50s/it]
4%|▎ | 182/5000 [06:09<1:58:38, 1.48s/it]
4%|▎ | 182/5000 [06:09<1:58:38, 1.48s/it]
4%|▎ | 183/5000 [06:10<1:53:20, 1.41s/it]
4%|▎ | 183/5000 [06:10<1:53:20, 1.41s/it]
4%|▎ | 184/5000 [06:12<1:48:16, 1.35s/it]
4%|▎ | 184/5000 [06:12<1:48:16, 1.35s/it]
4%|▎ | 185/5000 [06:13<1:44:43, 1.31s/it]
4%|▎ | 185/5000 [06:13<1:44:43, 1.31s/it]
4%|▎ | 186/5000 [06:14<1:42:07, 1.27s/it]
4%|▎ | 186/5000 [06:14<1:42:07, 1.27s/it]
4%|▎ | 187/5000 [06:15<1:40:28, 1.25s/it]
4%|▎ | 187/5000 [06:15<1:40:28, 1.25s/it]
4%|▍ | 188/5000 [06:16<1:39:28, 1.24s/it]
4%|▍ | 188/5000 [06:16<1:39:28, 1.24s/it]
4%|▍ | 189/5000 [06:18<1:38:34, 1.23s/it]
4%|▍ | 189/5000 [06:18<1:38:34, 1.23s/it]
4%|▍ | 190/5000 [06:19<1:35:57, 1.20s/it]
4%|▍ | 190/5000 [06:19<1:35:57, 1.20s/it]
4%|▍ | 191/5000 [06:20<1:29:20, 1.11s/it]
4%|▍ | 191/5000 [06:20<1:29:20, 1.11s/it]
4%|▍ | 192/5000 [06:21<1:24:48, 1.06s/it]
4%|▍ | 192/5000 [06:21<1:24:48, 1.06s/it]
4%|▍ | 193/5000 [06:22<1:21:39, 1.02s/it]
4%|▍ | 193/5000 [06:22<1:21:39, 1.02s/it]
4%|▍ | 194/5000 [06:22<1:19:17, 1.01it/s]
4%|▍ | 194/5000 [06:22<1:19:17, 1.01it/s]
4%|▍ | 195/5000 [06:23<1:17:37, 1.03it/s]
4%|▍ | 195/5000 [06:23<1:17:37, 1.03it/s]
4%|▍ | 196/5000 [06:24<1:16:23, 1.05it/s]
4%|▍ | 196/5000 [06:24<1:16:23, 1.05it/s]
4%|▍ | 197/5000 [06:25<1:12:12, 1.11it/s]
4%|▍ | 197/5000 [06:25<1:12:12, 1.11it/s]
4%|▍ | 198/5000 [06:26<1:06:33, 1.20it/s]
4%|▍ | 198/5000 [06:26<1:06:33, 1.20it/s]
4%|▍ | 199/5000 [06:26<1:02:36, 1.28it/s]
4%|▍ | 199/5000 [06:26<1:02:36, 1.28it/s]
4%|▍ | 200/5000 [06:29<1:48:18, 1.35s/it]
4%|▍ | 200/5000 [06:29<1:48:18, 1.35s/it]
4%|▍ | 201/5000 [06:38<4:44:52, 3.56s/it]
4%|▍ | 201/5000 [06:38<4:44:52, 3.56s/it]
4%|▍ | 202/5000 [06:42<4:59:26, 3.74s/it]
4%|▍ | 202/5000 [06:42<4:59:26, 3.74s/it]
4%|▍ | 203/5000 [06:46<4:56:52, 3.71s/it]
4%|▍ | 203/5000 [06:46<4:56:52, 3.71s/it]
4%|▍ | 204/5000 [06:49<4:46:25, 3.58s/it]
4%|▍ | 204/5000 [06:49<4:46:25, 3.58s/it]
4%|▍ | 205/5000 [06:52<4:32:24, 3.41s/it]
4%|▍ | 205/5000 [06:52<4:32:24, 3.41s/it]
4%|▍ | 206/5000 [06:55<4:18:55, 3.24s/it]
4%|▍ | 206/5000 [06:55<4:18:55, 3.24s/it]
4%|▍ | 207/5000 [06:57<4:04:50, 3.06s/it]
4%|▍ | 207/5000 [06:57<4:04:50, 3.06s/it]
4%|▍ | 208/5000 [07:00<3:54:39, 2.94s/it]
4%|▍ | 208/5000 [07:00<3:54:39, 2.94s/it]
4%|▍ | 209/5000 [07:02<3:42:03, 2.78s/it]
4%|▍ | 209/5000 [07:02<3:42:03, 2.78s/it]
4%|▍ | 210/5000 [07:05<3:31:43, 2.65s/it]
4%|▍ | 210/5000 [07:05<3:31:43, 2.65s/it]
4%|▍ | 211/5000 [07:07<3:24:26, 2.56s/it]
4%|▍ | 211/5000 [07:07<3:24:26, 2.56s/it]
4%|▍ | 212/5000 [07:09<3:13:39, 2.43s/it]
4%|▍ | 212/5000 [07:09<3:13:39, 2.43s/it]
4%|▍ | 213/5000 [07:11<3:04:43, 2.32s/it]
4%|▍ | 213/5000 [07:11<3:04:43, 2.32s/it]
4%|▍ | 214/5000 [07:13<2:58:14, 2.23s/it]
4%|▍ | 214/5000 [07:13<2:58:14, 2.23s/it]
4%|▍ | 215/5000 [07:15<2:53:51, 2.18s/it]
4%|▍ | 215/5000 [07:15<2:53:51, 2.18s/it]
4%|▍ | 216/5000 [07:17<2:49:24, 2.12s/it]
4%|▍ | 216/5000 [07:17<2:49:24, 2.12s/it]
4%|▍ | 217/5000 [07:19<2:41:58, 2.03s/it]
4%|▍ | 217/5000 [07:19<2:41:58, 2.03s/it]
4%|▍ | 218/5000 [07:21<2:35:16, 1.95s/it]
4%|▍ | 218/5000 [07:21<2:35:16, 1.95s/it]
4%|▍ | 219/5000 [07:23<2:30:13, 1.89s/it]
4%|▍ | 219/5000 [07:23<2:30:13, 1.89s/it]
4%|▍ | 220/5000 [07:24<2:26:47, 1.84s/it]
4%|▍ | 220/5000 [07:25<2:26:47, 1.84s/it]
4%|▍ | 221/5000 [07:26<2:24:28, 1.81s/it]
4%|▍ | 221/5000 [07:26<2:24:28, 1.81s/it]
4%|▍ | 222/5000 [07:28<2:22:51, 1.79s/it]
4%|▍ | 222/5000 [07:28<2:22:51, 1.79s/it]
4%|▍ | 223/5000 [07:30<2:21:37, 1.78s/it]
4%|▍ | 223/5000 [07:30<2:21:37, 1.78s/it]
4%|▍ | 224/5000 [07:31<2:16:19, 1.71s/it]
4%|▍ | 224/5000 [07:31<2:16:19, 1.71s/it]
4%|▍ | 225/5000 [07:33<2:10:31, 1.64s/it]
4%|▍ | 225/5000 [07:33<2:10:31, 1.64s/it]
5%|▍ | 226/5000 [07:34<2:06:25, 1.59s/it]
5%|▍ | 226/5000 [07:34<2:06:25, 1.59s/it]
5%|▍ | 227/5000 [07:36<2:03:24, 1.55s/it]
5%|▍ | 227/5000 [07:36<2:03:24, 1.55s/it]
5%|▍ | 228/5000 [07:37<2:01:29, 1.53s/it]
5%|▍ | 228/5000 [07:37<2:01:29, 1.53s/it]
5%|▍ | 229/5000 [07:39<1:59:58, 1.51s/it]
5%|▍ | 229/5000 [07:39<1:59:58, 1.51s/it]
5%|▍ | 230/5000 [07:40<1:59:04, 1.50s/it]
5%|▍ | 230/5000 [07:40<1:59:04, 1.50s/it]
5%|▍ | 231/5000 [07:42<1:58:17, 1.49s/it]
5%|▍ | 231/5000 [07:42<1:58:17, 1.49s/it]
5%|▍ | 232/5000 [07:43<1:55:39, 1.46s/it]
5%|▍ | 232/5000 [07:43<1:55:39, 1.46s/it]
5%|▍ | 233/5000 [07:44<1:49:33, 1.38s/it]
5%|▍ | 233/5000 [07:44<1:49:33, 1.38s/it]
5%|▍ | 234/5000 [07:45<1:45:24, 1.33s/it]
5%|▍ | 234/5000 [07:45<1:45:24, 1.33s/it]
5%|▍ | 235/5000 [07:47<1:42:51, 1.30s/it]
5%|▍ | 235/5000 [07:47<1:42:51, 1.30s/it]
5%|▍ | 236/5000 [07:48<1:40:40, 1.27s/it]
5%|▍ | 236/5000 [07:48<1:40:40, 1.27s/it]
5%|▍ | 237/5000 [07:49<1:39:10, 1.25s/it]
5%|▍ | 237/5000 [07:49<1:39:10, 1.25s/it]
5%|▍ | 238/5000 [07:50<1:37:57, 1.23s/it]
5%|▍ | 238/5000 [07:50<1:37:57, 1.23s/it]
5%|▍ | 239/5000 [07:51<1:37:04, 1.22s/it]
5%|▍ | 239/5000 [07:51<1:37:04, 1.22s/it]
5%|▍ | 240/5000 [07:52<1:34:14, 1.19s/it]
5%|▍ | 240/5000 [07:53<1:34:14, 1.19s/it]
5%|▍ | 241/5000 [07:53<1:27:49, 1.11s/it]
5%|▍ | 241/5000 [07:53<1:27:49, 1.11s/it]
5%|▍ | 242/5000 [07:54<1:23:13, 1.05s/it]
5%|▍ | 242/5000 [07:54<1:23:13, 1.05s/it]
5%|▍ | 243/5000 [07:55<1:20:00, 1.01s/it]
5%|▍ | 243/5000 [07:55<1:20:00, 1.01s/it]
5%|▍ | 244/5000 [07:56<1:17:53, 1.02it/s]
5%|▍ | 244/5000 [07:56<1:17:53, 1.02it/s]
5%|▍ | 245/5000 [07:57<1:16:24, 1.04it/s]
5%|▍ | 245/5000 [07:57<1:16:24, 1.04it/s]
5%|▍ | 246/5000 [07:58<1:15:18, 1.05it/s]
5%|▍ | 246/5000 [07:58<1:15:18, 1.05it/s]
5%|▍ | 247/5000 [07:59<1:10:34, 1.12it/s]
5%|▍ | 247/5000 [07:59<1:10:34, 1.12it/s]
5%|▍ | 248/5000 [07:59<1:05:33, 1.21it/s]
5%|▍ | 248/5000 [07:59<1:05:33, 1.21it/s]
5%|▍ | 249/5000 [08:00<1:01:43, 1.28it/s]
5%|▍ | 249/5000 [08:00<1:01:43, 1.28it/s]
5%|▌ | 250/5000 [08:03<1:52:19, 1.42s/it]
5%|▌ | 250/5000 [08:03<1:52:19, 1.42s/it]
5%|▌ | 251/5000 [08:11<4:25:32, 3.35s/it]
5%|▌ | 251/5000 [08:11<4:25:32, 3.35s/it]
5%|▌ | 252/5000 [08:15<4:43:43, 3.59s/it]
5%|▌ | 252/5000 [08:15<4:43:43, 3.59s/it]
5%|▌ | 253/5000 [08:19<4:44:49, 3.60s/it]
5%|▌ | 253/5000 [08:19<4:44:49, 3.60s/it]
5%|▌ | 254/5000 [08:22<4:39:42, 3.54s/it]
5%|▌ | 254/5000 [08:22<4:39:42, 3.54s/it]
5%|▌ | 255/5000 [08:25<4:28:21, 3.39s/it]
5%|▌ | 255/5000 [08:25<4:28:21, 3.39s/it]
5%|▌ | 256/5000 [08:28<4:16:54, 3.25s/it]
5%|▌ | 256/5000 [08:28<4:16:54, 3.25s/it]
5%|▌ | 257/5000 [08:31<4:04:18, 3.09s/it]
5%|▌ | 257/5000 [08:31<4:04:18, 3.09s/it]
5%|▌ | 258/5000 [08:33<3:53:18, 2.95s/it]
5%|▌ | 258/5000 [08:33<3:53:18, 2.95s/it]
5%|▌ | 259/5000 [08:36<3:40:47, 2.79s/it]
5%|▌ | 259/5000 [08:36<3:40:47, 2.79s/it]
5%|▌ | 260/5000 [08:38<3:30:24, 2.66s/it]
5%|▌ | 260/5000 [08:38<3:30:24, 2.66s/it]
5%|▌ | 261/5000 [08:40<3:23:01, 2.57s/it]
5%|▌ | 261/5000 [08:41<3:23:01, 2.57s/it]
5%|▌ | 262/5000 [08:43<3:12:14, 2.43s/it]
5%|▌ | 262/5000 [08:43<3:12:14, 2.43s/it]
5%|▌ | 263/5000 [08:45<3:03:23, 2.32s/it]
5%|▌ | 263/5000 [08:45<3:03:23, 2.32s/it]
5%|▌ | 264/5000 [08:47<2:57:30, 2.25s/it]
5%|▌ | 264/5000 [08:47<2:57:30, 2.25s/it]
5%|▌ | 265/5000 [08:49<2:52:49, 2.19s/it]
5%|▌ | 265/5000 [08:49<2:52:49, 2.19s/it]
5%|▌ | 266/5000 [08:51<2:49:38, 2.15s/it]
5%|▌ | 266/5000 [08:51<2:49:38, 2.15s/it]
5%|▌ | 267/5000 [08:53<2:45:12, 2.09s/it]
5%|▌ | 267/5000 [08:53<2:45:12, 2.09s/it]
5%|▌ | 268/5000 [08:55<2:36:46, 1.99s/it]
5%|▌ | 268/5000 [08:55<2:36:46, 1.99s/it]
5%|▌ | 269/5000 [08:56<2:31:04, 1.92s/it]
5%|▌ | 269/5000 [08:56<2:31:04, 1.92s/it]
5%|▌ | 270/5000 [08:58<2:26:54, 1.86s/it]
5%|▌ | 270/5000 [08:58<2:26:54, 1.86s/it]
5%|▌ | 271/5000 [09:00<2:24:49, 1.84s/it]
5%|▌ | 271/5000 [09:00<2:24:49, 1.84s/it]
5%|▌ | 272/5000 [09:02<2:22:25, 1.81s/it]
5%|▌ | 272/5000 [09:02<2:22:25, 1.81s/it]
5%|▌ | 273/5000 [09:03<2:20:56, 1.79s/it]
5%|▌ | 273/5000 [09:03<2:20:56, 1.79s/it]
5%|▌ | 274/5000 [09:05<2:16:14, 1.73s/it]
5%|▌ | 274/5000 [09:05<2:16:14, 1.73s/it]
6%|▌ | 275/5000 [09:06<2:10:47, 1.66s/it]
6%|▌ | 275/5000 [09:06<2:10:47, 1.66s/it]
6%|▌ | 276/5000 [09:08<2:06:38, 1.61s/it]
6%|▌ | 276/5000 [09:08<2:06:38, 1.61s/it]
6%|▌ | 277/5000 [09:09<2:03:29, 1.57s/it]
6%|▌ | 277/5000 [09:09<2:03:29, 1.57s/it]
6%|▌ | 278/5000 [09:11<2:01:15, 1.54s/it]
6%|▌ | 278/5000 [09:11<2:01:15, 1.54s/it]
6%|▌ | 279/5000 [09:12<1:59:51, 1.52s/it]
6%|▌ | 279/5000 [09:12<1:59:51, 1.52s/it]
6%|▌ | 280/5000 [09:14<1:58:41, 1.51s/it]
6%|▌ | 280/5000 [09:14<1:58:41, 1.51s/it]
6%|▌ | 281/5000 [09:15<1:57:42, 1.50s/it]
6%|▌ | 281/5000 [09:15<1:57:42, 1.50s/it]
6%|▌ | 282/5000 [09:17<1:52:47, 1.43s/it]
6%|▌ | 282/5000 [09:17<1:52:47, 1.43s/it]
6%|▌ | 283/5000 [09:18<1:47:20, 1.37s/it]
6%|▌ | 283/5000 [09:18<1:47:20, 1.37s/it]
6%|▌ | 284/5000 [09:19<1:43:32, 1.32s/it]
6%|▌ | 284/5000 [09:19<1:43:32, 1.32s/it]
6%|▌ | 285/5000 [09:20<1:40:54, 1.28s/it]
6%|▌ | 285/5000 [09:20<1:40:54, 1.28s/it]
6%|▌ | 286/5000 [09:21<1:39:00, 1.26s/it]
6%|▌ | 286/5000 [09:21<1:39:00, 1.26s/it]
6%|▌ | 287/5000 [09:23<1:37:42, 1.24s/it]
6%|▌ | 287/5000 [09:23<1:37:42, 1.24s/it]
6%|▌ | 288/5000 [09:24<1:36:53, 1.23s/it]
6%|▌ | 288/5000 [09:24<1:36:53, 1.23s/it]
6%|▌ | 289/5000 [09:25<1:35:52, 1.22s/it]
6%|▌ | 289/5000 [09:25<1:35:52, 1.22s/it]
6%|▌ | 290/5000 [09:26<1:30:13, 1.15s/it]
6%|▌ | 290/5000 [09:26<1:30:13, 1.15s/it]
6%|▌ | 291/5000 [09:27<1:24:54, 1.08s/it]
6%|▌ | 291/5000 [09:27<1:24:54, 1.08s/it]
6%|▌ | 292/5000 [09:28<1:21:09, 1.03s/it]
6%|▌ | 292/5000 [09:28<1:21:09, 1.03s/it]
6%|▌ | 293/5000 [09:29<1:18:30, 1.00s/it]
6%|▌ | 293/5000 [09:29<1:18:30, 1.00s/it]
6%|▌ | 294/5000 [09:30<1:17:45, 1.01it/s]
6%|▌ | 294/5000 [09:30<1:17:45, 1.01it/s]
6%|▌ | 295/5000 [09:31<1:16:06, 1.03it/s]
6%|▌ | 295/5000 [09:31<1:16:06, 1.03it/s]
6%|▌ | 296/5000 [09:31<1:13:36, 1.07it/s]
6%|▌ | 296/5000 [09:32<1:13:36, 1.07it/s]
6%|▌ | 297/5000 [09:32<1:08:16, 1.15it/s]
6%|▌ | 297/5000 [09:32<1:08:16, 1.15it/s]
6%|▌ | 298/5000 [09:33<1:03:31, 1.23it/s]
6%|▌ | 298/5000 [09:33<1:03:31, 1.23it/s]
6%|▌ | 299/5000 [09:34<1:00:15, 1.30it/s]
6%|▌ | 299/5000 [09:34<1:00:15, 1.30it/s]
6%|▌ | 300/5000 [09:36<1:36:06, 1.23s/it]
6%|▌ | 300/5000 [09:36<1:36:06, 1.23s/it]
6%|▌ | 301/5000 [09:41<3:19:02, 2.54s/it]
6%|▌ | 301/5000 [09:41<3:19:02, 2.54s/it]
6%|▌ | 302/5000 [09:45<3:51:41, 2.96s/it]
6%|▌ | 302/5000 [09:45<3:51:41, 2.96s/it]
6%|▌ | 303/5000 [09:49<4:08:13, 3.17s/it]
6%|▌ | 303/5000 [09:49<4:08:13, 3.17s/it]
6%|▌ | 304/5000 [09:52<4:12:10, 3.22s/it]
6%|▌ | 304/5000 [09:52<4:12:10, 3.22s/it]
6%|▌ | 305/5000 [09:55<4:09:30, 3.19s/it]
6%|▌ | 305/5000 [09:56<4:09:30, 3.19s/it]
6%|▌ | 306/5000 [09:58<4:03:31, 3.11s/it]
6%|▌ | 306/5000 [09:58<4:03:31, 3.11s/it]
6%|▌ | 307/5000 [10:01<3:54:04, 2.99s/it]
6%|▌ | 307/5000 [10:01<3:54:04, 2.99s/it]
6%|▌ | 308/5000 [10:04<3:46:28, 2.90s/it]
6%|▌ | 308/5000 [10:04<3:46:28, 2.90s/it]
6%|▌ | 309/5000 [10:06<3:38:27, 2.79s/it]
6%|▌ | 309/5000 [10:06<3:38:27, 2.79s/it]
6%|▌ | 310/5000 [10:09<3:28:26, 2.67s/it]
6%|▌ | 310/5000 [10:09<3:28:26, 2.67s/it]
6%|▌ | 311/5000 [10:11<3:20:49, 2.57s/it]
6%|▌ | 311/5000 [10:11<3:20:49, 2.57s/it]
6%|▌ | 312/5000 [10:13<3:15:17, 2.50s/it]
6%|▌ | 312/5000 [10:13<3:15:17, 2.50s/it]
6%|▋ | 313/5000 [10:16<3:10:06, 2.43s/it]
6%|▋ | 313/5000 [10:16<3:10:06, 2.43s/it]
6%|▋ | 314/5000 [10:18<3:02:21, 2.33s/it]
6%|▋ | 314/5000 [10:18<3:02:21, 2.33s/it]
6%|▋ | 315/5000 [10:20<2:55:22, 2.25s/it]
6%|▋ | 315/5000 [10:20<2:55:22, 2.25s/it]
6%|▋ | 316/5000 [10:22<2:50:42, 2.19s/it]
6%|▋ | 316/5000 [10:22<2:50:42, 2.19s/it]
6%|▋ | 317/5000 [10:24<2:48:00, 2.15s/it]
6%|▋ | 317/5000 [10:24<2:48:00, 2.15s/it]
6%|▋ | 318/5000 [10:26<2:44:34, 2.11s/it]
6%|▋ | 318/5000 [10:26<2:44:34, 2.11s/it]
6%|▋ | 319/5000 [10:28<2:37:32, 2.02s/it]
6%|▋ | 319/5000 [10:28<2:37:32, 2.02s/it]
6%|▋ | 320/5000 [10:30<2:30:49, 1.93s/it]
6%|▋ | 320/5000 [10:30<2:30:49, 1.93s/it]
6%|▋ | 321/5000 [10:31<2:26:55, 1.88s/it]
6%|▋ | 321/5000 [10:31<2:26:55, 1.88s/it]
6%|▋ | 322/5000 [10:33<2:23:14, 1.84s/it]
6%|▋ | 322/5000 [10:33<2:23:14, 1.84s/it]
6%|▋ | 323/5000 [10:35<2:20:39, 1.80s/it]
6%|▋ | 323/5000 [10:35<2:20:39, 1.80s/it]
6%|▋ | 324/5000 [10:36<2:18:47, 1.78s/it]
6%|▋ | 324/5000 [10:36<2:18:47, 1.78s/it]
6%|▋ | 325/5000 [10:38<2:12:41, 1.70s/it]
6%|▋ | 325/5000 [10:38<2:12:41, 1.70s/it]
7%|▋ | 326/5000 [10:39<2:07:06, 1.63s/it]
7%|▋ | 326/5000 [10:39<2:07:06, 1.63s/it]
7%|▋ | 327/5000 [10:41<2:03:23, 1.58s/it]
7%|▋ | 327/5000 [10:41<2:03:23, 1.58s/it]
7%|▋ | 328/5000 [10:42<2:00:43, 1.55s/it]
7%|▋ | 328/5000 [10:42<2:00:43, 1.55s/it]
7%|▋ | 329/5000 [10:44<1:58:56, 1.53s/it]
7%|▋ | 329/5000 [10:44<1:58:56, 1.53s/it]
7%|▋ | 330/5000 [10:45<1:57:33, 1.51s/it]
7%|▋ | 330/5000 [10:45<1:57:33, 1.51s/it]
7%|▋ | 331/5000 [10:47<1:56:41, 1.50s/it]
7%|▋ | 331/5000 [10:47<1:56:41, 1.50s/it]
7%|▋ | 332/5000 [10:48<1:55:03, 1.48s/it]
7%|▋ | 332/5000 [10:48<1:55:03, 1.48s/it]
7%|▋ | 333/5000 [10:49<1:49:52, 1.41s/it]
7%|▋ | 333/5000 [10:50<1:49:52, 1.41s/it]
7%|▋ | 334/5000 [10:51<1:45:09, 1.35s/it]
7%|▋ | 334/5000 [10:51<1:45:09, 1.35s/it]
7%|▋ | 335/5000 [10:52<1:41:50, 1.31s/it]
7%|▋ | 335/5000 [10:52<1:41:50, 1.31s/it]
7%|▋ | 336/5000 [10:53<1:39:22, 1.28s/it]
7%|▋ | 336/5000 [10:53<1:39:22, 1.28s/it]
7%|▋ | 337/5000 [10:54<1:37:40, 1.26s/it]
7%|▋ | 337/5000 [10:54<1:37:40, 1.26s/it]
7%|▋ | 338/5000 [10:56<1:36:34, 1.24s/it]
7%|▋ | 338/5000 [10:56<1:36:34, 1.24s/it]
7%|▋ | 339/5000 [10:57<1:35:38, 1.23s/it]
7%|▋ | 339/5000 [10:57<1:35:38, 1.23s/it]
7%|▋ | 340/5000 [10:58<1:33:33, 1.20s/it]
7%|▋ | 340/5000 [10:58<1:33:33, 1.20s/it]
7%|▋ | 341/5000 [10:59<1:28:28, 1.14s/it]
7%|▋ | 341/5000 [10:59<1:28:28, 1.14s/it]
7%|▋ | 342/5000 [11:00<1:23:39, 1.08s/it]
7%|▋ | 342/5000 [11:00<1:23:39, 1.08s/it]
7%|▋ | 343/5000 [11:01<1:20:03, 1.03s/it]
7%|▋ | 343/5000 [11:01<1:20:03, 1.03s/it]
7%|▋ | 344/5000 [11:02<1:17:36, 1.00s/it]
7%|▋ | 344/5000 [11:02<1:17:36, 1.00s/it]
7%|▋ | 345/5000 [11:03<1:15:47, 1.02it/s]
7%|▋ | 345/5000 [11:03<1:15:47, 1.02it/s]
7%|▋ | 346/5000 [11:03<1:12:52, 1.06it/s]
7%|▋ | 346/5000 [11:03<1:12:52, 1.06it/s]
7%|▋ | 347/5000 [11:04<1:07:39, 1.15it/s]
7%|▋ | 347/5000 [11:04<1:07:39, 1.15it/s]
7%|▋ | 348/5000 [11:05<1:02:53, 1.23it/s]
7%|▋ | 348/5000 [11:05<1:02:53, 1.23it/s]
7%|▋ | 349/5000 [11:05<59:28, 1.30it/s]
7%|▋ | 349/5000 [11:06<59:28, 1.30it/s]
7%|▋ | 350/5000 [11:08<1:35:46, 1.24s/it]
7%|▋ | 350/5000 [11:08<1:35:46, 1.24s/it]
7%|▋ | 351/5000 [11:15<3:45:20, 2.91s/it]
7%|▋ | 351/5000 [11:15<3:45:20, 2.91s/it]
7%|▋ | 352/5000 [11:19<4:17:17, 3.32s/it]
7%|▋ | 352/5000 [11:19<4:17:17, 3.32s/it]
7%|▋ | 353/5000 [11:23<4:29:19, 3.48s/it]
7%|▋ | 353/5000 [11:23<4:29:19, 3.48s/it]
7%|▋ | 354/5000 [11:26<4:29:04, 3.47s/it]
7%|▋ | 354/5000 [11:26<4:29:04, 3.47s/it]
7%|▋ | 355/5000 [11:29<4:22:30, 3.39s/it]
7%|▋ | 355/5000 [11:29<4:22:30, 3.39s/it]
7%|▋ | 356/5000 [11:32<4:14:37, 3.29s/it]
7%|▋ | 356/5000 [11:32<4:14:37, 3.29s/it]
7%|▋ | 357/5000 [11:35<4:04:07, 3.15s/it]
7%|▋ | 357/5000 [11:35<4:04:07, 3.15s/it]
7%|▋ | 358/5000 [11:38<3:52:35, 3.01s/it]
7%|▋ | 358/5000 [11:38<3:52:35, 3.01s/it]
7%|▋ | 359/5000 [11:41<3:43:24, 2.89s/it]
7%|▋ | 359/5000 [11:41<3:43:24, 2.89s/it]
7%|▋ | 360/5000 [11:43<3:32:24, 2.75s/it]
7%|▋ | 360/5000 [11:43<3:32:24, 2.75s/it]
7%|▋ | 361/5000 [11:45<3:23:00, 2.63s/it]
7%|▋ | 361/5000 [11:45<3:23:00, 2.63s/it]
7%|▋ | 362/5000 [11:48<3:16:37, 2.54s/it]
7%|▋ | 362/5000 [11:48<3:16:37, 2.54s/it]
7%|▋ | 363/5000 [11:50<3:09:16, 2.45s/it]
7%|▋ | 363/5000 [11:50<3:09:16, 2.45s/it]
7%|▋ | 364/5000 [11:52<3:00:09, 2.33s/it]
7%|▋ | 364/5000 [11:52<3:00:09, 2.33s/it]
7%|▋ | 365/5000 [11:54<2:53:40, 2.25s/it]
7%|▋ | 365/5000 [11:54<2:53:40, 2.25s/it]
7%|▋ | 366/5000 [11:56<2:49:08, 2.19s/it]
7%|▋ | 366/5000 [11:56<2:49:08, 2.19s/it]
7%|▋ | 367/5000 [11:58<2:45:39, 2.15s/it]
7%|▋ | 367/5000 [11:58<2:45:39, 2.15s/it]
7%|▋ | 368/5000 [12:00<2:41:09, 2.09s/it]
7%|▋ | 368/5000 [12:00<2:41:09, 2.09s/it]
7%|▋ | 369/5000 [12:02<2:32:58, 1.98s/it]
7%|▋ | 369/5000 [12:02<2:32:58, 1.98s/it]
7%|▋ | 370/5000 [12:04<2:27:05, 1.91s/it]
7%|▋ | 370/5000 [12:04<2:27:05, 1.91s/it]
7%|▋ | 371/5000 [12:05<2:23:10, 1.86s/it]
7%|▋ | 371/5000 [12:05<2:23:10, 1.86s/it]
7%|▋ | 372/5000 [12:07<2:20:27, 1.82s/it]
7%|▋ | 372/5000 [12:07<2:20:27, 1.82s/it]
7%|▋ | 373/5000 [12:09<2:18:49, 1.80s/it]
7%|▋ | 373/5000 [12:09<2:18:49, 1.80s/it]
7%|▋ | 374/5000 [12:11<2:17:29, 1.78s/it]
7%|▋ | 374/5000 [12:11<2:17:29, 1.78s/it]
8%|▊ | 375/5000 [12:12<2:13:23, 1.73s/it]
8%|▊ | 375/5000 [12:12<2:13:23, 1.73s/it]
8%|▊ | 376/5000 [12:14<2:07:30, 1.65s/it]
8%|▊ | 376/5000 [12:14<2:07:30, 1.65s/it]
8%|▊ | 377/5000 [12:15<2:03:41, 1.61s/it]
8%|▊ | 377/5000 [12:15<2:03:41, 1.61s/it]
8%|▊ | 378/5000 [12:17<2:00:35, 1.57s/it]
8%|▊ | 378/5000 [12:17<2:00:35, 1.57s/it]
8%|▊ | 379/5000 [12:18<1:58:21, 1.54s/it]
8%|▊ | 379/5000 [12:18<1:58:21, 1.54s/it]
8%|▊ | 380/5000 [12:20<1:56:50, 1.52s/it]
8%|▊ | 380/5000 [12:20<1:56:50, 1.52s/it]
8%|▊ | 381/5000 [12:21<1:55:52, 1.51s/it]
8%|▊ | 381/5000 [12:21<1:55:52, 1.51s/it]
8%|▊ | 382/5000 [12:22<1:53:31, 1.47s/it]
8%|▊ | 382/5000 [12:22<1:53:31, 1.47s/it]
8%|▊ | 383/5000 [12:24<1:47:49, 1.40s/it]
8%|▊ | 383/5000 [12:24<1:47:49, 1.40s/it]
8%|▊ | 384/5000 [12:25<1:43:18, 1.34s/it]
8%|▊ | 384/5000 [12:25<1:43:18, 1.34s/it]
8%|▊ | 385/5000 [12:26<1:40:17, 1.30s/it]
8%|▊ | 385/5000 [12:26<1:40:17, 1.30s/it]
8%|▊ | 386/5000 [12:27<1:38:04, 1.28s/it]
8%|▊ | 386/5000 [12:27<1:38:04, 1.28s/it]
8%|▊ | 387/5000 [12:28<1:36:38, 1.26s/it]
8%|▊ | 387/5000 [12:28<1:36:38, 1.26s/it]
8%|▊ | 388/5000 [12:30<1:35:24, 1.24s/it]
8%|▊ | 388/5000 [12:30<1:35:24, 1.24s/it]
8%|▊ | 389/5000 [12:31<1:34:51, 1.23s/it]
8%|▊ | 389/5000 [12:31<1:34:51, 1.23s/it]
8%|▊ | 390/5000 [12:32<1:33:57, 1.22s/it]
8%|▊ | 390/5000 [12:32<1:33:57, 1.22s/it]
8%|▊ | 391/5000 [12:33<1:28:38, 1.15s/it]
8%|▊ | 391/5000 [12:33<1:28:38, 1.15s/it]
8%|▊ | 392/5000 [12:34<1:23:16, 1.08s/it]
8%|▊ | 392/5000 [12:34<1:23:16, 1.08s/it]
8%|▊ | 393/5000 [12:35<1:19:53, 1.04s/it]
8%|▊ | 393/5000 [12:35<1:19:53, 1.04s/it]
8%|▊ | 394/5000 [12:36<1:17:08, 1.00s/it]
8%|▊ | 394/5000 [12:36<1:17:08, 1.00s/it]
8%|▊ | 395/5000 [12:37<1:15:19, 1.02it/s]
8%|▊ | 395/5000 [12:37<1:15:19, 1.02it/s]
8%|▊ | 396/5000 [12:38<1:14:01, 1.04it/s]
8%|▊ | 396/5000 [12:38<1:14:01, 1.04it/s]
8%|▊ | 397/5000 [12:38<1:09:48, 1.10it/s]
8%|▊ | 397/5000 [12:39<1:09:48, 1.10it/s]
8%|▊ | 398/5000 [12:39<1:04:14, 1.19it/s]
8%|▊ | 398/5000 [12:39<1:04:14, 1.19it/s]
8%|▊ | 399/5000 [12:40<1:00:12, 1.27it/s]
8%|▊ | 399/5000 [12:40<1:00:12, 1.27it/s]
8%|▊ | 400/5000 [12:43<1:46:08, 1.38s/it]
8%|▊ | 400/5000 [12:43<1:46:08, 1.38s/it]
8%|▊ | 401/5000 [12:53<5:09:54, 4.04s/it]
8%|▊ | 401/5000 [12:53<5:09:54, 4.04s/it]
8%|▊ | 402/5000 [12:57<5:12:52, 4.08s/it]
8%|▊ | 402/5000 [12:57<5:12:52, 4.08s/it]
8%|▊ | 403/5000 [13:01<5:01:14, 3.93s/it]
8%|▊ | 403/5000 [13:01<5:01:14, 3.93s/it]
8%|▊ | 404/5000 [13:04<4:44:42, 3.72s/it]
8%|▊ | 404/5000 [13:04<4:44:42, 3.72s/it]
8%|▊ | 405/5000 [13:07<4:28:41, 3.51s/it]
8%|▊ | 405/5000 [13:07<4:28:41, 3.51s/it]
8%|▊ | 406/5000 [13:10<4:13:11, 3.31s/it]
8%|▊ | 406/5000 [13:10<4:13:11, 3.31s/it]
8%|▊ | 407/5000 [13:12<3:58:25, 3.11s/it]
8%|▊ | 407/5000 [13:12<3:58:25, 3.11s/it]
8%|▊ | 408/5000 [13:15<3:46:52, 2.96s/it]
8%|▊ | 408/5000 [13:15<3:46:52, 2.96s/it]
8%|▊ | 409/5000 [13:17<3:34:27, 2.80s/it]
8%|▊ | 409/5000 [13:17<3:34:27, 2.80s/it]
8%|▊ | 410/5000 [13:20<3:23:44, 2.66s/it]
8%|▊ | 410/5000 [13:20<3:23:44, 2.66s/it]
8%|▊ | 411/5000 [13:22<3:16:26, 2.57s/it]
8%|▊ | 411/5000 [13:22<3:16:26, 2.57s/it]
8%|▊ | 412/5000 [13:24<3:09:19, 2.48s/it]
8%|▊ | 412/5000 [13:24<3:09:19, 2.48s/it]
8%|▊ | 413/5000 [13:26<2:59:33, 2.35s/it]
8%|▊ | 413/5000 [13:26<2:59:33, 2.35s/it]
8%|▊ | 414/5000 [13:28<2:52:34, 2.26s/it]
8%|▊ | 414/5000 [13:28<2:52:34, 2.26s/it]
8%|▊ | 415/5000 [13:30<2:47:30, 2.19s/it]
8%|▊ | 415/5000 [13:30<2:47:30, 2.19s/it]
8%|▊ | 416/5000 [13:33<2:44:28, 2.15s/it]
8%|▊ | 416/5000 [13:33<2:44:28, 2.15s/it]
8%|▊ | 417/5000 [13:35<2:41:48, 2.12s/it]
8%|▊ | 417/5000 [13:35<2:41:48, 2.12s/it]
8%|▊ | 418/5000 [13:36<2:36:51, 2.05s/it]
8%|▊ | 418/5000 [13:36<2:36:51, 2.05s/it]
8%|▊ | 419/5000 [13:38<2:29:33, 1.96s/it]
8%|▊ | 419/5000 [13:38<2:29:33, 1.96s/it]
8%|▊ | 420/5000 [13:40<2:25:05, 1.90s/it]
8%|▊ | 420/5000 [13:40<2:25:05, 1.90s/it]
8%|▊ | 421/5000 [13:42<2:21:13, 1.85s/it]
8%|▊ | 421/5000 [13:42<2:21:13, 1.85s/it]
8%|▊ | 422/5000 [13:43<2:18:29, 1.82s/it]
8%|▊ | 422/5000 [13:43<2:18:29, 1.82s/it]
8%|▊ | 423/5000 [13:45<2:16:44, 1.79s/it]
8%|▊ | 423/5000 [13:45<2:16:44, 1.79s/it]
8%|▊ | 424/5000 [13:47<2:12:42, 1.74s/it]
8%|▊ | 424/5000 [13:47<2:12:42, 1.74s/it]
8%|▊ | 425/5000 [13:48<2:06:43, 1.66s/it]
8%|▊ | 425/5000 [13:48<2:06:43, 1.66s/it]
9%|▊ | 426/5000 [13:50<2:02:25, 1.61s/it]
9%|▊ | 426/5000 [13:50<2:02:25, 1.61s/it]
9%|▊ | 427/5000 [13:51<1:59:30, 1.57s/it]
9%|▊ | 427/5000 [13:51<1:59:30, 1.57s/it]
9%|▊ | 428/5000 [13:53<1:57:20, 1.54s/it]
9%|▊ | 428/5000 [13:53<1:57:20, 1.54s/it]
9%|▊ | 429/5000 [13:54<1:55:50, 1.52s/it]
9%|▊ | 429/5000 [13:54<1:55:50, 1.52s/it]
9%|▊ | 430/5000 [13:56<1:54:46, 1.51s/it]
9%|▊ | 430/5000 [13:56<1:54:46, 1.51s/it]
9%|▊ | 431/5000 [13:57<1:54:11, 1.50s/it]
9%|▊ | 431/5000 [13:57<1:54:11, 1.50s/it]
9%|▊ | 432/5000 [13:58<1:50:35, 1.45s/it]
9%|▊ | 432/5000 [13:59<1:50:35, 1.45s/it]
9%|▊ | 433/5000 [14:00<1:45:20, 1.38s/it]
9%|▊ | 433/5000 [14:00<1:45:20, 1.38s/it]
9%|▊ | 434/5000 [14:01<1:42:23, 1.35s/it]
9%|▊ | 434/5000 [14:01<1:42:23, 1.35s/it]
9%|▊ | 435/5000 [14:02<1:39:15, 1.30s/it]
9%|▊ | 435/5000 [14:02<1:39:15, 1.30s/it]
9%|▊ | 436/5000 [14:03<1:37:01, 1.28s/it]
9%|▊ | 436/5000 [14:03<1:37:01, 1.28s/it]
9%|▊ | 437/5000 [14:05<1:35:26, 1.25s/it]
9%|▊ | 437/5000 [14:05<1:35:26, 1.25s/it]
9%|▉ | 438/5000 [14:06<1:34:27, 1.24s/it]
9%|▉ | 438/5000 [14:06<1:34:27, 1.24s/it]
9%|▉ | 439/5000 [14:07<1:33:40, 1.23s/it]
9%|▉ | 439/5000 [14:07<1:33:40, 1.23s/it]
9%|▉ | 440/5000 [14:08<1:30:14, 1.19s/it]
9%|▉ | 440/5000 [14:08<1:30:14, 1.19s/it]
9%|▉ | 441/5000 [14:09<1:24:12, 1.11s/it]
9%|▉ | 441/5000 [14:09<1:24:12, 1.11s/it]
9%|▉ | 442/5000 [14:10<1:20:01, 1.05s/it]
9%|▉ | 442/5000 [14:10<1:20:01, 1.05s/it]
9%|▉ | 443/5000 [14:11<1:17:58, 1.03s/it]
9%|▉ | 443/5000 [14:11<1:17:58, 1.03s/it]
9%|▉ | 444/5000 [14:12<1:15:34, 1.00it/s]
9%|▉ | 444/5000 [14:12<1:15:34, 1.00it/s]
9%|▉ | 445/5000 [14:13<1:13:51, 1.03it/s]
9%|▉ | 445/5000 [14:13<1:13:51, 1.03it/s]
9%|▉ | 446/5000 [14:14<1:10:55, 1.07it/s]
9%|▉ | 446/5000 [14:14<1:10:55, 1.07it/s]
9%|▉ | 447/5000 [14:14<1:05:50, 1.15it/s]
9%|▉ | 447/5000 [14:14<1:05:50, 1.15it/s]
9%|▉ | 448/5000 [14:15<1:01:17, 1.24it/s]
9%|▉ | 448/5000 [14:15<1:01:17, 1.24it/s]
9%|▉ | 449/5000 [14:16<58:04, 1.31it/s]
9%|▉ | 449/5000 [14:16<58:04, 1.31it/s]
9%|▉ | 450/5000 [14:18<1:38:09, 1.29s/it]
9%|▉ | 450/5000 [14:18<1:38:09, 1.29s/it]
9%|▉ | 451/5000 [14:26<4:12:25, 3.33s/it]
9%|▉ | 451/5000 [14:26<4:12:25, 3.33s/it]
9%|▉ | 452/5000 [14:30<4:30:29, 3.57s/it]
9%|▉ | 452/5000 [14:30<4:30:29, 3.57s/it]
9%|▉ | 453/5000 [14:34<4:32:34, 3.60s/it]
9%|▉ | 453/5000 [14:34<4:32:34, 3.60s/it]
9%|▉ | 454/5000 [14:37<4:24:55, 3.50s/it]
9%|▉ | 454/5000 [14:37<4:24:55, 3.50s/it]
9%|▉ | 455/5000 [14:40<4:13:31, 3.35s/it]
9%|▉ | 455/5000 [14:40<4:13:31, 3.35s/it]
9%|▉ | 456/5000 [14:43<4:01:34, 3.19s/it]
9%|▉ | 456/5000 [14:43<4:01:34, 3.19s/it]
9%|▉ | 457/5000 [14:46<3:50:00, 3.04s/it]
9%|▉ | 457/5000 [14:46<3:50:00, 3.04s/it]
9%|▉ | 458/5000 [14:48<3:40:06, 2.91s/it]
9%|▉ | 458/5000 [14:48<3:40:06, 2.91s/it]
9%|▉ | 459/5000 [14:51<3:28:50, 2.76s/it]
9%|▉ | 459/5000 [14:51<3:28:50, 2.76s/it]
9%|▉ | 460/5000 [14:53<3:19:14, 2.63s/it]
9%|▉ | 460/5000 [14:53<3:19:14, 2.63s/it]
9%|▉ | 461/5000 [14:55<3:12:12, 2.54s/it]
9%|▉ | 461/5000 [14:55<3:12:12, 2.54s/it]
9%|▉ | 462/5000 [14:58<3:02:22, 2.41s/it]
9%|▉ | 462/5000 [14:58<3:02:22, 2.41s/it]
9%|▉ | 463/5000 [15:00<2:54:08, 2.30s/it]
9%|▉ | 463/5000 [15:00<2:54:08, 2.30s/it]
9%|▉ | 464/5000 [15:02<2:49:43, 2.25s/it]
9%|▉ | 464/5000 [15:02<2:49:43, 2.25s/it]
9%|▉ | 465/5000 [15:04<2:45:11, 2.19s/it]
9%|▉ | 465/5000 [15:04<2:45:11, 2.19s/it]
9%|▉ | 466/5000 [15:06<2:42:36, 2.15s/it]
9%|▉ | 466/5000 [15:06<2:42:36, 2.15s/it]
9%|▉ | 467/5000 [15:08<2:36:39, 2.07s/it]
9%|▉ | 467/5000 [15:08<2:36:39, 2.07s/it]
9%|▉ | 468/5000 [15:09<2:29:08, 1.97s/it]
9%|▉ | 468/5000 [15:10<2:29:08, 1.97s/it]
9%|▉ | 469/5000 [15:11<2:23:32, 1.90s/it]
9%|▉ | 469/5000 [15:11<2:23:32, 1.90s/it]
9%|▉ | 470/5000 [15:13<2:19:36, 1.85s/it]
9%|▉ | 470/5000 [15:13<2:19:36, 1.85s/it]
9%|▉ | 471/5000 [15:15<2:16:57, 1.81s/it]
9%|▉ | 471/5000 [15:15<2:16:57, 1.81s/it]
9%|▉ | 472/5000 [15:16<2:15:06, 1.79s/it]
9%|▉ | 472/5000 [15:16<2:15:06, 1.79s/it]
9%|▉ | 473/5000 [15:18<2:13:52, 1.77s/it]
9%|▉ | 473/5000 [15:18<2:13:52, 1.77s/it]
9%|▉ | 474/5000 [15:20<2:09:52, 1.72s/it]
9%|▉ | 474/5000 [15:20<2:09:52, 1.72s/it]
10%|▉ | 475/5000 [15:21<2:04:14, 1.65s/it]
10%|▉ | 475/5000 [15:21<2:04:14, 1.65s/it]
10%|▉ | 476/5000 [15:23<2:00:14, 1.59s/it]
10%|▉ | 476/5000 [15:23<2:00:14, 1.59s/it]
10%|▉ | 477/5000 [15:24<1:57:46, 1.56s/it]
10%|▉ | 477/5000 [15:24<1:57:46, 1.56s/it]
10%|▉ | 478/5000 [15:26<1:56:06, 1.54s/it]
10%|▉ | 478/5000 [15:26<1:56:06, 1.54s/it]
10%|▉ | 479/5000 [15:27<1:54:39, 1.52s/it]
10%|▉ | 479/5000 [15:27<1:54:39, 1.52s/it]
10%|▉ | 480/5000 [15:29<1:53:35, 1.51s/it]
10%|▉ | 480/5000 [15:29<1:53:35, 1.51s/it]
10%|▉ | 481/5000 [15:30<1:53:29, 1.51s/it]
10%|▉ | 481/5000 [15:30<1:53:29, 1.51s/it]
10%|▉ | 482/5000 [15:32<1:53:10, 1.50s/it]
10%|▉ | 482/5000 [15:32<1:53:10, 1.50s/it]
10%|▉ | 483/5000 [15:33<1:47:36, 1.43s/it]
10%|▉ | 483/5000 [15:33<1:47:36, 1.43s/it]
10%|▉ | 484/5000 [15:34<1:42:42, 1.36s/it]
10%|▉ | 484/5000 [15:34<1:42:42, 1.36s/it]
10%|▉ | 485/5000 [15:35<1:39:15, 1.32s/it]
10%|▉ | 485/5000 [15:35<1:39:15, 1.32s/it]
10%|▉ | 486/5000 [15:37<1:36:45, 1.29s/it]
10%|▉ | 486/5000 [15:37<1:36:45, 1.29s/it]
10%|▉ | 487/5000 [15:38<1:34:56, 1.26s/it]
10%|▉ | 487/5000 [15:38<1:34:56, 1.26s/it]
10%|▉ | 488/5000 [15:39<1:33:44, 1.25s/it]
10%|▉ | 488/5000 [15:39<1:33:44, 1.25s/it]
10%|▉ | 489/5000 [15:40<1:33:03, 1.24s/it]
10%|▉ | 489/5000 [15:40<1:33:03, 1.24s/it]
10%|▉ | 490/5000 [15:41<1:32:17, 1.23s/it]
10%|▉ | 490/5000 [15:41<1:32:17, 1.23s/it]
10%|▉ | 491/5000 [15:43<1:30:13, 1.20s/it]
10%|▉ | 491/5000 [15:43<1:30:13, 1.20s/it]
10%|▉ | 492/5000 [15:43<1:25:14, 1.13s/it]
10%|▉ | 492/5000 [15:44<1:25:14, 1.13s/it]
10%|▉ | 493/5000 [15:44<1:20:38, 1.07s/it]
10%|▉ | 493/5000 [15:44<1:20:38, 1.07s/it]
10%|▉ | 494/5000 [15:45<1:17:23, 1.03s/it]
10%|▉ | 494/5000 [15:45<1:17:23, 1.03s/it]
10%|▉ | 495/5000 [15:46<1:14:54, 1.00it/s]
10%|▉ | 495/5000 [15:46<1:14:54, 1.00it/s]
10%|▉ | 496/5000 [15:47<1:13:06, 1.03it/s]
10%|▉ | 496/5000 [15:47<1:13:06, 1.03it/s]
10%|▉ | 497/5000 [15:48<1:10:22, 1.07it/s]
10%|▉ | 497/5000 [15:48<1:10:22, 1.07it/s]
10%|▉ | 498/5000 [15:49<1:05:23, 1.15it/s]
10%|▉ | 498/5000 [15:49<1:05:23, 1.15it/s]
10%|▉ | 499/5000 [15:49<1:00:49, 1.23it/s]
10%|▉ | 499/5000 [15:49<1:00:49, 1.23it/s]
10%|█ | 500/5000 [15:52<1:37:26, 1.30s/it]
10%|█ | 500/5000 [15:52<1:37:26, 1.30s/it]
10%|█ | 501/5000 [15:58<3:36:06, 2.88s/it]
10%|█ | 501/5000 [15:58<3:36:06, 2.88s/it]
10%|█ | 502/5000 [16:03<4:04:17, 3.26s/it]
10%|█ | 502/5000 [16:03<4:04:17, 3.26s/it]
10%|█ | 503/5000 [16:06<4:12:43, 3.37s/it]
10%|█ | 503/5000 [16:06<4:12:43, 3.37s/it]
10%|█ | 504/5000 [16:10<4:11:30, 3.36s/it]
10%|█ | 504/5000 [16:10<4:11:30, 3.36s/it]
10%|█ | 505/5000 [16:13<4:03:45, 3.25s/it]
10%|█ | 505/5000 [16:13<4:03:45, 3.25s/it]
10%|█ | 506/5000 [16:15<3:54:11, 3.13s/it]
10%|█ | 506/5000 [16:15<3:54:11, 3.13s/it]
10%|█ | 507/5000 [16:18<3:43:22, 2.98s/it]
10%|█ | 507/5000 [16:18<3:43:22, 2.98s/it]
10%|█ | 508/5000 [16:21<3:35:47, 2.88s/it]
10%|█ | 508/5000 [16:21<3:35:47, 2.88s/it]
10%|█ | 509/5000 [16:24<3:45:18, 3.01s/it]
10%|█ | 509/5000 [16:24<3:45:18, 3.01s/it]
10%|█ | 510/5000 [16:26<3:32:02, 2.83s/it]
10%|█ | 510/5000 [16:26<3:32:02, 2.83s/it]
10%|█ | 511/5000 [16:29<3:26:02, 2.75s/it]
10%|█ | 511/5000 [16:29<3:26:02, 2.75s/it]
10%|█ | 512/5000 [16:32<3:21:49, 2.70s/it]
10%|█ | 512/5000 [16:32<3:21:49, 2.70s/it]
10%|█ | 513/5000 [16:34<3:11:37, 2.56s/it]
10%|█ | 513/5000 [16:34<3:11:37, 2.56s/it]
10%|█ | 514/5000 [16:36<3:02:15, 2.44s/it]
10%|█ | 514/5000 [16:36<3:02:15, 2.44s/it]
10%|█ | 515/5000 [16:38<2:55:54, 2.35s/it]
10%|█ | 515/5000 [16:38<2:55:54, 2.35s/it]
10%|█ | 516/5000 [16:40<2:49:41, 2.27s/it]
10%|█ | 516/5000 [16:40<2:49:41, 2.27s/it]
10%|█ | 517/5000 [16:43<2:53:34, 2.32s/it]
10%|█ | 517/5000 [16:43<2:53:34, 2.32s/it]
10%|█ | 518/5000 [16:45<2:49:42, 2.27s/it]
10%|█ | 518/5000 [16:45<2:49:42, 2.27s/it]
10%|█ | 519/5000 [16:47<2:40:32, 2.15s/it]
10%|█ | 519/5000 [16:47<2:40:32, 2.15s/it]
10%|█ | 520/5000 [16:48<2:33:17, 2.05s/it]
10%|█ | 520/5000 [16:48<2:33:17, 2.05s/it]
10%|█ | 521/5000 [16:50<2:29:38, 2.00s/it]
10%|█ | 521/5000 [16:50<2:29:38, 2.00s/it]
10%|█ | 522/5000 [16:52<2:26:59, 1.97s/it]
10%|█ | 522/5000 [16:52<2:26:59, 1.97s/it]
10%|█ | 523/5000 [16:54<2:23:34, 1.92s/it]
10%|█ | 523/5000 [16:54<2:23:34, 1.92s/it]
10%|█ | 524/5000 [16:56<2:19:58, 1.88s/it]
10%|█ | 524/5000 [16:56<2:19:58, 1.88s/it]
10%|█ | 525/5000 [16:58<2:17:27, 1.84s/it]
10%|█ | 525/5000 [16:58<2:17:27, 1.84s/it]
11%|█ | 526/5000 [16:59<2:11:05, 1.76s/it]
11%|█ | 526/5000 [16:59<2:11:05, 1.76s/it]
11%|█ | 527/5000 [17:01<2:07:54, 1.72s/it]
11%|█ | 527/5000 [17:01<2:07:54, 1.72s/it]
11%|█ | 528/5000 [17:02<2:04:09, 1.67s/it]
11%|█ | 528/5000 [17:02<2:04:09, 1.67s/it]
11%|█ | 529/5000 [17:04<2:01:56, 1.64s/it]
11%|█ | 529/5000 [17:04<2:01:56, 1.64s/it]
11%|█ | 530/5000 [17:05<2:01:06, 1.63s/it]
11%|█ | 530/5000 [17:05<2:01:06, 1.63s/it]
11%|█ | 531/5000 [17:07<1:59:24, 1.60s/it]
11%|█ | 531/5000 [17:07<1:59:24, 1.60s/it]
11%|█ | 532/5000 [17:09<1:59:04, 1.60s/it]
11%|█ | 532/5000 [17:09<1:59:04, 1.60s/it]
11%|█ | 533/5000 [17:10<1:55:14, 1.55s/it]
11%|█ | 533/5000 [17:10<1:55:14, 1.55s/it]
11%|█ | 534/5000 [17:11<1:49:34, 1.47s/it]
11%|█ | 534/5000 [17:11<1:49:34, 1.47s/it]
11%|█ | 535/5000 [17:13<1:43:53, 1.40s/it]
11%|█ | 535/5000 [17:13<1:43:53, 1.40s/it]
11%|█ | 536/5000 [17:14<1:41:06, 1.36s/it]
11%|█ | 536/5000 [17:14<1:41:06, 1.36s/it]
11%|█ | 537/5000 [17:15<1:40:12, 1.35s/it]
11%|�� | 537/5000 [17:15<1:40:12, 1.35s/it]
11%|█ | 538/5000 [17:16<1:39:25, 1.34s/it]
11%|█ | 538/5000 [17:16<1:39:25, 1.34s/it]
11%|█ | 539/5000 [17:18<1:37:31, 1.31s/it]
11%|█ | 539/5000 [17:18<1:37:31, 1.31s/it]
11%|█ | 540/5000 [17:19<1:35:42, 1.29s/it]
11%|█ | 540/5000 [17:19<1:35:42, 1.29s/it]
11%|█ | 541/5000 [17:20<1:33:33, 1.26s/it]
11%|█ | 541/5000 [17:20<1:33:33, 1.26s/it]
11%|█ | 542/5000 [17:21<1:26:46, 1.17s/it]
11%|█ | 542/5000 [17:21<1:26:46, 1.17s/it]
11%|█ | 543/5000 [17:22<1:21:25, 1.10s/it]
11%|█ | 543/5000 [17:22<1:21:25, 1.10s/it]
11%|█ | 544/5000 [17:23<1:18:12, 1.05s/it]
11%|█ | 544/5000 [17:23<1:18:12, 1.05s/it]
11%|█ | 545/5000 [17:24<1:16:06, 1.03s/it]
11%|█ | 545/5000 [17:24<1:16:06, 1.03s/it]
11%|█ | 546/5000 [17:25<1:13:41, 1.01it/s]
11%|█ | 546/5000 [17:25<1:13:41, 1.01it/s]
11%|█ | 547/5000 [17:26<1:09:11, 1.07it/s]
11%|█ | 547/5000 [17:26<1:09:11, 1.07it/s]
11%|█ | 548/5000 [17:26<1:04:37, 1.15it/s]
11%|█ | 548/5000 [17:26<1:04:37, 1.15it/s]
11%|█ | 549/5000 [17:27<1:01:16, 1.21it/s]
11%|█ | 549/5000 [17:27<1:01:16, 1.21it/s]
11%|█ | 550/5000 [17:30<1:40:58, 1.36s/it]
11%|█ | 550/5000 [17:30<1:40:58, 1.36s/it]
11%|█ | 551/5000 [17:36<3:40:20, 2.97s/it]
11%|█ | 551/5000 [17:36<3:40:20, 2.97s/it]
11%|█ | 552/5000 [17:41<4:11:41, 3.40s/it]
11%|█ | 552/5000 [17:41<4:11:41, 3.40s/it]
11%|█ | 553/5000 [17:45<4:24:49, 3.57s/it]
11%|█ | 553/5000 [17:45<4:24:49, 3.57s/it]
11%|█ | 554/5000 [17:48<4:23:19, 3.55s/it]
11%|█ | 554/5000 [17:48<4:23:19, 3.55s/it]
11%|█ | 555/5000 [17:52<4:18:50, 3.49s/it]
11%|█ | 555/5000 [17:52<4:18:50, 3.49s/it]
11%|█ | 556/5000 [17:55<4:10:11, 3.38s/it]
11%|█ | 556/5000 [17:55<4:10:11, 3.38s/it]
11%|█ | 557/5000 [17:58<3:58:15, 3.22s/it]
11%|█ | 557/5000 [17:58<3:58:15, 3.22s/it]
11%|█ | 558/5000 [18:00<3:48:30, 3.09s/it]
11%|█ | 558/5000 [18:00<3:48:30, 3.09s/it]
11%|█ | 559/5000 [18:03<3:38:09, 2.95s/it]
11%|█ | 559/5000 [18:03<3:38:09, 2.95s/it]
11%|█ | 560/5000 [18:06<3:27:57, 2.81s/it]
11%|█ | 560/5000 [18:06<3:27:57, 2.81s/it]
11%|█ | 561/5000 [18:08<3:17:53, 2.67s/it]
11%|█ | 561/5000 [18:08<3:17:53, 2.67s/it]
11%|█ | 562/5000 [18:10<3:10:01, 2.57s/it]
11%|█ | 562/5000 [18:10<3:10:01, 2.57s/it]
11%|█▏ | 563/5000 [18:12<2:59:30, 2.43s/it]
11%|█▏ | 563/5000 [18:12<2:59:30, 2.43s/it]
11%|█▏ | 564/5000 [18:14<2:53:13, 2.34s/it]
11%|█▏ | 564/5000 [18:14<2:53:13, 2.34s/it]
11%|█▏ | 565/5000 [18:17<2:50:58, 2.31s/it]
11%|█▏ | 565/5000 [18:17<2:50:58, 2.31s/it]
11%|█▏ | 566/5000 [18:19<2:46:32, 2.25s/it]
11%|█▏ | 566/5000 [18:19<2:46:32, 2.25s/it]
11%|█▏ | 567/5000 [18:21<2:45:36, 2.24s/it]
11%|█▏ | 567/5000 [18:21<2:45:36, 2.24s/it]
11%|█▏ | 568/5000 [18:23<2:38:03, 2.14s/it]
11%|█▏ | 568/5000 [18:23<2:38:03, 2.14s/it]
11%|█▏ | 569/5000 [18:25<2:32:47, 2.07s/it]
11%|█▏ | 569/5000 [18:25<2:32:47, 2.07s/it]
11%|█▏ | 570/5000 [18:27<2:27:21, 2.00s/it]
11%|█▏ | 570/5000 [18:27<2:27:21, 2.00s/it]
11%|█▏ | 571/5000 [18:28<2:22:53, 1.94s/it]
11%|█▏ | 571/5000 [18:28<2:22:53, 1.94s/it]
11%|█▏ | 572/5000 [18:30<2:19:29, 1.89s/it]
11%|█▏ | 572/5000 [18:30<2:19:29, 1.89s/it]
11%|█▏ | 573/5000 [18:32<2:18:59, 1.88s/it]
11%|█▏ | 573/5000 [18:32<2:18:59, 1.88s/it]
11%|█▏ | 574/5000 [18:34<2:14:05, 1.82s/it]
11%|█▏ | 574/5000 [18:34<2:14:05, 1.82s/it]
12%|█▏ | 575/5000 [18:35<2:08:03, 1.74s/it]
12%|█▏ | 575/5000 [18:35<2:08:03, 1.74s/it]
12%|█▏ | 576/5000 [18:37<2:03:36, 1.68s/it]
12%|█▏ | 576/5000 [18:37<2:03:36, 1.68s/it]
12%|█▏ | 577/5000 [18:38<2:01:49, 1.65s/it]
12%|█▏ | 577/5000 [18:38<2:01:49, 1.65s/it]
12%|█▏ | 578/5000 [18:40<1:57:50, 1.60s/it]
12%|█▏ | 578/5000 [18:40<1:57:50, 1.60s/it]
12%|█▏ | 579/5000 [18:41<1:56:04, 1.58s/it]
12%|█▏ | 579/5000 [18:41<1:56:04, 1.58s/it]
12%|█▏ | 580/5000 [18:43<1:54:28, 1.55s/it]
12%|█▏ | 580/5000 [18:43<1:54:28, 1.55s/it]
12%|█▏ | 581/5000 [18:44<1:54:16, 1.55s/it]
12%|█▏ | 581/5000 [18:44<1:54:16, 1.55s/it]
12%|█▏ | 582/5000 [18:46<1:49:33, 1.49s/it]
12%|█▏ | 582/5000 [18:46<1:49:33, 1.49s/it]
12%|█▏ | 583/5000 [18:47<1:44:12, 1.42s/it]
12%|█▏ | 583/5000 [18:47<1:44:12, 1.42s/it]
12%|█▏ | 584/5000 [18:48<1:39:55, 1.36s/it]
12%|█▏ | 584/5000 [18:48<1:39:55, 1.36s/it]
12%|█▏ | 585/5000 [18:50<1:38:20, 1.34s/it]
12%|█▏ | 585/5000 [18:50<1:38:20, 1.34s/it]
12%|█▏ | 586/5000 [18:51<1:38:57, 1.35s/it]
12%|█▏ | 586/5000 [18:51<1:38:57, 1.35s/it]
12%|█▏ | 587/5000 [18:52<1:37:36, 1.33s/it]
12%|█▏ | 587/5000 [18:52<1:37:36, 1.33s/it]
12%|█▏ | 588/5000 [18:53<1:35:36, 1.30s/it]
12%|█▏ | 588/5000 [18:53<1:35:36, 1.30s/it]
12%|█▏ | 589/5000 [18:55<1:34:53, 1.29s/it]
12%|█▏ | 589/5000 [18:55<1:34:53, 1.29s/it]
12%|█▏ | 590/5000 [18:56<1:31:24, 1.24s/it]
12%|█▏ | 590/5000 [18:56<1:31:24, 1.24s/it]
12%|█▏ | 591/5000 [18:57<1:24:35, 1.15s/it]
12%|█▏ | 591/5000 [18:57<1:24:35, 1.15s/it]
12%|█▏ | 592/5000 [18:58<1:21:09, 1.10s/it]
12%|█▏ | 592/5000 [18:58<1:21:09, 1.10s/it]
12%|█▏ | 593/5000 [18:59<1:18:31, 1.07s/it]
12%|█▏ | 593/5000 [18:59<1:18:31, 1.07s/it]
12%|█▏ | 594/5000 [19:00<1:16:07, 1.04s/it]
12%|█▏ | 594/5000 [19:00<1:16:07, 1.04s/it]
12%|█▏ | 595/5000 [19:01<1:16:09, 1.04s/it]
12%|█▏ | 595/5000 [19:01<1:16:09, 1.04s/it]
12%|█▏ | 596/5000 [19:02<1:14:12, 1.01s/it]
12%|█▏ | 596/5000 [19:02<1:14:12, 1.01s/it]
12%|█▏ | 597/5000 [19:03<1:09:00, 1.06it/s]
12%|█▏ | 597/5000 [19:03<1:09:00, 1.06it/s]
12%|█▏ | 598/5000 [19:03<1:04:03, 1.15it/s]
12%|█▏ | 598/5000 [19:03<1:04:03, 1.15it/s]
12%|█▏ | 599/5000 [19:04<1:00:31, 1.21it/s]
12%|█▏ | 599/5000 [19:04<1:00:31, 1.21it/s]
12%|█▏ | 600/5000 [19:07<1:41:34, 1.39s/it]
12%|█▏ | 600/5000 [19:07<1:41:34, 1.39s/it]
12%|█▏ | 601/5000 [19:14<3:57:22, 3.24s/it]
12%|█▏ | 601/5000 [19:14<3:57:22, 3.24s/it]
12%|█▏ | 602/5000 [19:18<4:01:34, 3.30s/it]
12%|█▏ | 602/5000 [19:18<4:01:34, 3.30s/it]
12%|█▏ | 603/5000 [19:21<3:55:58, 3.22s/it]
12%|█▏ | 603/5000 [19:21<3:55:58, 3.22s/it]
12%|█▏ | 604/5000 [19:23<3:44:45, 3.07s/it]
12%|█▏ | 604/5000 [19:23<3:44:45, 3.07s/it]
12%|█▏ | 605/5000 [19:26<3:34:19, 2.93s/it]
12%|█▏ | 605/5000 [19:26<3:34:19, 2.93s/it]
12%|█▏ | 606/5000 [19:28<3:22:09, 2.76s/it]
12%|█▏ | 606/5000 [19:28<3:22:09, 2.76s/it]
12%|█▏ | 607/5000 [19:30<3:07:41, 2.56s/it]
12%|█▏ | 607/5000 [19:30<3:07:41, 2.56s/it]
12%|█▏ | 608/5000 [19:33<2:58:35, 2.44s/it]
12%|█▏ | 608/5000 [19:33<2:58:35, 2.44s/it]
12%|█▏ | 609/5000 [19:35<2:47:34, 2.29s/it]
12%|█▏ | 609/5000 [19:35<2:47:34, 2.29s/it]
12%|█▏ | 610/5000 [19:36<2:35:47, 2.13s/it]
12%|█▏ | 610/5000 [19:36<2:35:47, 2.13s/it]
12%|█▏ | 611/5000 [19:38<2:27:10, 2.01s/it]
12%|█▏ | 611/5000 [19:38<2:27:10, 2.01s/it]
12%|█▏ | 612/5000 [19:40<2:19:10, 1.90s/it]
12%|█▏ | 612/5000 [19:40<2:19:10, 1.90s/it]
12%|█▏ | 613/5000 [19:41<2:12:18, 1.81s/it]
12%|█▏ | 613/5000 [19:41<2:12:18, 1.81s/it]
12%|█▏ | 614/5000 [19:43<2:06:57, 1.74s/it]
12%|█▏ | 614/5000 [19:43<2:06:57, 1.74s/it]
12%|█▏ | 615/5000 [19:44<2:02:13, 1.67s/it]
12%|█▏ | 615/5000 [19:44<2:02:13, 1.67s/it]
12%|█▏ | 616/5000 [19:46<1:55:45, 1.58s/it]
12%|█▏ | 616/5000 [19:46<1:55:45, 1.58s/it]
12%|█▏ | 617/5000 [19:47<1:47:51, 1.48s/it]
12%|█▏ | 617/5000 [19:47<1:47:51, 1.48s/it]
12%|█▏ | 618/5000 [19:48<1:42:51, 1.41s/it]
12%|█▏ | 618/5000 [19:48<1:42:51, 1.41s/it]
12%|█▏ | 619/5000 [19:50<1:40:18, 1.37s/it]
12%|█▏ | 619/5000 [19:50<1:40:18, 1.37s/it]
12%|█▏ | 620/5000 [19:51<1:34:17, 1.29s/it]
12%|█▏ | 620/5000 [19:51<1:34:17, 1.29s/it]
12%|█▏ | 621/5000 [19:52<1:27:11, 1.19s/it]
12%|█▏ | 621/5000 [19:52<1:27:11, 1.19s/it]
12%|█▏ | 622/5000 [19:53<1:22:18, 1.13s/it]
12%|█▏ | 622/5000 [19:53<1:22:18, 1.13s/it]
12%|█▏ | 623/5000 [19:53<1:17:43, 1.07s/it]
12%|█▏ | 623/5000 [19:53<1:17:43, 1.07s/it]
12%|█▏ | 624/5000 [19:54<1:11:15, 1.02it/s]
12%|█▏ | 624/5000 [19:54<1:11:15, 1.02it/s]
12%|█▎ | 625/5000 [19:55<1:00:17, 1.21it/s]
12%|█▎ | 625/5000 [19:55<1:00:17, 1.21it/s]
13%|█▎ | 626/5000 [20:09<6:01:06, 4.95s/it]
13%|█▎ | 626/5000 [20:09<6:01:06, 4.95s/it]
13%|█▎ | 627/5000 [20:14<5:50:17, 4.81s/it]
13%|█▎ | 627/5000 [20:14<5:50:17, 4.81s/it]
13%|█▎ | 628/5000 [20:18<5:27:24, 4.49s/it]
13%|█▎ | 628/5000 [20:18<5:27:24, 4.49s/it]
13%|█▎ | 629/5000 [20:21<5:04:30, 4.18s/it]
13%|█▎ | 629/5000 [20:21<5:04:30, 4.18s/it]
13%|█▎ | 630/5000 [20:24<4:42:54, 3.88s/it]
13%|█▎ | 630/5000 [20:24<4:42:54, 3.88s/it]
13%|█▎ | 631/5000 [20:27<4:21:30, 3.59s/it]
13%|█▎ | 631/5000 [20:27<4:21:30, 3.59s/it]
13%|█▎ | 632/5000 [20:30<4:03:08, 3.34s/it]
13%|█▎ | 632/5000 [20:30<4:03:08, 3.34s/it]
13%|█▎ | 633/5000 [20:33<3:51:43, 3.18s/it]
13%|█▎ | 633/5000 [20:33<3:51:43, 3.18s/it]
13%|█▎ | 634/5000 [20:35<3:37:47, 2.99s/it]
13%|█▎ | 634/5000 [20:35<3:37:47, 2.99s/it]
13%|█▎ | 635/5000 [20:38<3:24:21, 2.81s/it]
13%|█▎ | 635/5000 [20:38<3:24:21, 2.81s/it]
13%|█▎ | 636/5000 [20:40<3:16:49, 2.71s/it]
13%|█▎ | 636/5000 [20:40<3:16:49, 2.71s/it]
13%|█▎ | 637/5000 [20:43<3:11:44, 2.64s/it]
13%|█▎ | 637/5000 [20:43<3:11:44, 2.64s/it]
13%|█▎ | 638/5000 [20:45<3:03:02, 2.52s/it]
13%|█▎ | 638/5000 [20:45<3:03:02, 2.52s/it]
13%|█▎ | 639/5000 [20:47<2:53:28, 2.39s/it]
13%|█▎ | 639/5000 [20:47<2:53:28, 2.39s/it]
13%|█▎ | 640/5000 [20:49<2:47:27, 2.30s/it]
13%|█▎ | 640/5000 [20:49<2:47:27, 2.30s/it]
13%|█▎ | 641/5000 [20:51<2:41:59, 2.23s/it]
13%|█▎ | 641/5000 [20:51<2:41:59, 2.23s/it]
13%|█▎ | 642/5000 [20:53<2:40:07, 2.20s/it]
13%|█▎ | 642/5000 [20:53<2:40:07, 2.20s/it]
13%|█▎ | 643/5000 [20:55<2:35:42, 2.14s/it]
13%|█▎ | 643/5000 [20:55<2:35:42, 2.14s/it]
13%|█▎ | 644/5000 [20:57<2:27:42, 2.03s/it]
13%|█▎ | 644/5000 [20:57<2:27:42, 2.03s/it]
13%|█▎ | 645/5000 [20:59<2:22:13, 1.96s/it]
13%|█▎ | 645/5000 [20:59<2:22:13, 1.96s/it]
13%|█▎ | 646/5000 [21:01<2:18:51, 1.91s/it]
13%|█▎ | 646/5000 [21:01<2:18:51, 1.91s/it]
13%|█▎ | 647/5000 [21:02<2:16:04, 1.88s/it]
13%|█▎ | 647/5000 [21:02<2:16:04, 1.88s/it]
13%|█▎ | 648/5000 [21:04<2:14:59, 1.86s/it]
13%|█▎ | 648/5000 [21:04<2:14:59, 1.86s/it]
13%|█▎ | 649/5000 [21:06<2:15:00, 1.86s/it]
13%|█▎ | 649/5000 [21:06<2:15:00, 1.86s/it]
13%|█▎ | 650/5000 [21:08<2:13:03, 1.84s/it]
13%|█▎ | 650/5000 [21:08<2:13:03, 1.84s/it]
13%|█▎ | 651/5000 [21:09<2:09:02, 1.78s/it]
13%|█▎ | 651/5000 [21:09<2:09:02, 1.78s/it]
13%|█▎ | 652/5000 [21:11<2:03:42, 1.71s/it]
13%|█▎ | 652/5000 [21:11<2:03:42, 1.71s/it]
13%|█▎ | 653/5000 [21:12<1:59:59, 1.66s/it]
13%|█▎ | 653/5000 [21:13<1:59:59, 1.66s/it]
13%|█▎ | 654/5000 [21:14<1:58:14, 1.63s/it]
13%|█▎ | 654/5000 [21:14<1:58:14, 1.63s/it]
13%|█▎ | 655/5000 [21:16<1:55:45, 1.60s/it]
13%|█▎ | 655/5000 [21:16<1:55:45, 1.60s/it]
13%|█▎ | 656/5000 [21:17<1:52:56, 1.56s/it]
13%|█▎ | 656/5000 [21:17<1:52:56, 1.56s/it]
13%|█▎ | 657/5000 [21:19<1:53:26, 1.57s/it]
13%|█▎ | 657/5000 [21:19<1:53:26, 1.57s/it]
13%|█▎ | 658/5000 [21:20<1:50:23, 1.53s/it]
13%|█▎ | 658/5000 [21:20<1:50:23, 1.53s/it]
13%|█▎ | 659/5000 [21:21<1:45:19, 1.46s/it]
13%|█▎ | 659/5000 [21:21<1:45:19, 1.46s/it]
13%|█▎ | 660/5000 [21:23<1:40:40, 1.39s/it]
13%|█▎ | 660/5000 [21:23<1:40:40, 1.39s/it]
13%|█▎ | 661/5000 [21:24<1:38:24, 1.36s/it]
13%|█▎ | 661/5000 [21:24<1:38:24, 1.36s/it]
13%|█▎ | 662/5000 [21:25<1:37:05, 1.34s/it]
13%|█▎ | 662/5000 [21:25<1:37:05, 1.34s/it]
13%|█▎ | 663/5000 [21:26<1:34:24, 1.31s/it]
13%|█▎ | 663/5000 [21:26<1:34:24, 1.31s/it]
13%|█▎ | 664/5000 [21:28<1:32:38, 1.28s/it]
13%|█▎ | 664/5000 [21:28<1:32:38, 1.28s/it]
13%|█▎ | 665/5000 [21:29<1:31:04, 1.26s/it]
13%|█▎ | 665/5000 [21:29<1:31:04, 1.26s/it]
13%|█▎ | 666/5000 [21:30<1:28:22, 1.22s/it]
13%|█▎ | 666/5000 [21:30<1:28:22, 1.22s/it]
13%|█▎ | 667/5000 [21:31<1:24:07, 1.16s/it]
13%|█▎ | 667/5000 [21:31<1:24:07, 1.16s/it]
13%|█▎ | 668/5000 [21:32<1:21:22, 1.13s/it]
13%|█▎ | 668/5000 [21:32<1:21:22, 1.13s/it]
13%|█▎ | 669/5000 [21:33<1:18:29, 1.09s/it]
13%|█▎ | 669/5000 [21:33<1:18:29, 1.09s/it]
13%|█▎ | 670/5000 [21:34<1:15:50, 1.05s/it]
13%|█▎ | 670/5000 [21:34<1:15:50, 1.05s/it]
13%|█▎ | 671/5000 [21:35<1:11:17, 1.01it/s]
13%|█▎ | 671/5000 [21:35<1:11:17, 1.01it/s]
13%|█▎ | 672/5000 [21:36<1:04:46, 1.11it/s]
13%|█▎ | 672/5000 [21:36<1:04:46, 1.11it/s]
13%|█▎ | 673/5000 [21:36<1:01:15, 1.18it/s]
13%|█▎ | 673/5000 [21:36<1:01:15, 1.18it/s]
13%|█▎ | 674/5000 [21:37<58:05, 1.24it/s]
13%|█▎ | 674/5000 [21:37<58:05, 1.24it/s]
14%|█▎ | 675/5000 [21:40<1:38:04, 1.36s/it]
14%|█▎ | 675/5000 [21:40<1:38:04, 1.36s/it]
14%|█▎ | 676/5000 [21:48<4:13:56, 3.52s/it]
14%|█▎ | 676/5000 [21:48<4:13:56, 3.52s/it]
14%|█▎ | 677/5000 [21:52<4:23:56, 3.66s/it]
14%|█▎ | 677/5000 [21:52<4:23:56, 3.66s/it]
14%|█▎ | 678/5000 [21:56<4:26:29, 3.70s/it]
14%|█▎ | 678/5000 [21:56<4:26:29, 3.70s/it]
14%|█▎ | 679/5000 [21:59<4:17:14, 3.57s/it]
14%|█▎ | 679/5000 [21:59<4:17:14, 3.57s/it]
14%|█▎ | 680/5000 [22:02<4:05:54, 3.42s/it]
14%|█▎ | 680/5000 [22:02<4:05:54, 3.42s/it]
14%|█▎ | 681/5000 [22:05<3:56:20, 3.28s/it]
14%|█▎ | 681/5000 [22:05<3:56:20, 3.28s/it]
14%|█▎ | 682/5000 [22:08<3:46:42, 3.15s/it]
14%|█▎ | 682/5000 [22:08<3:46:42, 3.15s/it]
14%|█▎ | 683/5000 [22:11<3:38:57, 3.04s/it]
14%|█▎ | 683/5000 [22:11<3:38:57, 3.04s/it]
14%|█▎ | 684/5000 [22:13<3:27:42, 2.89s/it]
14%|█▎ | 684/5000 [22:13<3:27:42, 2.89s/it]
14%|█▎ | 685/5000 [22:16<3:17:40, 2.75s/it]
14%|█▎ | 685/5000 [22:16<3:17:40, 2.75s/it]
14%|█▎ | 686/5000 [22:18<3:08:43, 2.62s/it]
14%|█▎ | 686/5000 [22:18<3:08:43, 2.62s/it]
14%|█▎ | 687/5000 [22:21<3:04:58, 2.57s/it]
14%|█▎ | 687/5000 [22:21<3:04:58, 2.57s/it]
14%|█▍ | 688/5000 [22:23<2:58:17, 2.48s/it]
14%|█▍ | 688/5000 [22:23<2:58:17, 2.48s/it]
14%|█▍ | 689/5000 [22:25<2:49:25, 2.36s/it]
14%|█▍ | 689/5000 [22:25<2:49:25, 2.36s/it]
14%|█▍ | 690/5000 [22:27<2:43:42, 2.28s/it]
14%|█��� | 690/5000 [22:27<2:43:42, 2.28s/it]
14%|█▍ | 691/5000 [22:29<2:40:09, 2.23s/it]
14%|█▍ | 691/5000 [22:29<2:40:09, 2.23s/it]
14%|█▍ | 692/5000 [22:31<2:36:56, 2.19s/it]
14%|█▍ | 692/5000 [22:31<2:36:56, 2.19s/it]
14%|█▍ | 693/5000 [22:33<2:33:25, 2.14s/it]
14%|█▍ | 693/5000 [22:33<2:33:25, 2.14s/it]
14%|█▍ | 694/5000 [22:35<2:28:35, 2.07s/it]
14%|█▍ | 694/5000 [22:35<2:28:35, 2.07s/it]
14%|█▍ | 695/5000 [22:37<2:22:45, 1.99s/it]
14%|█▍ | 695/5000 [22:37<2:22:45, 1.99s/it]
14%|█▍ | 696/5000 [22:39<2:19:10, 1.94s/it]
14%|█▍ | 696/5000 [22:39<2:19:10, 1.94s/it]
14%|█▍ | 697/5000 [22:41<2:17:06, 1.91s/it]
14%|█▍ | 697/5000 [22:41<2:17:06, 1.91s/it]
14%|█▍ | 698/5000 [22:42<2:13:34, 1.86s/it]
14%|█▍ | 698/5000 [22:42<2:13:34, 1.86s/it]
14%|█▍ | 699/5000 [22:44<2:10:38, 1.82s/it]
14%|█▍ | 699/5000 [22:44<2:10:38, 1.82s/it]
14%|█▍ | 700/5000 [22:46<2:06:33, 1.77s/it]
14%|█▍ | 700/5000 [22:46<2:06:33, 1.77s/it]
14%|█▍ | 701/5000 [22:47<2:00:29, 1.68s/it]
14%|█▍ | 701/5000 [22:47<2:00:29, 1.68s/it]
14%|█▍ | 702/5000 [22:49<1:55:58, 1.62s/it]
14%|█▍ | 702/5000 [22:49<1:55:58, 1.62s/it]
14%|█▍ | 703/5000 [22:50<1:52:58, 1.58s/it]
14%|█▍ | 703/5000 [22:50<1:52:58, 1.58s/it]
14%|█▍ | 704/5000 [22:52<1:51:54, 1.56s/it]
14%|█▍ | 704/5000 [22:52<1:51:54, 1.56s/it]
14%|█▍ | 705/5000 [22:53<1:50:45, 1.55s/it]
14%|█▍ | 705/5000 [22:53<1:50:45, 1.55s/it]
14%|█▍ | 706/5000 [22:55<1:49:45, 1.53s/it]
14%|█▍ | 706/5000 [22:55<1:49:45, 1.53s/it]
14%|█▍ | 707/5000 [22:56<1:48:39, 1.52s/it]
14%|█▍ | 707/5000 [22:56<1:48:39, 1.52s/it]
14%|█▍ | 708/5000 [22:58<1:46:51, 1.49s/it]
14%|█▍ | 708/5000 [22:58<1:46:51, 1.49s/it]
14%|█▍ | 709/5000 [22:59<1:42:19, 1.43s/it]
14%|█▍ | 709/5000 [22:59<1:42:19, 1.43s/it]
14%|█▍ | 710/5000 [23:00<1:37:40, 1.37s/it]
14%|█▍ | 710/5000 [23:00<1:37:40, 1.37s/it]
14%|█▍ | 711/5000 [23:01<1:35:07, 1.33s/it]
14%|█▍ | 711/5000 [23:01<1:35:07, 1.33s/it]
14%|█▍ | 712/5000 [23:03<1:32:44, 1.30s/it]
14%|█▍ | 712/5000 [23:03<1:32:44, 1.30s/it]
14%|█▍ | 713/5000 [23:04<1:33:15, 1.31s/it]
14%|█▍ | 713/5000 [23:04<1:33:15, 1.31s/it]
14%|█▍ | 714/5000 [23:05<1:32:01, 1.29s/it]
14%|█▍ | 714/5000 [23:05<1:32:01, 1.29s/it]
14%|█▍ | 715/5000 [23:06<1:31:01, 1.27s/it]
14%|█▍ | 715/5000 [23:07<1:31:01, 1.27s/it]
14%|█▍ | 716/5000 [23:08<1:27:03, 1.22s/it]
14%|█▍ | 716/5000 [23:08<1:27:03, 1.22s/it]
14%|█▍ | 717/5000 [23:09<1:21:57, 1.15s/it]
14%|█▍ | 717/5000 [23:09<1:21:57, 1.15s/it]
14%|█▍ | 718/5000 [23:10<1:17:45, 1.09s/it]
14%|█▍ | 718/5000 [23:10<1:17:45, 1.09s/it]
14%|█▍ | 719/5000 [23:11<1:16:50, 1.08s/it]
14%|█▍ | 719/5000 [23:11<1:16:50, 1.08s/it]
14%|█▍ | 720/5000 [23:11<1:13:43, 1.03s/it]
14%|█▍ | 720/5000 [23:12<1:13:43, 1.03s/it]
14%|█▍ | 721/5000 [23:12<1:12:03, 1.01s/it]
14%|█▍ | 721/5000 [23:12<1:12:03, 1.01s/it]
14%|█▍ | 722/5000 [23:13<1:08:32, 1.04it/s]
14%|█▍ | 722/5000 [23:13<1:08:32, 1.04it/s]
14%|█▍ | 723/5000 [23:14<1:04:04, 1.11it/s]
14%|█▍ | 723/5000 [23:14<1:04:04, 1.11it/s]
14%|█▍ | 724/5000 [23:15<1:00:27, 1.18it/s]
14%|█▍ | 724/5000 [23:15<1:00:27, 1.18it/s]
14%|█▍ | 725/5000 [23:18<1:43:12, 1.45s/it]
14%|█▍ | 725/5000 [23:18<1:43:12, 1.45s/it]
15%|█▍ | 726/5000 [23:27<4:24:39, 3.72s/it]
15%|█▍ | 726/5000 [23:27<4:24:39, 3.72s/it]
15%|█▍ | 727/5000 [23:31<4:36:59, 3.89s/it]
15%|█▍ | 727/5000 [23:31<4:36:59, 3.89s/it]
15%|█▍ | 728/5000 [23:35<4:34:06, 3.85s/it]
15%|█▍ | 728/5000 [23:35<4:34:06, 3.85s/it]
15%|█▍ | 729/5000 [23:38<4:25:47, 3.73s/it]
15%|█▍ | 729/5000 [23:38<4:25:47, 3.73s/it]
15%|█▍ | 730/5000 [23:41<4:12:22, 3.55s/it]
15%|█▍ | 730/5000 [23:41<4:12:22, 3.55s/it]
15%|█▍ | 731/5000 [23:44<3:58:41, 3.35s/it]
15%|█▍ | 731/5000 [23:44<3:58:41, 3.35s/it]
15%|█▍ | 732/5000 [23:47<3:45:53, 3.18s/it]
15%|█▍ | 732/5000 [23:47<3:45:53, 3.18s/it]
15%|█▍ | 733/5000 [23:50<3:36:34, 3.05s/it]
15%|█▍ | 733/5000 [23:50<3:36:34, 3.05s/it]
15%|█▍ | 734/5000 [23:52<3:25:25, 2.89s/it]
15%|█▍ | 734/5000 [23:52<3:25:25, 2.89s/it]
15%|█▍ | 735/5000 [23:55<3:13:27, 2.72s/it]
15%|█▍ | 735/5000 [23:55<3:13:27, 2.72s/it]
15%|█▍ | 736/5000 [23:57<3:08:02, 2.65s/it]
15%|█▍ | 736/5000 [23:57<3:08:02, 2.65s/it]
15%|█▍ | 737/5000 [23:59<3:01:32, 2.56s/it]
15%|█▍ | 737/5000 [23:59<3:01:32, 2.56s/it]
15%|█▍ | 738/5000 [24:01<2:50:56, 2.41s/it]
15%|█▍ | 738/5000 [24:01<2:50:56, 2.41s/it]
15%|█▍ | 739/5000 [24:04<2:45:17, 2.33s/it]
15%|█▍ | 739/5000 [24:04<2:45:17, 2.33s/it]
15%|█▍ | 740/5000 [24:06<2:42:44, 2.29s/it]
15%|█▍ | 740/5000 [24:06<2:42:44, 2.29s/it]
15%|█▍ | 741/5000 [24:08<2:40:19, 2.26s/it]
15%|█▍ | 741/5000 [24:08<2:40:19, 2.26s/it]
15%|█▍ | 742/5000 [24:10<2:35:31, 2.19s/it]
15%|█▍ | 742/5000 [24:10<2:35:31, 2.19s/it]
15%|█▍ | 743/5000 [24:12<2:26:44, 2.07s/it]
15%|█▍ | 743/5000 [24:12<2:26:44, 2.07s/it]
15%|█▍ | 744/5000 [24:14<2:21:12, 1.99s/it]
15%|█▍ | 744/5000 [24:14<2:21:12, 1.99s/it]
15%|█▍ | 745/5000 [24:15<2:17:34, 1.94s/it]
15%|█▍ | 745/5000 [24:15<2:17:34, 1.94s/it]
15%|█▍ | 746/5000 [24:17<2:15:50, 1.92s/it]
15%|█▍ | 746/5000 [24:17<2:15:50, 1.92s/it]
15%|█▍ | 747/5000 [24:19<2:13:03, 1.88s/it]
15%|█▍ | 747/5000 [24:19<2:13:03, 1.88s/it]
15%|█▍ | 748/5000 [24:21<2:11:19, 1.85s/it]
15%|█▍ | 748/5000 [24:21<2:11:19, 1.85s/it]
15%|█▍ | 749/5000 [24:22<2:06:43, 1.79s/it]
15%|█▍ | 749/5000 [24:22<2:06:43, 1.79s/it]
15%|█▌ | 750/5000 [24:24<2:03:24, 1.74s/it]
15%|█▌ | 750/5000 [24:24<2:03:24, 1.74s/it]
15%|█▌ | 751/5000 [24:26<1:59:38, 1.69s/it]
15%|█▌ | 751/5000 [24:26<1:59:38, 1.69s/it]
15%|█▌ | 752/5000 [24:27<1:55:30, 1.63s/it]
15%|█▌ | 752/5000 [24:27<1:55:30, 1.63s/it]
15%|█▌ | 753/5000 [24:29<1:52:24, 1.59s/it]
15%|█▌ | 753/5000 [24:29<1:52:24, 1.59s/it]
15%|█▌ | 754/5000 [24:30<1:52:16, 1.59s/it]
15%|█▌ | 754/5000 [24:30<1:52:16, 1.59s/it]
15%|█▌ | 755/5000 [24:32<1:50:47, 1.57s/it]
15%|█▌ | 755/5000 [24:32<1:50:47, 1.57s/it]
15%|█▌ | 756/5000 [24:33<1:49:42, 1.55s/it]
15%|█▌ | 756/5000 [24:33<1:49:42, 1.55s/it]
15%|█▌ | 757/5000 [24:35<1:45:33, 1.49s/it]
15%|█▌ | 757/5000 [24:35<1:45:33, 1.49s/it]
15%|█▌ | 758/5000 [24:36<1:41:33, 1.44s/it]
15%|█▌ | 758/5000 [24:36<1:41:33, 1.44s/it]
15%|█▌ | 759/5000 [24:37<1:37:31, 1.38s/it]
15%|█▌ | 759/5000 [24:37<1:37:31, 1.38s/it]
15%|█▌ | 760/5000 [24:38<1:34:34, 1.34s/it]
15%|█▌ | 760/5000 [24:38<1:34:34, 1.34s/it]
15%|█▌ | 761/5000 [24:40<1:32:46, 1.31s/it]
15%|█▌ | 761/5000 [24:40<1:32:46, 1.31s/it]
15%|█▌ | 762/5000 [24:41<1:30:36, 1.28s/it]
15%|█▌ | 762/5000 [24:41<1:30:36, 1.28s/it]
15%|█▌ | 763/5000 [24:42<1:29:06, 1.26s/it]
15%|█▌ | 763/5000 [24:42<1:29:06, 1.26s/it]
15%|█▌ | 764/5000 [24:43<1:28:37, 1.26s/it]
15%|█▌ | 764/5000 [24:43<1:28:37, 1.26s/it]
15%|█▌ | 765/5000 [24:44<1:26:25, 1.22s/it]
15%|█▌ | 765/5000 [24:45<1:26:25, 1.22s/it]
15%|█▌ | 766/5000 [24:45<1:20:41, 1.14s/it]
15%|█▌ | 766/5000 [24:45<1:20:41, 1.14s/it]
15%|█▌ | 767/5000 [24:46<1:16:15, 1.08s/it]
15%|█▌ | 767/5000 [24:46<1:16:15, 1.08s/it]
15%|█▌ | 768/5000 [24:47<1:13:56, 1.05s/it]
15%|█▌ | 768/5000 [24:47<1:13:56, 1.05s/it]
15%|█▌ | 769/5000 [24:48<1:11:33, 1.01s/it]
15%|█▌ | 769/5000 [24:48<1:11:33, 1.01s/it]
15%|█▌ | 770/5000 [24:49<1:09:38, 1.01it/s]
15%|█▌ | 770/5000 [24:49<1:09:38, 1.01it/s]
15%|█▌ | 771/5000 [24:50<1:07:15, 1.05it/s]
15%|█▌ | 771/5000 [24:50<1:07:15, 1.05it/s]
15%|█▌ | 772/5000 [24:51<1:03:01, 1.12it/s]
15%|█▌ | 772/5000 [24:51<1:03:01, 1.12it/s]
15%|█▌ | 773/5000 [24:52<58:15, 1.21it/s]
15%|█▌ | 773/5000 [24:52<58:15, 1.21it/s]
15%|█▌ | 774/5000 [24:52<54:55, 1.28it/s]
15%|█▌ | 774/5000 [24:52<54:55, 1.28it/s]
16%|█▌ | 775/5000 [24:55<1:35:11, 1.35s/it]
16%|█▌ | 775/5000 [24:55<1:35:11, 1.35s/it]
16%|█▌ | 776/5000 [25:02<3:36:32, 3.08s/it]
16%|█▌ | 776/5000 [25:02<3:36:32, 3.08s/it]
16%|█▌ | 777/5000 [25:06<4:04:20, 3.47s/it]
16%|█▌ | 777/5000 [25:06<4:04:20, 3.47s/it]
16%|█▌ | 778/5000 [25:10<4:12:45, 3.59s/it]
16%|█▌ | 778/5000 [25:10<4:12:45, 3.59s/it]
16%|█▌ | 779/5000 [25:14<4:09:54, 3.55s/it]
16%|█▌ | 779/5000 [25:14<4:09:54, 3.55s/it]
16%|█▌ | 780/5000 [25:17<4:02:39, 3.45s/it]
16%|█▌ | 780/5000 [25:17<4:02:39, 3.45s/it]
16%|█▌ | 781/5000 [25:20<3:55:45, 3.35s/it]
16%|█▌ | 781/5000 [25:20<3:55:45, 3.35s/it]
16%|█▌ | 782/5000 [25:23<3:46:10, 3.22s/it]
16%|█▌ | 782/5000 [25:23<3:46:10, 3.22s/it]
16%|█▌ | 783/5000 [25:26<3:34:51, 3.06s/it]
16%|█▌ | 783/5000 [25:26<3:34:51, 3.06s/it]
16%|█▌ | 784/5000 [25:28<3:23:40, 2.90s/it]
16%|█▌ | 784/5000 [25:28<3:23:40, 2.90s/it]
16%|█▌ | 785/5000 [25:31<3:13:37, 2.76s/it]
16%|█▌ | 785/5000 [25:31<3:13:37, 2.76s/it]
16%|█▌ | 786/5000 [25:33<3:06:50, 2.66s/it]
16%|█▌ | 786/5000 [25:33<3:06:50, 2.66s/it]
16%|█▌ | 787/5000 [25:35<2:59:23, 2.55s/it]
16%|█▌ | 787/5000 [25:35<2:59:23, 2.55s/it]
16%|█▌ | 788/5000 [25:38<2:53:15, 2.47s/it]
16%|█▌ | 788/5000 [25:38<2:53:15, 2.47s/it]
16%|█▌ | 789/5000 [25:40<2:44:34, 2.35s/it]
16%|█▌ | 789/5000 [25:40<2:44:34, 2.35s/it]
16%|█▌ | 790/5000 [25:42<2:40:28, 2.29s/it]
16%|█▌ | 790/5000 [25:42<2:40:28, 2.29s/it]
16%|█▌ | 791/5000 [25:44<2:36:32, 2.23s/it]
16%|█▌ | 791/5000 [25:44<2:36:32, 2.23s/it]
16%|█▌ | 792/5000 [25:46<2:32:34, 2.18s/it]
16%|█▌ | 792/5000 [25:46<2:32:34, 2.18s/it]
16%|█▌ | 793/5000 [25:48<2:24:53, 2.07s/it]
16%|█▌ | 793/5000 [25:48<2:24:53, 2.07s/it]
16%|█▌ | 794/5000 [25:50<2:18:38, 1.98s/it]
16%|█▌ | 794/5000 [25:50<2:18:38, 1.98s/it]
16%|█▌ | 795/5000 [25:51<2:14:40, 1.92s/it]
16%|█▌ | 795/5000 [25:51<2:14:40, 1.92s/it]
16%|█▌ | 796/5000 [25:53<2:13:02, 1.90s/it]
16%|█▌ | 796/5000 [25:53<2:13:02, 1.90s/it]
16%|█▌ | 797/5000 [25:55<2:10:07, 1.86s/it]
16%|█▌ | 797/5000 [25:55<2:10:07, 1.86s/it]
16%|█▌ | 798/5000 [25:57<2:08:50, 1.84s/it]
16%|█▌ | 798/5000 [25:57<2:08:50, 1.84s/it]
16%|█▌ | 799/5000 [25:58<2:03:39, 1.77s/it]
16%|█▌ | 799/5000 [25:58<2:03:39, 1.77s/it]
16%|█▌ | 800/5000 [26:00<1:57:47, 1.68s/it]
16%|█▌ | 800/5000 [26:00<1:57:47, 1.68s/it]
16%|█▌ | 801/5000 [26:01<1:55:57, 1.66s/it]
16%|█▌ | 801/5000 [26:01<1:55:57, 1.66s/it]
16%|█▌ | 802/5000 [26:03<1:54:28, 1.64s/it]
16%|█▌ | 802/5000 [26:03<1:54:28, 1.64s/it]
16%|█▌ | 803/5000 [26:05<1:52:59, 1.62s/it]
16%|█▌ | 803/5000 [26:05<1:52:59, 1.62s/it]
16%|█▌ | 804/5000 [26:06<1:49:56, 1.57s/it]
16%|█▌ | 804/5000 [26:06<1:49:56, 1.57s/it]
16%|█▌ | 805/5000 [26:08<1:48:08, 1.55s/it]
16%|█▌ | 805/5000 [26:08<1:48:08, 1.55s/it]
16%|█▌ | 806/5000 [26:09<1:46:40, 1.53s/it]
16%|█▌ | 806/5000 [26:09<1:46:40, 1.53s/it]
16%|█▌ | 807/5000 [26:10<1:41:40, 1.45s/it]
16%|█▌ | 807/5000 [26:10<1:41:40, 1.45s/it]
16%|█▌ | 808/5000 [26:12<1:37:47, 1.40s/it]
16%|█▌ | 808/5000 [26:12<1:37:47, 1.40s/it]
16%|█▌ | 809/5000 [26:13<1:33:50, 1.34s/it]
16%|█▌ | 809/5000 [26:13<1:33:50, 1.34s/it]
16%|█▌ | 810/5000 [26:14<1:31:56, 1.32s/it]
16%|█▌ | 810/5000 [26:14<1:31:56, 1.32s/it]
16%|█▌ | 811/5000 [26:15<1:30:17, 1.29s/it]
16%|█▌ | 811/5000 [26:15<1:30:17, 1.29s/it]
16%|█▌ | 812/5000 [26:16<1:28:41, 1.27s/it]
16%|█▌ | 812/5000 [26:16<1:28:41, 1.27s/it]
16%|█▋ | 813/5000 [26:18<1:29:35, 1.28s/it]
16%|█▋ | 813/5000 [26:18<1:29:35, 1.28s/it]
16%|█▋ | 814/5000 [26:19<1:28:30, 1.27s/it]
16%|█▋ | 814/5000 [26:19<1:28:30, 1.27s/it]
16%|█▋ | 815/5000 [26:20<1:24:31, 1.21s/it]
16%|█▋ | 815/5000 [26:20<1:24:31, 1.21s/it]
16%|█▋ | 816/5000 [26:21<1:19:15, 1.14s/it]
16%|█▋ | 816/5000 [26:21<1:19:15, 1.14s/it]
16%|█▋ | 817/5000 [26:22<1:14:40, 1.07s/it]
16%|█▋ | 817/5000 [26:22<1:14:40, 1.07s/it]
16%|█▋ | 818/5000 [26:23<1:11:33, 1.03s/it]
16%|█▋ | 818/5000 [26:23<1:11:33, 1.03s/it]
16%|█▋ | 819/5000 [26:24<1:10:34, 1.01s/it]
16%|█▋ | 819/5000 [26:24<1:10:34, 1.01s/it]
16%|█▋ | 820/5000 [26:25<1:10:00, 1.00s/it]
16%|█▋ | 820/5000 [26:25<1:10:00, 1.00s/it]
16%|█▋ | 821/5000 [26:26<1:07:48, 1.03it/s]
16%|█▋ | 821/5000 [26:26<1:07:48, 1.03it/s]
16%|█▋ | 822/5000 [26:27<1:03:18, 1.10it/s]
16%|█▋ | 822/5000 [26:27<1:03:18, 1.10it/s]
16%|█▋ | 823/5000 [26:27<58:16, 1.19it/s]
16%|█▋ | 823/5000 [26:27<58:16, 1.19it/s]
16%|█▋ | 824/5000 [26:28<54:40, 1.27it/s]
16%|█▋ | 824/5000 [26:28<54:40, 1.27it/s]
16%|█▋ | 825/5000 [26:30<1:22:41, 1.19s/it]
16%|█▋ | 825/5000 [26:30<1:22:41, 1.19s/it]
17%|█▋ | 826/5000 [26:35<2:48:37, 2.42s/it]
17%|█▋ | 826/5000 [26:35<2:48:37, 2.42s/it]
17%|█▋ | 827/5000 [26:39<3:22:05, 2.91s/it]
17%|█▋ | 827/5000 [26:39<3:22:05, 2.91s/it]
17%|█▋ | 828/5000 [26:43<3:35:31, 3.10s/it]
17%|█▋ | 828/5000 [26:43<3:35:31, 3.10s/it]
17%|█▋ | 829/5000 [26:46<3:38:30, 3.14s/it]
17%|█▋ | 829/5000 [26:46<3:38:30, 3.14s/it]
17%|█▋ | 830/5000 [26:49<3:35:40, 3.10s/it]
17%|█▋ | 830/5000 [26:49<3:35:40, 3.10s/it]
17%|█▋ | 831/5000 [26:52<3:29:08, 3.01s/it]
17%|█▋ | 831/5000 [26:52<3:29:08, 3.01s/it]
17%|█▋ | 832/5000 [26:55<3:25:04, 2.95s/it]
17%|█▋ | 832/5000 [26:55<3:25:04, 2.95s/it]
17%|█▋ | 833/5000 [26:57<3:16:23, 2.83s/it]
17%|█▋ | 833/5000 [26:57<3:16:23, 2.83s/it]
17%|█▋ | 834/5000 [27:00<3:06:54, 2.69s/it]
17%|█▋ | 834/5000 [27:00<3:06:54, 2.69s/it]
17%|█▋ | 835/5000 [27:02<3:00:34, 2.60s/it]
17%|█▋ | 835/5000 [27:02<3:00:34, 2.60s/it]
17%|█▋ | 836/5000 [27:04<2:55:19, 2.53s/it]
17%|█▋ | 836/5000 [27:04<2:55:19, 2.53s/it]
17%|█▋ | 837/5000 [27:07<2:47:50, 2.42s/it]
17%|█▋ | 837/5000 [27:07<2:47:50, 2.42s/it]
17%|█▋ | 838/5000 [27:09<2:40:44, 2.32s/it]
17%|█▋ | 838/5000 [27:09<2:40:44, 2.32s/it]
17%|█▋ | 839/5000 [27:11<2:35:26, 2.24s/it]
17%|█▋ | 839/5000 [27:11<2:35:26, 2.24s/it]
17%|█▋ | 840/5000 [27:13<2:32:22, 2.20s/it]
17%|█▋ | 840/5000 [27:13<2:32:22, 2.20s/it]
17%|█▋ | 841/5000 [27:15<2:30:32, 2.17s/it]
17%|█▋ | 841/5000 [27:15<2:30:32, 2.17s/it]
17%|█▋ | 842/5000 [27:17<2:23:43, 2.07s/it]
17%|█▋ | 842/5000 [27:17<2:23:43, 2.07s/it]
17%|█▋ | 843/5000 [27:19<2:17:01, 1.98s/it]
17%|█▋ | 843/5000 [27:19<2:17:01, 1.98s/it]
17%|█▋ | 844/5000 [27:20<2:13:34, 1.93s/it]
17%|█▋ | 844/5000 [27:20<2:13:34, 1.93s/it]
17%|█▋ | 845/5000 [27:22<2:09:52, 1.88s/it]
17%|█▋ | 845/5000 [27:22<2:09:52, 1.88s/it]
17%|█▋ | 846/5000 [27:24<2:08:01, 1.85s/it]
17%|█▋ | 846/5000 [27:24<2:08:01, 1.85s/it]
17%|█▋ | 847/5000 [27:26<2:05:43, 1.82s/it]
17%|█▋ | 847/5000 [27:26<2:05:43, 1.82s/it]
17%|█▋ | 848/5000 [27:27<2:03:28, 1.78s/it]
17%|█▋ | 848/5000 [27:27<2:03:28, 1.78s/it]
17%|█▋ | 849/5000 [27:29<1:58:37, 1.71s/it]
17%|█▋ | 849/5000 [27:29<1:58:37, 1.71s/it]
17%|█▋ | 850/5000 [27:30<1:53:29, 1.64s/it]
17%|█▋ | 850/5000 [27:30<1:53:29, 1.64s/it]
17%|█▋ | 851/5000 [27:32<1:50:03, 1.59s/it]
17%|█▋ | 851/5000 [27:32<1:50:03, 1.59s/it]
17%|█▋ | 852/5000 [27:33<1:47:45, 1.56s/it]
17%|█▋ | 852/5000 [27:33<1:47:45, 1.56s/it]
17%|█▋ | 853/5000 [27:35<1:46:16, 1.54s/it]
17%|█▋ | 853/5000 [27:35<1:46:16, 1.54s/it]
17%|█▋ | 854/5000 [27:36<1:44:58, 1.52s/it]
17%|█▋ | 854/5000 [27:36<1:44:58, 1.52s/it]
17%|█▋ | 855/5000 [27:38<1:44:09, 1.51s/it]
17%|█▋ | 855/5000 [27:38<1:44:09, 1.51s/it]
17%|█▋ | 856/5000 [27:39<1:42:40, 1.49s/it]
17%|█▋ | 856/5000 [27:39<1:42:40, 1.49s/it]
17%|█▋ | 857/5000 [27:40<1:37:00, 1.40s/it]
17%|█▋ | 857/5000 [27:40<1:37:00, 1.40s/it]
17%|█▋ | 858/5000 [27:42<1:34:02, 1.36s/it]
17%|█▋ | 858/5000 [27:42<1:34:02, 1.36s/it]
17%|█▋ | 859/5000 [27:43<1:32:35, 1.34s/it]
17%|█▋ | 859/5000 [27:43<1:32:35, 1.34s/it]
17%|█▋ | 860/5000 [27:44<1:31:12, 1.32s/it]
17%|█▋ | 860/5000 [27:44<1:31:12, 1.32s/it]
17%|█▋ | 861/5000 [27:45<1:30:02, 1.31s/it]
17%|█▋ | 861/5000 [27:46<1:30:02, 1.31s/it]
17%|█▋ | 862/5000 [27:47<1:28:43, 1.29s/it]
17%|█▋ | 862/5000 [27:47<1:28:43, 1.29s/it]
17%|█▋ | 863/5000 [27:48<1:27:26, 1.27s/it]
17%|█▋ | 863/5000 [27:48<1:27:26, 1.27s/it]
17%|█▋ | 864/5000 [27:49<1:26:16, 1.25s/it]
17%|█▋ | 864/5000 [27:49<1:26:16, 1.25s/it]
17%|█▋ | 865/5000 [27:50<1:21:34, 1.18s/it]
17%|█▋ | 865/5000 [27:50<1:21:34, 1.18s/it]
17%|█▋ | 866/5000 [27:51<1:17:05, 1.12s/it]
17%|█▋ | 866/5000 [27:51<1:17:05, 1.12s/it]
17%|█▋ | 867/5000 [27:52<1:13:35, 1.07s/it]
17%|█▋ | 867/5000 [27:52<1:13:35, 1.07s/it]
17%|█▋ | 868/5000 [27:53<1:11:14, 1.03s/it]
17%|█▋ | 868/5000 [27:53<1:11:14, 1.03s/it]
17%|█▋ | 869/5000 [27:54<1:09:37, 1.01s/it]
17%|█▋ | 869/5000 [27:54<1:09:37, 1.01s/it]
17%|█▋ | 870/5000 [27:55<1:08:40, 1.00it/s]
17%|█▋ | 870/5000 [27:55<1:08:40, 1.00it/s]
17%|█▋ | 871/5000 [27:56<1:05:57, 1.04it/s]
17%|█▋ | 871/5000 [27:56<1:05:57, 1.04it/s]
17%|█▋ | 872/5000 [27:57<1:00:23, 1.14it/s]
17%|█▋ | 872/5000 [27:57<1:00:23, 1.14it/s]
17%|█▋ | 873/5000 [27:57<56:06, 1.23it/s]
17%|��▋ | 873/5000 [27:57<56:06, 1.23it/s]
17%|█▋ | 874/5000 [27:58<52:57, 1.30it/s]
17%|█▋ | 874/5000 [27:58<52:57, 1.30it/s]
18%|█▊ | 875/5000 [28:00<1:23:21, 1.21s/it]
18%|█▊ | 875/5000 [28:00<1:23:21, 1.21s/it]
18%|█▊ | 876/5000 [28:06<3:08:43, 2.75s/it]
18%|█▊ | 876/5000 [28:06<3:08:43, 2.75s/it]
18%|█▊ | 877/5000 [28:11<3:37:49, 3.17s/it]
18%|█▊ | 877/5000 [28:11<3:37:49, 3.17s/it]
18%|█▊ | 878/5000 [28:14<3:48:12, 3.32s/it]
18%|█▊ | 878/5000 [28:14<3:48:12, 3.32s/it]
18%|█▊ | 879/5000 [28:18<3:48:43, 3.33s/it]
18%|█▊ | 879/5000 [28:18<3:48:43, 3.33s/it]
18%|█▊ | 880/5000 [28:21<3:42:33, 3.24s/it]
18%|█▊ | 880/5000 [28:21<3:42:33, 3.24s/it]
18%|█▊ | 881/5000 [28:24<3:39:02, 3.19s/it]
18%|█▊ | 881/5000 [28:24<3:39:02, 3.19s/it]
18%|█▊ | 882/5000 [28:27<3:30:18, 3.06s/it]
18%|█▊ | 882/5000 [28:27<3:30:18, 3.06s/it]
18%|█▊ | 883/5000 [28:29<3:23:04, 2.96s/it]
18%|█▊ | 883/5000 [28:29<3:23:04, 2.96s/it]
18%|█▊ | 884/5000 [28:32<3:14:55, 2.84s/it]
18%|█▊ | 884/5000 [28:32<3:14:55, 2.84s/it]
18%|█▊ | 885/5000 [28:34<3:06:02, 2.71s/it]
18%|█▊ | 885/5000 [28:34<3:06:02, 2.71s/it]
18%|█▊ | 886/5000 [28:37<3:00:02, 2.63s/it]
18%|█▊ | 886/5000 [28:37<3:00:02, 2.63s/it]
18%|█▊ | 887/5000 [28:39<2:53:47, 2.54s/it]
18%|█▊ | 887/5000 [28:39<2:53:47, 2.54s/it]
18%|█▊ | 888/5000 [28:41<2:46:02, 2.42s/it]
18%|█▊ | 888/5000 [28:41<2:46:02, 2.42s/it]
18%|█▊ | 889/5000 [28:43<2:39:32, 2.33s/it]
18%|█▊ | 889/5000 [28:43<2:39:32, 2.33s/it]
18%|█▊ | 890/5000 [28:45<2:33:56, 2.25s/it]
18%|█▊ | 890/5000 [28:45<2:33:56, 2.25s/it]
18%|█▊ | 891/5000 [28:47<2:30:35, 2.20s/it]
18%|█▊ | 891/5000 [28:47<2:30:35, 2.20s/it]
18%|█▊ | 892/5000 [28:49<2:22:58, 2.09s/it]
18%|█▊ | 892/5000 [28:49<2:22:58, 2.09s/it]
18%|█▊ | 893/5000 [28:51<2:16:55, 2.00s/it]
18%|█▊ | 893/5000 [28:51<2:16:55, 2.00s/it]
18%|█▊ | 894/5000 [28:53<2:11:52, 1.93s/it]
18%|█▊ | 894/5000 [28:53<2:11:52, 1.93s/it]
18%|█▊ | 895/5000 [28:54<2:08:06, 1.87s/it]
18%|█▊ | 895/5000 [28:55<2:08:06, 1.87s/it]
18%|█▊ | 896/5000 [28:56<2:06:43, 1.85s/it]
18%|█▊ | 896/5000 [28:56<2:06:43, 1.85s/it]
18%|█▊ | 897/5000 [28:58<2:07:31, 1.86s/it]
18%|█▊ | 897/5000 [28:58<2:07:31, 1.86s/it]
18%|█▊ | 898/5000 [29:00<2:02:08, 1.79s/it]
18%|█▊ | 898/5000 [29:00<2:02:08, 1.79s/it]
18%|█▊ | 899/5000 [29:01<1:57:08, 1.71s/it]
18%|█▊ | 899/5000 [29:01<1:57:08, 1.71s/it]
18%|█▊ | 900/5000 [29:03<1:53:26, 1.66s/it]
18%|█▊ | 900/5000 [29:03<1:53:26, 1.66s/it]
18%|█▊ | 901/5000 [29:04<1:52:08, 1.64s/it]
18%|█▊ | 901/5000 [29:04<1:52:08, 1.64s/it]
18%|█▊ | 902/5000 [29:06<1:50:15, 1.61s/it]
18%|█▊ | 902/5000 [29:06<1:50:15, 1.61s/it]
18%|█▊ | 903/5000 [29:08<1:49:03, 1.60s/it]
18%|█▊ | 903/5000 [29:08<1:49:03, 1.60s/it]
18%|█▊ | 904/5000 [29:09<1:48:43, 1.59s/it]
18%|█▊ | 904/5000 [29:09<1:48:43, 1.59s/it]
18%|█▊ | 905/5000 [29:11<1:46:31, 1.56s/it]
18%|█▊ | 905/5000 [29:11<1:46:31, 1.56s/it]
18%|█▊ | 906/5000 [29:12<1:43:09, 1.51s/it]
18%|█▊ | 906/5000 [29:12<1:43:09, 1.51s/it]
18%|█▊ | 907/5000 [29:13<1:37:13, 1.43s/it]
18%|█▊ | 907/5000 [29:13<1:37:13, 1.43s/it]
18%|█▊ | 908/5000 [29:15<1:34:26, 1.38s/it]
18%|█▊ | 908/5000 [29:15<1:34:26, 1.38s/it]
18%|█▊ | 909/5000 [29:16<1:31:53, 1.35s/it]
18%|█▊ | 909/5000 [29:16<1:31:53, 1.35s/it]
18%|█▊ | 910/5000 [29:17<1:29:38, 1.31s/it]
18%|█▊ | 910/5000 [29:17<1:29:38, 1.31s/it]
18%|█▊ | 911/5000 [29:18<1:27:53, 1.29s/it]
18%|█▊ | 911/5000 [29:18<1:27:53, 1.29s/it]
18%|█▊ | 912/5000 [29:20<1:27:52, 1.29s/it]
18%|█▊ | 912/5000 [29:20<1:27:52, 1.29s/it]
18%|█▊ | 913/5000 [29:21<1:26:22, 1.27s/it]
18%|█▊ | 913/5000 [29:21<1:26:22, 1.27s/it]
18%|█▊ | 914/5000 [29:22<1:22:38, 1.21s/it]
18%|█▊ | 914/5000 [29:22<1:22:38, 1.21s/it]
18%|█▊ | 915/5000 [29:23<1:17:37, 1.14s/it]
18%|█▊ | 915/5000 [29:23<1:17:37, 1.14s/it]
18%|█▊ | 916/5000 [29:24<1:13:37, 1.08s/it]
18%|█▊ | 916/5000 [29:24<1:13:37, 1.08s/it]
18%|█▊ | 917/5000 [29:25<1:10:40, 1.04s/it]
18%|█▊ | 917/5000 [29:25<1:10:40, 1.04s/it]
18%|█▊ | 918/5000 [29:26<1:09:36, 1.02s/it]
18%|█▊ | 918/5000 [29:26<1:09:36, 1.02s/it]
18%|█▊ | 919/5000 [29:27<1:07:59, 1.00it/s]
18%|█▊ | 919/5000 [29:27<1:07:59, 1.00it/s]
18%|█▊ | 920/5000 [29:28<1:06:45, 1.02it/s]
18%|█▊ | 920/5000 [29:28<1:06:45, 1.02it/s]
18%|█▊ | 921/5000 [29:29<1:05:15, 1.04it/s]
18%|█▊ | 921/5000 [29:29<1:05:15, 1.04it/s]
18%|█▊ | 922/5000 [29:29<59:22, 1.14it/s]
18%|█▊ | 922/5000 [29:29<59:22, 1.14it/s]
18%|█▊ | 923/5000 [29:30<55:23, 1.23it/s]
18%|█▊ | 923/5000 [29:30<55:23, 1.23it/s]
18%|█▊ | 924/5000 [29:31<54:26, 1.25it/s]
18%|█▊ | 924/5000 [29:31<54:26, 1.25it/s]
18%|█▊ | 925/5000 [29:34<1:38:30, 1.45s/it]
18%|█▊ | 925/5000 [29:34<1:38:30, 1.45s/it]
19%|█▊ | 926/5000 [29:40<3:29:07, 3.08s/it]
19%|█▊ | 926/5000 [29:41<3:29:07, 3.08s/it]
19%|█▊ | 927/5000 [29:45<3:55:07, 3.46s/it]
19%|█▊ | 927/5000 [29:45<3:55:07, 3.46s/it]
19%|█▊ | 928/5000 [29:49<4:00:03, 3.54s/it]
19%|█▊ | 928/5000 [29:49<4:00:03, 3.54s/it]
19%|█▊ | 929/5000 [29:52<3:54:25, 3.46s/it]
19%|█▊ | 929/5000 [29:52<3:54:25, 3.46s/it]
19%|█▊ | 930/5000 [29:55<3:46:17, 3.34s/it]
19%|█▊ | 930/5000 [29:55<3:46:17, 3.34s/it]
19%|█▊ | 931/5000 [29:58<3:38:16, 3.22s/it]
19%|█▊ | 931/5000 [29:58<3:38:16, 3.22s/it]
19%|█▊ | 932/5000 [30:01<3:27:37, 3.06s/it]
19%|█▊ | 932/5000 [30:01<3:27:37, 3.06s/it]
19%|█▊ | 933/5000 [30:03<3:19:21, 2.94s/it]
19%|█▊ | 933/5000 [30:03<3:19:21, 2.94s/it]
19%|█▊ | 934/5000 [30:06<3:10:04, 2.80s/it]
19%|█▊ | 934/5000 [30:06<3:10:04, 2.80s/it]
19%|█▊ | 935/5000 [30:08<3:02:58, 2.70s/it]
19%|█▊ | 935/5000 [30:08<3:02:58, 2.70s/it]
19%|█▊ | 936/5000 [30:11<2:56:56, 2.61s/it]
19%|█▊ | 936/5000 [30:11<2:56:56, 2.61s/it]
19%|█▊ | 937/5000 [30:13<2:49:54, 2.51s/it]
19%|█▊ | 937/5000 [30:13<2:49:54, 2.51s/it]
19%|█▉ | 938/5000 [30:15<2:40:52, 2.38s/it]
19%|█▉ | 938/5000 [30:15<2:40:52, 2.38s/it]
19%|█▉ | 939/5000 [30:17<2:35:19, 2.29s/it]
19%|█▉ | 939/5000 [30:17<2:35:19, 2.29s/it]
19%|█▉ | 940/5000 [30:19<2:33:21, 2.27s/it]
19%|█▉ | 940/5000 [30:19<2:33:21, 2.27s/it]
19%|█▉ | 941/5000 [30:21<2:30:09, 2.22s/it]
19%|█▉ | 941/5000 [30:21<2:30:09, 2.22s/it]
19%|█▉ | 942/5000 [30:23<2:24:49, 2.14s/it]
19%|█▉ | 942/5000 [30:23<2:24:49, 2.14s/it]
19%|█▉ | 943/5000 [30:25<2:17:04, 2.03s/it]
19%|█▉ | 943/5000 [30:25<2:17:04, 2.03s/it]
19%|█▉ | 944/5000 [30:27<2:12:04, 1.95s/it]
19%|█▉ | 944/5000 [30:27<2:12:04, 1.95s/it]
19%|█▉ | 945/5000 [30:29<2:10:15, 1.93s/it]
19%|█▉ | 945/5000 [30:29<2:10:15, 1.93s/it]
19%|█▉ | 946/5000 [30:30<2:07:53, 1.89s/it]
19%|█▉ | 946/5000 [30:30<2:07:53, 1.89s/it]
19%|█▉ | 947/5000 [30:32<2:06:48, 1.88s/it]
19%|█▉ | 947/5000 [30:32<2:06:48, 1.88s/it]
19%|█▉ | 948/5000 [30:34<2:03:37, 1.83s/it]
19%|█▉ | 948/5000 [30:34<2:03:37, 1.83s/it]
19%|█▉ | 949/5000 [30:36<1:59:58, 1.78s/it]
19%|█▉ | 949/5000 [30:36<1:59:58, 1.78s/it]
19%|█▉ | 950/5000 [30:37<1:54:24, 1.69s/it]
19%|█▉ | 950/5000 [30:37<1:54:24, 1.69s/it]
19%|█▉ | 951/5000 [30:39<1:50:35, 1.64s/it]
19%|█▉ | 951/5000 [30:39<1:50:35, 1.64s/it]
19%|█▉ | 952/5000 [30:40<1:49:05, 1.62s/it]
19%|█▉ | 952/5000 [30:40<1:49:05, 1.62s/it]
19%|█▉ | 953/5000 [30:42<1:46:12, 1.57s/it]
19%|█▉ | 953/5000 [30:42<1:46:12, 1.57s/it]
19%|█▉ | 954/5000 [30:43<1:47:20, 1.59s/it]
19%|█▉ | 954/5000 [30:43<1:47:20, 1.59s/it]
19%|█▉ | 955/5000 [30:45<1:46:00, 1.57s/it]
19%|█▉ | 955/5000 [30:45<1:46:00, 1.57s/it]
19%|█▉ | 956/5000 [30:46<1:45:22, 1.56s/it]
19%|█▉ | 956/5000 [30:46<1:45:22, 1.56s/it]
19%|█▉ | 957/5000 [30:48<1:39:14, 1.47s/it]
19%|█▉ | 957/5000 [30:48<1:39:14, 1.47s/it]
19%|█▉ | 958/5000 [30:49<1:34:46, 1.41s/it]
19%|█▉ | 958/5000 [30:49<1:34:46, 1.41s/it]
19%|█▉ | 959/5000 [30:50<1:32:32, 1.37s/it]
19%|█▉ | 959/5000 [30:50<1:32:32, 1.37s/it]
19%|█▉ | 960/5000 [30:51<1:30:03, 1.34s/it]
19%|█▉ | 960/5000 [30:52<1:30:03, 1.34s/it]
19%|█▉ | 961/5000 [30:53<1:28:58, 1.32s/it]
19%|█▉ | 961/5000 [30:53<1:28:58, 1.32s/it]
19%|█▉ | 962/5000 [30:54<1:27:46, 1.30s/it]
19%|█▉ | 962/5000 [30:54<1:27:46, 1.30s/it]
19%|█▉ | 963/5000 [30:55<1:27:18, 1.30s/it]
19%|█▉ | 963/5000 [30:55<1:27:18, 1.30s/it]
19%|█▉ | 964/5000 [30:57<1:25:41, 1.27s/it]
19%|█▉ | 964/5000 [30:57<1:25:41, 1.27s/it]
19%|█▉ | 965/5000 [30:58<1:24:11, 1.25s/it]
19%|█▉ | 965/5000 [30:58<1:24:11, 1.25s/it]
19%|█▉ | 966/5000 [30:59<1:17:40, 1.16s/it]
19%|█▉ | 966/5000 [30:59<1:17:40, 1.16s/it]
19%|█▉ | 967/5000 [31:00<1:13:37, 1.10s/it]
19%|█▉ | 967/5000 [31:00<1:13:37, 1.10s/it]
19%|█▉ | 968/5000 [31:01<1:11:24, 1.06s/it]
19%|█▉ | 968/5000 [31:01<1:11:24, 1.06s/it]
19%|█▉ | 969/5000 [31:02<1:10:54, 1.06s/it]
19%|█▉ | 969/5000 [31:02<1:10:54, 1.06s/it]
19%|█▉ | 970/5000 [31:03<1:09:36, 1.04s/it]
19%|█▉ | 970/5000 [31:03<1:09:36, 1.04s/it]
19%|█▉ | 971/5000 [31:04<1:06:18, 1.01it/s]
19%|█▉ | 971/5000 [31:04<1:06:18, 1.01it/s]
19%|█▉ | 972/5000 [31:04<1:00:50, 1.10it/s]
19%|█▉ | 972/5000 [31:04<1:00:50, 1.10it/s]
19%|█▉ | 973/5000 [31:05<56:16, 1.19it/s]
19%|█▉ | 973/5000 [31:05<56:16, 1.19it/s]
19%|█▉ | 974/5000 [31:06<53:14, 1.26it/s]
19%|█▉ | 974/5000 [31:06<53:14, 1.26it/s]
20%|█▉ | 975/5000 [31:08<1:35:17, 1.42s/it]
20%|█▉ | 975/5000 [31:09<1:35:17, 1.42s/it]
20%|█▉ | 976/5000 [31:16<3:35:21, 3.21s/it]
20%|█▉ | 976/5000 [31:16<3:35:21, 3.21s/it]
20%|█▉ | 977/5000 [31:20<4:03:24, 3.63s/it]
20%|█▉ | 977/5000 [31:20<4:03:24, 3.63s/it]
20%|█▉ | 978/5000 [31:24<4:08:21, 3.70s/it]
20%|█▉ | 978/5000 [31:24<4:08:21, 3.70s/it]
20%|█▉ | 979/5000 [31:28<4:04:31, 3.65s/it]
20%|█▉ | 979/5000 [31:28<4:04:31, 3.65s/it]
20%|█▉ | 980/5000 [31:31<3:54:39, 3.50s/it]
20%|█▉ | 980/5000 [31:31<3:54:39, 3.50s/it]
20%|█▉ | 981/5000 [31:34<3:43:33, 3.34s/it]
20%|█▉ | 981/5000 [31:34<3:43:33, 3.34s/it]
20%|█▉ | 982/5000 [31:37<3:34:22, 3.20s/it]
20%|█▉ | 982/5000 [31:37<3:34:22, 3.20s/it]
20%|█▉ | 983/5000 [31:40<3:24:25, 3.05s/it]
20%|█▉ | 983/5000 [31:40<3:24:25, 3.05s/it]
20%|█▉ | 984/5000 [31:42<3:12:05, 2.87s/it]
20%|█▉ | 984/5000 [31:42<3:12:05, 2.87s/it]
20%|█▉ | 985/5000 [31:44<3:01:25, 2.71s/it]
20%|█▉ | 985/5000 [31:44<3:01:25, 2.71s/it]
20%|█▉ | 986/5000 [31:47<2:54:27, 2.61s/it]
20%|█▉ | 986/5000 [31:47<2:54:27, 2.61s/it]
20%|█▉ | 987/5000 [31:49<2:46:13, 2.49s/it]
20%|█▉ | 987/5000 [31:49<2:46:13, 2.49s/it]
20%|█▉ | 988/5000 [31:51<2:38:38, 2.37s/it]
20%|█▉ | 988/5000 [31:51<2:38:38, 2.37s/it]
20%|█▉ | 989/5000 [31:53<2:32:30, 2.28s/it]
20%|█▉ | 989/5000 [31:53<2:32:30, 2.28s/it]
20%|█▉ | 990/5000 [31:55<2:29:34, 2.24s/it]
20%|█▉ | 990/5000 [31:55<2:29:34, 2.24s/it]
20%|█▉ | 991/5000 [31:57<2:25:56, 2.18s/it]
20%|█▉ | 991/5000 [31:57<2:25:56, 2.18s/it]
20%|█▉ | 992/5000 [31:59<2:23:30, 2.15s/it]
20%|█▉ | 992/5000 [31:59<2:23:30, 2.15s/it]
20%|█▉ | 993/5000 [32:01<2:16:59, 2.05s/it]
20%|█▉ | 993/5000 [32:01<2:16:59, 2.05s/it]
20%|█▉ | 994/5000 [32:03<2:10:57, 1.96s/it]
20%|█▉ | 994/5000 [32:03<2:10:57, 1.96s/it]
20%|█▉ | 995/5000 [32:05<2:06:49, 1.90s/it]
20%|█▉ | 995/5000 [32:05<2:06:49, 1.90s/it]
20%|█▉ | 996/5000 [32:07<2:06:35, 1.90s/it]
20%|█▉ | 996/5000 [32:07<2:06:35, 1.90s/it]
20%|█▉ | 997/5000 [32:08<2:04:41, 1.87s/it]
20%|█▉ | 997/5000 [32:08<2:04:41, 1.87s/it]
20%|█▉ | 998/5000 [32:10<2:03:19, 1.85s/it]
20%|█▉ | 998/5000 [32:10<2:03:19, 1.85s/it]
20%|█▉ | 999/5000 [32:12<2:01:54, 1.83s/it]
20%|█▉ | 999/5000 [32:12<2:01:54, 1.83s/it]
20%|██ | 1000/5000 [32:14<1:58:22, 1.78s/it]
20%|██ | 1000/5000 [32:14<1:58:22, 1.78s/it]
20%|██ | 1001/5000 [32:15<1:54:13, 1.71s/it]
20%|██ | 1001/5000 [32:15<1:54:13, 1.71s/it]
20%|██ | 1002/5000 [32:17<1:49:37, 1.65s/it]
20%|██ | 1002/5000 [32:17<1:49:37, 1.65s/it]
20%|██ | 1003/5000 [32:18<1:46:38, 1.60s/it]
20%|██ | 1003/5000 [32:18<1:46:38, 1.60s/it]
20%|██ | 1004/5000 [32:20<1:45:43, 1.59s/it]
20%|██ | 1004/5000 [32:20<1:45:43, 1.59s/it]
20%|██ | 1005/5000 [32:21<1:44:28, 1.57s/it]
20%|██ | 1005/5000 [32:21<1:44:28, 1.57s/it]
20%|██ | 1006/5000 [32:23<1:43:57, 1.56s/it]
20%|██ | 1006/5000 [32:23<1:43:57, 1.56s/it]
20%|██ | 1007/5000 [32:24<1:42:38, 1.54s/it]
20%|██ | 1007/5000 [32:24<1:42:38, 1.54s/it]
20%|██ | 1008/5000 [32:26<1:38:33, 1.48s/it]
20%|██ | 1008/5000 [32:26<1:38:33, 1.48s/it]
20%|██ | 1009/5000 [32:27<1:35:51, 1.44s/it]
20%|██ | 1009/5000 [32:27<1:35:51, 1.44s/it]
20%|██ | 1010/5000 [32:28<1:31:50, 1.38s/it]
20%|██ | 1010/5000 [32:28<1:31:50, 1.38s/it]
20%|██ | 1011/5000 [32:29<1:28:34, 1.33s/it]
20%|██ | 1011/5000 [32:29<1:28:34, 1.33s/it]
20%|██ | 1012/5000 [32:31<1:27:58, 1.32s/it]
20%|██ | 1012/5000 [32:31<1:27:58, 1.32s/it]
20%|██ | 1013/5000 [32:32<1:25:53, 1.29s/it]
20%|██ | 1013/5000 [32:32<1:25:53, 1.29s/it]
20%|██ | 1014/5000 [32:33<1:25:54, 1.29s/it]
20%|██ | 1014/5000 [32:33<1:25:54, 1.29s/it]
20%|██ | 1015/5000 [32:35<1:25:52, 1.29s/it]
20%|██ | 1015/5000 [32:35<1:25:52, 1.29s/it]
20%|██ | 1016/5000 [32:36<1:25:18, 1.28s/it]
20%|██ | 1016/5000 [32:36<1:25:18, 1.28s/it]
20%|██ | 1017/5000 [32:37<1:20:19, 1.21s/it]
20%|██ | 1017/5000 [32:37<1:20:19, 1.21s/it]
20%|██ | 1018/5000 [32:38<1:16:16, 1.15s/it]
20%|██ | 1018/5000 [32:38<1:16:16, 1.15s/it]
20%|██ | 1019/5000 [32:39<1:13:08, 1.10s/it]
20%|██ | 1019/5000 [32:39<1:13:08, 1.10s/it]
20%|██ | 1020/5000 [32:40<1:09:35, 1.05s/it]
20%|██ | 1020/5000 [32:40<1:09:35, 1.05s/it]
20%|██ | 1021/5000 [32:41<1:07:50, 1.02s/it]
20%|██ | 1021/5000 [32:41<1:07:50, 1.02s/it]
20%|██ | 1022/5000 [32:42<1:05:27, 1.01it/s]
20%|██ | 1022/5000 [32:42<1:05:27, 1.01it/s]
20%|██ | 1023/5000 [32:42<1:00:20, 1.10it/s]
20%|██ | 1023/5000 [32:42<1:00:20, 1.10it/s]
20%|██ | 1024/5000 [32:43<55:32, 1.19it/s]
20%|██ | 1024/5000 [32:43<55:32, 1.19it/s]
20%|██ | 1025/5000 [32:46<1:33:51, 1.42s/it]
20%|██ | 1025/5000 [32:46<1:33:51, 1.42s/it]
21%|██ | 1026/5000 [32:56<4:32:34, 4.12s/it]
21%|██ | 1026/5000 [32:56<4:32:34, 4.12s/it]
21%|██ | 1027/5000 [33:01<4:40:08, 4.23s/it]
21%|██ | 1027/5000 [33:01<4:40:08, 4.23s/it]
21%|██ | 1028/5000 [33:05<4:33:23, 4.13s/it]
21%|██ | 1028/5000 [33:05<4:33:23, 4.13s/it]
21%|██ | 1029/5000 [33:08<4:19:33, 3.92s/it]
21%|██ | 1029/5000 [33:08<4:19:33, 3.92s/it]
21%|██ | 1030/5000 [33:11<4:04:40, 3.70s/it]
21%|██ | 1030/5000 [33:11<4:04:40, 3.70s/it]
21%|██ | 1031/5000 [33:14<3:49:53, 3.48s/it]
21%|██ | 1031/5000 [33:14<3:49:53, 3.48s/it]
21%|██ | 1032/5000 [33:17<3:37:57, 3.30s/it]
21%|██ | 1032/5000 [33:17<3:37:57, 3.30s/it]
21%|██ | 1033/5000 [33:20<3:25:36, 3.11s/it]
21%|██ | 1033/5000 [33:20<3:25:36, 3.11s/it]
21%|██ | 1034/5000 [33:22<3:15:53, 2.96s/it]
21%|██ | 1034/5000 [33:22<3:15:53, 2.96s/it]
21%|██ | 1035/5000 [33:25<3:04:50, 2.80s/it]
21%|██ | 1035/5000 [33:25<3:04:50, 2.80s/it]
21%|██ | 1036/5000 [33:27<2:57:14, 2.68s/it]
21%|██ | 1036/5000 [33:27<2:57:14, 2.68s/it]
21%|██ | 1037/5000 [33:29<2:49:09, 2.56s/it]
21%|██ | 1037/5000 [33:29<2:49:09, 2.56s/it]
21%|██ | 1038/5000 [33:32<2:40:35, 2.43s/it]
21%|██ | 1038/5000 [33:32<2:40:35, 2.43s/it]
21%|██ | 1039/5000 [33:34<2:34:07, 2.33s/it]
21%|██ | 1039/5000 [33:34<2:34:07, 2.33s/it]
21%|██ | 1040/5000 [33:36<2:28:44, 2.25s/it]
21%|██ | 1040/5000 [33:36<2:28:44, 2.25s/it]
21%|██ | 1041/5000 [33:38<2:26:08, 2.21s/it]
21%|██ | 1041/5000 [33:38<2:26:08, 2.21s/it]
21%|██ | 1042/5000 [33:40<2:24:39, 2.19s/it]
21%|██ | 1042/5000 [33:40<2:24:39, 2.19s/it]
21%|██ | 1043/5000 [33:42<2:19:11, 2.11s/it]
21%|██ | 1043/5000 [33:42<2:19:11, 2.11s/it]
21%|██ | 1044/5000 [33:44<2:13:27, 2.02s/it]
21%|██ | 1044/5000 [33:44<2:13:27, 2.02s/it]
21%|██ | 1045/5000 [33:46<2:08:05, 1.94s/it]
21%|██ | 1045/5000 [33:46<2:08:05, 1.94s/it]
21%|██ | 1046/5000 [33:47<2:04:08, 1.88s/it]
21%|██ | 1046/5000 [33:47<2:04:08, 1.88s/it]
21%|██ | 1047/5000 [33:49<2:01:41, 1.85s/it]
21%|██ | 1047/5000 [33:49<2:01:41, 1.85s/it]
21%|██ | 1048/5000 [33:51<2:00:21, 1.83s/it]
21%|██ | 1048/5000 [33:51<2:00:21, 1.83s/it]
21%|██ | 1049/5000 [33:53<1:58:39, 1.80s/it]
21%|██ | 1049/5000 [33:53<1:58:39, 1.80s/it]
21%|██ | 1050/5000 [33:54<1:53:57, 1.73s/it]
21%|██ | 1050/5000 [33:54<1:53:57, 1.73s/it]
21%|██ | 1051/5000 [33:56<1:50:00, 1.67s/it]
21%|██ | 1051/5000 [33:56<1:50:00, 1.67s/it]
21%|██ | 1052/5000 [33:57<1:46:31, 1.62s/it]
21%|██ | 1052/5000 [33:57<1:46:31, 1.62s/it]
21%|██ | 1053/5000 [33:59<1:45:27, 1.60s/it]
21%|██ | 1053/5000 [33:59<1:45:27, 1.60s/it]
21%|██ | 1054/5000 [34:00<1:44:19, 1.59s/it]
21%|██ | 1054/5000 [34:00<1:44:19, 1.59s/it]
21%|██ | 1055/5000 [34:02<1:43:12, 1.57s/it]
21%|██ | 1055/5000 [34:02<1:43:12, 1.57s/it]
21%|██ | 1056/5000 [34:03<1:41:20, 1.54s/it]
21%|██ | 1056/5000 [34:03<1:41:20, 1.54s/it]
21%|██ | 1057/5000 [34:05<1:37:17, 1.48s/it]
21%|██ | 1057/5000 [34:05<1:37:17, 1.48s/it]
21%|██ | 1058/5000 [34:06<1:32:50, 1.41s/it]
21%|██ | 1058/5000 [34:06<1:32:50, 1.41s/it]
21%|██ | 1059/5000 [34:07<1:29:56, 1.37s/it]
21%|██ | 1059/5000 [34:07<1:29:56, 1.37s/it]
21%|██ | 1060/5000 [34:08<1:27:49, 1.34s/it]
21%|██ | 1060/5000 [34:08<1:27:49, 1.34s/it]
21%|██ | 1061/5000 [34:10<1:25:47, 1.31s/it]
21%|██ | 1061/5000 [34:10<1:25:47, 1.31s/it]
21%|██ | 1062/5000 [34:11<1:24:33, 1.29s/it]
21%|██ | 1062/5000 [34:11<1:24:33, 1.29s/it]
21%|██▏ | 1063/5000 [34:12<1:23:34, 1.27s/it]
21%|██▏ | 1063/5000 [34:12<1:23:34, 1.27s/it]
21%|██▏ | 1064/5000 [34:13<1:24:13, 1.28s/it]
21%|██▏ | 1064/5000 [34:13<1:24:13, 1.28s/it]
21%|██▏ | 1065/5000 [34:15<1:20:47, 1.23s/it]
21%|██▏ | 1065/5000 [34:15<1:20:47, 1.23s/it]
21%|██▏ | 1066/5000 [34:15<1:15:15, 1.15s/it]
21%|██▏ | 1066/5000 [34:16<1:15:15, 1.15s/it]
21%|██▏ | 1067/5000 [34:16<1:11:01, 1.08s/it]
21%|██▏ | 1067/5000 [34:16<1:11:01, 1.08s/it]
21%|██▏ | 1068/5000 [34:17<1:09:11, 1.06s/it]
21%|██▏ | 1068/5000 [34:17<1:09:11, 1.06s/it]
21%|██▏ | 1069/5000 [34:18<1:07:17, 1.03s/it]
21%|██▏ | 1069/5000 [34:18<1:07:17, 1.03s/it]
21%|██▏ | 1070/5000 [34:19<1:05:31, 1.00s/it]
21%|██▏ | 1070/5000 [34:19<1:05:31, 1.00s/it]
21%|██▏ | 1071/5000 [34:20<1:04:14, 1.02it/s]
21%|██▏ | 1071/5000 [34:20<1:04:14, 1.02it/s]
21%|██▏ | 1072/5000 [34:21<1:00:28, 1.08it/s]
21%|██▏ | 1072/5000 [34:21<1:00:28, 1.08it/s]
21%|██▏ | 1073/5000 [34:22<56:29, 1.16it/s]
21%|██▏ | 1073/5000 [34:22<56:29, 1.16it/s]
21%|██▏ | 1074/5000 [34:22<52:45, 1.24it/s]
21%|██▏ | 1074/5000 [34:22<52:45, 1.24it/s]
22%|██▏ | 1075/5000 [34:25<1:31:30, 1.40s/it]
22%|██▏ | 1075/5000 [34:25<1:31:30, 1.40s/it]
22%|██▏ | 1076/5000 [34:32<3:09:15, 2.89s/it]
22%|██▏ | 1076/5000 [34:32<3:09:15, 2.89s/it]
22%|██▏ | 1077/5000 [34:36<3:35:07, 3.29s/it]
22%|██▏ | 1077/5000 [34:36<3:35:07, 3.29s/it]
22%|██▏ | 1078/5000 [34:40<3:46:44, 3.47s/it]
22%|██▏ | 1078/5000 [34:40<3:46:44, 3.47s/it]
22%|██▏ | 1079/5000 [34:43<3:44:21, 3.43s/it]
22%|██▏ | 1079/5000 [34:43<3:44:21, 3.43s/it]
22%|██▏ | 1080/5000 [34:46<3:41:47, 3.39s/it]
22%|██▏ | 1080/5000 [34:46<3:41:47, 3.39s/it]
22%|██▏ | 1081/5000 [34:49<3:32:45, 3.26s/it]
22%|██▏ | 1081/5000 [34:49<3:32:45, 3.26s/it]
22%|██▏ | 1082/5000 [34:52<3:23:53, 3.12s/it]
22%|██▏ | 1082/5000 [34:52<3:23:53, 3.12s/it]
22%|██▏ | 1083/5000 [34:55<3:15:12, 2.99s/it]
22%|██▏ | 1083/5000 [34:55<3:15:12, 2.99s/it]
22%|██▏ | 1084/5000 [34:57<3:07:10, 2.87s/it]
22%|██▏ | 1084/5000 [34:57<3:07:10, 2.87s/it]
22%|██▏ | 1085/5000 [35:00<2:56:51, 2.71s/it]
22%|██▏ | 1085/5000 [35:00<2:56:51, 2.71s/it]
22%|██▏ | 1086/5000 [35:02<2:49:35, 2.60s/it]
22%|██▏ | 1086/5000 [35:02<2:49:35, 2.60s/it]
22%|██▏ | 1087/5000 [35:04<2:44:28, 2.52s/it]
22%|██▏ | 1087/5000 [35:04<2:44:28, 2.52s/it]
22%|██▏ | 1088/5000 [35:07<2:40:21, 2.46s/it]
22%|██▏ | 1088/5000 [35:07<2:40:21, 2.46s/it]
22%|██▏ | 1089/5000 [35:09<2:34:24, 2.37s/it]
22%|██▏ | 1089/5000 [35:09<2:34:24, 2.37s/it]
22%|██▏ | 1090/5000 [35:11<2:28:15, 2.27s/it]
22%|██▏ | 1090/5000 [35:11<2:28:15, 2.27s/it]
22%|██▏ | 1091/5000 [35:13<2:26:01, 2.24s/it]
22%|██▏ | 1091/5000 [35:13<2:26:01, 2.24s/it]
22%|██▏ | 1092/5000 [35:15<2:22:14, 2.18s/it]
22%|██▏ | 1092/5000 [35:15<2:22:14, 2.18s/it]
22%|██▏ | 1093/5000 [35:17<2:19:27, 2.14s/it]
22%|██▏ | 1093/5000 [35:17<2:19:27, 2.14s/it]
22%|██▏ | 1094/5000 [35:19<2:13:30, 2.05s/it]
22%|██▏ | 1094/5000 [35:19<2:13:30, 2.05s/it]
22%|██▏ | 1095/5000 [35:21<2:07:53, 1.97s/it]
22%|██▏ | 1095/5000 [35:21<2:07:53, 1.97s/it]
22%|██▏ | 1096/5000 [35:23<2:04:05, 1.91s/it]
22%|██▏ | 1096/5000 [35:23<2:04:05, 1.91s/it]
22%|██▏ | 1097/5000 [35:24<2:01:11, 1.86s/it]
22%|██▏ | 1097/5000 [35:24<2:01:11, 1.86s/it]
22%|██▏ | 1098/5000 [35:26<1:59:12, 1.83s/it]
22%|██▏ | 1098/5000 [35:26<1:59:12, 1.83s/it]
22%|██▏ | 1099/5000 [35:28<1:58:14, 1.82s/it]
22%|██▏ | 1099/5000 [35:28<1:58:14, 1.82s/it]
22%|██▏ | 1100/5000 [35:30<1:57:31, 1.81s/it]
22%|██▏ | 1100/5000 [35:30<1:57:31, 1.81s/it]
22%|██▏ | 1101/5000 [35:31<1:53:39, 1.75s/it]
22%|██▏ | 1101/5000 [35:31<1:53:39, 1.75s/it]
22%|██▏ | 1102/5000 [35:33<1:48:24, 1.67s/it]
22%|██▏ | 1102/5000 [35:33<1:48:24, 1.67s/it]
22%|██▏ | 1103/5000 [35:34<1:45:46, 1.63s/it]
22%|██▏ | 1103/5000 [35:34<1:45:46, 1.63s/it]
22%|██▏ | 1104/5000 [35:36<1:42:48, 1.58s/it]
22%|██▏ | 1104/5000 [35:36<1:42:48, 1.58s/it]
22%|██▏ | 1105/5000 [35:37<1:43:31, 1.59s/it]
22%|██▏ | 1105/5000 [35:37<1:43:31, 1.59s/it]
22%|██▏ | 1106/5000 [35:39<1:41:12, 1.56s/it]
22%|██▏ | 1106/5000 [35:39<1:41:12, 1.56s/it]
22%|██▏ | 1107/5000 [35:40<1:40:05, 1.54s/it]
22%|██▏ | 1107/5000 [35:40<1:40:05, 1.54s/it]
22%|██▏ | 1108/5000 [35:42<1:37:40, 1.51s/it]
22%|██▏ | 1108/5000 [35:42<1:37:40, 1.51s/it]
22%|██▏ | 1109/5000 [35:43<1:32:02, 1.42s/it]
22%|██▏ | 1109/5000 [35:43<1:32:02, 1.42s/it]
22%|██▏ | 1110/5000 [35:44<1:28:56, 1.37s/it]
22%|██▏ | 1110/5000 [35:44<1:28:56, 1.37s/it]
22%|██▏ | 1111/5000 [35:46<1:26:46, 1.34s/it]
22%|██▏ | 1111/5000 [35:46<1:26:46, 1.34s/it]
22%|██▏ | 1112/5000 [35:47<1:26:04, 1.33s/it]
22%|██▏ | 1112/5000 [35:47<1:26:04, 1.33s/it]
22%|██▏ | 1113/5000 [35:48<1:23:52, 1.29s/it]
22%|██▏ | 1113/5000 [35:48<1:23:52, 1.29s/it]
22%|██▏ | 1114/5000 [35:49<1:22:55, 1.28s/it]
22%|██▏ | 1114/5000 [35:49<1:22:55, 1.28s/it]
22%|██▏ | 1115/5000 [35:50<1:21:16, 1.26s/it]
22%|██▏ | 1115/5000 [35:50<1:21:16, 1.26s/it]
22%|██▏ | 1116/5000 [35:51<1:16:30, 1.18s/it]
22%|██▏ | 1116/5000 [35:52<1:16:30, 1.18s/it]
22%|██▏ | 1117/5000 [35:52<1:11:41, 1.11s/it]
22%|██▏ | 1117/5000 [35:52<1:11:41, 1.11s/it]
22%|██▏ | 1118/5000 [35:53<1:08:18, 1.06s/it]
22%|██▏ | 1118/5000 [35:53<1:08:18, 1.06s/it]
22%|██▏ | 1119/5000 [35:54<1:05:54, 1.02s/it]
22%|██▏ | 1119/5000 [35:54<1:05:54, 1.02s/it]
22%|██▏ | 1120/5000 [35:55<1:04:29, 1.00it/s]
22%|██▏ | 1120/5000 [35:55<1:04:29, 1.00it/s]
22%|██▏ | 1121/5000 [35:56<1:03:43, 1.01it/s]
22%|██▏ | 1121/5000 [35:56<1:03:43, 1.01it/s]
22%|██▏ | 1122/5000 [35:57<1:00:42, 1.06it/s]
22%|██▏ | 1122/5000 [35:57<1:00:42, 1.06it/s]
22%|██▏ | 1123/5000 [35:58<55:34, 1.16it/s]
22%|██▏ | 1123/5000 [35:58<55:34, 1.16it/s]
22%|██▏ | 1124/5000 [35:58<51:57, 1.24it/s]
22%|██▏ | 1124/5000 [35:58<51:57, 1.24it/s]
22%|██▎ | 1125/5000 [36:01<1:22:33, 1.28s/it]
22%|██▎ | 1125/5000 [36:01<1:22:33, 1.28s/it]
23%|██▎ | 1126/5000 [36:07<3:06:07, 2.88s/it]
23%|██▎ | 1126/5000 [36:07<3:06:07, 2.88s/it]
23%|██▎ | 1127/5000 [36:12<3:31:56, 3.28s/it]
23%|██▎ | 1127/5000 [36:12<3:31:56, 3.28s/it]
23%|██▎ | 1128/5000 [36:16<3:57:05, 3.67s/it]
23%|██▎ | 1128/5000 [36:16<3:57:05, 3.67s/it]
23%|██▎ | 1129/5000 [36:20<3:52:50, 3.61s/it]
23%|██▎ | 1129/5000 [36:20<3:52:50, 3.61s/it]
23%|██▎ | 1130/5000 [36:23<3:41:44, 3.44s/it]
23%|██▎ | 1130/5000 [36:23<3:41:44, 3.44s/it]
23%|██▎ | 1131/5000 [36:26<3:31:35, 3.28s/it]
23%|██▎ | 1131/5000 [36:26<3:31:35, 3.28s/it]
23%|██▎ | 1132/5000 [36:28<3:19:35, 3.10s/it]
23%|██▎ | 1132/5000 [36:28<3:19:35, 3.10s/it]
23%|██▎ | 1133/5000 [36:31<3:10:30, 2.96s/it]
23%|██▎ | 1133/5000 [36:31<3:10:30, 2.96s/it]
23%|██▎ | 1134/5000 [36:33<3:01:57, 2.82s/it]
23%|██▎ | 1134/5000 [36:33<3:01:57, 2.82s/it]
23%|██▎ | 1135/5000 [36:36<2:53:59, 2.70s/it]
23%|██▎ | 1135/5000 [36:36<2:53:59, 2.70s/it]
23%|██▎ | 1136/5000 [36:38<2:48:22, 2.61s/it]
23%|██▎ | 1136/5000 [36:38<2:48:22, 2.61s/it]
23%|██▎ | 1137/5000 [36:41<2:41:49, 2.51s/it]
23%|██▎ | 1137/5000 [36:41<2:41:49, 2.51s/it]
23%|██▎ | 1138/5000 [36:43<2:32:57, 2.38s/it]
23%|██▎ | 1138/5000 [36:43<2:32:57, 2.38s/it]
23%|██▎ | 1139/5000 [36:45<2:27:18, 2.29s/it]
23%|██▎ | 1139/5000 [36:45<2:27:18, 2.29s/it]
23%|██▎ | 1140/5000 [36:47<2:23:19, 2.23s/it]
23%|██▎ | 1140/5000 [36:47<2:23:19, 2.23s/it]
23%|██▎ | 1141/5000 [36:49<2:21:20, 2.20s/it]
23%|██▎ | 1141/5000 [36:49<2:21:20, 2.20s/it]
23%|██▎ | 1142/5000 [36:51<2:20:07, 2.18s/it]
23%|██▎ | 1142/5000 [36:51<2:20:07, 2.18s/it]
23%|██▎ | 1143/5000 [36:53<2:13:09, 2.07s/it]
23%|██▎ | 1143/5000 [36:53<2:13:09, 2.07s/it]
23%|██▎ | 1144/5000 [36:55<2:07:10, 1.98s/it]
23%|██▎ | 1144/5000 [36:55<2:07:10, 1.98s/it]
23%|██▎ | 1145/5000 [36:56<2:02:34, 1.91s/it]
23%|██▎ | 1145/5000 [36:56<2:02:34, 1.91s/it]
23%|██▎ | 1146/5000 [36:58<2:01:03, 1.88s/it]
23%|██▎ | 1146/5000 [36:58<2:01:03, 1.88s/it]
23%|██▎ | 1147/5000 [37:00<1:58:44, 1.85s/it]
23%|██▎ | 1147/5000 [37:00<1:58:44, 1.85s/it]
23%|██▎ | 1148/5000 [37:02<1:57:24, 1.83s/it]
23%|██▎ | 1148/5000 [37:02<1:57:24, 1.83s/it]
23%|██▎ | 1149/5000 [37:03<1:54:08, 1.78s/it]
23%|██▎ | 1149/5000 [37:03<1:54:08, 1.78s/it]
23%|██▎ | 1150/5000 [37:05<1:49:24, 1.71s/it]
23%|██▎ | 1150/5000 [37:05<1:49:24, 1.71s/it]
23%|██▎ | 1151/5000 [37:06<1:44:59, 1.64s/it]
23%|██▎ | 1151/5000 [37:06<1:44:59, 1.64s/it]
23%|██▎ | 1152/5000 [37:08<1:42:55, 1.60s/it]
23%|██▎ | 1152/5000 [37:08<1:42:55, 1.60s/it]
23%|██▎ | 1153/5000 [37:09<1:42:10, 1.59s/it]
23%|██▎ | 1153/5000 [37:09<1:42:10, 1.59s/it]
23%|██▎ | 1154/5000 [37:11<1:40:19, 1.57s/it]
23%|██▎ | 1154/5000 [37:11<1:40:19, 1.57s/it]
23%|██▎ | 1155/5000 [37:12<1:38:34, 1.54s/it]
23%|██▎ | 1155/5000 [37:12<1:38:34, 1.54s/it]
23%|██▎ | 1156/5000 [37:14<1:38:18, 1.53s/it]
23%|██▎ | 1156/5000 [37:14<1:38:18, 1.53s/it]
23%|██▎ | 1157/5000 [37:15<1:37:48, 1.53s/it]
23%|██▎ | 1157/5000 [37:16<1:37:48, 1.53s/it]
23%|██▎ | 1158/5000 [37:17<1:35:14, 1.49s/it]
23%|██▎ | 1158/5000 [37:17<1:35:14, 1.49s/it]
23%|██▎ | 1159/5000 [37:18<1:30:09, 1.41s/it]
23%|██▎ | 1159/5000 [37:18<1:30:09, 1.41s/it]
23%|██▎ | 1160/5000 [37:19<1:28:04, 1.38s/it]
23%|██▎ | 1160/5000 [37:19<1:28:04, 1.38s/it]
23%|██▎ | 1161/5000 [37:21<1:25:07, 1.33s/it]
23%|██▎ | 1161/5000 [37:21<1:25:07, 1.33s/it]
23%|██▎ | 1162/5000 [37:22<1:23:33, 1.31s/it]
23%|██▎ | 1162/5000 [37:22<1:23:33, 1.31s/it]
23%|██▎ | 1163/5000 [37:23<1:21:44, 1.28s/it]
23%|██▎ | 1163/5000 [37:23<1:21:44, 1.28s/it]
23%|██▎ | 1164/5000 [37:24<1:20:32, 1.26s/it]
23%|██▎ | 1164/5000 [37:24<1:20:32, 1.26s/it]
23%|██▎ | 1165/5000 [37:25<1:18:55, 1.23s/it]
23%|██▎ | 1165/5000 [37:26<1:18:55, 1.23s/it]
23%|██▎ | 1166/5000 [37:26<1:14:10, 1.16s/it]
23%|██▎ | 1166/5000 [37:26<1:14:10, 1.16s/it]
23%|██▎ | 1167/5000 [37:27<1:10:14, 1.10s/it]
23%|██▎ | 1167/5000 [37:27<1:10:14, 1.10s/it]
23%|██▎ | 1168/5000 [37:28<1:08:00, 1.06s/it]
23%|██▎ | 1168/5000 [37:28<1:08:00, 1.06s/it]
23%|██▎ | 1169/5000 [37:29<1:05:25, 1.02s/it]
23%|██▎ | 1169/5000 [37:29<1:05:25, 1.02s/it]
23%|██▎ | 1170/5000 [37:30<1:04:20, 1.01s/it]
23%|██▎ | 1170/5000 [37:30<1:04:20, 1.01s/it]
23%|██▎ | 1171/5000 [37:31<1:01:28, 1.04it/s]
23%|██▎ | 1171/5000 [37:31<1:01:28, 1.04it/s]
23%|██▎ | 1172/5000 [37:32<57:47, 1.10it/s]
23%|██▎ | 1172/5000 [37:32<57:47, 1.10it/s]
23%|██▎ | 1173/5000 [37:33<53:19, 1.20it/s]
23%|██▎ | 1173/5000 [37:33<53:19, 1.20it/s]
23%|██▎ | 1174/5000 [37:33<49:52, 1.28it/s]
23%|██▎ | 1174/5000 [37:33<49:52, 1.28it/s]
24%|██▎ | 1175/5000 [37:36<1:22:01, 1.29s/it]
24%|██▎ | 1175/5000 [37:36<1:22:01, 1.29s/it]
24%|██▎ | 1176/5000 [37:44<3:26:10, 3.24s/it]
24%|██▎ | 1176/5000 [37:44<3:26:10, 3.24s/it]
24%|██▎ | 1177/5000 [37:48<3:42:46, 3.50s/it]
24%|██▎ | 1177/5000 [37:48<3:42:46, 3.50s/it]
24%|██▎ | 1178/5000 [37:51<3:45:12, 3.54s/it]
24%|██▎ | 1178/5000 [37:51<3:45:12, 3.54s/it]
24%|██▎ | 1179/5000 [37:55<3:40:14, 3.46s/it]
24%|██▎ | 1179/5000 [37:55<3:40:14, 3.46s/it]
24%|██▎ | 1180/5000 [37:58<3:33:08, 3.35s/it]
24%|██▎ | 1180/5000 [37:58<3:33:08, 3.35s/it]
24%|██▎ | 1181/5000 [38:01<3:24:59, 3.22s/it]
24%|██▎ | 1181/5000 [38:01<3:24:59, 3.22s/it]
24%|██▎ | 1182/5000 [38:03<3:15:28, 3.07s/it]
24%|██▎ | 1182/5000 [38:03<3:15:28, 3.07s/it]
24%|██▎ | 1183/5000 [38:06<3:09:06, 2.97s/it]
24%|██▎ | 1183/5000 [38:06<3:09:06, 2.97s/it]
24%|██▎ | 1184/5000 [38:09<3:00:10, 2.83s/it]
24%|██▎ | 1184/5000 [38:09<3:00:10, 2.83s/it]
24%|██▎ | 1185/5000 [38:11<2:51:41, 2.70s/it]
24%|██▎ | 1185/5000 [38:11<2:51:41, 2.70s/it]
24%|██▎ | 1186/5000 [38:13<2:45:46, 2.61s/it]
24%|██▎ | 1186/5000 [38:13<2:45:46, 2.61s/it]
24%|██▎ | 1187/5000 [38:15<2:37:55, 2.49s/it]
24%|██▎ | 1187/5000 [38:16<2:37:55, 2.49s/it]
24%|██▍ | 1188/5000 [38:18<2:30:07, 2.36s/it]
24%|██▍ | 1188/5000 [38:18<2:30:07, 2.36s/it]
24%|██▍ | 1189/5000 [38:20<2:24:02, 2.27s/it]
24%|██▍ | 1189/5000 [38:20<2:24:02, 2.27s/it]
24%|██▍ | 1190/5000 [38:22<2:23:18, 2.26s/it]
24%|██▍ | 1190/5000 [38:22<2:23:18, 2.26s/it]
24%|██▍ | 1191/5000 [38:24<2:19:13, 2.19s/it]
24%|██▍ | 1191/5000 [38:24<2:19:13, 2.19s/it]
24%|██▍ | 1192/5000 [38:26<2:15:37, 2.14s/it]
24%|██▍ | 1192/5000 [38:26<2:15:37, 2.14s/it]
24%|██▍ | 1193/5000 [38:28<2:08:54, 2.03s/it]
24%|██▍ | 1193/5000 [38:28<2:08:54, 2.03s/it]
24%|██▍ | 1194/5000 [38:29<2:03:28, 1.95s/it]
24%|██▍ | 1194/5000 [38:29<2:03:28, 1.95s/it]
24%|██▍ | 1195/5000 [38:31<1:59:44, 1.89s/it]
24%|██▍ | 1195/5000 [38:31<1:59:44, 1.89s/it]
24%|██▍ | 1196/5000 [38:33<1:57:45, 1.86s/it]
24%|██▍ | 1196/5000 [38:33<1:57:45, 1.86s/it]
24%|██▍ | 1197/5000 [38:35<1:55:29, 1.82s/it]
24%|██▍ | 1197/5000 [38:35<1:55:29, 1.82s/it]
24%|██▍ | 1198/5000 [38:36<1:54:36, 1.81s/it]
24%|██▍ | 1198/5000 [38:37<1:54:36, 1.81s/it]
24%|██▍ | 1199/5000 [38:38<1:52:14, 1.77s/it]
24%|██▍ | 1199/5000 [38:38<1:52:14, 1.77s/it]
24%|██▍ | 1200/5000 [38:40<1:46:43, 1.69s/it]
24%|██▍ | 1200/5000 [38:40<1:46:43, 1.69s/it]
24%|██▍ | 1201/5000 [38:41<1:43:04, 1.63s/it]
24%|██▍ | 1201/5000 [38:41<1:43:04, 1.63s/it]
24%|██▍ | 1202/5000 [38:43<1:40:24, 1.59s/it]
24%|██▍ | 1202/5000 [38:43<1:40:24, 1.59s/it]
24%|██▍ | 1203/5000 [38:44<1:38:44, 1.56s/it]
24%|██▍ | 1203/5000 [38:44<1:38:44, 1.56s/it]
24%|██▍ | 1204/5000 [38:46<1:37:35, 1.54s/it]
24%|██▍ | 1204/5000 [38:46<1:37:35, 1.54s/it]
24%|██▍ | 1205/5000 [38:47<1:37:12, 1.54s/it]
24%|██▍ | 1205/5000 [38:47<1:37:12, 1.54s/it]
24%|██▍ | 1206/5000 [38:49<1:36:39, 1.53s/it]
24%|██▍ | 1206/5000 [38:49<1:36:39, 1.53s/it]
24%|██▍ | 1207/5000 [38:50<1:35:37, 1.51s/it]
24%|██▍ | 1207/5000 [38:50<1:35:37, 1.51s/it]
24%|██▍ | 1208/5000 [38:51<1:30:57, 1.44s/it]
24%|██▍ | 1208/5000 [38:51<1:30:57, 1.44s/it]
24%|██▍ | 1209/5000 [38:53<1:26:32, 1.37s/it]
24%|██▍ | 1209/5000 [38:53<1:26:32, 1.37s/it]
24%|██▍ | 1210/5000 [38:54<1:23:41, 1.33s/it]
24%|██▍ | 1210/5000 [38:54<1:23:41, 1.33s/it]
24%|██▍ | 1211/5000 [38:55<1:21:52, 1.30s/it]
24%|██▍ | 1211/5000 [38:55<1:21:52, 1.30s/it]
24%|██▍ | 1212/5000 [38:56<1:20:25, 1.27s/it]
24%|██▍ | 1212/5000 [38:56<1:20:25, 1.27s/it]
24%|██▍ | 1213/5000 [38:58<1:19:46, 1.26s/it]
24%|██▍ | 1213/5000 [38:58<1:19:46, 1.26s/it]
24%|██▍ | 1214/5000 [38:59<1:18:59, 1.25s/it]
24%|██▍ | 1214/5000 [38:59<1:18:59, 1.25s/it]
24%|██▍ | 1215/5000 [39:00<1:15:51, 1.20s/it]
24%|██▍ | 1215/5000 [39:00<1:15:51, 1.20s/it]
24%|██▍ | 1216/5000 [39:01<1:11:14, 1.13s/it]
24%|██▍ | 1216/5000 [39:01<1:11:14, 1.13s/it]
24%|██▍ | 1217/5000 [39:02<1:07:50, 1.08s/it]
24%|██▍ | 1217/5000 [39:02<1:07:50, 1.08s/it]
24%|██▍ | 1218/5000 [39:03<1:05:38, 1.04s/it]
24%|██▍ | 1218/5000 [39:03<1:05:38, 1.04s/it]
24%|██▍ | 1219/5000 [39:04<1:03:39, 1.01s/it]
24%|██▍ | 1219/5000 [39:04<1:03:39, 1.01s/it]
24%|██▍ | 1220/5000 [39:05<1:02:29, 1.01it/s]
24%|██▍ | 1220/5000 [39:05<1:02:29, 1.01it/s]
24%|██▍ | 1221/5000 [39:06<1:00:43, 1.04it/s]
24%|██▍ | 1221/5000 [39:06<1:00:43, 1.04it/s]
24%|██▍ | 1222/5000 [39:06<56:13, 1.12it/s]
24%|██▍ | 1222/5000 [39:06<56:13, 1.12it/s]
24%|██▍ | 1223/5000 [39:07<51:59, 1.21it/s]
24%|██▍ | 1223/5000 [39:07<51:59, 1.21it/s]
24%|██▍ | 1224/5000 [39:08<49:24, 1.27it/s]
24%|██▍ | 1224/5000 [39:08<49:24, 1.27it/s]
24%|██▍ | 1225/5000 [39:10<1:22:48, 1.32s/it]
24%|██▍ | 1225/5000 [39:10<1:22:48, 1.32s/it]
25%|██▍ | 1226/5000 [39:17<3:09:19, 3.01s/it]
25%|██▍ | 1226/5000 [39:17<3:09:19, 3.01s/it]
25%|██▍ | 1227/5000 [39:21<3:25:16, 3.26s/it]
25%|██▍ | 1227/5000 [39:21<3:25:16, 3.26s/it]
25%|██▍ | 1228/5000 [39:24<3:24:17, 3.25s/it]
25%|██▍ | 1228/5000 [39:24<3:24:17, 3.25s/it]
25%|██▍ | 1229/5000 [39:27<3:15:25, 3.11s/it]
25%|██▍ | 1229/5000 [39:27<3:15:25, 3.11s/it]
25%|██▍ | 1230/5000 [39:30<3:18:02, 3.15s/it]
25%|██▍ | 1230/5000 [39:30<3:18:02, 3.15s/it]
25%|██▍ | 1231/5000 [39:33<3:02:40, 2.91s/it]
25%|██▍ | 1231/5000 [39:33<3:02:40, 2.91s/it]
25%|██▍ | 1232/5000 [39:35<2:47:55, 2.67s/it]
25%|██▍ | 1232/5000 [39:35<2:47:55, 2.67s/it]
25%|██▍ | 1233/5000 [39:37<2:35:35, 2.48s/it]
25%|██▍ | 1233/5000 [39:37<2:35:35, 2.48s/it]
25%|██▍ | 1234/5000 [39:39<2:25:22, 2.32s/it]
25%|██▍ | 1234/5000 [39:39<2:25:22, 2.32s/it]
25%|██▍ | 1235/5000 [39:40<2:15:01, 2.15s/it]
25%|██▍ | 1235/5000 [39:40<2:15:01, 2.15s/it]
25%|██▍ | 1236/5000 [39:42<2:07:51, 2.04s/it]
25%|██▍ | 1236/5000 [39:42<2:07:51, 2.04s/it]
25%|██▍ | 1237/5000 [39:44<2:00:08, 1.92s/it]
25%|██▍ | 1237/5000 [39:44<2:00:08, 1.92s/it]
25%|██▍ | 1238/5000 [39:45<1:53:42, 1.81s/it]
25%|██▍ | 1238/5000 [39:45<1:53:42, 1.81s/it]
25%|██▍ | 1239/5000 [39:47<1:48:31, 1.73s/it]
25%|██▍ | 1239/5000 [39:47<1:48:31, 1.73s/it]
25%|██▍ | 1240/5000 [39:48<1:44:27, 1.67s/it]
25%|██▍ | 1240/5000 [39:48<1:44:27, 1.67s/it]
25%|██▍ | 1241/5000 [39:50<1:41:03, 1.61s/it]
25%|██▍ | 1241/5000 [39:50<1:41:03, 1.61s/it]
25%|██▍ | 1242/5000 [39:51<1:35:43, 1.53s/it]
25%|██▍ | 1242/5000 [39:51<1:35:43, 1.53s/it]
25%|██▍ | 1243/5000 [39:53<1:30:19, 1.44s/it]
25%|██▍ | 1243/5000 [39:53<1:30:19, 1.44s/it]
25%|██▍ | 1244/5000 [39:54<1:26:14, 1.38s/it]
25%|██▍ | 1244/5000 [39:54<1:26:14, 1.38s/it]
25%|██▍ | 1245/5000 [39:55<1:23:11, 1.33s/it]
25%|██▍ | 1245/5000 [39:55<1:23:11, 1.33s/it]
25%|██▍ | 1246/5000 [39:56<1:16:46, 1.23s/it]
25%|██▍ | 1246/5000 [39:56<1:16:46, 1.23s/it]
25%|██▍ | 1247/5000 [39:57<1:11:23, 1.14s/it]
25%|██▍ | 1247/5000 [39:57<1:11:23, 1.14s/it]
25%|██▍ | 1248/5000 [39:58<1:07:49, 1.08s/it]
25%|██▍ | 1248/5000 [39:58<1:07:49, 1.08s/it]
25%|██▍ | 1249/5000 [39:59<1:00:57, 1.03it/s]
25%|██▍ | 1249/5000 [39:59<1:00:57, 1.03it/s]
25%|██▌ | 1250/5000 [39:59<51:40, 1.21it/s]
25%|██▌ | 1250/5000 [39:59<51:40, 1.21it/s]
25%|██▌ | 1251/5000 [40:12<4:44:29, 4.55s/it]
25%|██▌ | 1251/5000 [40:12<4:44:29, 4.55s/it]
25%|██▌ | 1252/5000 [40:16<4:37:36, 4.44s/it]
25%|██▌ | 1252/5000 [40:16<4:37:36, 4.44s/it]
25%|██▌ | 1253/5000 [40:20<4:25:12, 4.25s/it]
25%|██▌ | 1253/5000 [40:20<4:25:12, 4.25s/it]
25%|██▌ | 1254/5000 [40:24<4:09:42, 4.00s/it]
25%|██▌ | 1254/5000 [40:24<4:09:42, 4.00s/it]
25%|██▌ | 1255/5000 [40:27<3:53:27, 3.74s/it]
25%|██▌ | 1255/5000 [40:27<3:53:27, 3.74s/it]
25%|██▌ | 1256/5000 [40:30<3:38:16, 3.50s/it]
25%|██▌ | 1256/5000 [40:30<3:38:16, 3.50s/it]
25%|██▌ | 1257/5000 [40:33<3:24:54, 3.28s/it]
25%|██▌ | 1257/5000 [40:33<3:24:54, 3.28s/it]
25%|██▌ | 1258/5000 [40:35<3:13:36, 3.10s/it]
25%|██▌ | 1258/5000 [40:35<3:13:36, 3.10s/it]
25%|██▌ | 1259/5000 [40:38<3:02:42, 2.93s/it]
25%|██▌ | 1259/5000 [40:38<3:02:42, 2.93s/it]
25%|██▌ | 1260/5000 [40:40<2:52:39, 2.77s/it]
25%|██▌ | 1260/5000 [40:40<2:52:39, 2.77s/it]
25%|██�� | 1261/5000 [40:42<2:44:46, 2.64s/it]
25%|██▌ | 1261/5000 [40:43<2:44:46, 2.64s/it]
25%|██▌ | 1262/5000 [40:45<2:38:24, 2.54s/it]
25%|██▌ | 1262/5000 [40:45<2:38:24, 2.54s/it]
25%|██▌ | 1263/5000 [40:47<2:30:27, 2.42s/it]
25%|██▌ | 1263/5000 [40:47<2:30:27, 2.42s/it]
25%|██▌ | 1264/5000 [40:49<2:23:34, 2.31s/it]
25%|██▌ | 1264/5000 [40:49<2:23:34, 2.31s/it]
25%|██▌ | 1265/5000 [40:51<2:18:41, 2.23s/it]
25%|██▌ | 1265/5000 [40:51<2:18:41, 2.23s/it]
25%|██▌ | 1266/5000 [40:53<2:15:40, 2.18s/it]
25%|██▌ | 1266/5000 [40:53<2:15:40, 2.18s/it]
25%|██▌ | 1267/5000 [40:55<2:13:17, 2.14s/it]
25%|██▌ | 1267/5000 [40:55<2:13:17, 2.14s/it]
25%|██▌ | 1268/5000 [40:57<2:09:54, 2.09s/it]
25%|██▌ | 1268/5000 [40:57<2:09:54, 2.09s/it]
25%|██▌ | 1269/5000 [40:59<2:03:33, 1.99s/it]
25%|██▌ | 1269/5000 [40:59<2:03:33, 1.99s/it]
25%|██▌ | 1270/5000 [41:01<1:58:52, 1.91s/it]
25%|██▌ | 1270/5000 [41:01<1:58:52, 1.91s/it]
25%|██▌ | 1271/5000 [41:02<1:55:50, 1.86s/it]
25%|██▌ | 1271/5000 [41:02<1:55:50, 1.86s/it]
25%|██▌ | 1272/5000 [41:04<1:53:34, 1.83s/it]
25%|██▌ | 1272/5000 [41:04<1:53:34, 1.83s/it]
25%|██▌ | 1273/5000 [41:06<1:52:11, 1.81s/it]
25%|██▌ | 1273/5000 [41:06<1:52:11, 1.81s/it]
25%|██▌ | 1274/5000 [41:08<1:51:03, 1.79s/it]
25%|██▌ | 1274/5000 [41:08<1:51:03, 1.79s/it]
26%|██▌ | 1275/5000 [41:09<1:49:59, 1.77s/it]
26%|██▌ | 1275/5000 [41:09<1:49:59, 1.77s/it]
26%|██▌ | 1276/5000 [41:11<1:45:28, 1.70s/it]
26%|██▌ | 1276/5000 [41:11<1:45:28, 1.70s/it]
26%|██▌ | 1277/5000 [41:12<1:41:14, 1.63s/it]
26%|██▌ | 1277/5000 [41:12<1:41:14, 1.63s/it]
26%|██▌ | 1278/5000 [41:14<1:38:25, 1.59s/it]
26%|██▌ | 1278/5000 [41:14<1:38:25, 1.59s/it]
26%|██▌ | 1279/5000 [41:15<1:36:32, 1.56s/it]
26%|██▌ | 1279/5000 [41:15<1:36:32, 1.56s/it]
26%|██▌ | 1280/5000 [41:17<1:35:19, 1.54s/it]
26%|██▌ | 1280/5000 [41:17<1:35:19, 1.54s/it]
26%|██▌ | 1281/5000 [41:18<1:34:06, 1.52s/it]
26%|██▌ | 1281/5000 [41:18<1:34:06, 1.52s/it]
26%|██▌ | 1282/5000 [41:20<1:33:29, 1.51s/it]
26%|██▌ | 1282/5000 [41:20<1:33:29, 1.51s/it]
26%|██▌ | 1283/5000 [41:21<1:30:33, 1.46s/it]
26%|██▌ | 1283/5000 [41:21<1:30:33, 1.46s/it]
26%|██▌ | 1284/5000 [41:22<1:25:53, 1.39s/it]
26%|██▌ | 1284/5000 [41:22<1:25:53, 1.39s/it]
26%|██▌ | 1285/5000 [41:24<1:22:38, 1.33s/it]
26%|██▌ | 1285/5000 [41:24<1:22:38, 1.33s/it]
26%|██▌ | 1286/5000 [41:25<1:20:23, 1.30s/it]
26%|██▌ | 1286/5000 [41:25<1:20:23, 1.30s/it]
26%|██▌ | 1287/5000 [41:26<1:18:49, 1.27s/it]
26%|██▌ | 1287/5000 [41:26<1:18:49, 1.27s/it]
26%|██▌ | 1288/5000 [41:27<1:17:40, 1.26s/it]
26%|██▌ | 1288/5000 [41:27<1:17:40, 1.26s/it]
26%|██▌ | 1289/5000 [41:28<1:16:55, 1.24s/it]
26%|██▌ | 1289/5000 [41:28<1:16:55, 1.24s/it]
26%|██▌ | 1290/5000 [41:30<1:15:29, 1.22s/it]
26%|██▌ | 1290/5000 [41:30<1:15:29, 1.22s/it]
26%|██▌ | 1291/5000 [41:31<1:11:13, 1.15s/it]
26%|██▌ | 1291/5000 [41:31<1:11:13, 1.15s/it]
26%|██▌ | 1292/5000 [41:31<1:07:07, 1.09s/it]
26%|██▌ | 1292/5000 [41:31<1:07:07, 1.09s/it]
26%|██▌ | 1293/5000 [41:32<1:04:10, 1.04s/it]
26%|██▌ | 1293/5000 [41:32<1:04:10, 1.04s/it]
26%|██▌ | 1294/5000 [41:33<1:02:03, 1.00s/it]
26%|██▌ | 1294/5000 [41:33<1:02:03, 1.00s/it]
26%|██▌ | 1295/5000 [41:34<1:00:46, 1.02it/s]
26%|██▌ | 1295/5000 [41:34<1:00:46, 1.02it/s]
26%|██▌ | 1296/5000 [41:35<59:32, 1.04it/s]
26%|██▌ | 1296/5000 [41:35<59:32, 1.04it/s]
26%|██▌ | 1297/5000 [41:36<55:06, 1.12it/s]
26%|██▌ | 1297/5000 [41:36<55:06, 1.12it/s]
26%|██▌ | 1298/5000 [41:37<51:01, 1.21it/s]
26%|██▌ | 1298/5000 [41:37<51:01, 1.21it/s]
26%|██▌ | 1299/5000 [41:37<48:20, 1.28it/s]
26%|██▌ | 1299/5000 [41:37<48:20, 1.28it/s]
26%|██▌ | 1300/5000 [41:40<1:22:36, 1.34s/it]
26%|██▌ | 1300/5000 [41:40<1:22:36, 1.34s/it]
26%|██▌ | 1301/5000 [41:48<3:26:05, 3.34s/it]
26%|██▌ | 1301/5000 [41:48<3:26:05, 3.34s/it]
26%|██▌ | 1302/5000 [41:52<3:39:55, 3.57s/it]
26%|██▌ | 1302/5000 [41:52<3:39:55, 3.57s/it]
26%|██▌ | 1303/5000 [41:56<3:41:05, 3.59s/it]
26%|██▌ | 1303/5000 [41:56<3:41:05, 3.59s/it]
26%|██▌ | 1304/5000 [41:59<3:35:25, 3.50s/it]
26%|██▌ | 1304/5000 [41:59<3:35:25, 3.50s/it]
26%|██▌ | 1305/5000 [42:02<3:26:33, 3.35s/it]
26%|██▌ | 1305/5000 [42:02<3:26:33, 3.35s/it]
26%|██▌ | 1306/5000 [42:05<3:16:26, 3.19s/it]
26%|██▌ | 1306/5000 [42:05<3:16:26, 3.19s/it]
26%|██▌ | 1307/5000 [42:07<3:06:47, 3.03s/it]
26%|██▌ | 1307/5000 [42:07<3:06:47, 3.03s/it]
26%|██▌ | 1308/5000 [42:10<2:58:35, 2.90s/it]
26%|██▌ | 1308/5000 [42:10<2:58:35, 2.90s/it]
26%|██▌ | 1309/5000 [42:12<2:48:21, 2.74s/it]
26%|██▌ | 1309/5000 [42:12<2:48:21, 2.74s/it]
26%|██▌ | 1310/5000 [42:15<2:41:13, 2.62s/it]
26%|██▌ | 1310/5000 [42:15<2:41:13, 2.62s/it]
26%|██▌ | 1311/5000 [42:17<2:36:31, 2.55s/it]
26%|██▌ | 1311/5000 [42:17<2:36:31, 2.55s/it]
26%|██▌ | 1312/5000 [42:19<2:31:49, 2.47s/it]
26%|██▌ | 1312/5000 [42:19<2:31:49, 2.47s/it]
26%|██▋ | 1313/5000 [42:22<2:25:44, 2.37s/it]
26%|██▋ | 1313/5000 [42:22<2:25:44, 2.37s/it]
26%|██▋ | 1314/5000 [42:24<2:19:56, 2.28s/it]
26%|██▋ | 1314/5000 [42:24<2:19:56, 2.28s/it]
26%|██▋ | 1315/5000 [42:26<2:15:36, 2.21s/it]
26%|██▋ | 1315/5000 [42:26<2:15:36, 2.21s/it]
26%|██▋ | 1316/5000 [42:28<2:12:37, 2.16s/it]
26%|██▋ | 1316/5000 [42:28<2:12:37, 2.16s/it]
26%|██▋ | 1317/5000 [42:30<2:09:27, 2.11s/it]
26%|██▋ | 1317/5000 [42:30<2:09:27, 2.11s/it]
26%|██▋ | 1318/5000 [42:31<2:03:55, 2.02s/it]
26%|██▋ | 1318/5000 [42:32<2:03:55, 2.02s/it]
26%|██▋ | 1319/5000 [42:33<1:58:50, 1.94s/it]
26%|█��▋ | 1319/5000 [42:33<1:58:50, 1.94s/it]
26%|██▋ | 1320/5000 [42:35<1:55:20, 1.88s/it]
26%|██▋ | 1320/5000 [42:35<1:55:20, 1.88s/it]
26%|██▋ | 1321/5000 [42:37<1:52:47, 1.84s/it]
26%|██▋ | 1321/5000 [42:37<1:52:47, 1.84s/it]
26%|██▋ | 1322/5000 [42:38<1:51:10, 1.81s/it]
26%|██▋ | 1322/5000 [42:38<1:51:10, 1.81s/it]
26%|██▋ | 1323/5000 [42:40<1:50:03, 1.80s/it]
26%|██▋ | 1323/5000 [42:40<1:50:03, 1.80s/it]
26%|██▋ | 1324/5000 [42:42<1:45:26, 1.72s/it]
26%|██▋ | 1324/5000 [42:42<1:45:26, 1.72s/it]
26%|██▋ | 1325/5000 [42:43<1:40:57, 1.65s/it]
26%|██▋ | 1325/5000 [42:43<1:40:57, 1.65s/it]
27%|██▋ | 1326/5000 [42:45<1:37:55, 1.60s/it]
27%|██▋ | 1326/5000 [42:45<1:37:55, 1.60s/it]
27%|██▋ | 1327/5000 [42:46<1:35:48, 1.56s/it]
27%|██▋ | 1327/5000 [42:46<1:35:48, 1.56s/it]
27%|██▋ | 1328/5000 [42:48<1:34:30, 1.54s/it]
27%|██▋ | 1328/5000 [42:48<1:34:30, 1.54s/it]
27%|██▋ | 1329/5000 [42:49<1:33:15, 1.52s/it]
27%|██▋ | 1329/5000 [42:49<1:33:15, 1.52s/it]
27%|██▋ | 1330/5000 [42:51<1:32:30, 1.51s/it]
27%|██▋ | 1330/5000 [42:51<1:32:30, 1.51s/it]
27%|██▋ | 1331/5000 [42:52<1:32:00, 1.50s/it]
27%|██▋ | 1331/5000 [42:52<1:32:00, 1.50s/it]
27%|██▋ | 1332/5000 [42:54<1:29:43, 1.47s/it]
27%|██▋ | 1332/5000 [42:54<1:29:43, 1.47s/it]
27%|██▋ | 1333/5000 [42:55<1:25:07, 1.39s/it]
27%|██▋ | 1333/5000 [42:55<1:25:07, 1.39s/it]
27%|██▋ | 1334/5000 [42:56<1:21:54, 1.34s/it]
27%|██▋ | 1334/5000 [42:56<1:21:54, 1.34s/it]
27%|██▋ | 1335/5000 [42:57<1:19:37, 1.30s/it]
27%|██▋ | 1335/5000 [42:57<1:19:37, 1.30s/it]
27%|██▋ | 1336/5000 [42:58<1:17:56, 1.28s/it]
27%|██▋ | 1336/5000 [42:58<1:17:56, 1.28s/it]
27%|██▋ | 1337/5000 [43:00<1:17:00, 1.26s/it]
27%|██▋ | 1337/5000 [43:00<1:17:00, 1.26s/it]
27%|██▋ | 1338/5000 [43:01<1:16:04, 1.25s/it]
27%|██▋ | 1338/5000 [43:01<1:16:04, 1.25s/it]
27%|██▋ | 1339/5000 [43:02<1:15:46, 1.24s/it]
27%|██▋ | 1339/5000 [43:02<1:15:46, 1.24s/it]
27%|██▋ | 1340/5000 [43:03<1:11:00, 1.16s/it]
27%|██▋ | 1340/5000 [43:03<1:11:00, 1.16s/it]
27%|██▋ | 1341/5000 [43:04<1:06:37, 1.09s/it]
27%|██▋ | 1341/5000 [43:04<1:06:37, 1.09s/it]
27%|██▋ | 1342/5000 [43:05<1:03:35, 1.04s/it]
27%|██▋ | 1342/5000 [43:05<1:03:35, 1.04s/it]
27%|██▋ | 1343/5000 [43:06<1:01:31, 1.01s/it]
27%|██▋ | 1343/5000 [43:06<1:01:31, 1.01s/it]
27%|██▋ | 1344/5000 [43:07<1:00:05, 1.01it/s]
27%|██▋ | 1344/5000 [43:07<1:00:05, 1.01it/s]
27%|██▋ | 1345/5000 [43:08<58:59, 1.03it/s]
27%|██▋ | 1345/5000 [43:08<58:59, 1.03it/s]
27%|██▋ | 1346/5000 [43:09<58:09, 1.05it/s]
27%|██▋ | 1346/5000 [43:09<58:09, 1.05it/s]
27%|██▋ | 1347/5000 [43:09<54:39, 1.11it/s]
27%|██▋ | 1347/5000 [43:09<54:39, 1.11it/s]
27%|██▋ | 1348/5000 [43:10<50:31, 1.20it/s]
27%|██▋ | 1348/5000 [43:10<50:31, 1.20it/s]
27%|██▋ | 1349/5000 [43:11<47:41, 1.28it/s]
27%|██▋ | 1349/5000 [43:11<47:41, 1.28it/s]
27%|██▋ | 1350/5000 [43:13<1:20:21, 1.32s/it]
27%|██▋ | 1350/5000 [43:13<1:20:21, 1.32s/it]
27%|██▋ | 1351/5000 [43:20<3:06:47, 3.07s/it]
27%|██▋ | 1351/5000 [43:20<3:06:47, 3.07s/it]
27%|██▋ | 1352/5000 [43:25<3:24:27, 3.36s/it]
27%|██▋ | 1352/5000 [43:25<3:24:27, 3.36s/it]
27%|██▋ | 1353/5000 [43:28<3:25:53, 3.39s/it]
27%|██▋ | 1353/5000 [43:28<3:25:53, 3.39s/it]
27%|██▋ | 1354/5000 [43:31<3:22:10, 3.33s/it]
27%|██▋ | 1354/5000 [43:31<3:22:10, 3.33s/it]
27%|██▋ | 1355/5000 [43:34<3:16:28, 3.23s/it]
27%|██▋ | 1355/5000 [43:34<3:16:28, 3.23s/it]
27%|██▋ | 1356/5000 [43:37<3:08:43, 3.11s/it]
27%|██▋ | 1356/5000 [43:37<3:08:43, 3.11s/it]
27%|██▋ | 1357/5000 [43:40<3:00:28, 2.97s/it]
27%|██▋ | 1357/5000 [43:40<3:00:28, 2.97s/it]
27%|██▋ | 1358/5000 [43:42<2:52:07, 2.84s/it]
27%|██▋ | 1358/5000 [43:42<2:52:07, 2.84s/it]
27%|██▋ | 1359/5000 [43:45<2:43:29, 2.69s/it]
27%|██▋ | 1359/5000 [43:45<2:43:29, 2.69s/it]
27%|██▋ | 1360/5000 [43:47<2:37:32, 2.60s/it]
27%|██▋ | 1360/5000 [43:47<2:37:32, 2.60s/it]
27%|██▋ | 1361/5000 [43:49<2:30:39, 2.48s/it]
27%|██▋ | 1361/5000 [43:49<2:30:39, 2.48s/it]
27%|██▋ | 1362/5000 [43:51<2:22:44, 2.35s/it]
27%|██▋ | 1362/5000 [43:51<2:22:44, 2.35s/it]
27%|██▋ | 1363/5000 [43:53<2:17:22, 2.27s/it]
27%|██▋ | 1363/5000 [43:53<2:17:22, 2.27s/it]
27%|██▋ | 1364/5000 [43:55<2:13:18, 2.20s/it]
27%|██▋ | 1364/5000 [43:55<2:13:18, 2.20s/it]
27%|██▋ | 1365/5000 [43:57<2:10:45, 2.16s/it]
27%|██▋ | 1365/5000 [43:57<2:10:45, 2.16s/it]
27%|██▋ | 1366/5000 [43:59<2:08:57, 2.13s/it]
27%|██▋ | 1366/5000 [43:59<2:08:57, 2.13s/it]
27%|██▋ | 1367/5000 [44:01<2:04:52, 2.06s/it]
27%|██▋ | 1367/5000 [44:01<2:04:52, 2.06s/it]
27%|██▋ | 1368/5000 [44:03<1:59:09, 1.97s/it]
27%|██▋ | 1368/5000 [44:03<1:59:09, 1.97s/it]
27%|██▋ | 1369/5000 [44:05<1:55:20, 1.91s/it]
27%|██▋ | 1369/5000 [44:05<1:55:20, 1.91s/it]
27%|██▋ | 1370/5000 [44:07<1:52:14, 1.86s/it]
27%|██▋ | 1370/5000 [44:07<1:52:14, 1.86s/it]
27%|██▋ | 1371/5000 [44:08<1:50:33, 1.83s/it]
27%|██▋ | 1371/5000 [44:08<1:50:33, 1.83s/it]
27%|██▋ | 1372/5000 [44:10<1:50:07, 1.82s/it]
27%|██▋ | 1372/5000 [44:10<1:50:07, 1.82s/it]
27%|██▋ | 1373/5000 [44:12<1:48:43, 1.80s/it]
27%|██▋ | 1373/5000 [44:12<1:48:43, 1.80s/it]
27%|██▋ | 1374/5000 [44:13<1:43:49, 1.72s/it]
27%|██▋ | 1374/5000 [44:13<1:43:49, 1.72s/it]
28%|██▊ | 1375/5000 [44:15<1:39:34, 1.65s/it]
28%|██▊ | 1375/5000 [44:15<1:39:34, 1.65s/it]
28%|██▊ | 1376/5000 [44:16<1:36:25, 1.60s/it]
28%|██▊ | 1376/5000 [44:16<1:36:25, 1.60s/it]
28%|██▊ | 1377/5000 [44:18<1:34:17, 1.56s/it]
28%|██▊ | 1377/5000 [44:18<1:34:17, 1.56s/it]
28%|██▊ | 1378/5000 [44:19<1:32:43, 1.54s/it]
28%|██▊ | 1378/5000 [44:19<1:32:43, 1.54s/it]
28%|██▊ | 1379/5000 [44:21<1:32:05, 1.53s/it]
28%|██▊ | 1379/5000 [44:21<1:32:05, 1.53s/it]
28%|██▊ | 1380/5000 [44:22<1:31:21, 1.51s/it]
28%|██▊ | 1380/5000 [44:22<1:31:21, 1.51s/it]
28%|██▊ | 1381/5000 [44:24<1:30:43, 1.50s/it]
28%|██▊ | 1381/5000 [44:24<1:30:43, 1.50s/it]
28%|██▊ | 1382/5000 [44:25<1:28:12, 1.46s/it]
28%|██▊ | 1382/5000 [44:25<1:28:12, 1.46s/it]
28%|██▊ | 1383/5000 [44:26<1:23:51, 1.39s/it]
28%|██▊ | 1383/5000 [44:26<1:23:51, 1.39s/it]
28%|██▊ | 1384/5000 [44:28<1:20:40, 1.34s/it]
28%|██▊ | 1384/5000 [44:28<1:20:40, 1.34s/it]
28%|██▊ | 1385/5000 [44:29<1:18:40, 1.31s/it]
28%|██▊ | 1385/5000 [44:29<1:18:40, 1.31s/it]
28%|██▊ | 1386/5000 [44:30<1:17:03, 1.28s/it]
28%|██▊ | 1386/5000 [44:30<1:17:03, 1.28s/it]
28%|██▊ | 1387/5000 [44:31<1:15:54, 1.26s/it]
28%|██▊ | 1387/5000 [44:31<1:15:54, 1.26s/it]
28%|██▊ | 1388/5000 [44:32<1:15:15, 1.25s/it]
28%|██▊ | 1388/5000 [44:32<1:15:15, 1.25s/it]
28%|██▊ | 1389/5000 [44:34<1:14:34, 1.24s/it]
28%|██▊ | 1389/5000 [44:34<1:14:34, 1.24s/it]
28%|██▊ | 1390/5000 [44:35<1:12:57, 1.21s/it]
28%|██▊ | 1390/5000 [44:35<1:12:57, 1.21s/it]
28%|██▊ | 1391/5000 [44:36<1:09:02, 1.15s/it]
28%|██▊ | 1391/5000 [44:36<1:09:02, 1.15s/it]
28%|██▊ | 1392/5000 [44:37<1:05:02, 1.08s/it]
28%|██▊ | 1392/5000 [44:37<1:05:02, 1.08s/it]
28%|██▊ | 1393/5000 [44:38<1:02:19, 1.04s/it]
28%|██▊ | 1393/5000 [44:38<1:02:19, 1.04s/it]
28%|██▊ | 1394/5000 [44:39<1:00:17, 1.00s/it]
28%|██▊ | 1394/5000 [44:39<1:00:17, 1.00s/it]
28%|██▊ | 1395/5000 [44:40<58:53, 1.02it/s]
28%|██▊ | 1395/5000 [44:40<58:53, 1.02it/s]
28%|██▊ | 1396/5000 [44:41<58:51, 1.02it/s]
28%|██▊ | 1396/5000 [44:41<58:51, 1.02it/s]
28%|██▊ | 1397/5000 [44:41<55:21, 1.08it/s]
28%|██▊ | 1397/5000 [44:41<55:21, 1.08it/s]
28%|██▊ | 1398/5000 [44:42<50:51, 1.18it/s]
28%|██▊ | 1398/5000 [44:42<50:51, 1.18it/s]
28%|██▊ | 1399/5000 [44:43<47:37, 1.26it/s]
28%|██▊ | 1399/5000 [44:43<47:37, 1.26it/s]
28%|██▊ | 1400/5000 [44:45<1:16:40, 1.28s/it]
28%|██▊ | 1400/5000 [44:45<1:16:40, 1.28s/it]
28%|██▊ | 1401/5000 [44:51<2:44:00, 2.73s/it]
28%|██▊ | 1401/5000 [44:51<2:44:00, 2.73s/it]
28%|██▊ | 1402/5000 [44:55<3:09:03, 3.15s/it]
28%|██▊ | 1402/5000 [44:55<3:09:03, 3.15s/it]
28%|██▊ | 1403/5000 [44:59<3:18:15, 3.31s/it]
28%|██▊ | 1403/5000 [44:59<3:18:15, 3.31s/it]
28%|██▊ | 1404/5000 [45:02<3:19:05, 3.32s/it]
28%|██▊ | 1404/5000 [45:02<3:19:05, 3.32s/it]
28%|██▊ | 1405/5000 [45:05<3:16:03, 3.27s/it]
28%|██▊ | 1405/5000 [45:06<3:16:03, 3.27s/it]
28%|██▊ | 1406/5000 [45:08<3:10:00, 3.17s/it]
28%|██▊ | 1406/5000 [45:08<3:10:00, 3.17s/it]
28%|██▊ | 1407/5000 [45:11<3:01:58, 3.04s/it]
28%|██▊ | 1407/5000 [45:11<3:01:58, 3.04s/it]
28%|██▊ | 1408/5000 [45:14<2:55:31, 2.93s/it]
28%|██▊ | 1408/5000 [45:14<2:55:31, 2.93s/it]
28%|██▊ | 1409/5000 [45:16<2:48:27, 2.81s/it]
28%|██▊ | 1409/5000 [45:16<2:48:27, 2.81s/it]
28%|██▊ | 1410/5000 [45:19<2:40:12, 2.68s/it]
28%|██▊ | 1410/5000 [45:19<2:40:12, 2.68s/it]
28%|██▊ | 1411/5000 [45:21<2:34:22, 2.58s/it]
28%|██▊ | 1411/5000 [45:21<2:34:22, 2.58s/it]
28%|██▊ | 1412/5000 [45:23<2:29:11, 2.49s/it]
28%|██▊ | 1412/5000 [45:23<2:29:11, 2.49s/it]
28%|██▊ | 1413/5000 [45:26<2:22:27, 2.38s/it]
28%|██▊ | 1413/5000 [45:26<2:22:27, 2.38s/it]
28%|██▊ | 1414/5000 [45:28<2:16:41, 2.29s/it]
28%|██▊ | 1414/5000 [45:28<2:16:41, 2.29s/it]
28%|██▊ | 1415/5000 [45:30<2:12:26, 2.22s/it]
28%|██▊ | 1415/5000 [45:30<2:12:26, 2.22s/it]
28%|██▊ | 1416/5000 [45:32<2:09:49, 2.17s/it]
28%|██▊ | 1416/5000 [45:32<2:09:49, 2.17s/it]
28%|██▊ | 1417/5000 [45:34<2:07:49, 2.14s/it]
28%|██▊ | 1417/5000 [45:34<2:07:49, 2.14s/it]
28%|██▊ | 1418/5000 [45:36<2:04:45, 2.09s/it]
28%|██▊ | 1418/5000 [45:36<2:04:45, 2.09s/it]
28%|██▊ | 1419/5000 [45:37<1:58:36, 1.99s/it]
28%|██▊ | 1419/5000 [45:38<1:58:36, 1.99s/it]
28%|██▊ | 1420/5000 [45:39<1:54:28, 1.92s/it]
28%|██▊ | 1420/5000 [45:39<1:54:28, 1.92s/it]
28%|██▊ | 1421/5000 [45:41<1:51:29, 1.87s/it]
28%|██▊ | 1421/5000 [45:41<1:51:29, 1.87s/it]
28%|██▊ | 1422/5000 [45:43<1:49:13, 1.83s/it]
28%|██▊ | 1422/5000 [45:43<1:49:13, 1.83s/it]
28%|██▊ | 1423/5000 [45:44<1:47:48, 1.81s/it]
28%|██▊ | 1423/5000 [45:45<1:47:48, 1.81s/it]
28%|██▊ | 1424/5000 [45:46<1:46:38, 1.79s/it]
28%|██▊ | 1424/5000 [45:46<1:46:38, 1.79s/it]
28%|██▊ | 1425/5000 [45:48<1:43:14, 1.73s/it]
28%|██▊ | 1425/5000 [45:48<1:43:14, 1.73s/it]
29%|██▊ | 1426/5000 [45:49<1:38:51, 1.66s/it]
29%|██▊ | 1426/5000 [45:49<1:38:51, 1.66s/it]
29%|██▊ | 1427/5000 [45:51<1:35:45, 1.61s/it]
29%|██▊ | 1427/5000 [45:51<1:35:45, 1.61s/it]
29%|██▊ | 1428/5000 [45:52<1:33:34, 1.57s/it]
29%|██▊ | 1428/5000 [45:52<1:33:34, 1.57s/it]
29%|██▊ | 1429/5000 [45:54<1:32:09, 1.55s/it]
29%|██▊ | 1429/5000 [45:54<1:32:09, 1.55s/it]
29%|██▊ | 1430/5000 [45:55<1:31:14, 1.53s/it]
29%|██▊ | 1430/5000 [45:55<1:31:14, 1.53s/it]
29%|██▊ | 1431/5000 [45:57<1:30:24, 1.52s/it]
29%|██▊ | 1431/5000 [45:57<1:30:24, 1.52s/it]
29%|██▊ | 1432/5000 [45:58<1:28:32, 1.49s/it]
29%|██▊ | 1432/5000 [45:58<1:28:32, 1.49s/it]
29%|██▊ | 1433/5000 [45:59<1:24:33, 1.42s/it]
29%|██▊ | 1433/5000 [45:59<1:24:33, 1.42s/it]
29%|██▊ | 1434/5000 [46:01<1:20:51, 1.36s/it]
29%|██▊ | 1434/5000 [46:01<1:20:51, 1.36s/it]
29%|██▊ | 1435/5000 [46:02<1:18:15, 1.32s/it]
29%|██▊ | 1435/5000 [46:02<1:18:15, 1.32s/it]
29%|██▊ | 1436/5000 [46:03<1:16:38, 1.29s/it]
29%|██▊ | 1436/5000 [46:03<1:16:38, 1.29s/it]
29%|██▊ | 1437/5000 [46:04<1:15:24, 1.27s/it]
29%|██▊ | 1437/5000 [46:04<1:15:24, 1.27s/it]
29%|██▉ | 1438/5000 [46:06<1:14:27, 1.25s/it]
29%|██▉ | 1438/5000 [46:06<1:14:27, 1.25s/it]
29%|██▉ | 1439/5000 [46:07<1:13:46, 1.24s/it]
29%|██▉ | 1439/5000 [46:07<1:13:46, 1.24s/it]
29%|██▉ | 1440/5000 [46:08<1:13:13, 1.23s/it]
29%|██▉ | 1440/5000 [46:08<1:13:13, 1.23s/it]
29%|██▉ | 1441/5000 [46:09<1:09:00, 1.16s/it]
29%|██▉ | 1441/5000 [46:09<1:09:00, 1.16s/it]
29%|██▉ | 1442/5000 [46:10<1:04:51, 1.09s/it]
29%|██▉ | 1442/5000 [46:10<1:04:51, 1.09s/it]
29%|██▉ | 1443/5000 [46:11<1:02:45, 1.06s/it]
29%|██▉ | 1443/5000 [46:11<1:02:45, 1.06s/it]
29%|██▉ | 1444/5000 [46:12<1:00:24, 1.02s/it]
29%|██▉ | 1444/5000 [46:12<1:00:24, 1.02s/it]
29%|██▉ | 1445/5000 [46:13<58:56, 1.01it/s]
29%|██▉ | 1445/5000 [46:13<58:56, 1.01it/s]
29%|██▉ | 1446/5000 [46:14<56:46, 1.04it/s]
29%|██▉ | 1446/5000 [46:14<56:46, 1.04it/s]
29%|██▉ | 1447/5000 [46:14<52:42, 1.12it/s]
29%|██▉ | 1447/5000 [46:14<52:42, 1.12it/s]
29%|██▉ | 1448/5000 [46:15<48:51, 1.21it/s]
29%|██▉ | 1448/5000 [46:15<48:51, 1.21it/s]
29%|██▉ | 1449/5000 [46:16<46:05, 1.28it/s]
29%|██▉ | 1449/5000 [46:16<46:05, 1.28it/s]
29%|██▉ | 1450/5000 [46:18<1:19:14, 1.34s/it]
29%|██▉ | 1450/5000 [46:18<1:19:14, 1.34s/it]
29%|██▉ | 1451/5000 [46:26<3:12:00, 3.25s/it]
29%|██▉ | 1451/5000 [46:26<3:12:00, 3.25s/it]
29%|██▉ | 1452/5000 [46:30<3:28:13, 3.52s/it]
29%|██▉ | 1452/5000 [46:30<3:28:13, 3.52s/it]
29%|██▉ | 1453/5000 [46:34<3:32:42, 3.60s/it]
29%|██▉ | 1453/5000 [46:34<3:32:42, 3.60s/it]
29%|██▉ | 1454/5000 [46:37<3:28:13, 3.52s/it]
29%|██▉ | 1454/5000 [46:37<3:28:13, 3.52s/it]
29%|██▉ | 1455/5000 [46:41<3:21:54, 3.42s/it]
29%|██▉ | 1455/5000 [46:41<3:21:54, 3.42s/it]
29%|██▉ | 1456/5000 [46:43<3:13:39, 3.28s/it]
29%|██▉ | 1456/5000 [46:43<3:13:39, 3.28s/it]
29%|██▉ | 1457/5000 [46:46<3:03:33, 3.11s/it]
29%|██▉ | 1457/5000 [46:46<3:03:33, 3.11s/it]
29%|██▉ | 1458/5000 [46:49<2:54:47, 2.96s/it]
29%|██▉ | 1458/5000 [46:49<2:54:47, 2.96s/it]
29%|██▉ | 1459/5000 [46:51<2:45:16, 2.80s/it]
29%|██▉ | 1459/5000 [46:51<2:45:16, 2.80s/it]
29%|██▉ | 1460/5000 [46:54<2:37:22, 2.67s/it]
29%|██▉ | 1460/5000 [46:54<2:37:22, 2.67s/it]
29%|██▉ | 1461/5000 [46:56<2:31:40, 2.57s/it]
29%|██▉ | 1461/5000 [46:56<2:31:40, 2.57s/it]
29%|██▉ | 1462/5000 [46:58<2:23:28, 2.43s/it]
29%|██▉ | 1462/5000 [46:58<2:23:28, 2.43s/it]
29%|██▉ | 1463/5000 [47:00<2:17:07, 2.33s/it]
29%|██▉ | 1463/5000 [47:00<2:17:07, 2.33s/it]
29%|██▉ | 1464/5000 [47:02<2:12:23, 2.25s/it]
29%|██▉ | 1464/5000 [47:02<2:12:23, 2.25s/it]
29%|██▉ | 1465/5000 [47:04<2:08:52, 2.19s/it]
29%|██▉ | 1465/5000 [47:04<2:08:52, 2.19s/it]
29%|██▉ | 1466/5000 [47:06<2:06:00, 2.14s/it]
29%|██▉ | 1466/5000 [47:06<2:06:00, 2.14s/it]
29%|██▉ | 1467/5000 [47:08<2:00:23, 2.04s/it]
29%|██▉ | 1467/5000 [47:08<2:00:23, 2.04s/it]
29%|██▉ | 1468/5000 [47:10<1:55:05, 1.96s/it]
29%|██▉ | 1468/5000 [47:10<1:55:05, 1.96s/it]
29%|██▉ | 1469/5000 [47:12<1:52:10, 1.91s/it]
29%|██▉ | 1469/5000 [47:12<1:52:10, 1.91s/it]
29%|██▉ | 1470/5000 [47:13<1:49:15, 1.86s/it]
29%|██▉ | 1470/5000 [47:13<1:49:15, 1.86s/it]
29%|██▉ | 1471/5000 [47:15<1:47:34, 1.83s/it]
29%|██▉ | 1471/5000 [47:15<1:47:34, 1.83s/it]
29%|██▉ | 1472/5000 [47:17<1:46:11, 1.81s/it]
29%|██▉ | 1472/5000 [47:17<1:46:11, 1.81s/it]
29%|██▉ | 1473/5000 [47:19<1:44:15, 1.77s/it]
29%|██▉ | 1473/5000 [47:19<1:44:15, 1.77s/it]
29%|██▉ | 1474/5000 [47:20<1:39:57, 1.70s/it]
29%|██▉ | 1474/5000 [47:20<1:39:57, 1.70s/it]
30%|██▉ | 1475/5000 [47:22<1:36:10, 1.64s/it]
30%|██▉ | 1475/5000 [47:22<1:36:10, 1.64s/it]
30%|██▉ | 1476/5000 [47:23<1:33:47, 1.60s/it]
30%|██▉ | 1476/5000 [47:23<1:33:47, 1.60s/it]
30%|██▉ | 1477/5000 [47:25<1:31:52, 1.56s/it]
30%|██▉ | 1477/5000 [47:25<1:31:52, 1.56s/it]
30%|██▉ | 1478/5000 [47:26<1:30:28, 1.54s/it]
30%|██▉ | 1478/5000 [47:26<1:30:28, 1.54s/it]
30%|██▉ | 1479/5000 [47:28<1:29:27, 1.52s/it]
30%|██▉ | 1479/5000 [47:28<1:29:27, 1.52s/it]
30%|██▉ | 1480/5000 [47:29<1:28:45, 1.51s/it]
30%|██▉ | 1480/5000 [47:29<1:28:45, 1.51s/it]
30%|██▉ | 1481/5000 [47:30<1:26:39, 1.48s/it]
30%|██▉ | 1481/5000 [47:30<1:26:39, 1.48s/it]
30%|██▉ | 1482/5000 [47:32<1:22:01, 1.40s/it]
30%|██▉ | 1482/5000 [47:32<1:22:01, 1.40s/it]
30%|██▉ | 1483/5000 [47:33<1:18:56, 1.35s/it]
30%|██▉ | 1483/5000 [47:33<1:18:56, 1.35s/it]
30%|██▉ | 1484/5000 [47:34<1:16:39, 1.31s/it]
30%|██▉ | 1484/5000 [47:34<1:16:39, 1.31s/it]
30%|██▉ | 1485/5000 [47:35<1:15:07, 1.28s/it]
30%|██▉ | 1485/5000 [47:35<1:15:07, 1.28s/it]
30%|██▉ | 1486/5000 [47:37<1:14:01, 1.26s/it]
30%|██▉ | 1486/5000 [47:37<1:14:01, 1.26s/it]
30%|██▉ | 1487/5000 [47:38<1:13:07, 1.25s/it]
30%|██▉ | 1487/5000 [47:38<1:13:07, 1.25s/it]
30%|██▉ | 1488/5000 [47:39<1:12:31, 1.24s/it]
30%|██▉ | 1488/5000 [47:39<1:12:31, 1.24s/it]
30%|██▉ | 1489/5000 [47:40<1:12:11, 1.23s/it]
30%|██▉ | 1489/5000 [47:40<1:12:11, 1.23s/it]
30%|██▉ | 1490/5000 [47:41<1:11:20, 1.22s/it]
30%|██▉ | 1490/5000 [47:41<1:11:20, 1.22s/it]
30%|██▉ | 1491/5000 [47:42<1:06:24, 1.14s/it]
30%|██▉ | 1491/5000 [47:42<1:06:24, 1.14s/it]
30%|██▉ | 1492/5000 [47:43<1:02:47, 1.07s/it]
30%|██▉ | 1492/5000 [47:43<1:02:47, 1.07s/it]
30%|██▉ | 1493/5000 [47:44<1:00:12, 1.03s/it]
30%|██▉ | 1493/5000 [47:44<1:00:12, 1.03s/it]
30%|██▉ | 1494/5000 [47:45<58:29, 1.00s/it]
30%|██▉ | 1494/5000 [47:45<58:29, 1.00s/it]
30%|██▉ | 1495/5000 [47:46<57:07, 1.02it/s]
30%|██▉ | 1495/5000 [47:46<57:07, 1.02it/s]
30%|██▉ | 1496/5000 [47:47<56:19, 1.04it/s]
30%|██▉ | 1496/5000 [47:47<56:19, 1.04it/s]
30%|██▉ | 1497/5000 [47:48<53:04, 1.10it/s]
30%|██▉ | 1497/5000 [47:48<53:04, 1.10it/s]
30%|██▉ | 1498/5000 [47:48<48:54, 1.19it/s]
30%|██▉ | 1498/5000 [47:48<48:54, 1.19it/s]
30%|██▉ | 1499/5000 [47:49<45:54, 1.27it/s]
30%|██▉ | 1499/5000 [47:49<45:54, 1.27it/s]
30%|███ | 1500/5000 [47:52<1:15:29, 1.29s/it]
30%|███ | 1500/5000 [47:52<1:15:29, 1.29s/it]
30%|███ | 1501/5000 [47:59<2:57:50, 3.05s/it]
30%|███ | 1501/5000 [47:59<2:57:50, 3.05s/it]
30%|███ | 1502/5000 [48:03<3:16:38, 3.37s/it]
30%|███ | 1502/5000 [48:03<3:16:38, 3.37s/it]
30%|███ | 1503/5000 [48:06<3:21:18, 3.45s/it]
30%|███ | 1503/5000 [48:07<3:21:18, 3.45s/it]
30%|███ | 1504/5000 [48:10<3:19:41, 3.43s/it]
30%|███ | 1504/5000 [48:10<3:19:41, 3.43s/it]
30%|███ | 1505/5000 [48:13<3:13:32, 3.32s/it]
30%|███ | 1505/5000 [48:13<3:13:32, 3.32s/it]
30%|███ | 1506/5000 [48:16<3:04:39, 3.17s/it]
30%|███ | 1506/5000 [48:16<3:04:39, 3.17s/it]
30%|███ | 1507/5000 [48:18<2:55:39, 3.02s/it]
30%|███ | 1507/5000 [48:18<2:55:39, 3.02s/it]
30%|███ | 1508/5000 [48:21<2:48:02, 2.89s/it]
30%|███ | 1508/5000 [48:21<2:48:02, 2.89s/it]
30%|███ | 1509/5000 [48:23<2:40:11, 2.75s/it]
30%|███ | 1509/5000 [48:23<2:40:11, 2.75s/it]
30%|███ | 1510/5000 [48:26<2:33:15, 2.63s/it]
30%|███ | 1510/5000 [48:26<2:33:15, 2.63s/it]
30%|███ | 1511/5000 [48:28<2:28:33, 2.55s/it]
30%|███ | 1511/5000 [48:28<2:28:33, 2.55s/it]
30%|███ | 1512/5000 [48:30<2:22:33, 2.45s/it]
30%|███ | 1512/5000 [48:30<2:22:33, 2.45s/it]
30%|███ | 1513/5000 [48:32<2:15:38, 2.33s/it]
30%|███ | 1513/5000 [48:32<2:15:38, 2.33s/it]
30%|███ | 1514/5000 [48:34<2:10:43, 2.25s/it]
30%|███ | 1514/5000 [48:34<2:10:43, 2.25s/it]
30%|███ | 1515/5000 [48:37<2:07:22, 2.19s/it]
30%|███ | 1515/5000 [48:37<2:07:22, 2.19s/it]
30%|███ | 1516/5000 [48:39<2:05:01, 2.15s/it]
30%|███ | 1516/5000 [48:39<2:05:01, 2.15s/it]
30%|███ | 1517/5000 [48:41<2:01:30, 2.09s/it]
30%|███ | 1517/5000 [48:41<2:01:30, 2.09s/it]
30%|███ | 1518/5000 [48:42<1:56:30, 2.01s/it]
30%|███ | 1518/5000 [48:42<1:56:30, 2.01s/it]
30%|███ | 1519/5000 [48:44<1:52:13, 1.93s/it]
30%|███ | 1519/5000 [48:44<1:52:13, 1.93s/it]
30%|███ | 1520/5000 [48:46<1:49:05, 1.88s/it]
30%|███ | 1520/5000 [48:46<1:49:05, 1.88s/it]
30%|███ | 1521/5000 [48:48<1:46:45, 1.84s/it]
30%|███ | 1521/5000 [48:48<1:46:45, 1.84s/it]
30%|███ | 1522/5000 [48:49<1:45:31, 1.82s/it]
30%|███ | 1522/5000 [48:49<1:45:31, 1.82s/it]
30%|███ | 1523/5000 [48:51<1:44:12, 1.80s/it]
30%|███ | 1523/5000 [48:51<1:44:12, 1.80s/it]
30%|███ | 1524/5000 [48:53<1:41:32, 1.75s/it]
30%|███ | 1524/5000 [48:53<1:41:32, 1.75s/it]
30%|███ | 1525/5000 [48:54<1:36:57, 1.67s/it]
30%|███ | 1525/5000 [48:54<1:36:57, 1.67s/it]
31%|███ | 1526/5000 [48:56<1:33:37, 1.62s/it]
31%|███ | 1526/5000 [48:56<1:33:37, 1.62s/it]
31%|███ | 1527/5000 [48:57<1:31:19, 1.58s/it]
31%|███ | 1527/5000 [48:57<1:31:19, 1.58s/it]
31%|███ | 1528/5000 [48:59<1:29:41, 1.55s/it]
31%|███ | 1528/5000 [48:59<1:29:41, 1.55s/it]
31%|███ | 1529/5000 [49:00<1:28:34, 1.53s/it]
31%|███ | 1529/5000 [49:00<1:28:34, 1.53s/it]
31%|███ | 1530/5000 [49:02<1:27:45, 1.52s/it]
31%|███ | 1530/5000 [49:02<1:27:45, 1.52s/it]
31%|███ | 1531/5000 [49:03<1:27:10, 1.51s/it]
31%|███ | 1531/5000 [49:03<1:27:10, 1.51s/it]
31%|███ | 1532/5000 [49:05<1:24:27, 1.46s/it]
31%|███ | 1532/5000 [49:05<1:24:27, 1.46s/it]
31%|███ | 1533/5000 [49:06<1:20:25, 1.39s/it]
31%|███ | 1533/5000 [49:06<1:20:25, 1.39s/it]
31%|███ | 1534/5000 [49:07<1:17:22, 1.34s/it]
31%|███ | 1534/5000 [49:07<1:17:22, 1.34s/it]
31%|███ | 1535/5000 [49:08<1:15:33, 1.31s/it]
31%|███ | 1535/5000 [49:08<1:15:33, 1.31s/it]
31%|███ | 1536/5000 [49:09<1:14:10, 1.28s/it]
31%|███ | 1536/5000 [49:09<1:14:10, 1.28s/it]
31%|███ | 1537/5000 [49:11<1:13:05, 1.27s/it]
31%|███ | 1537/5000 [49:11<1:13:05, 1.27s/it]
31%|███ | 1538/5000 [49:12<1:13:15, 1.27s/it]
31%|███ | 1538/5000 [49:12<1:13:15, 1.27s/it]
31%|███ | 1539/5000 [49:13<1:12:22, 1.25s/it]
31%|███ | 1539/5000 [49:13<1:12:22, 1.25s/it]
31%|███ | 1540/5000 [49:14<1:11:44, 1.24s/it]
31%|███ | 1540/5000 [49:14<1:11:44, 1.24s/it]
31%|███ | 1541/5000 [49:15<1:07:29, 1.17s/it]
31%|███ | 1541/5000 [49:15<1:07:29, 1.17s/it]
31%|███ | 1542/5000 [49:16<1:03:15, 1.10s/it]
31%|███ | 1542/5000 [49:16<1:03:15, 1.10s/it]
31%|███ | 1543/5000 [49:17<1:00:23, 1.05s/it]
31%|███ | 1543/5000 [49:17<1:00:23, 1.05s/it]
31%|███ | 1544/5000 [49:18<58:19, 1.01s/it]
31%|███ | 1544/5000 [49:18<58:19, 1.01s/it]
31%|███ | 1545/5000 [49:19<57:07, 1.01it/s]
31%|███ | 1545/5000 [49:19<57:07, 1.01it/s]
31%|███ | 1546/5000 [49:20<54:44, 1.05it/s]
31%|███ | 1546/5000 [49:20<54:44, 1.05it/s]
31%|███ | 1547/5000 [49:21<50:40, 1.14it/s]
31%|███ | 1547/5000 [49:21<50:40, 1.14it/s]
31%|███ | 1548/5000 [49:21<47:05, 1.22it/s]
31%|███ | 1548/5000 [49:21<47:05, 1.22it/s]
31%|███ | 1549/5000 [49:22<44:32, 1.29it/s]
31%|███ | 1549/5000 [49:22<44:32, 1.29it/s]
31%|███ | 1550/5000 [49:25<1:19:02, 1.37s/it]
31%|███ | 1550/5000 [49:25<1:19:02, 1.37s/it]
31%|███ | 1551/5000 [49:35<3:52:28, 4.04s/it]
31%|███ | 1551/5000 [49:35<3:52:28, 4.04s/it]
31%|███ | 1552/5000 [49:40<3:59:13, 4.16s/it]
31%|███ | 1552/5000 [49:40<3:59:13, 4.16s/it]
31%|███ | 1553/5000 [49:43<3:53:50, 4.07s/it]
31%|███ | 1553/5000 [49:43<3:53:50, 4.07s/it]
31%|███ | 1554/5000 [49:47<3:43:00, 3.88s/it]
31%|███ | 1554/5000 [49:47<3:43:00, 3.88s/it]
31%|███ | 1555/5000 [49:50<3:30:00, 3.66s/it]
31%|███ | 1555/5000 [49:50<3:30:00, 3.66s/it]
31%|███ | 1556/5000 [49:53<3:18:05, 3.45s/it]
31%|███ | 1556/5000 [49:53<3:18:05, 3.45s/it]
31%|███ | 1557/5000 [49:56<3:06:53, 3.26s/it]
31%|███ | 1557/5000 [49:56<3:06:53, 3.26s/it]
31%|███ | 1558/5000 [49:58<2:56:43, 3.08s/it]
31%|███ | 1558/5000 [49:58<2:56:43, 3.08s/it]
31%|███ | 1559/5000 [50:01<2:48:49, 2.94s/it]
31%|███ | 1559/5000 [50:01<2:48:49, 2.94s/it]
31%|███ | 1560/5000 [50:03<2:39:40, 2.79s/it]
31%|███ | 1560/5000 [50:03<2:39:40, 2.79s/it]
31%|███ | 1561/5000 [50:06<2:32:11, 2.66s/it]
31%|███ | 1561/5000 [50:06<2:32:11, 2.66s/it]
31%|███ | 1562/5000 [50:08<2:26:56, 2.56s/it]
31%|███ | 1562/5000 [50:08<2:26:56, 2.56s/it]
31%|███▏ | 1563/5000 [50:10<2:20:49, 2.46s/it]
31%|███▏ | 1563/5000 [50:10<2:20:49, 2.46s/it]
31%|███▏ | 1564/5000 [50:12<2:14:10, 2.34s/it]
31%|███▏ | 1564/5000 [50:12<2:14:10, 2.34s/it]
31%|███▏ | 1565/5000 [50:15<2:09:24, 2.26s/it]
31%|███▏ | 1565/5000 [50:15<2:09:24, 2.26s/it]
31%|███▏ | 1566/5000 [50:17<2:06:07, 2.20s/it]
31%|███▏ | 1566/5000 [50:17<2:06:07, 2.20s/it]
31%|███▏ | 1567/5000 [50:19<2:02:09, 2.13s/it]
31%|███▏ | 1567/5000 [50:19<2:02:09, 2.13s/it]
31%|███▏ | 1568/5000 [50:20<1:55:30, 2.02s/it]
31%|███▏ | 1568/5000 [50:20<1:55:30, 2.02s/it]
31%|███▏ | 1569/5000 [50:22<1:50:48, 1.94s/it]
31%|███▏ | 1569/5000 [50:22<1:50:48, 1.94s/it]
31%|███▏ | 1570/5000 [50:24<1:47:30, 1.88s/it]
31%|███▏ | 1570/5000 [50:24<1:47:30, 1.88s/it]
31%|███▏ | 1571/5000 [50:26<1:45:03, 1.84s/it]
31%|███▏ | 1571/5000 [50:26<1:45:03, 1.84s/it]
31%|███▏ | 1572/5000 [50:27<1:43:23, 1.81s/it]
31%|███▏ | 1572/5000 [50:27<1:43:23, 1.81s/it]
31%|███▏ | 1573/5000 [50:29<1:42:09, 1.79s/it]
31%|███▏ | 1573/5000 [50:29<1:42:09, 1.79s/it]
31%|███▏ | 1574/5000 [50:31<1:40:46, 1.76s/it]
31%|███▏ | 1574/5000 [50:31<1:40:46, 1.76s/it]
32%|███▏ | 1575/5000 [50:32<1:36:59, 1.70s/it]
32%|███▏ | 1575/5000 [50:32<1:36:59, 1.70s/it]
32%|███▏ | 1576/5000 [50:34<1:33:16, 1.63s/it]
32%|███▏ | 1576/5000 [50:34<1:33:16, 1.63s/it]
32%|███▏ | 1577/5000 [50:35<1:30:35, 1.59s/it]
32%|███▏ | 1577/5000 [50:35<1:30:35, 1.59s/it]
32%|███▏ | 1578/5000 [50:37<1:28:47, 1.56s/it]
32%|███▏ | 1578/5000 [50:37<1:28:47, 1.56s/it]
32%|███▏ | 1579/5000 [50:38<1:27:29, 1.53s/it]
32%|███▏ | 1579/5000 [50:38<1:27:29, 1.53s/it]
32%|███▏ | 1580/5000 [50:40<1:26:31, 1.52s/it]
32%|███▏ | 1580/5000 [50:40<1:26:31, 1.52s/it]
32%|███▏ | 1581/5000 [50:41<1:25:54, 1.51s/it]
32%|███▏ | 1581/5000 [50:41<1:25:54, 1.51s/it]
32%|███▏ | 1582/5000 [50:43<1:25:44, 1.51s/it]
32%|███▏ | 1582/5000 [50:43<1:25:44, 1.51s/it]
32%|███▏ | 1583/5000 [50:44<1:21:43, 1.43s/it]
32%|███▏ | 1583/5000 [50:44<1:21:43, 1.43s/it]
32%|███▏ | 1584/5000 [50:45<1:17:57, 1.37s/it]
32%|███▏ | 1584/5000 [50:45<1:17:57, 1.37s/it]
32%|███▏ | 1585/5000 [50:46<1:15:24, 1.32s/it]
32%|███▏ | 1585/5000 [50:46<1:15:24, 1.32s/it]
32%|███▏ | 1586/5000 [50:48<1:13:32, 1.29s/it]
32%|███▏ | 1586/5000 [50:48<1:13:32, 1.29s/it]
32%|███▏ | 1587/5000 [50:49<1:12:12, 1.27s/it]
32%|███▏ | 1587/5000 [50:49<1:12:12, 1.27s/it]
32%|███▏ | 1588/5000 [50:50<1:11:31, 1.26s/it]
32%|███▏ | 1588/5000 [50:50<1:11:31, 1.26s/it]
32%|███▏ | 1589/5000 [50:51<1:10:44, 1.24s/it]
32%|███▏ | 1589/5000 [50:51<1:10:44, 1.24s/it]
32%|███▏ | 1590/5000 [50:52<1:08:34, 1.21s/it]
32%|███▏ | 1590/5000 [50:52<1:08:34, 1.21s/it]
32%|███▏ | 1591/5000 [50:53<1:03:49, 1.12s/it]
32%|███▏ | 1591/5000 [50:53<1:03:49, 1.12s/it]
32%|███▏ | 1592/5000 [50:54<1:00:37, 1.07s/it]
32%|███▏ | 1592/5000 [50:54<1:00:37, 1.07s/it]
32%|███▏ | 1593/5000 [50:55<58:19, 1.03s/it]
32%|███▏ | 1593/5000 [50:55<58:19, 1.03s/it]
32%|███▏ | 1594/5000 [50:56<56:47, 1.00s/it]
32%|███▏ | 1594/5000 [50:56<56:47, 1.00s/it]
32%|███▏ | 1595/5000 [50:57<55:40, 1.02it/s]
32%|███▏ | 1595/5000 [50:57<55:40, 1.02it/s]
32%|███▏ | 1596/5000 [50:58<54:49, 1.03it/s]
32%|███▏ | 1596/5000 [50:58<54:49, 1.03it/s]
32%|███▏ | 1597/5000 [50:59<52:00, 1.09it/s]
32%|███▏ | 1597/5000 [50:59<52:00, 1.09it/s]
32%|███▏ | 1598/5000 [50:59<47:47, 1.19it/s]
32%|███▏ | 1598/5000 [50:59<47:47, 1.19it/s]
32%|███▏ | 1599/5000 [51:00<44:56, 1.26it/s]
32%|███▏ | 1599/5000 [51:00<44:56, 1.26it/s]
32%|███▏ | 1600/5000 [51:03<1:18:11, 1.38s/it]
32%|███▏ | 1600/5000 [51:03<1:18:11, 1.38s/it]
32%|███▏ | 1601/5000 [51:10<2:59:42, 3.17s/it]
32%|███▏ | 1601/5000 [51:10<2:59:42, 3.17s/it]
32%|███▏ | 1602/5000 [51:15<3:19:25, 3.52s/it]
32%|███▏ | 1602/5000 [51:15<3:19:25, 3.52s/it]
32%|███▏ | 1603/5000 [51:18<3:22:05, 3.57s/it]
32%|███▏ | 1603/5000 [51:18<3:22:05, 3.57s/it]
32%|███▏ | 1604/5000 [51:22<3:18:03, 3.50s/it]
32%|███▏ | 1604/5000 [51:22<3:18:03, 3.50s/it]
32%|███▏ | 1605/5000 [51:25<3:11:28, 3.38s/it]
32%|███▏ | 1605/5000 [51:25<3:11:28, 3.38s/it]
32%|███▏ | 1606/5000 [51:28<3:03:44, 3.25s/it]
32%|███▏ | 1606/5000 [51:28<3:03:44, 3.25s/it]
32%|███▏ | 1607/5000 [51:30<2:55:56, 3.11s/it]
32%|███▏ | 1607/5000 [51:30<2:55:56, 3.11s/it]
32%|███▏ | 1608/5000 [51:33<2:48:09, 2.97s/it]
32%|███▏ | 1608/5000 [51:33<2:48:09, 2.97s/it]
32%|███▏ | 1609/5000 [51:35<2:38:43, 2.81s/it]
32%|███▏ | 1609/5000 [51:36<2:38:43, 2.81s/it]
32%|███▏ | 1610/5000 [51:38<2:31:11, 2.68s/it]
32%|███▏ | 1610/5000 [51:38<2:31:11, 2.68s/it]
32%|███▏ | 1611/5000 [51:40<2:25:39, 2.58s/it]
32%|███▏ | 1611/5000 [51:40<2:25:39, 2.58s/it]
32%|███▏ | 1612/5000 [51:43<2:22:43, 2.53s/it]
32%|███▏ | 1612/5000 [51:43<2:22:43, 2.53s/it]
32%|███▏ | 1613/5000 [51:45<2:16:56, 2.43s/it]
32%|███▏ | 1613/5000 [51:45<2:16:56, 2.43s/it]
32%|███▏ | 1614/5000 [51:47<2:10:40, 2.32s/it]
32%|███▏ | 1614/5000 [51:47<2:10:40, 2.32s/it]
32%|███▏ | 1615/5000 [51:49<2:06:04, 2.23s/it]
32%|███▏ | 1615/5000 [51:49<2:06:04, 2.23s/it]
32%|███▏ | 1616/5000 [51:51<2:02:52, 2.18s/it]
32%|███▏ | 1616/5000 [51:51<2:02:52, 2.18s/it]
32%|███▏ | 1617/5000 [51:53<2:00:35, 2.14s/it]
32%|███▏ | 1617/5000 [51:53<2:00:35, 2.14s/it]
32%|███▏ | 1618/5000 [51:55<1:57:45, 2.09s/it]
32%|███▏ | 1618/5000 [51:55<1:57:45, 2.09s/it]
32%|███▏ | 1619/5000 [51:57<1:51:47, 1.98s/it]
32%|███▏ | 1619/5000 [51:57<1:51:47, 1.98s/it]
32%|███▏ | 1620/5000 [51:58<1:47:42, 1.91s/it]
32%|███▏ | 1620/5000 [51:58<1:47:42, 1.91s/it]
32%|███▏ | 1621/5000 [52:00<1:45:11, 1.87s/it]
32%|███▏ | 1621/5000 [52:00<1:45:11, 1.87s/it]
32%|███▏ | 1622/5000 [52:02<1:43:15, 1.83s/it]
32%|███▏ | 1622/5000 [52:02<1:43:15, 1.83s/it]
32%|███▏ | 1623/5000 [52:04<1:41:57, 1.81s/it]
32%|███▏ | 1623/5000 [52:04<1:41:57, 1.81s/it]
32%|███▏ | 1624/5000 [52:05<1:40:51, 1.79s/it]
32%|███▏ | 1624/5000 [52:06<1:40:51, 1.79s/it]
32%|███▎ | 1625/5000 [52:07<1:38:00, 1.74s/it]
32%|███▎ | 1625/5000 [52:07<1:38:00, 1.74s/it]
33%|███▎ | 1626/5000 [52:09<1:33:30, 1.66s/it]
33%|███▎ | 1626/5000 [52:09<1:33:30, 1.66s/it]
33%|███▎ | 1627/5000 [52:10<1:30:31, 1.61s/it]
33%|███▎ | 1627/5000 [52:10<1:30:31, 1.61s/it]
33%|███▎ | 1628/5000 [52:12<1:28:19, 1.57s/it]
33%|███▎ | 1628/5000 [52:12<1:28:19, 1.57s/it]
33%|███▎ | 1629/5000 [52:13<1:27:40, 1.56s/it]
33%|███▎ | 1629/5000 [52:13<1:27:40, 1.56s/it]
33%|███▎ | 1630/5000 [52:15<1:26:23, 1.54s/it]
33%|███▎ | 1630/5000 [52:15<1:26:23, 1.54s/it]
33%|███▎ | 1631/5000 [52:16<1:25:25, 1.52s/it]
33%|███▎ | 1631/5000 [52:16<1:25:25, 1.52s/it]
33%|███▎ | 1632/5000 [52:18<1:24:07, 1.50s/it]
33%|███▎ | 1632/5000 [52:18<1:24:07, 1.50s/it]
33%|███▎ | 1633/5000 [52:19<1:20:32, 1.44s/it]
33%|███▎ | 1633/5000 [52:19<1:20:32, 1.44s/it]
33%|███▎ | 1634/5000 [52:20<1:16:53, 1.37s/it]
33%|███▎ | 1634/5000 [52:20<1:16:53, 1.37s/it]
33%|███▎ | 1635/5000 [52:21<1:14:19, 1.33s/it]
33%|███▎ | 1635/5000 [52:21<1:14:19, 1.33s/it]
33%|███▎ | 1636/5000 [52:22<1:12:33, 1.29s/it]
33%|███▎ | 1636/5000 [52:22<1:12:33, 1.29s/it]
33%|███▎ | 1637/5000 [52:24<1:16:55, 1.37s/it]
33%|███▎ | 1637/5000 [52:24<1:16:55, 1.37s/it]
33%|███▎ | 1638/5000 [52:25<1:14:20, 1.33s/it]
33%|███▎ | 1638/5000 [52:25<1:14:20, 1.33s/it]
33%|███▎ | 1639/5000 [52:26<1:12:47, 1.30s/it]
33%|███▎ | 1639/5000 [52:26<1:12:47, 1.30s/it]
33%|███▎ | 1640/5000 [52:28<1:09:50, 1.25s/it]
33%|███▎ | 1640/5000 [52:28<1:09:50, 1.25s/it]
33%|███▎ | 1641/5000 [52:29<1:04:29, 1.15s/it]
33%|███▎ | 1641/5000 [52:29<1:04:29, 1.15s/it]
33%|███▎ | 1642/5000 [52:29<1:00:40, 1.08s/it]
33%|███▎ | 1642/5000 [52:29<1:00:40, 1.08s/it]
33%|███▎ | 1643/5000 [52:30<57:57, 1.04s/it]
33%|███▎ | 1643/5000 [52:30<57:57, 1.04s/it]
33%|███▎ | 1644/5000 [52:31<56:06, 1.00s/it]
33%|███▎ | 1644/5000 [52:31<56:06, 1.00s/it]
33%|███▎ | 1645/5000 [52:32<55:03, 1.02it/s]
33%|███▎ | 1645/5000 [52:32<55:03, 1.02it/s]
33%|███▎ | 1646/5000 [52:33<51:28, 1.09it/s]
33%|███▎ | 1646/5000 [52:33<51:28, 1.09it/s]
33%|███▎ | 1647/5000 [52:34<47:22, 1.18it/s]
33%|███▎ | 1647/5000 [52:34<47:22, 1.18it/s]
33%|███▎ | 1648/5000 [52:34<44:35, 1.25it/s]
33%|███▎ | 1648/5000 [52:34<44:35, 1.25it/s]
33%|███▎ | 1649/5000 [52:35<42:35, 1.31it/s]
33%|███▎ | 1649/5000 [52:35<42:35, 1.31it/s]
33%|███▎ | 1650/5000 [52:38<1:11:26, 1.28s/it]
33%|███▎ | 1650/5000 [52:38<1:11:26, 1.28s/it]
33%|███▎ | 1651/5000 [52:44<2:38:35, 2.84s/it]
33%|███▎ | 1651/5000 [52:44<2:38:35, 2.84s/it]
33%|███▎ | 1652/5000 [52:48<2:58:06, 3.19s/it]
33%|███▎ | 1652/5000 [52:48<2:58:06, 3.19s/it]
33%|███▎ | 1653/5000 [52:52<3:03:48, 3.30s/it]
33%|███▎ | 1653/5000 [52:52<3:03:48, 3.30s/it]
33%|███▎ | 1654/5000 [52:55<3:05:06, 3.32s/it]
33%|███▎ | 1654/5000 [52:55<3:05:06, 3.32s/it]
33%|███▎ | 1655/5000 [52:58<3:00:11, 3.23s/it]
33%|███▎ | 1655/5000 [52:58<3:00:11, 3.23s/it]
33%|███▎ | 1656/5000 [53:01<2:54:36, 3.13s/it]
33%|███▎ | 1656/5000 [53:01<2:54:36, 3.13s/it]
33%|███▎ | 1657/5000 [53:04<2:47:51, 3.01s/it]
33%|███▎ | 1657/5000 [53:04<2:47:51, 3.01s/it]
33%|███▎ | 1658/5000 [53:06<2:41:53, 2.91s/it]
33%|███▎ | 1658/5000 [53:06<2:41:53, 2.91s/it]
33%|███▎ | 1659/5000 [53:09<2:33:57, 2.77s/it]
33%|███▎ | 1659/5000 [53:09<2:33:57, 2.77s/it]
33%|███▎ | 1660/5000 [53:11<2:27:15, 2.65s/it]
33%|███▎ | 1660/5000 [53:11<2:27:15, 2.65s/it]
33%|███▎ | 1661/5000 [53:13<2:22:25, 2.56s/it]
33%|███▎ | 1661/5000 [53:13<2:22:25, 2.56s/it]
33%|███▎ | 1662/5000 [53:16<2:16:54, 2.46s/it]
33%|███▎ | 1662/5000 [53:16<2:16:54, 2.46s/it]
33%|███▎ | 1663/5000 [53:18<2:09:58, 2.34s/it]
33%|███▎ | 1663/5000 [53:18<2:09:58, 2.34s/it]
33%|███▎ | 1664/5000 [53:20<2:05:27, 2.26s/it]
33%|███▎ | 1664/5000 [53:20<2:05:27, 2.26s/it]
33%|███▎ | 1665/5000 [53:22<2:02:13, 2.20s/it]
33%|███▎ | 1665/5000 [53:22<2:02:13, 2.20s/it]
33%|███▎ | 1666/5000 [53:24<2:00:07, 2.16s/it]
33%|███▎ | 1666/5000 [53:24<2:00:07, 2.16s/it]
33%|███▎ | 1667/5000 [53:26<1:56:56, 2.11s/it]
33%|███▎ | 1667/5000 [53:26<1:56:56, 2.11s/it]
33%|███▎ | 1668/5000 [53:28<1:51:01, 2.00s/it]
33%|███▎ | 1668/5000 [53:28<1:51:01, 2.00s/it]
33%|███▎ | 1669/5000 [53:29<1:46:51, 1.92s/it]
33%|���██▎ | 1669/5000 [53:29<1:46:51, 1.92s/it]
33%|███▎ | 1670/5000 [53:31<1:43:43, 1.87s/it]
33%|███▎ | 1670/5000 [53:31<1:43:43, 1.87s/it]
33%|███▎ | 1671/5000 [53:33<1:41:36, 1.83s/it]
33%|███▎ | 1671/5000 [53:33<1:41:36, 1.83s/it]
33%|███▎ | 1672/5000 [53:35<1:40:08, 1.81s/it]
33%|███▎ | 1672/5000 [53:35<1:40:08, 1.81s/it]
33%|███▎ | 1673/5000 [53:36<1:39:02, 1.79s/it]
33%|███▎ | 1673/5000 [53:36<1:39:02, 1.79s/it]
33%|███▎ | 1674/5000 [53:38<1:34:46, 1.71s/it]
33%|███▎ | 1674/5000 [53:38<1:34:46, 1.71s/it]
34%|███▎ | 1675/5000 [53:39<1:30:54, 1.64s/it]
34%|███▎ | 1675/5000 [53:39<1:30:54, 1.64s/it]
34%|███▎ | 1676/5000 [53:41<1:28:20, 1.59s/it]
34%|███▎ | 1676/5000 [53:41<1:28:20, 1.59s/it]
34%|███▎ | 1677/5000 [53:42<1:26:42, 1.57s/it]
34%|███▎ | 1677/5000 [53:42<1:26:42, 1.57s/it]
34%|███▎ | 1678/5000 [53:44<1:25:25, 1.54s/it]
34%|███▎ | 1678/5000 [53:44<1:25:25, 1.54s/it]
34%|███▎ | 1679/5000 [53:45<1:24:32, 1.53s/it]
34%|███▎ | 1679/5000 [53:45<1:24:32, 1.53s/it]
34%|███▎ | 1680/5000 [53:47<1:23:48, 1.51s/it]
34%|███▎ | 1680/5000 [53:47<1:23:48, 1.51s/it]
34%|███▎ | 1681/5000 [53:48<1:23:25, 1.51s/it]
34%|███▎ | 1681/5000 [53:48<1:23:25, 1.51s/it]
34%|███▎ | 1682/5000 [53:50<1:21:22, 1.47s/it]
34%|███▎ | 1682/5000 [53:50<1:21:22, 1.47s/it]
34%|███▎ | 1683/5000 [53:51<1:17:10, 1.40s/it]
34%|███▎ | 1683/5000 [53:51<1:17:10, 1.40s/it]
34%|███▎ | 1684/5000 [53:52<1:14:07, 1.34s/it]
34%|███▎ | 1684/5000 [53:52<1:14:07, 1.34s/it]
34%|███▎ | 1685/5000 [53:53<1:12:13, 1.31s/it]
34%|███▎ | 1685/5000 [53:53<1:12:13, 1.31s/it]
34%|███▎ | 1686/5000 [53:55<1:10:42, 1.28s/it]
34%|███▎ | 1686/5000 [53:55<1:10:42, 1.28s/it]
34%|███▎ | 1687/5000 [53:56<1:09:40, 1.26s/it]
34%|███▎ | 1687/5000 [53:56<1:09:40, 1.26s/it]
34%|███▍ | 1688/5000 [53:57<1:08:56, 1.25s/it]
34%|███▍ | 1688/5000 [53:57<1:08:56, 1.25s/it]
34%|███▍ | 1689/5000 [53:58<1:08:21, 1.24s/it]
34%|███▍ | 1689/5000 [53:58<1:08:21, 1.24s/it]
34%|███▍ | 1690/5000 [53:59<1:06:01, 1.20s/it]
34%|███▍ | 1690/5000 [53:59<1:06:01, 1.20s/it]
34%|███▍ | 1691/5000 [54:00<1:01:40, 1.12s/it]
34%|███▍ | 1691/5000 [54:00<1:01:40, 1.12s/it]
34%|███▍ | 1692/5000 [54:01<58:43, 1.07s/it]
34%|███▍ | 1692/5000 [54:01<58:43, 1.07s/it]
34%|███▍ | 1693/5000 [54:02<56:24, 1.02s/it]
34%|███▍ | 1693/5000 [54:02<56:24, 1.02s/it]
34%|███▍ | 1694/5000 [54:03<55:04, 1.00it/s]
34%|███▍ | 1694/5000 [54:03<55:04, 1.00it/s]
34%|███▍ | 1695/5000 [54:04<53:52, 1.02it/s]
34%|███▍ | 1695/5000 [54:04<53:52, 1.02it/s]
34%|███▍ | 1696/5000 [54:05<52:14, 1.05it/s]
34%|███▍ | 1696/5000 [54:05<52:14, 1.05it/s]
34%|███▍ | 1697/5000 [54:06<48:33, 1.13it/s]
34%|███▍ | 1697/5000 [54:06<48:33, 1.13it/s]
34%|███▍ | 1698/5000 [54:06<45:07, 1.22it/s]
34%|███▍ | 1698/5000 [54:06<45:07, 1.22it/s]
34%|███▍ | 1699/5000 [54:07<42:41, 1.29it/s]
34%|███▍ | 1699/5000 [54:07<42:41, 1.29it/s]
34%|███▍ | 1700/5000 [54:10<1:12:13, 1.31s/it]
34%|███▍ | 1700/5000 [54:10<1:12:13, 1.31s/it]
34%|███▍ | 1701/5000 [54:18<3:12:30, 3.50s/it]
34%|███▍ | 1701/5000 [54:18<3:12:30, 3.50s/it]
34%|███▍ | 1702/5000 [54:22<3:23:31, 3.70s/it]
34%|███▍ | 1702/5000 [54:22<3:23:31, 3.70s/it]
34%|███▍ | 1703/5000 [54:26<3:23:47, 3.71s/it]
34%|███▍ | 1703/5000 [54:26<3:23:47, 3.71s/it]
34%|███▍ | 1704/5000 [54:29<3:19:02, 3.62s/it]
34%|███▍ | 1704/5000 [54:29<3:19:02, 3.62s/it]
34%|███▍ | 1705/5000 [54:33<3:10:58, 3.48s/it]
34%|███▍ | 1705/5000 [54:33<3:10:58, 3.48s/it]
34%|███▍ | 1706/5000 [54:36<3:01:59, 3.31s/it]
34%|███▍ | 1706/5000 [54:36<3:01:59, 3.31s/it]
34%|███▍ | 1707/5000 [54:38<2:51:46, 3.13s/it]
34%|███▍ | 1707/5000 [54:38<2:51:46, 3.13s/it]
34%|███▍ | 1708/5000 [54:41<2:44:33, 3.00s/it]
34%|███▍ | 1708/5000 [54:41<2:44:33, 3.00s/it]
34%|███▍ | 1709/5000 [54:44<2:38:41, 2.89s/it]
34%|███▍ | 1709/5000 [54:44<2:38:41, 2.89s/it]
34%|███▍ | 1710/5000 [54:46<2:32:05, 2.77s/it]
34%|███▍ | 1710/5000 [54:46<2:32:05, 2.77s/it]
34%|███▍ | 1711/5000 [54:48<2:25:05, 2.65s/it]
34%|███▍ | 1711/5000 [54:48<2:25:05, 2.65s/it]
34%|███▍ | 1712/5000 [54:51<2:19:36, 2.55s/it]
34%|███▍ | 1712/5000 [54:51<2:19:36, 2.55s/it]
34%|███▍ | 1713/5000 [54:53<2:12:26, 2.42s/it]
34%|███▍ | 1713/5000 [54:53<2:12:26, 2.42s/it]
34%|███▍ | 1714/5000 [54:55<2:06:12, 2.30s/it]
34%|███▍ | 1714/5000 [54:55<2:06:12, 2.30s/it]
34%|███▍ | 1715/5000 [54:57<2:01:59, 2.23s/it]
34%|███▍ | 1715/5000 [54:57<2:01:59, 2.23s/it]
34%|███▍ | 1716/5000 [54:59<1:58:57, 2.17s/it]
34%|███▍ | 1716/5000 [54:59<1:58:57, 2.17s/it]
34%|███▍ | 1717/5000 [55:01<1:56:49, 2.14s/it]
34%|███▍ | 1717/5000 [55:01<1:56:49, 2.14s/it]
34%|███▍ | 1718/5000 [55:03<1:53:30, 2.08s/it]
34%|███▍ | 1718/5000 [55:03<1:53:30, 2.08s/it]
34%|███▍ | 1719/5000 [55:07<2:28:58, 2.72s/it]
34%|███▍ | 1719/5000 [55:07<2:28:58, 2.72s/it]
34%|███▍ | 1720/5000 [55:09<2:13:10, 2.44s/it]
34%|███▍ | 1720/5000 [55:09<2:13:10, 2.44s/it]
34%|███▍ | 1721/5000 [55:11<2:12:27, 2.42s/it]
34%|███▍ | 1721/5000 [55:11<2:12:27, 2.42s/it]
34%|███▍ | 1722/5000 [55:14<2:20:07, 2.56s/it]
34%|███▍ | 1722/5000 [55:14<2:20:07, 2.56s/it]
34%|███▍ | 1723/5000 [55:17<2:18:15, 2.53s/it]
34%|███▍ | 1723/5000 [55:17<2:18:15, 2.53s/it]
34%|███▍ | 1724/5000 [55:19<2:08:34, 2.35s/it]
34%|███▍ | 1724/5000 [55:19<2:08:34, 2.35s/it]
34%|███▍ | 1725/5000 [55:21<2:01:40, 2.23s/it]
34%|███▍ | 1725/5000 [55:21<2:01:40, 2.23s/it]
35%|███▍ | 1726/5000 [55:22<1:56:18, 2.13s/it]
35%|███▍ | 1726/5000 [55:23<1:56:18, 2.13s/it]
35%|███▍ | 1727/5000 [55:24<1:49:02, 2.00s/it]
35%|███▍ | 1727/5000 [55:24<1:49:02, 2.00s/it]
35%|███▍ | 1728/5000 [55:26<1:43:18, 1.89s/it]
35%|███▍ | 1728/5000 [55:26<1:43:18, 1.89s/it]
35%|███▍ | 1729/5000 [55:28<1:41:15, 1.86s/it]
35%|███▍ | 1729/5000 [55:28<1:41:15, 1.86s/it]
35%|███▍ | 1730/5000 [55:29<1:40:05, 1.84s/it]
35%|███▍ | 1730/5000 [55:29<1:40:05, 1.84s/it]
35%|███▍ | 1731/5000 [55:31<1:38:26, 1.81s/it]
35%|███▍ | 1731/5000 [55:31<1:38:26, 1.81s/it]
35%|███▍ | 1732/5000 [55:33<1:36:51, 1.78s/it]
35%|███▍ | 1732/5000 [55:33<1:36:51, 1.78s/it]
35%|███▍ | 1733/5000 [55:34<1:33:23, 1.72s/it]
35%|███▍ | 1733/5000 [55:34<1:33:23, 1.72s/it]
35%|███▍ | 1734/5000 [55:36<1:28:42, 1.63s/it]
35%|███▍ | 1734/5000 [55:36<1:28:42, 1.63s/it]
35%|███▍ | 1735/5000 [55:37<1:24:35, 1.55s/it]
35%|███▍ | 1735/5000 [55:37<1:24:35, 1.55s/it]
35%|███▍ | 1736/5000 [55:39<1:24:57, 1.56s/it]
35%|███▍ | 1736/5000 [55:39<1:24:57, 1.56s/it]
35%|███▍ | 1737/5000 [55:40<1:26:06, 1.58s/it]
35%|███▍ | 1737/5000 [55:40<1:26:06, 1.58s/it]
35%|███▍ | 1738/5000 [55:42<1:24:11, 1.55s/it]
35%|███▍ | 1738/5000 [55:42<1:24:11, 1.55s/it]
35%|███▍ | 1739/5000 [55:43<1:23:33, 1.54s/it]
35%|███▍ | 1739/5000 [55:43<1:23:33, 1.54s/it]
35%|███▍ | 1740/5000 [55:45<1:21:59, 1.51s/it]
35%|███▍ | 1740/5000 [55:45<1:21:59, 1.51s/it]
35%|███▍ | 1741/5000 [55:46<1:15:18, 1.39s/it]
35%|███▍ | 1741/5000 [55:46<1:15:18, 1.39s/it]
35%|███▍ | 1742/5000 [55:47<1:09:08, 1.27s/it]
35%|███▍ | 1742/5000 [55:47<1:09:08, 1.27s/it]
35%|███▍ | 1743/5000 [55:48<1:05:45, 1.21s/it]
35%|███▍ | 1743/5000 [55:48<1:05:45, 1.21s/it]
35%|███▍ | 1744/5000 [55:49<1:02:27, 1.15s/it]
35%|███▍ | 1744/5000 [55:49<1:02:27, 1.15s/it]
35%|███▍ | 1745/5000 [55:50<1:03:15, 1.17s/it]
35%|███▍ | 1745/5000 [55:50<1:03:15, 1.17s/it]
35%|███▍ | 1746/5000 [55:51<1:02:16, 1.15s/it]
35%|███▍ | 1746/5000 [55:51<1:02:16, 1.15s/it]
35%|███▍ | 1747/5000 [55:52<59:01, 1.09s/it]
35%|███▍ | 1747/5000 [55:52<59:01, 1.09s/it]
35%|███▍ | 1748/5000 [55:53<56:16, 1.04s/it]
35%|███▍ | 1748/5000 [55:53<56:16, 1.04s/it]
35%|███▍ | 1749/5000 [55:54<52:33, 1.03it/s]
35%|███▍ | 1749/5000 [55:54<52:33, 1.03it/s]
35%|███▌ | 1750/5000 [55:57<1:21:24, 1.50s/it]
35%|███▌ | 1750/5000 [55:57<1:21:24, 1.50s/it]
35%|███▌ | 1751/5000 [56:04<2:54:38, 3.23s/it]
35%|███▌ | 1751/5000 [56:04<2:54:38, 3.23s/it]
35%|███▌ | 1752/5000 [56:09<3:19:42, 3.69s/it]
35%|███▌ | 1752/5000 [56:09<3:19:42, 3.69s/it]
35%|███▌ | 1753/5000 [56:13<3:28:10, 3.85s/it]
35%|███▌ | 1753/5000 [56:13<3:28:10, 3.85s/it]
35%|███▌ | 1754/5000 [56:17<3:23:58, 3.77s/it]
35%|███▌ | 1754/5000 [56:17<3:23:58, 3.77s/it]
35%|███▌ | 1755/5000 [56:20<3:16:28, 3.63s/it]
35%|███▌ | 1755/5000 [56:20<3:16:28, 3.63s/it]
35%|███▌ | 1756/5000 [56:23<3:07:22, 3.47s/it]
35%|███▌ | 1756/5000 [56:23<3:07:22, 3.47s/it]
35%|███▌ | 1757/5000 [56:26<3:00:24, 3.34s/it]
35%|███▌ | 1757/5000 [56:26<3:00:24, 3.34s/it]
35%|███▌ | 1758/5000 [56:29<2:51:44, 3.18s/it]
35%|███▌ | 1758/5000 [56:29<2:51:44, 3.18s/it]
35%|███▌ | 1759/5000 [56:32<2:45:57, 3.07s/it]
35%|███▌ | 1759/5000 [56:32<2:45:57, 3.07s/it]
35%|███▌ | 1760/5000 [56:34<2:38:42, 2.94s/it]
35%|███▌ | 1760/5000 [56:34<2:38:42, 2.94s/it]
35%|███▌ | 1761/5000 [56:37<2:32:47, 2.83s/it]
35%|███▌ | 1761/5000 [56:37<2:32:47, 2.83s/it]
35%|███▌ | 1762/5000 [56:39<2:29:12, 2.76s/it]
35%|███▌ | 1762/5000 [56:39<2:29:12, 2.76s/it]
35%|███▌ | 1763/5000 [56:42<2:24:17, 2.67s/it]
35%|███▌ | 1763/5000 [56:42<2:24:17, 2.67s/it]
35%|███▌ | 1764/5000 [56:44<2:19:07, 2.58s/it]
35%|███▌ | 1764/5000 [56:44<2:19:07, 2.58s/it]
35%|███▌ | 1765/5000 [56:47<2:15:18, 2.51s/it]
35%|███▌ | 1765/5000 [56:47<2:15:18, 2.51s/it]
35%|███▌ | 1766/5000 [56:49<2:10:00, 2.41s/it]
35%|███▌ | 1766/5000 [56:49<2:10:00, 2.41s/it]
35%|███▌ | 1767/5000 [56:51<2:04:24, 2.31s/it]
35%|███▌ | 1767/5000 [56:51<2:04:24, 2.31s/it]
35%|███▌ | 1768/5000 [56:53<2:00:28, 2.24s/it]
35%|███▌ | 1768/5000 [56:53<2:00:28, 2.24s/it]
35%|███▌ | 1769/5000 [56:55<1:56:38, 2.17s/it]
35%|███▌ | 1769/5000 [56:55<1:56:38, 2.17s/it]
35%|███▌ | 1770/5000 [56:57<1:54:12, 2.12s/it]
35%|███▌ | 1770/5000 [56:57<1:54:12, 2.12s/it]
35%|███▌ | 1771/5000 [56:59<1:52:46, 2.10s/it]
35%|███▌ | 1771/5000 [56:59<1:52:46, 2.10s/it]
35%|███▌ | 1772/5000 [57:01<1:52:03, 2.08s/it]
35%|███▌ | 1772/5000 [57:01<1:52:03, 2.08s/it]
35%|███▌ | 1773/5000 [57:03<1:50:23, 2.05s/it]
35%|███▌ | 1773/5000 [57:03<1:50:23, 2.05s/it]
35%|███▌ | 1774/5000 [57:05<1:45:56, 1.97s/it]
35%|███▌ | 1774/5000 [57:05<1:45:56, 1.97s/it]
36%|███▌ | 1775/5000 [57:06<1:40:32, 1.87s/it]
36%|███▌ | 1775/5000 [57:06<1:40:32, 1.87s/it]
36%|███▌ | 1776/5000 [57:08<1:38:19, 1.83s/it]
36%|███▌ | 1776/5000 [57:08<1:38:19, 1.83s/it]
36%|███▌ | 1777/5000 [57:10<1:35:47, 1.78s/it]
36%|███▌ | 1777/5000 [57:10<1:35:47, 1.78s/it]
36%|███▌ | 1778/5000 [57:12<1:34:12, 1.75s/it]
36%|███▌ | 1778/5000 [57:12<1:34:12, 1.75s/it]
36%|███▌ | 1779/5000 [57:13<1:32:47, 1.73s/it]
36%|███▌ | 1779/5000 [57:13<1:32:47, 1.73s/it]
36%|███▌ | 1780/5000 [57:15<1:33:42, 1.75s/it]
36%|███▌ | 1780/5000 [57:15<1:33:42, 1.75s/it]
36%|███▌ | 1781/5000 [57:17<1:31:20, 1.70s/it]
36%|███▌ | 1781/5000 [57:17<1:31:20, 1.70s/it]
36%|███▌ | 1782/5000 [57:18<1:27:26, 1.63s/it]
36%|███▌ | 1782/5000 [57:18<1:27:26, 1.63s/it]
36%|███▌ | 1783/5000 [57:20<1:24:56, 1.58s/it]
36%|███▌ | 1783/5000 [57:20<1:24:56, 1.58s/it]
36%|███▌ | 1784/5000 [57:21<1:21:38, 1.52s/it]
36%|███▌ | 1784/5000 [57:21<1:21:38, 1.52s/it]
36%|███▌ | 1785/5000 [57:22<1:20:57, 1.51s/it]
36%|███▌ | 1785/5000 [57:22<1:20:57, 1.51s/it]
36%|███▌ | 1786/5000 [57:24<1:16:41, 1.43s/it]
36%|███▌ | 1786/5000 [57:24<1:16:41, 1.43s/it]
36%|███▌ | 1787/5000 [57:25<1:16:03, 1.42s/it]
36%|███▌ | 1787/5000 [57:25<1:16:03, 1.42s/it]
36%|███▌ | 1788/5000 [57:26<1:15:47, 1.42s/it]
36%|███▌ | 1788/5000 [57:26<1:15:47, 1.42s/it]
36%|███▌ | 1789/5000 [57:28<1:14:31, 1.39s/it]
36%|███▌ | 1789/5000 [57:28<1:14:31, 1.39s/it]
36%|███▌ | 1790/5000 [57:29<1:10:14, 1.31s/it]
36%|███▌ | 1790/5000 [57:29<1:10:14, 1.31s/it]
36%|███▌ | 1791/5000 [57:30<1:06:17, 1.24s/it]
36%|███▌ | 1791/5000 [57:30<1:06:17, 1.24s/it]
36%|███▌ | 1792/5000 [57:31<1:02:39, 1.17s/it]
36%|███▌ | 1792/5000 [57:31<1:02:39, 1.17s/it]
36%|███▌ | 1793/5000 [57:32<1:00:44, 1.14s/it]
36%|███▌ | 1793/5000 [57:32<1:00:44, 1.14s/it]
36%|███▌ | 1794/5000 [57:33<1:00:02, 1.12s/it]
36%|███▌ | 1794/5000 [57:33<1:00:02, 1.12s/it]
36%|███▌ | 1795/5000 [57:34<58:34, 1.10s/it]
36%|███▌ | 1795/5000 [57:34<58:34, 1.10s/it]
36%|███▌ | 1796/5000 [57:35<57:12, 1.07s/it]
36%|███▌ | 1796/5000 [57:35<57:12, 1.07s/it]
36%|███▌ | 1797/5000 [57:36<54:42, 1.02s/it]
36%|███▌ | 1797/5000 [57:36<54:42, 1.02s/it]
36%|███▌ | 1798/5000 [57:37<53:15, 1.00it/s]
36%|███▌ | 1798/5000 [57:37<53:15, 1.00it/s]
36%|███▌ | 1799/5000 [57:38<50:49, 1.05it/s]
36%|███▌ | 1799/5000 [57:38<50:49, 1.05it/s]
36%|███▌ | 1800/5000 [57:41<1:21:34, 1.53s/it]
36%|███▌ | 1800/5000 [57:41<1:21:34, 1.53s/it]
36%|███▌ | 1801/5000 [57:48<2:54:05, 3.27s/it]
36%|███▌ | 1801/5000 [57:48<2:54:05, 3.27s/it]
36%|███▌ | 1802/5000 [57:53<3:16:22, 3.68s/it]
36%|███▌ | 1802/5000 [57:53<3:16:22, 3.68s/it]
36%|███▌ | 1803/5000 [57:57<3:18:40, 3.73s/it]
36%|███▌ | 1803/5000 [57:57<3:18:40, 3.73s/it]
36%|███▌ | 1804/5000 [58:00<3:15:06, 3.66s/it]
36%|███▌ | 1804/5000 [58:00<3:15:06, 3.66s/it]
36%|███▌ | 1805/5000 [58:03<3:08:25, 3.54s/it]
36%|███▌ | 1805/5000 [58:03<3:08:25, 3.54s/it]
36%|███▌ | 1806/5000 [58:06<3:00:08, 3.38s/it]
36%|███▌ | 1806/5000 [58:06<3:00:08, 3.38s/it]
36%|███▌ | 1807/5000 [58:09<2:52:37, 3.24s/it]
36%|███▌ | 1807/5000 [58:09<2:52:37, 3.24s/it]
36%|███▌ | 1808/5000 [58:12<2:45:06, 3.10s/it]
36%|███▌ | 1808/5000 [58:12<2:45:06, 3.10s/it]
36%|███▌ | 1809/5000 [58:15<2:36:30, 2.94s/it]
36%|███▌ | 1809/5000 [58:15<2:36:30, 2.94s/it]
36%|███▌ | 1810/5000 [58:17<2:32:20, 2.87s/it]
36%|███▌ | 1810/5000 [58:17<2:32:20, 2.87s/it]
36%|███▌ | 1811/5000 [58:20<2:25:40, 2.74s/it]
36%|███▌ | 1811/5000 [58:20<2:25:40, 2.74s/it]
36%|███▌ | 1812/5000 [58:22<2:20:54, 2.65s/it]
36%|███▌ | 1812/5000 [58:22<2:20:54, 2.65s/it]
36%|███▋ | 1813/5000 [58:24<2:14:50, 2.54s/it]
36%|███▋ | 1813/5000 [58:24<2:14:50, 2.54s/it]
36%|███▋ | 1814/5000 [58:27<2:10:39, 2.46s/it]
36%|███▋ | 1814/5000 [58:27<2:10:39, 2.46s/it]
36%|███▋ | 1815/5000 [58:29<2:07:12, 2.40s/it]
36%|███▋ | 1815/5000 [58:29<2:07:12, 2.40s/it]
36%|███▋ | 1816/5000 [58:31<2:03:43, 2.33s/it]
36%|███▋ | 1816/5000 [58:31<2:03:43, 2.33s/it]
36%|███▋ | 1817/5000 [58:33<2:01:42, 2.29s/it]
36%|███▋ | 1817/5000 [58:33<2:01:42, 2.29s/it]
36%|███▋ | 1818/5000 [58:35<1:56:11, 2.19s/it]
36%|███▋ | 1818/5000 [58:35<1:56:11, 2.19s/it]
36%|███▋ | 1819/5000 [58:38<1:56:11, 2.19s/it]
36%|███▋ | 1819/5000 [58:38<1:56:11, 2.19s/it]
36%|███▋ | 1820/5000 [58:39<1:50:43, 2.09s/it]
36%|███▋ | 1820/5000 [58:39<1:50:43, 2.09s/it]
36%|███▋ | 1821/5000 [58:41<1:50:55, 2.09s/it]
36%|███▋ | 1821/5000 [58:42<1:50:55, 2.09s/it]
36%|███▋ | 1822/5000 [58:44<1:49:56, 2.08s/it]
36%|███▋ | 1822/5000 [58:44<1:49:56, 2.08s/it]
36%|███▋ | 1823/5000 [58:45<1:47:17, 2.03s/it]
36%|███▋ | 1823/5000 [58:45<1:47:17, 2.03s/it]
36%|███▋ | 1824/5000 [58:47<1:42:47, 1.94s/it]
36%|███▋ | 1824/5000 [58:47<1:42:47, 1.94s/it]
36%|███▋ | 1825/5000 [58:49<1:38:53, 1.87s/it]
36%|███▋ | 1825/5000 [58:49<1:38:53, 1.87s/it]
37%|███▋ | 1826/5000 [58:51<1:36:26, 1.82s/it]
37%|███▋ | 1826/5000 [58:51<1:36:26, 1.82s/it]
37%|███▋ | 1827/5000 [58:52<1:35:02, 1.80s/it]
37%|███▋ | 1827/5000 [58:52<1:35:02, 1.80s/it]
37%|███▋ | 1828/5000 [58:54<1:34:00, 1.78s/it]
37%|███▋ | 1828/5000 [58:54<1:34:00, 1.78s/it]
37%|███▋ | 1829/5000 [58:56<1:34:00, 1.78s/it]
37%|███▋ | 1829/5000 [58:56<1:34:00, 1.78s/it]
37%|███▋ | 1830/5000 [58:57<1:30:24, 1.71s/it]
37%|███▋ | 1830/5000 [58:57<1:30:24, 1.71s/it]
37%|███▋ | 1831/5000 [58:59<1:28:50, 1.68s/it]
37%|███▋ | 1831/5000 [58:59<1:28:50, 1.68s/it]
37%|███▋ | 1832/5000 [59:01<1:28:14, 1.67s/it]
37%|███▋ | 1832/5000 [59:01<1:28:14, 1.67s/it]
37%|███▋ | 1833/5000 [59:02<1:25:52, 1.63s/it]
37%|███▋ | 1833/5000 [59:02<1:25:52, 1.63s/it]
37%|███▋ | 1834/5000 [59:04<1:21:59, 1.55s/it]
37%|███▋ | 1834/5000 [59:04<1:21:59, 1.55s/it]
37%|███▋ | 1835/5000 [59:05<1:18:47, 1.49s/it]
37%|███▋ | 1835/5000 [59:05<1:18:47, 1.49s/it]
37%|███▋ | 1836/5000 [59:06<1:15:47, 1.44s/it]
37%|███▋ | 1836/5000 [59:06<1:15:47, 1.44s/it]
37%|███▋ | 1837/5000 [59:08<1:15:37, 1.43s/it]
37%|███▋ | 1837/5000 [59:08<1:15:37, 1.43s/it]
37%|███▋ | 1838/5000 [59:09<1:15:01, 1.42s/it]
37%|███▋ | 1838/5000 [59:09<1:15:01, 1.42s/it]
37%|███▋ | 1839/5000 [59:10<1:12:59, 1.39s/it]
37%|███▋ | 1839/5000 [59:10<1:12:59, 1.39s/it]
37%|███▋ | 1840/5000 [59:12<1:11:24, 1.36s/it]
37%|███▋ | 1840/5000 [59:12<1:11:24, 1.36s/it]
37%|███▋ | 1841/5000 [59:13<1:08:24, 1.30s/it]
37%|███▋ | 1841/5000 [59:13<1:08:24, 1.30s/it]
37%|███▋ | 1842/5000 [59:14<1:04:24, 1.22s/it]
37%|███▋ | 1842/5000 [59:14<1:04:24, 1.22s/it]
37%|███▋ | 1843/5000 [59:15<1:01:48, 1.17s/it]
37%|███▋ | 1843/5000 [59:15<1:01:48, 1.17s/it]
37%|███▋ | 1844/5000 [59:16<59:13, 1.13s/it]
37%|███▋ | 1844/5000 [59:16<59:13, 1.13s/it]
37%|███▋ | 1845/5000 [59:17<57:54, 1.10s/it]
37%|███▋ | 1845/5000 [59:17<57:54, 1.10s/it]
37%|███▋ | 1846/5000 [59:18<57:38, 1.10s/it]
37%|███▋ | 1846/5000 [59:18<57:38, 1.10s/it]
37%|███▋ | 1847/5000 [59:19<55:07, 1.05s/it]
37%|███▋ | 1847/5000 [59:19<55:07, 1.05s/it]
37%|███▋ | 1848/5000 [59:20<52:25, 1.00it/s]
37%|███▋ | 1848/5000 [59:20<52:25, 1.00it/s]
37%|███▋ | 1849/5000 [59:21<49:21, 1.06it/s]
37%|███▋ | 1849/5000 [59:21<49:21, 1.06it/s]
37%|███▋ | 1850/5000 [59:23<1:13:52, 1.41s/it]
37%|███▋ | 1850/5000 [59:23<1:13:52, 1.41s/it]
37%|███▋ | 1851/5000 [59:29<2:20:34, 2.68s/it]
37%|███▋ | 1851/5000 [59:29<2:20:34, 2.68s/it]
37%|███▋ | 1852/5000 [59:33<2:41:53, 3.09s/it]
37%|███▋ | 1852/5000 [59:33<2:41:53, 3.09s/it]
37%|███▋ | 1853/5000 [59:36<2:45:32, 3.16s/it]
37%|███▋ | 1853/5000 [59:36<2:45:32, 3.16s/it]
37%|███▋ | 1854/5000 [59:39<2:43:32, 3.12s/it]
37%|███▋ | 1854/5000 [59:39<2:43:32, 3.12s/it]
37%|███▋ | 1855/5000 [59:42<2:38:40, 3.03s/it]
37%|███▋ | 1855/5000 [59:42<2:38:40, 3.03s/it]
37%|███▋ | 1856/5000 [59:45<2:33:23, 2.93s/it]
37%|███▋ | 1856/5000 [59:45<2:33:23, 2.93s/it]
37%|███▋ | 1857/5000 [59:47<2:27:09, 2.81s/it]
37%|███▋ | 1857/5000 [59:47<2:27:09, 2.81s/it]
37%|███▋ | 1858/5000 [59:50<2:21:42, 2.71s/it]
37%|███▋ | 1858/5000 [59:50<2:21:42, 2.71s/it]
37%|███▋ | 1859/5000 [59:52<2:15:44, 2.59s/it]
37%|███▋ | 1859/5000 [59:52<2:15:44, 2.59s/it]
37%|███▋ | 1860/5000 [59:54<2:07:32, 2.44s/it]
37%|███▋ | 1860/5000 [59:54<2:07:32, 2.44s/it]
37%|███▋ | 1861/5000 [59:56<1:59:04, 2.28s/it]
37%|███▋ | 1861/5000 [59:56<1:59:04, 2.28s/it]
37%|███▋ | 1862/5000 [59:58<1:54:42, 2.19s/it]
37%|███▋ | 1862/5000 [59:58<1:54:42, 2.19s/it]
37%|███▋ | 1863/5000 [1:00:00<1:47:39, 2.06s/it]
37%|███▋ | 1863/5000 [1:00:00<1:47:39, 2.06s/it]
37%|███▋ | 1864/5000 [1:00:01<1:41:15, 1.94s/it]
37%|███▋ | 1864/5000 [1:00:01<1:41:15, 1.94s/it]
37%|███▋ | 1865/5000 [1:00:03<1:37:18, 1.86s/it]
37%|███▋ | 1865/5000 [1:00:03<1:37:18, 1.86s/it]
37%|███▋ | 1866/5000 [1:00:05<1:33:25, 1.79s/it]
37%|███▋ | 1866/5000 [1:00:05<1:33:25, 1.79s/it]
37%|███▋ | 1867/5000 [1:00:06<1:26:30, 1.66s/it]
37%|███▋ | 1867/5000 [1:00:06<1:26:30, 1.66s/it]
37%|███▋ | 1868/5000 [1:00:07<1:22:29, 1.58s/it]
37%|███▋ | 1868/5000 [1:00:07<1:22:29, 1.58s/it]
37%|███▋ | 1869/5000 [1:00:09<1:19:58, 1.53s/it]
37%|███▋ | 1869/5000 [1:00:09<1:19:58, 1.53s/it]
37%|███▋ | 1870/5000 [1:00:10<1:16:49, 1.47s/it]
37%|███▋ | 1870/5000 [1:00:10<1:16:49, 1.47s/it]
37%|███▋ | 1871/5000 [1:00:11<1:12:29, 1.39s/it]
37%|███▋ | 1871/5000 [1:00:11<1:12:29, 1.39s/it]
37%|███▋ | 1872/5000 [1:00:13<1:08:40, 1.32s/it]
37%|███▋ | 1872/5000 [1:00:13<1:08:40, 1.32s/it]
37%|███▋ | 1873/5000 [1:00:14<1:04:08, 1.23s/it]
37%|███▋ | 1873/5000 [1:00:14<1:04:08, 1.23s/it]
37%|███▋ | 1874/5000 [1:00:15<59:09, 1.14s/it]
37%|███▋ | 1874/5000 [1:00:15<59:09, 1.14s/it]
38%|███▊ | 1875/5000 [1:00:15<51:20, 1.01it/s]
38%|███▊ | 1875/5000 [1:00:15<51:20, 1.01it/s]
38%|███▊ | 1876/5000 [1:00:29<4:09:20, 4.79s/it]
38%|███▊ | 1876/5000 [1:00:29<4:09:20, 4.79s/it]
38%|███▊ | 1877/5000 [1:00:33<4:03:33, 4.68s/it]
38%|███▊ | 1877/5000 [1:00:33<4:03:33, 4.68s/it]
38%|███▊ | 1878/5000 [1:00:37<3:51:25, 4.45s/it]
38%|███▊ | 1878/5000 [1:00:37<3:51:25, 4.45s/it]
38%|███▊ | 1879/5000 [1:00:41<3:39:20, 4.22s/it]
38%|███▊ | 1879/5000 [1:00:41<3:39:20, 4.22s/it]
38%|███▊ | 1880/5000 [1:00:44<3:25:33, 3.95s/it]
38%|███▊ | 1880/5000 [1:00:44<3:25:33, 3.95s/it]
38%|███▊ | 1881/5000 [1:00:47<3:15:39, 3.76s/it]
38%|███▊ | 1881/5000 [1:00:47<3:15:39, 3.76s/it]
38%|███▊ | 1882/5000 [1:00:50<3:02:13, 3.51s/it]
38%|███▊ | 1882/5000 [1:00:50<3:02:13, 3.51s/it]
38%|███▊ | 1883/5000 [1:00:53<2:54:17, 3.36s/it]
38%|███▊ | 1883/5000 [1:00:53<2:54:17, 3.36s/it]
38%|███▊ | 1884/5000 [1:00:56<2:47:11, 3.22s/it]
38%|███▊ | 1884/5000 [1:00:56<2:47:11, 3.22s/it]
38%|███▊ | 1885/5000 [1:00:59<2:37:11, 3.03s/it]
38%|███▊ | 1885/5000 [1:00:59<2:37:11, 3.03s/it]
38%|███▊ | 1886/5000 [1:01:01<2:30:14, 2.89s/it]
38%|███▊ | 1886/5000 [1:01:01<2:30:14, 2.89s/it]
38%|███▊ | 1887/5000 [1:01:04<2:23:32, 2.77s/it]
38%|███▊ | 1887/5000 [1:01:04<2:23:32, 2.77s/it]
38%|███▊ | 1888/5000 [1:01:06<2:19:46, 2.69s/it]
38%|███▊ | 1888/5000 [1:01:06<2:19:46, 2.69s/it]
38%|███▊ | 1889/5000 [1:01:09<2:11:29, 2.54s/it]
38%|███▊ | 1889/5000 [1:01:09<2:11:29, 2.54s/it]
38%|███▊ | 1890/5000 [1:01:11<2:07:20, 2.46s/it]
38%|███▊ | 1890/5000 [1:01:11<2:07:20, 2.46s/it]
38%|███▊ | 1891/5000 [1:01:13<2:06:08, 2.43s/it]
38%|███▊ | 1891/5000 [1:01:13<2:06:08, 2.43s/it]
38%|███▊ | 1892/5000 [1:01:16<2:03:39, 2.39s/it]
38%|███▊ | 1892/5000 [1:01:16<2:03:39, 2.39s/it]
38%|███▊ | 1893/5000 [1:01:18<2:01:19, 2.34s/it]
38%|███▊ | 1893/5000 [1:01:18<2:01:19, 2.34s/it]
38%|███▊ | 1894/5000 [1:01:20<1:52:29, 2.17s/it]
38%|███▊ | 1894/5000 [1:01:20<1:52:29, 2.17s/it]
38%|███▊ | 1895/5000 [1:01:22<1:49:22, 2.11s/it]
38%|███▊ | 1895/5000 [1:01:22<1:49:22, 2.11s/it]
38%|███▊ | 1896/5000 [1:01:23<1:45:48, 2.05s/it]
38%|███▊ | 1896/5000 [1:01:23<1:45:48, 2.05s/it]
38%|███▊ | 1897/5000 [1:01:25<1:42:16, 1.98s/it]
38%|███▊ | 1897/5000 [1:01:25<1:42:16, 1.98s/it]
38%|███�� | 1898/5000 [1:01:27<1:40:08, 1.94s/it]
38%|███▊ | 1898/5000 [1:01:27<1:40:08, 1.94s/it]
38%|███▊ | 1899/5000 [1:01:29<1:34:53, 1.84s/it]
38%|███▊ | 1899/5000 [1:01:29<1:34:53, 1.84s/it]
38%|███▊ | 1900/5000 [1:01:30<1:31:39, 1.77s/it]
38%|███▊ | 1900/5000 [1:01:30<1:31:39, 1.77s/it]
38%|███▊ | 1901/5000 [1:01:32<1:29:20, 1.73s/it]
38%|███▊ | 1901/5000 [1:01:32<1:29:20, 1.73s/it]
38%|███▊ | 1902/5000 [1:01:34<1:28:34, 1.72s/it]
38%|███▊ | 1902/5000 [1:01:34<1:28:34, 1.72s/it]
38%|███▊ | 1903/5000 [1:01:35<1:27:58, 1.70s/it]
38%|███▊ | 1903/5000 [1:01:35<1:27:58, 1.70s/it]
38%|███▊ | 1904/5000 [1:01:37<1:27:01, 1.69s/it]
38%|███▊ | 1904/5000 [1:01:37<1:27:01, 1.69s/it]
38%|███▊ | 1905/5000 [1:01:39<1:25:44, 1.66s/it]
38%|███▊ | 1905/5000 [1:01:39<1:25:44, 1.66s/it]
38%|███▊ | 1906/5000 [1:01:40<1:23:26, 1.62s/it]
38%|███▊ | 1906/5000 [1:01:40<1:23:26, 1.62s/it]
38%|███▊ | 1907/5000 [1:01:42<1:22:48, 1.61s/it]
38%|███▊ | 1907/5000 [1:01:42<1:22:48, 1.61s/it]
38%|███▊ | 1908/5000 [1:01:43<1:19:15, 1.54s/it]
38%|███▊ | 1908/5000 [1:01:43<1:19:15, 1.54s/it]
38%|███▊ | 1909/5000 [1:01:44<1:16:11, 1.48s/it]
38%|███▊ | 1909/5000 [1:01:44<1:16:11, 1.48s/it]
38%|███▊ | 1910/5000 [1:01:46<1:14:00, 1.44s/it]
38%|███▊ | 1910/5000 [1:01:46<1:14:00, 1.44s/it]
38%|███▊ | 1911/5000 [1:01:47<1:13:36, 1.43s/it]
38%|███▊ | 1911/5000 [1:01:47<1:13:36, 1.43s/it]
38%|███▊ | 1912/5000 [1:01:48<1:12:53, 1.42s/it]
38%|███▊ | 1912/5000 [1:01:49<1:12:53, 1.42s/it]
38%|███▊ | 1913/5000 [1:01:50<1:11:01, 1.38s/it]
38%|███▊ | 1913/5000 [1:01:50<1:11:01, 1.38s/it]
38%|███▊ | 1914/5000 [1:01:51<1:08:31, 1.33s/it]
38%|███▊ | 1914/5000 [1:01:51<1:08:31, 1.33s/it]
38%|███▊ | 1915/5000 [1:01:52<1:05:46, 1.28s/it]
38%|███▊ | 1915/5000 [1:01:52<1:05:46, 1.28s/it]
38%|███▊ | 1916/5000 [1:01:53<1:00:54, 1.19s/it]
38%|███▊ | 1916/5000 [1:01:53<1:00:54, 1.19s/it]
38%|███▊ | 1917/5000 [1:01:54<58:13, 1.13s/it]
38%|███▊ | 1917/5000 [1:01:54<58:13, 1.13s/it]
38%|███▊ | 1918/5000 [1:01:55<56:31, 1.10s/it]
38%|███▊ | 1918/5000 [1:01:55<56:31, 1.10s/it]
38%|███▊ | 1919/5000 [1:01:56<56:30, 1.10s/it]
38%|███▊ | 1919/5000 [1:01:56<56:30, 1.10s/it]
38%|███▊ | 1920/5000 [1:01:57<54:35, 1.06s/it]
38%|███▊ | 1920/5000 [1:01:57<54:35, 1.06s/it]
38%|███▊ | 1921/5000 [1:01:58<52:28, 1.02s/it]
38%|███▊ | 1921/5000 [1:01:58<52:28, 1.02s/it]
38%|███▊ | 1922/5000 [1:01:59<48:28, 1.06it/s]
38%|███▊ | 1922/5000 [1:01:59<48:28, 1.06it/s]
38%|███▊ | 1923/5000 [1:02:00<46:23, 1.11it/s]
38%|███▊ | 1923/5000 [1:02:00<46:23, 1.11it/s]
38%|███▊ | 1924/5000 [1:02:01<44:43, 1.15it/s]
38%|███▊ | 1924/5000 [1:02:01<44:43, 1.15it/s]
38%|███▊ | 1925/5000 [1:02:03<1:09:26, 1.36s/it]
38%|███▊ | 1925/5000 [1:02:03<1:09:26, 1.36s/it]
39%|███▊ | 1926/5000 [1:02:10<2:31:53, 2.96s/it]
39%|███▊ | 1926/5000 [1:02:10<2:31:53, 2.96s/it]
39%|███▊ | 1927/5000 [1:02:14<2:54:05, 3.40s/it]
39%|███▊ | 1927/5000 [1:02:14<2:54:05, 3.40s/it]
39%|███▊ | 1928/5000 [1:02:18<3:01:18, 3.54s/it]
39%|███▊ | 1928/5000 [1:02:18<3:01:18, 3.54s/it]
39%|███▊ | 1929/5000 [1:02:22<3:01:04, 3.54s/it]
39%|███▊ | 1929/5000 [1:02:22<3:01:04, 3.54s/it]
39%|███▊ | 1930/5000 [1:02:25<2:56:27, 3.45s/it]
39%|███▊ | 1930/5000 [1:02:25<2:56:27, 3.45s/it]
39%|███▊ | 1931/5000 [1:02:28<2:48:36, 3.30s/it]
39%|███▊ | 1931/5000 [1:02:28<2:48:36, 3.30s/it]
39%|███▊ | 1932/5000 [1:02:31<2:43:54, 3.21s/it]
39%|███▊ | 1932/5000 [1:02:31<2:43:54, 3.21s/it]
39%|███▊ | 1933/5000 [1:02:34<2:40:02, 3.13s/it]
39%|███▊ | 1933/5000 [1:02:34<2:40:02, 3.13s/it]
39%|███▊ | 1934/5000 [1:02:36<2:31:29, 2.96s/it]
39%|███▊ | 1934/5000 [1:02:36<2:31:29, 2.96s/it]
39%|███▊ | 1935/5000 [1:02:39<2:26:02, 2.86s/it]
39%|███▊ | 1935/5000 [1:02:39<2:26:02, 2.86s/it]
39%|███▊ | 1936/5000 [1:02:42<2:22:42, 2.79s/it]
39%|███▊ | 1936/5000 [1:02:42<2:22:42, 2.79s/it]
39%|███▊ | 1937/5000 [1:02:44<2:14:59, 2.64s/it]
39%|███▊ | 1937/5000 [1:02:44<2:14:59, 2.64s/it]
39%|███▉ | 1938/5000 [1:02:46<2:11:45, 2.58s/it]
39%|███▉ | 1938/5000 [1:02:46<2:11:45, 2.58s/it]
39%|███▉ | 1939/5000 [1:02:49<2:06:59, 2.49s/it]
39%|███▉ | 1939/5000 [1:02:49<2:06:59, 2.49s/it]
39%|███▉ | 1940/5000 [1:02:51<2:03:55, 2.43s/it]
39%|███▉ | 1940/5000 [1:02:51<2:03:55, 2.43s/it]
39%|███▉ | 1941/5000 [1:02:53<2:01:05, 2.38s/it]
39%|███▉ | 1941/5000 [1:02:53<2:01:05, 2.38s/it]
39%|███▉ | 1942/5000 [1:02:55<1:59:20, 2.34s/it]
39%|███▉ | 1942/5000 [1:02:55<1:59:20, 2.34s/it]
39%|███▉ | 1943/5000 [1:02:57<1:53:29, 2.23s/it]
39%|███▉ | 1943/5000 [1:02:57<1:53:29, 2.23s/it]
39%|███▉ | 1944/5000 [1:02:59<1:48:14, 2.13s/it]
39%|███▉ | 1944/5000 [1:02:59<1:48:14, 2.13s/it]
39%|███▉ | 1945/5000 [1:03:01<1:46:48, 2.10s/it]
39%|███▉ | 1945/5000 [1:03:01<1:46:48, 2.10s/it]
39%|███▉ | 1946/5000 [1:03:03<1:43:22, 2.03s/it]
39%|███▉ | 1946/5000 [1:03:03<1:43:22, 2.03s/it]
39%|███▉ | 1947/5000 [1:03:05<1:41:08, 1.99s/it]
39%|███▉ | 1947/5000 [1:03:05<1:41:08, 1.99s/it]
39%|███▉ | 1948/5000 [1:03:07<1:39:24, 1.95s/it]
39%|███▉ | 1948/5000 [1:03:07<1:39:24, 1.95s/it]
39%|███▉ | 1949/5000 [1:03:09<1:37:01, 1.91s/it]
39%|███▉ | 1949/5000 [1:03:09<1:37:01, 1.91s/it]
39%|███▉ | 1950/5000 [1:03:10<1:32:47, 1.83s/it]
39%|███▉ | 1950/5000 [1:03:10<1:32:47, 1.83s/it]
39%|███▉ | 1951/5000 [1:03:12<1:30:14, 1.78s/it]
39%|███▉ | 1951/5000 [1:03:12<1:30:14, 1.78s/it]
39%|███▉ | 1952/5000 [1:03:13<1:26:43, 1.71s/it]
39%|███▉ | 1952/5000 [1:03:14<1:26:43, 1.71s/it]
39%|███▉ | 1953/5000 [1:03:15<1:25:42, 1.69s/it]
39%|���██▉ | 1953/5000 [1:03:15<1:25:42, 1.69s/it]
39%|███▉ | 1954/5000 [1:03:17<1:26:04, 1.70s/it]
39%|███▉ | 1954/5000 [1:03:17<1:26:04, 1.70s/it]
39%|███▉ | 1955/5000 [1:03:18<1:24:28, 1.66s/it]
39%|███▉ | 1955/5000 [1:03:18<1:24:28, 1.66s/it]
39%|███▉ | 1956/5000 [1:03:20<1:23:39, 1.65s/it]
39%|███▉ | 1956/5000 [1:03:20<1:23:39, 1.65s/it]
39%|███▉ | 1957/5000 [1:03:22<1:21:27, 1.61s/it]
39%|███▉ | 1957/5000 [1:03:22<1:21:27, 1.61s/it]
39%|███▉ | 1958/5000 [1:03:23<1:17:29, 1.53s/it]
39%|███▉ | 1958/5000 [1:03:23<1:17:29, 1.53s/it]
39%|███▉ | 1959/5000 [1:03:24<1:13:21, 1.45s/it]
39%|███▉ | 1959/5000 [1:03:24<1:13:21, 1.45s/it]
39%|███▉ | 1960/5000 [1:03:25<1:10:06, 1.38s/it]
39%|███▉ | 1960/5000 [1:03:25<1:10:06, 1.38s/it]
39%|███▉ | 1961/5000 [1:03:27<1:08:26, 1.35s/it]
39%|███▉ | 1961/5000 [1:03:27<1:08:26, 1.35s/it]
39%|███▉ | 1962/5000 [1:03:28<1:06:25, 1.31s/it]
39%|███▉ | 1962/5000 [1:03:28<1:06:25, 1.31s/it]
39%|███▉ | 1963/5000 [1:03:29<1:06:03, 1.31s/it]
39%|███▉ | 1963/5000 [1:03:29<1:06:03, 1.31s/it]
39%|███▉ | 1964/5000 [1:03:30<1:05:32, 1.30s/it]
39%|███▉ | 1964/5000 [1:03:30<1:05:32, 1.30s/it]
39%|███▉ | 1965/5000 [1:03:32<1:03:10, 1.25s/it]
39%|███▉ | 1965/5000 [1:03:32<1:03:10, 1.25s/it]
39%|███▉ | 1966/5000 [1:03:33<58:32, 1.16s/it]
39%|███▉ | 1966/5000 [1:03:33<58:32, 1.16s/it]
39%|███▉ | 1967/5000 [1:03:34<58:10, 1.15s/it]
39%|███▉ | 1967/5000 [1:03:34<58:10, 1.15s/it]
39%|███▉ | 1968/5000 [1:03:35<56:53, 1.13s/it]
39%|███▉ | 1968/5000 [1:03:35<56:53, 1.13s/it]
39%|███▉ | 1969/5000 [1:03:36<54:36, 1.08s/it]
39%|███▉ | 1969/5000 [1:03:36<54:36, 1.08s/it]
39%|███▉ | 1970/5000 [1:03:37<55:56, 1.11s/it]
39%|███▉ | 1970/5000 [1:03:37<55:56, 1.11s/it]
39%|███▉ | 1971/5000 [1:03:38<54:13, 1.07s/it]
39%|███▉ | 1971/5000 [1:03:38<54:13, 1.07s/it]
39%|███▉ | 1972/5000 [1:03:39<49:40, 1.02it/s]
39%|███▉ | 1972/5000 [1:03:39<49:40, 1.02it/s]
39%|███▉ | 1973/5000 [1:03:39<45:54, 1.10it/s]
39%|███▉ | 1973/5000 [1:03:39<45:54, 1.10it/s]
39%|███▉ | 1974/5000 [1:03:40<43:15, 1.17it/s]
39%|███▉ | 1974/5000 [1:03:40<43:15, 1.17it/s]
40%|███▉ | 1975/5000 [1:03:43<1:19:14, 1.57s/it]
40%|███▉ | 1975/5000 [1:03:43<1:19:14, 1.57s/it]
40%|███▉ | 1976/5000 [1:03:52<2:59:57, 3.57s/it]
40%|███▉ | 1976/5000 [1:03:52<2:59:57, 3.57s/it]
40%|███▉ | 1977/5000 [1:03:56<3:14:16, 3.86s/it]
40%|███▉ | 1977/5000 [1:03:56<3:14:16, 3.86s/it]
40%|███▉ | 1978/5000 [1:04:00<3:13:41, 3.85s/it]
40%|███▉ | 1978/5000 [1:04:00<3:13:41, 3.85s/it]
40%|███▉ | 1979/5000 [1:04:03<3:07:06, 3.72s/it]
40%|███▉ | 1979/5000 [1:04:03<3:07:06, 3.72s/it]
40%|███▉ | 1980/5000 [1:04:07<3:02:00, 3.62s/it]
40%|███▉ | 1980/5000 [1:04:07<3:02:00, 3.62s/it]
40%|███▉ | 1981/5000 [1:04:10<2:53:49, 3.45s/it]
40%|███▉ | 1981/5000 [1:04:10<2:53:49, 3.45s/it]
40%|███▉ | 1982/5000 [1:04:13<2:45:30, 3.29s/it]
40%|███▉ | 1982/5000 [1:04:13<2:45:30, 3.29s/it]
40%|███▉ | 1983/5000 [1:04:16<2:39:45, 3.18s/it]
40%|███▉ | 1983/5000 [1:04:16<2:39:45, 3.18s/it]
40%|███▉ | 1984/5000 [1:04:18<2:32:08, 3.03s/it]
40%|███▉ | 1984/5000 [1:04:18<2:32:08, 3.03s/it]
40%|███▉ | 1985/5000 [1:04:21<2:23:45, 2.86s/it]
40%|███▉ | 1985/5000 [1:04:21<2:23:45, 2.86s/it]
40%|███▉ | 1986/5000 [1:04:23<2:19:18, 2.77s/it]
40%|███▉ | 1986/5000 [1:04:23<2:19:18, 2.77s/it]
40%|███▉ | 1987/5000 [1:04:26<2:16:16, 2.71s/it]
40%|███▉ | 1987/5000 [1:04:26<2:16:16, 2.71s/it]
40%|███▉ | 1988/5000 [1:04:28<2:10:20, 2.60s/it]
40%|███▉ | 1988/5000 [1:04:28<2:10:20, 2.60s/it]
40%|███▉ | 1989/5000 [1:04:30<2:04:03, 2.47s/it]
40%|███▉ | 1989/5000 [1:04:30<2:04:03, 2.47s/it]
40%|███▉ | 1990/5000 [1:04:33<2:01:54, 2.43s/it]
40%|███▉ | 1990/5000 [1:04:33<2:01:54, 2.43s/it]
40%|███▉ | 1991/5000 [1:04:35<1:58:33, 2.36s/it]
40%|███▉ | 1991/5000 [1:04:35<1:58:33, 2.36s/it]
40%|███▉ | 1992/5000 [1:04:37<1:54:36, 2.29s/it]
40%|███▉ | 1992/5000 [1:04:37<1:54:36, 2.29s/it]
40%|███▉ | 1993/5000 [1:04:39<1:49:42, 2.19s/it]
40%|███▉ | 1993/5000 [1:04:39<1:49:42, 2.19s/it]
40%|███▉ | 1994/5000 [1:04:41<1:45:02, 2.10s/it]
40%|███▉ | 1994/5000 [1:04:41<1:45:02, 2.10s/it]
40%|███▉ | 1995/5000 [1:04:43<1:42:09, 2.04s/it]
40%|███▉ | 1995/5000 [1:04:43<1:42:09, 2.04s/it]
40%|███▉ | 1996/5000 [1:04:45<1:40:39, 2.01s/it]
40%|███▉ | 1996/5000 [1:04:45<1:40:39, 2.01s/it]
40%|███▉ | 1997/5000 [1:04:47<1:38:04, 1.96s/it]
40%|███▉ | 1997/5000 [1:04:47<1:38:04, 1.96s/it]
40%|███▉ | 1998/5000 [1:04:48<1:35:29, 1.91s/it]
40%|███▉ | 1998/5000 [1:04:48<1:35:29, 1.91s/it]
40%|███▉ | 1999/5000 [1:04:50<1:31:26, 1.83s/it]
40%|███▉ | 1999/5000 [1:04:50<1:31:26, 1.83s/it]
40%|████ | 2000/5000 [1:04:52<1:28:49, 1.78s/it]
40%|████ | 2000/5000 [1:04:52<1:28:49, 1.78s/it]
40%|████ | 2001/5000 [1:04:53<1:27:26, 1.75s/it]
40%|████ | 2001/5000 [1:04:53<1:27:26, 1.75s/it]
40%|████ | 2002/5000 [1:04:55<1:24:46, 1.70s/it]
40%|████ | 2002/5000 [1:04:55<1:24:46, 1.70s/it]
40%|████ | 2003/5000 [1:04:57<1:23:04, 1.66s/it]
40%|████ | 2003/5000 [1:04:57<1:23:04, 1.66s/it]
40%|████ | 2004/5000 [1:04:58<1:24:57, 1.70s/it]
40%|████ | 2004/5000 [1:04:58<1:24:57, 1.70s/it]
40%|████ | 2005/5000 [1:05:00<1:24:44, 1.70s/it]
40%|████ | 2005/5000 [1:05:00<1:24:44, 1.70s/it]
40%|████ | 2006/5000 [1:05:03<1:44:55, 2.10s/it]
40%|████ | 2006/5000 [1:05:03<1:44:55, 2.10s/it]
40%|████ | 2007/5000 [1:05:05<1:36:56, 1.94s/it]
40%|████ | 2007/5000 [1:05:05<1:36:56, 1.94s/it]
40%|████ | 2008/5000 [1:05:06<1:32:54, 1.86s/it]
40%|████ | 2008/5000 [1:05:06<1:32:54, 1.86s/it]
40%|████ | 2009/5000 [1:05:08<1:29:24, 1.79s/it]
40%|████ | 2009/5000 [1:05:08<1:29:24, 1.79s/it]
40%|████ | 2010/5000 [1:05:09<1:24:35, 1.70s/it]
40%|████ | 2010/5000 [1:05:09<1:24:35, 1.70s/it]
40%|████ | 2011/5000 [1:05:11<1:20:28, 1.62s/it]
40%|████ | 2011/5000 [1:05:11<1:20:28, 1.62s/it]
40%|████ | 2012/5000 [1:05:12<1:20:07, 1.61s/it]
40%|████ | 2012/5000 [1:05:12<1:20:07, 1.61s/it]
40%|████ | 2013/5000 [1:05:14<1:17:29, 1.56s/it]
40%|████ | 2013/5000 [1:05:14<1:17:29, 1.56s/it]
40%|████ | 2014/5000 [1:05:15<1:17:18, 1.55s/it]
40%|████ | 2014/5000 [1:05:15<1:17:18, 1.55s/it]
40%|████ | 2015/5000 [1:05:17<1:13:54, 1.49s/it]
40%|████ | 2015/5000 [1:05:17<1:13:54, 1.49s/it]
40%|████ | 2016/5000 [1:05:20<1:38:12, 1.97s/it]
40%|████ | 2016/5000 [1:05:20<1:38:12, 1.97s/it]
40%|████ | 2017/5000 [1:05:22<1:33:48, 1.89s/it]
40%|████ | 2017/5000 [1:05:22<1:33:48, 1.89s/it]
40%|████ | 2018/5000 [1:05:23<1:27:38, 1.76s/it]
40%|████ | 2018/5000 [1:05:23<1:27:38, 1.76s/it]
40%|████ | 2019/5000 [1:05:24<1:21:42, 1.64s/it]
40%|████ | 2019/5000 [1:05:24<1:21:42, 1.64s/it]
40%|████ | 2020/5000 [1:05:26<1:17:08, 1.55s/it]
40%|████ | 2020/5000 [1:05:26<1:17:08, 1.55s/it]
40%|████ | 2021/5000 [1:05:27<1:13:48, 1.49s/it]
40%|████ | 2021/5000 [1:05:27<1:13:48, 1.49s/it]
40%|████ | 2022/5000 [1:05:28<1:08:38, 1.38s/it]
40%|████ | 2022/5000 [1:05:28<1:08:38, 1.38s/it]
40%|████ | 2023/5000 [1:05:29<1:04:24, 1.30s/it]
40%|████ | 2023/5000 [1:05:29<1:04:24, 1.30s/it]
40%|████ | 2024/5000 [1:05:31<1:03:10, 1.27s/it]
40%|████ | 2024/5000 [1:05:31<1:03:10, 1.27s/it]
40%|████ | 2025/5000 [1:05:34<1:33:12, 1.88s/it]
40%|████ | 2025/5000 [1:05:34<1:33:12, 1.88s/it]
41%|████ | 2026/5000 [1:05:42<2:59:53, 3.63s/it]
41%|████ | 2026/5000 [1:05:42<2:59:53, 3.63s/it]
41%|████ | 2027/5000 [1:05:46<3:19:36, 4.03s/it]
41%|████ | 2027/5000 [1:05:47<3:19:36, 4.03s/it]
41%|████ | 2028/5000 [1:05:51<3:24:30, 4.13s/it]
41%|████ | 2028/5000 [1:05:51<3:24:30, 4.13s/it]
41%|████ | 2029/5000 [1:05:55<3:20:33, 4.05s/it]
41%|████ | 2029/5000 [1:05:55<3:20:33, 4.05s/it]
41%|████ | 2030/5000 [1:05:58<3:13:34, 3.91s/it]
41%|████ | 2030/5000 [1:05:58<3:13:34, 3.91s/it]
41%|████ | 2031/5000 [1:06:02<3:03:59, 3.72s/it]
41%|████ | 2031/5000 [1:06:02<3:03:59, 3.72s/it]
41%|████ | 2032/5000 [1:06:05<2:58:30, 3.61s/it]
41%|████ | 2032/5000 [1:06:05<2:58:30, 3.61s/it]
41%|████ | 2033/5000 [1:06:08<2:53:31, 3.51s/it]
41%|████ | 2033/5000 [1:06:08<2:53:31, 3.51s/it]
41%|████ | 2034/5000 [1:06:11<2:45:50, 3.35s/it]
41%|████ | 2034/5000 [1:06:11<2:45:50, 3.35s/it]
41%|████ | 2035/5000 [1:06:14<2:42:21, 3.29s/it]
41%|████ | 2035/5000 [1:06:14<2:42:21, 3.29s/it]
41%|████ | 2036/5000 [1:06:17<2:37:35, 3.19s/it]
41%|████ | 2036/5000 [1:06:17<2:37:35, 3.19s/it]
41%|████ | 2037/5000 [1:06:20<2:30:38, 3.05s/it]
41%|████ | 2037/5000 [1:06:20<2:30:38, 3.05s/it]
41%|████ | 2038/5000 [1:06:23<2:27:33, 2.99s/it]
41%|████ | 2038/5000 [1:06:23<2:27:33, 2.99s/it]
41%|████ | 2039/5000 [1:06:26<2:24:31, 2.93s/it]
41%|████ | 2039/5000 [1:06:26<2:24:31, 2.93s/it]
41%|████ | 2040/5000 [1:06:28<2:22:01, 2.88s/it]
41%|████ | 2040/5000 [1:06:28<2:22:01, 2.88s/it]
41%|████ | 2041/5000 [1:06:31<2:18:50, 2.82s/it]
41%|████ | 2041/5000 [1:06:31<2:18:50, 2.82s/it]
41%|████ | 2042/5000 [1:06:33<2:12:20, 2.68s/it]
41%|████ | 2042/5000 [1:06:33<2:12:20, 2.68s/it]
41%|████ | 2043/5000 [1:06:36<2:05:56, 2.56s/it]
41%|████ | 2043/5000 [1:06:36<2:05:56, 2.56s/it]
41%|████ | 2044/5000 [1:06:38<2:02:52, 2.49s/it]
41%|████ | 2044/5000 [1:06:38<2:02:52, 2.49s/it]
41%|████ | 2045/5000 [1:06:41<2:02:21, 2.48s/it]
41%|████ | 2045/5000 [1:06:41<2:02:21, 2.48s/it]
41%|████ | 2046/5000 [1:06:43<2:00:27, 2.45s/it]
41%|████ | 2046/5000 [1:06:43<2:00:27, 2.45s/it]
41%|████ | 2047/5000 [1:06:45<1:56:52, 2.37s/it]
41%|████ | 2047/5000 [1:06:45<1:56:52, 2.37s/it]
41%|████ | 2048/5000 [1:06:47<1:56:52, 2.38s/it]
41%|████ | 2048/5000 [1:06:47<1:56:52, 2.38s/it]
41%|████ | 2049/5000 [1:06:50<1:52:26, 2.29s/it]
41%|████ | 2049/5000 [1:06:50<1:52:26, 2.29s/it]
41%|████ | 2050/5000 [1:06:51<1:44:57, 2.13s/it]
41%|████ | 2050/5000 [1:06:51<1:44:57, 2.13s/it]
41%|████ | 2051/5000 [1:06:53<1:43:35, 2.11s/it]
41%|████ | 2051/5000 [1:06:53<1:43:35, 2.11s/it]
41%|████ | 2052/5000 [1:06:55<1:40:27, 2.04s/it]
41%|████ | 2052/5000 [1:06:55<1:40:27, 2.04s/it]
41%|████ | 2053/5000 [1:06:57<1:39:27, 2.02s/it]
41%|████ | 2053/5000 [1:06:57<1:39:27, 2.02s/it]
41%|████ | 2054/5000 [1:06:59<1:39:17, 2.02s/it]
41%|████ | 2054/5000 [1:06:59<1:39:17, 2.02s/it]
41%|████ | 2055/5000 [1:07:01<1:39:13, 2.02s/it]
41%|████ | 2055/5000 [1:07:01<1:39:13, 2.02s/it]
41%|████ | 2056/5000 [1:07:03<1:35:18, 1.94s/it]
41%|████ | 2056/5000 [1:07:03<1:35:18, 1.94s/it]
41%|████ | 2057/5000 [1:07:05<1:33:54, 1.91s/it]
41%|████ | 2057/5000 [1:07:05<1:33:54, 1.91s/it]
41%|████ | 2058/5000 [1:07:07<1:32:01, 1.88s/it]
41%|████ | 2058/5000 [1:07:07<1:32:01, 1.88s/it]
41%|████ | 2059/5000 [1:07:09<1:35:17, 1.94s/it]
41%|████ | 2059/5000 [1:07:09<1:35:17, 1.94s/it]
41%|████ | 2060/5000 [1:07:11<1:32:49, 1.89s/it]
41%|████ | 2060/5000 [1:07:11<1:32:49, 1.89s/it]
41%|████ | 2061/5000 [1:07:12<1:30:55, 1.86s/it]
41%|████ | 2061/5000 [1:07:12<1:30:55, 1.86s/it]
41%|████ | 2062/5000 [1:07:14<1:28:49, 1.81s/it]
41%|████ | 2062/5000 [1:07:14<1:28:49, 1.81s/it]
41%|████▏ | 2063/5000 [1:07:16<1:24:42, 1.73s/it]
41%|████▏ | 2063/5000 [1:07:16<1:24:42, 1.73s/it]
41%|████▏ | 2064/5000 [1:07:17<1:24:42, 1.73s/it]
41%|████▏ | 2064/5000 [1:07:17<1:24:42, 1.73s/it]
41%|████▏ | 2065/5000 [1:07:19<1:22:29, 1.69s/it]
41%|████▏ | 2065/5000 [1:07:19<1:22:29, 1.69s/it]
41%|████▏ | 2066/5000 [1:07:20<1:14:57, 1.53s/it]
41%|████▏ | 2066/5000 [1:07:20<1:14:57, 1.53s/it]
41%|████▏ | 2067/5000 [1:07:21<1:11:29, 1.46s/it]
41%|████▏ | 2067/5000 [1:07:21<1:11:29, 1.46s/it]
41%|████▏ | 2068/5000 [1:07:23<1:08:53, 1.41s/it]
41%|████▏ | 2068/5000 [1:07:23<1:08:53, 1.41s/it]
41%|████▏ | 2069/5000 [1:07:24<1:07:16, 1.38s/it]
41%|████▏ | 2069/5000 [1:07:24<1:07:16, 1.38s/it]
41%|████▏ | 2070/5000 [1:07:25<1:07:34, 1.38s/it]
41%|████▏ | 2070/5000 [1:07:25<1:07:34, 1.38s/it]
41%|████▏ | 2071/5000 [1:07:27<1:04:57, 1.33s/it]
41%|████▏ | 2071/5000 [1:07:27<1:04:57, 1.33s/it]
41%|████▏ | 2072/5000 [1:07:27<58:47, 1.20s/it]
41%|████▏ | 2072/5000 [1:07:27<58:47, 1.20s/it]
41%|████▏ | 2073/5000 [1:07:28<55:19, 1.13s/it]
41%|████▏ | 2073/5000 [1:07:28<55:19, 1.13s/it]
41%|████▏ | 2074/5000 [1:07:29<52:00, 1.07s/it]
41%|████▏ | 2074/5000 [1:07:29<52:00, 1.07s/it]
42%|████▏ | 2075/5000 [1:07:33<1:25:02, 1.74s/it]
42%|████▏ | 2075/5000 [1:07:33<1:25:02, 1.74s/it]
42%|████▏ | 2076/5000 [1:07:41<3:06:40, 3.83s/it]
42%|████▏ | 2076/5000 [1:07:41<3:06:40, 3.83s/it]
42%|████▏ | 2077/5000 [1:07:46<3:23:39, 4.18s/it]
42%|████▏ | 2077/5000 [1:07:46<3:23:39, 4.18s/it]
42%|████▏ | 2078/5000 [1:07:51<3:24:00, 4.19s/it]
42%|████▏ | 2078/5000 [1:07:51<3:24:00, 4.19s/it]
42%|████▏ | 2079/5000 [1:07:55<3:20:24, 4.12s/it]
42%|████▏ | 2079/5000 [1:07:55<3:20:24, 4.12s/it]
42%|████▏ | 2080/5000 [1:07:58<3:08:12, 3.87s/it]
42%|████▏ | 2080/5000 [1:07:58<3:08:12, 3.87s/it]
42%|████▏ | 2081/5000 [1:08:01<3:04:05, 3.78s/it]
42%|████▏ | 2081/5000 [1:08:01<3:04:05, 3.78s/it]
42%|████▏ | 2082/5000 [1:08:05<2:57:44, 3.65s/it]
42%|████▏ | 2082/5000 [1:08:05<2:57:44, 3.65s/it]
42%|████▏ | 2083/5000 [1:08:08<2:54:51, 3.60s/it]
42%|████▏ | 2083/5000 [1:08:08<2:54:51, 3.60s/it]
42%|████▏ | 2084/5000 [1:08:11<2:47:13, 3.44s/it]
42%|████▏ | 2084/5000 [1:08:11<2:47:13, 3.44s/it]
42%|████▏ | 2085/5000 [1:08:14<2:40:31, 3.30s/it]
42%|████▏ | 2085/5000 [1:08:14<2:40:31, 3.30s/it]
42%|████▏ | 2086/5000 [1:08:17<2:36:16, 3.22s/it]
42%|████▏ | 2086/5000 [1:08:17<2:36:16, 3.22s/it]
42%|████▏ | 2087/5000 [1:08:20<2:32:37, 3.14s/it]
42%|████▏ | 2087/5000 [1:08:20<2:32:37, 3.14s/it]
42%|████▏ | 2088/5000 [1:08:23<2:24:51, 2.98s/it]
42%|████▏ | 2088/5000 [1:08:23<2:24:51, 2.98s/it]
42%|████▏ | 2089/5000 [1:08:26<2:20:13, 2.89s/it]
42%|████▏ | 2089/5000 [1:08:26<2:20:13, 2.89s/it]
42%|████▏ | 2090/5000 [1:08:28<2:16:21, 2.81s/it]
42%|████▏ | 2090/5000 [1:08:28<2:16:21, 2.81s/it]
42%|████▏ | 2091/5000 [1:08:31<2:14:30, 2.77s/it]
42%|████▏ | 2091/5000 [1:08:31<2:14:30, 2.77s/it]
42%|████▏ | 2092/5000 [1:08:33<2:10:20, 2.69s/it]
42%|████▏ | 2092/5000 [1:08:33<2:10:20, 2.69s/it]
42%|████▏ | 2093/5000 [1:08:36<2:02:28, 2.53s/it]
42%|████▏ | 2093/5000 [1:08:36<2:02:28, 2.53s/it]
42%|████▏ | 2094/5000 [1:08:38<2:00:35, 2.49s/it]
42%|████▏ | 2094/5000 [1:08:38<2:00:35, 2.49s/it]
42%|████▏ | 2095/5000 [1:08:40<1:56:46, 2.41s/it]
42%|████▏ | 2095/5000 [1:08:40<1:56:46, 2.41s/it]
42%|████▏ | 2096/5000 [1:08:42<1:54:49, 2.37s/it]
42%|████▏ | 2096/5000 [1:08:42<1:54:49, 2.37s/it]
42%|████▏ | 2097/5000 [1:08:45<1:54:17, 2.36s/it]
42%|████▏ | 2097/5000 [1:08:45<1:54:17, 2.36s/it]
42%|████▏ | 2098/5000 [1:08:47<1:54:43, 2.37s/it]
42%|████▏ | 2098/5000 [1:08:47<1:54:43, 2.37s/it]
42%|████▏ | 2099/5000 [1:08:49<1:49:29, 2.26s/it]
42%|████▏ | 2099/5000 [1:08:49<1:49:29, 2.26s/it]
42%|████▏ | 2100/5000 [1:08:51<1:44:28, 2.16s/it]
42%|████▏ | 2100/5000 [1:08:51<1:44:28, 2.16s/it]
42%|████▏ | 2101/5000 [1:08:53<1:40:39, 2.08s/it]
42%|████▏ | 2101/5000 [1:08:53<1:40:39, 2.08s/it]
42%|████▏ | 2102/5000 [1:08:55<1:39:21, 2.06s/it]
42%|████▏ | 2102/5000 [1:08:55<1:39:21, 2.06s/it]
42%|████▏ | 2103/5000 [1:08:57<1:38:07, 2.03s/it]
42%|████▏ | 2103/5000 [1:08:57<1:38:07, 2.03s/it]
42%|████▏ | 2104/5000 [1:08:59<1:36:52, 2.01s/it]
42%|████▏ | 2104/5000 [1:08:59<1:36:52, 2.01s/it]
42%|████▏ | 2105/5000 [1:09:01<1:33:19, 1.93s/it]
42%|████▏ | 2105/5000 [1:09:01<1:33:19, 1.93s/it]
42%|████▏ | 2106/5000 [1:09:03<1:33:58, 1.95s/it]
42%|████▏ | 2106/5000 [1:09:03<1:33:58, 1.95s/it]
42%|████▏ | 2107/5000 [1:09:04<1:31:40, 1.90s/it]
42%|████▏ | 2107/5000 [1:09:04<1:31:40, 1.90s/it]
42%|████▏ | 2108/5000 [1:09:06<1:27:44, 1.82s/it]
42%|████▏ | 2108/5000 [1:09:06<1:27:44, 1.82s/it]
42%|████▏ | 2109/5000 [1:09:08<1:28:17, 1.83s/it]
42%|████▏ | 2109/5000 [1:09:08<1:28:17, 1.83s/it]
42%|████▏ | 2110/5000 [1:09:10<1:25:36, 1.78s/it]
42%|████▏ | 2110/5000 [1:09:10<1:25:36, 1.78s/it]
42%|████▏ | 2111/5000 [1:09:11<1:23:42, 1.74s/it]
42%|████▏ | 2111/5000 [1:09:11<1:23:42, 1.74s/it]
42%|████▏ | 2112/5000 [1:09:13<1:21:18, 1.69s/it]
42%|████▏ | 2112/5000 [1:09:13<1:21:18, 1.69s/it]
42%|████▏ | 2113/5000 [1:09:15<1:24:46, 1.76s/it]
42%|████▏ | 2113/5000 [1:09:15<1:24:46, 1.76s/it]
42%|████▏ | 2114/5000 [1:09:16<1:22:56, 1.72s/it]
42%|████▏ | 2114/5000 [1:09:16<1:22:56, 1.72s/it]
42%|████▏ | 2115/5000 [1:09:18<1:19:55, 1.66s/it]
42%|████▏ | 2115/5000 [1:09:18<1:19:55, 1.66s/it]
42%|████▏ | 2116/5000 [1:09:19<1:17:20, 1.61s/it]
42%|████▏ | 2116/5000 [1:09:19<1:17:20, 1.61s/it]
42%|████▏ | 2117/5000 [1:09:21<1:11:57, 1.50s/it]
42%|████▏ | 2117/5000 [1:09:21<1:11:57, 1.50s/it]
42%|████▏ | 2118/5000 [1:09:22<1:07:28, 1.40s/it]
42%|████▏ | 2118/5000 [1:09:22<1:07:28, 1.40s/it]
42%|████▏ | 2119/5000 [1:09:23<1:05:10, 1.36s/it]
42%|████▏ | 2119/5000 [1:09:23<1:05:10, 1.36s/it]
42%|████▏ | 2120/5000 [1:09:24<1:04:46, 1.35s/it]
42%|████▏ | 2120/5000 [1:09:24<1:04:46, 1.35s/it]
42%|████▏ | 2121/5000 [1:09:26<1:03:15, 1.32s/it]
42%|████▏ | 2121/5000 [1:09:26<1:03:15, 1.32s/it]
42%|████▏ | 2122/5000 [1:09:27<58:37, 1.22s/it]
42%|████▏ | 2122/5000 [1:09:27<58:37, 1.22s/it]
42%|████▏ | 2123/5000 [1:09:28<53:54, 1.12s/it]
42%|████▏ | 2123/5000 [1:09:28<53:54, 1.12s/it]
42%|████▏ | 2124/5000 [1:09:29<52:25, 1.09s/it]
42%|████▏ | 2124/5000 [1:09:29<52:25, 1.09s/it]
42%|████▎ | 2125/5000 [1:09:32<1:29:14, 1.86s/it]
42%|████▎ | 2125/5000 [1:09:32<1:29:14, 1.86s/it]
43%|████▎ | 2126/5000 [1:09:44<3:46:40, 4.73s/it]
43%|████▎ | 2126/5000 [1:09:44<3:46:40, 4.73s/it]
43%|████▎ | 2127/5000 [1:09:49<3:50:29, 4.81s/it]
43%|████▎ | 2127/5000 [1:09:49<3:50:29, 4.81s/it]
43%|████▎ | 2128/5000 [1:09:53<3:45:11, 4.70s/it]
43%|████▎ | 2128/5000 [1:09:53<3:45:11, 4.70s/it]
43%|████▎ | 2129/5000 [1:09:57<3:35:43, 4.51s/it]
43%|████▎ | 2129/5000 [1:09:57<3:35:43, 4.51s/it]
43%|████▎ | 2130/5000 [1:10:01<3:24:47, 4.28s/it]
43%|████▎ | 2130/5000 [1:10:01<3:24:47, 4.28s/it]
43%|████▎ | 2131/5000 [1:10:04<3:14:20, 4.06s/it]
43%|████▎ | 2131/5000 [1:10:04<3:14:20, 4.06s/it]
43%|████▎ | 2132/5000 [1:10:08<3:08:10, 3.94s/it]
43%|████▎ | 2132/5000 [1:10:08<3:08:10, 3.94s/it]
43%|████▎ | 2133/5000 [1:10:11<2:58:20, 3.73s/it]
43%|████▎ | 2133/5000 [1:10:11<2:58:20, 3.73s/it]
43%|████▎ | 2134/5000 [1:10:15<2:52:28, 3.61s/it]
43%|████▎ | 2134/5000 [1:10:15<2:52:28, 3.61s/it]
43%|████▎ | 2135/5000 [1:10:18<2:44:54, 3.45s/it]
43%|████▎ | 2135/5000 [1:10:18<2:44:54, 3.45s/it]
43%|████▎ | 2136/5000 [1:10:21<2:38:30, 3.32s/it]
43%|████▎ | 2136/5000 [1:10:21<2:38:30, 3.32s/it]
43%|████▎ | 2137/5000 [1:10:24<2:33:04, 3.21s/it]
43%|████▎ | 2137/5000 [1:10:24<2:33:04, 3.21s/it]
43%|████▎ | 2138/5000 [1:10:27<2:36:25, 3.28s/it]
43%|████▎ | 2138/5000 [1:10:27<2:36:25, 3.28s/it]
43%|████▎ | 2139/5000 [1:10:30<2:27:21, 3.09s/it]
43%|████▎ | 2139/5000 [1:10:30<2:27:21, 3.09s/it]
43%|████▎ | 2140/5000 [1:10:32<2:18:42, 2.91s/it]
43%|████▎ | 2140/5000 [1:10:32<2:18:42, 2.91s/it]
43%|████▎ | 2141/5000 [1:10:35<2:14:43, 2.83s/it]
43%|████▎ | 2141/5000 [1:10:35<2:14:43, 2.83s/it]
43%|████▎ | 2142/5000 [1:10:38<2:14:10, 2.82s/it]
43%|████▎ | 2142/5000 [1:10:38<2:14:10, 2.82s/it]
43%|████▎ | 2143/5000 [1:10:40<2:10:58, 2.75s/it]
43%|████▎ | 2143/5000 [1:10:40<2:10:58, 2.75s/it]
43%|████▎ | 2144/5000 [1:10:43<2:05:07, 2.63s/it]
43%|████▎ | 2144/5000 [1:10:43<2:05:07, 2.63s/it]
43%|████▎ | 2145/5000 [1:10:45<1:58:16, 2.49s/it]
43%|████▎ | 2145/5000 [1:10:45<1:58:16, 2.49s/it]
43%|████▎ | 2146/5000 [1:10:47<1:54:33, 2.41s/it]
43%|████▎ | 2146/5000 [1:10:47<1:54:33, 2.41s/it]
43%|████▎ | 2147/5000 [1:10:49<1:52:07, 2.36s/it]
43%|████▎ | 2147/5000 [1:10:49<1:52:07, 2.36s/it]
43%|████▎ | 2148/5000 [1:10:52<1:52:06, 2.36s/it]
43%|████▎ | 2148/5000 [1:10:52<1:52:06, 2.36s/it]
43%|████▎ | 2149/5000 [1:10:54<1:46:42, 2.25s/it]
43%|████▎ | 2149/5000 [1:10:54<1:46:42, 2.25s/it]
43%|████▎ | 2150/5000 [1:10:56<1:43:07, 2.17s/it]
43%|████▎ | 2150/5000 [1:10:56<1:43:07, 2.17s/it]
43%|████▎ | 2151/5000 [1:10:58<1:39:36, 2.10s/it]
43%|████▎ | 2151/5000 [1:10:58<1:39:36, 2.10s/it]
43%|████▎ | 2152/5000 [1:11:00<1:37:55, 2.06s/it]
43%|████▎ | 2152/5000 [1:11:00<1:37:55, 2.06s/it]
43%|████▎ | 2153/5000 [1:11:01<1:36:08, 2.03s/it]
43%|████▎ | 2153/5000 [1:11:01<1:36:08, 2.03s/it]
43%|████▎ | 2154/5000 [1:11:03<1:34:41, 2.00s/it]
43%|████▎ | 2154/5000 [1:11:03<1:34:41, 2.00s/it]
43%|████▎ | 2155/5000 [1:11:05<1:32:19, 1.95s/it]
43%|████▎ | 2155/5000 [1:11:05<1:32:19, 1.95s/it]
43%|████▎ | 2156/5000 [1:11:07<1:33:44, 1.98s/it]
43%|████▎ | 2156/5000 [1:11:07<1:33:44, 1.98s/it]
43%|████▎ | 2157/5000 [1:11:09<1:32:16, 1.95s/it]
43%|████▎ | 2157/5000 [1:11:09<1:32:16, 1.95s/it]
43%|████▎ | 2158/5000 [1:11:11<1:28:27, 1.87s/it]
43%|████▎ | 2158/5000 [1:11:11<1:28:27, 1.87s/it]
43%|████▎ | 2159/5000 [1:11:12<1:25:21, 1.80s/it]
43%|████▎ | 2159/5000 [1:11:13<1:25:21, 1.80s/it]
43%|████▎ | 2160/5000 [1:11:14<1:22:11, 1.74s/it]
43%|████▎ | 2160/5000 [1:11:14<1:22:11, 1.74s/it]
43%|████▎ | 2161/5000 [1:11:16<1:21:23, 1.72s/it]
43%|████▎ | 2161/5000 [1:11:16<1:21:23, 1.72s/it]
43%|████▎ | 2162/5000 [1:11:17<1:18:09, 1.65s/it]
43%|████▎ | 2162/5000 [1:11:17<1:18:09, 1.65s/it]
43%|████▎ | 2163/5000 [1:11:19<1:18:03, 1.65s/it]
43%|████▎ | 2163/5000 [1:11:19<1:18:03, 1.65s/it]
43%|████▎ | 2164/5000 [1:11:20<1:15:47, 1.60s/it]
43%|████▎ | 2164/5000 [1:11:20<1:15:47, 1.60s/it]
43%|████▎ | 2165/5000 [1:11:22<1:15:59, 1.61s/it]
43%|████▎ | 2165/5000 [1:11:22<1:15:59, 1.61s/it]
43%|████▎ | 2166/5000 [1:11:23<1:12:46, 1.54s/it]
43%|████▎ | 2166/5000 [1:11:23<1:12:46, 1.54s/it]
43%|████▎ | 2167/5000 [1:11:25<1:09:27, 1.47s/it]
43%|████▎ | 2167/5000 [1:11:25<1:09:27, 1.47s/it]
43%|████▎ | 2168/5000 [1:11:26<1:06:24, 1.41s/it]
43%|████▎ | 2168/5000 [1:11:26<1:06:24, 1.41s/it]
43%|████▎ | 2169/5000 [1:11:27<1:02:09, 1.32s/it]
43%|████▎ | 2169/5000 [1:11:27<1:02:09, 1.32s/it]
43%|████▎ | 2170/5000 [1:11:28<1:01:24, 1.30s/it]
43%|████▎ | 2170/5000 [1:11:28<1:01:24, 1.30s/it]
43%|████▎ | 2171/5000 [1:11:30<1:01:04, 1.30s/it]
43%|████▎ | 2171/5000 [1:11:30<1:01:04, 1.30s/it]
43%|████▎ | 2172/5000 [1:11:31<59:24, 1.26s/it]
43%|████▎ | 2172/5000 [1:11:31<59:24, 1.26s/it]
43%|████▎ | 2173/5000 [1:11:32<55:13, 1.17s/it]
43%|████▎ | 2173/5000 [1:11:32<55:13, 1.17s/it]
43%|████▎ | 2174/5000 [1:11:33<52:11, 1.11s/it]
43%|████▎ | 2174/5000 [1:11:33<52:11, 1.11s/it]
44%|████▎ | 2175/5000 [1:11:36<1:26:47, 1.84s/it]
44%|████▎ | 2175/5000 [1:11:36<1:26:47, 1.84s/it]
44%|████▎ | 2176/5000 [1:11:45<3:00:36, 3.84s/it]
44%|████▎ | 2176/5000 [1:11:45<3:00:36, 3.84s/it]
44%|████▎ | 2177/5000 [1:11:49<3:10:44, 4.05s/it]
44%|████▎ | 2177/5000 [1:11:49<3:10:44, 4.05s/it]
44%|████▎ | 2178/5000 [1:11:54<3:13:47, 4.12s/it]
44%|████▎ | 2178/5000 [1:11:54<3:13:47, 4.12s/it]
44%|████▎ | 2179/5000 [1:11:57<3:08:38, 4.01s/it]
44%|████▎ | 2179/5000 [1:11:57<3:08:38, 4.01s/it]
44%|████▎ | 2180/5000 [1:12:01<3:01:51, 3.87s/it]
44%|████▎ | 2180/5000 [1:12:01<3:01:51, 3.87s/it]
44%|████▎ | 2181/5000 [1:12:04<2:58:08, 3.79s/it]
44%|████▎ | 2181/5000 [1:12:05<2:58:08, 3.79s/it]
44%|████▎ | 2182/5000 [1:12:08<2:50:35, 3.63s/it]
44%|████▎ | 2182/5000 [1:12:08<2:50:35, 3.63s/it]
44%|████▎ | 2183/5000 [1:12:11<2:44:53, 3.51s/it]
44%|████▎ | 2183/5000 [1:12:11<2:44:53, 3.51s/it]
44%|████▎ | 2184/5000 [1:12:14<2:39:45, 3.40s/it]
44%|████▎ | 2184/5000 [1:12:14<2:39:45, 3.40s/it]
44%|████▎ | 2185/5000 [1:12:17<2:30:14, 3.20s/it]
44%|████▎ | 2185/5000 [1:12:17<2:30:14, 3.20s/it]
44%|████▎ | 2186/5000 [1:12:20<2:26:55, 3.13s/it]
44%|████▎ | 2186/5000 [1:12:20<2:26:55, 3.13s/it]
44%|████▎ | 2187/5000 [1:12:23<2:23:49, 3.07s/it]
44%|████▎ | 2187/5000 [1:12:23<2:23:49, 3.07s/it]
44%|████▍ | 2188/5000 [1:12:25<2:17:47, 2.94s/it]
44%|████▍ | 2188/5000 [1:12:25<2:17:47, 2.94s/it]
44%|████▍ | 2189/5000 [1:12:28<2:11:43, 2.81s/it]
44%|████▍ | 2189/5000 [1:12:28<2:11:43, 2.81s/it]
44%|████▍ | 2190/5000 [1:12:31<2:09:31, 2.77s/it]
44%|████▍ | 2190/5000 [1:12:31<2:09:31, 2.77s/it]
44%|████▍ | 2191/5000 [1:12:33<2:08:51, 2.75s/it]
44%|████▍ | 2191/5000 [1:12:33<2:08:51, 2.75s/it]
44%|████▍ | 2192/5000 [1:12:36<2:06:23, 2.70s/it]
44%|████▍ | 2192/5000 [1:12:36<2:06:23, 2.70s/it]
44%|████▍ | 2193/5000 [1:12:39<2:05:41, 2.69s/it]
44%|████▍ | 2193/5000 [1:12:39<2:05:41, 2.69s/it]
44%|████▍ | 2194/5000 [1:12:41<1:59:55, 2.56s/it]
44%|████▍ | 2194/5000 [1:12:41<1:59:55, 2.56s/it]
44%|████▍ | 2195/5000 [1:12:43<1:53:59, 2.44s/it]
44%|████▍ | 2195/5000 [1:12:43<1:53:59, 2.44s/it]
44%|████▍ | 2196/5000 [1:12:45<1:49:48, 2.35s/it]
44%|████▍ | 2196/5000 [1:12:45<1:49:48, 2.35s/it]
44%|████▍ | 2197/5000 [1:12:48<1:51:53, 2.40s/it]
44%|████▍ | 2197/5000 [1:12:48<1:51:53, 2.40s/it]
44%|████▍ | 2198/5000 [1:12:50<1:48:56, 2.33s/it]
44%|████▍ | 2198/5000 [1:12:50<1:48:56, 2.33s/it]
44%|████▍ | 2199/5000 [1:12:52<1:47:40, 2.31s/it]
44%|████▍ | 2199/5000 [1:12:52<1:47:40, 2.31s/it]
44%|████▍ | 2200/5000 [1:12:54<1:42:29, 2.20s/it]
44%|████▍ | 2200/5000 [1:12:54<1:42:29, 2.20s/it]
44%|████▍ | 2201/5000 [1:12:56<1:35:54, 2.06s/it]
44%|████▍ | 2201/5000 [1:12:56<1:35:54, 2.06s/it]
44%|████▍ | 2202/5000 [1:12:57<1:32:02, 1.97s/it]
44%|████▍ | 2202/5000 [1:12:57<1:32:02, 1.97s/it]
44%|████▍ | 2203/5000 [1:12:59<1:29:48, 1.93s/it]
44%|████▍ | 2203/5000 [1:12:59<1:29:48, 1.93s/it]
44%|████▍ | 2204/5000 [1:13:01<1:29:28, 1.92s/it]
44%|████▍ | 2204/5000 [1:13:01<1:29:28, 1.92s/it]
44%|████▍ | 2205/5000 [1:13:03<1:28:41, 1.90s/it]
44%|████▍ | 2205/5000 [1:13:03<1:28:41, 1.90s/it]
44%|████▍ | 2206/5000 [1:13:05<1:29:13, 1.92s/it]
44%|████▍ | 2206/5000 [1:13:05<1:29:13, 1.92s/it]
44%|████▍ | 2207/5000 [1:13:07<1:28:04, 1.89s/it]
44%|████▍ | 2207/5000 [1:13:07<1:28:04, 1.89s/it]
44%|████▍ | 2208/5000 [1:13:08<1:24:30, 1.82s/it]
44%|████▍ | 2208/5000 [1:13:09<1:24:30, 1.82s/it]
44%|████▍ | 2209/5000 [1:13:10<1:21:04, 1.74s/it]
44%|████▍ | 2209/5000 [1:13:10<1:21:04, 1.74s/it]
44%|████▍ | 2210/5000 [1:13:12<1:19:28, 1.71s/it]
44%|████▍ | 2210/5000 [1:13:12<1:19:28, 1.71s/it]
44%|████▍ | 2211/5000 [1:13:13<1:19:33, 1.71s/it]
44%|████▍ | 2211/5000 [1:13:13<1:19:33, 1.71s/it]
44%|████▍ | 2212/5000 [1:13:15<1:15:40, 1.63s/it]
44%|████▍ | 2212/5000 [1:13:15<1:15:40, 1.63s/it]
44%|████▍ | 2213/5000 [1:13:17<1:17:21, 1.67s/it]
44%|████▍ | 2213/5000 [1:13:17<1:17:21, 1.67s/it]
44%|████▍ | 2214/5000 [1:13:18<1:16:37, 1.65s/it]
44%|████▍ | 2214/5000 [1:13:18<1:16:37, 1.65s/it]
44%|████▍ | 2215/5000 [1:13:20<1:16:35, 1.65s/it]
44%|████▍ | 2215/5000 [1:13:20<1:16:35, 1.65s/it]
44%|████▍ | 2216/5000 [1:13:21<1:12:03, 1.55s/it]
44%|████▍ | 2216/5000 [1:13:21<1:12:03, 1.55s/it]
44%|████▍ | 2217/5000 [1:13:22<1:06:38, 1.44s/it]
44%|████▍ | 2217/5000 [1:13:22<1:06:38, 1.44s/it]
44%|████▍ | 2218/5000 [1:13:24<1:02:52, 1.36s/it]
44%|████▍ | 2218/5000 [1:13:24<1:02:52, 1.36s/it]
44%|████▍ | 2219/5000 [1:13:25<1:01:03, 1.32s/it]
44%|████▍ | 2219/5000 [1:13:25<1:01:03, 1.32s/it]
44%|████▍ | 2220/5000 [1:13:26<58:27, 1.26s/it]
44%|████▍ | 2220/5000 [1:13:26<58:27, 1.26s/it]
44%|████▍ | 2221/5000 [1:13:27<56:57, 1.23s/it]
44%|████▍ | 2221/5000 [1:13:27<56:57, 1.23s/it]
44%|████▍ | 2222/5000 [1:13:28<52:01, 1.12s/it]
44%|████▍ | 2222/5000 [1:13:28<52:01, 1.12s/it]
44%|████▍ | 2223/5000 [1:13:29<48:16, 1.04s/it]
44%|████▍ | 2223/5000 [1:13:29<48:16, 1.04s/it]
44%|████▍ | 2224/5000 [1:13:30<47:12, 1.02s/it]
44%|████▍ | 2224/5000 [1:13:30<47:12, 1.02s/it]
44%|████▍ | 2225/5000 [1:13:33<1:22:07, 1.78s/it]
44%|████▍ | 2225/5000 [1:13:33<1:22:07, 1.78s/it]
45%|████▍ | 2226/5000 [1:13:43<3:14:13, 4.20s/it]
45%|████▍ | 2226/5000 [1:13:43<3:14:13, 4.20s/it]
45%|████▍ | 2227/5000 [1:13:48<3:28:13, 4.51s/it]
45%|████▍ | 2227/5000 [1:13:48<3:28:13, 4.51s/it]
45%|████▍ | 2228/5000 [1:13:53<3:27:29, 4.49s/it]
45%|████▍ | 2228/5000 [1:13:53<3:27:29, 4.49s/it]
45%|████▍ | 2229/5000 [1:13:57<3:20:54, 4.35s/it]
45%|████▍ | 2229/5000 [1:13:57<3:20:54, 4.35s/it]
45%|████▍ | 2230/5000 [1:14:00<3:10:30, 4.13s/it]
45%|████▍ | 2230/5000 [1:14:00<3:10:30, 4.13s/it]
45%|████▍ | 2231/5000 [1:14:04<3:01:23, 3.93s/it]
45%|████▍ | 2231/5000 [1:14:04<3:01:23, 3.93s/it]
45%|████▍ | 2232/5000 [1:14:07<2:53:08, 3.75s/it]
45%|████▍ | 2232/5000 [1:14:07<2:53:08, 3.75s/it]
45%|████▍ | 2233/5000 [1:14:10<2:44:42, 3.57s/it]
45%|████▍ | 2233/5000 [1:14:10<2:44:42, 3.57s/it]
45%|████▍ | 2234/5000 [1:14:13<2:37:26, 3.42s/it]
45%|████▍ | 2234/5000 [1:14:13<2:37:26, 3.42s/it]
45%|████▍ | 2235/5000 [1:14:16<2:32:14, 3.30s/it]
45%|████▍ | 2235/5000 [1:14:16<2:32:14, 3.30s/it]
45%|████▍ | 2236/5000 [1:14:19<2:28:03, 3.21s/it]
45%|████▍ | 2236/5000 [1:14:20<2:28:03, 3.21s/it]
45%|████▍ | 2237/5000 [1:14:22<2:24:39, 3.14s/it]
45%|████▍ | 2237/5000 [1:14:22<2:24:39, 3.14s/it]
45%|████▍ | 2238/5000 [1:14:25<2:18:54, 3.02s/it]
45%|████▍ | 2238/5000 [1:14:25<2:18:54, 3.02s/it]
45%|████▍ | 2239/5000 [1:14:28<2:14:15, 2.92s/it]
45%|████▍ | 2239/5000 [1:14:28<2:14:15, 2.92s/it]
45%|████▍ | 2240/5000 [1:14:30<2:05:15, 2.72s/it]
45%|████▍ | 2240/5000 [1:14:30<2:05:15, 2.72s/it]
45%|████▍ | 2241/5000 [1:14:33<2:02:12, 2.66s/it]
45%|████▍ | 2241/5000 [1:14:33<2:02:12, 2.66s/it]
45%|████▍ | 2242/5000 [1:14:35<2:04:31, 2.71s/it]
45%|████▍ | 2242/5000 [1:14:35<2:04:31, 2.71s/it]
45%|████▍ | 2243/5000 [1:14:38<1:58:38, 2.58s/it]
45%|████▍ | 2243/5000 [1:14:38<1:58:38, 2.58s/it]
45%|████▍ | 2244/5000 [1:14:40<1:56:36, 2.54s/it]
45%|████▍ | 2244/5000 [1:14:40<1:56:36, 2.54s/it]
45%|████▍ | 2245/5000 [1:14:43<1:55:20, 2.51s/it]
45%|████▍ | 2245/5000 [1:14:43<1:55:20, 2.51s/it]
45%|████▍ | 2246/5000 [1:14:45<1:52:21, 2.45s/it]
45%|████▍ | 2246/5000 [1:14:45<1:52:21, 2.45s/it]
45%|████▍ | 2247/5000 [1:14:47<1:47:27, 2.34s/it]
45%|████▍ | 2247/5000 [1:14:47<1:47:27, 2.34s/it]
45%|████▍ | 2248/5000 [1:14:49<1:45:24, 2.30s/it]
45%|████▍ | 2248/5000 [1:14:49<1:45:24, 2.30s/it]
45%|████▍ | 2249/5000 [1:14:51<1:43:26, 2.26s/it]
45%|████▍ | 2249/5000 [1:14:51<1:43:26, 2.26s/it]
45%|████▌ | 2250/5000 [1:14:53<1:40:47, 2.20s/it]
45%|████▌ | 2250/5000 [1:14:53<1:40:47, 2.20s/it]
45%|████▌ | 2251/5000 [1:14:55<1:35:35, 2.09s/it]
45%|████▌ | 2251/5000 [1:14:55<1:35:35, 2.09s/it]
45%|████▌ | 2252/5000 [1:14:57<1:33:05, 2.03s/it]
45%|████▌ | 2252/5000 [1:14:57<1:33:05, 2.03s/it]
45%|████▌ | 2253/5000 [1:14:59<1:29:41, 1.96s/it]
45%|████▌ | 2253/5000 [1:14:59<1:29:41, 1.96s/it]
45%|████▌ | 2254/5000 [1:15:01<1:29:48, 1.96s/it]
45%|████▌ | 2254/5000 [1:15:01<1:29:48, 1.96s/it]
45%|████▌ | 2255/5000 [1:15:03<1:27:56, 1.92s/it]
45%|████▌ | 2255/5000 [1:15:03<1:27:56, 1.92s/it]
45%|████▌ | 2256/5000 [1:15:05<1:26:16, 1.89s/it]
45%|████▌ | 2256/5000 [1:15:05<1:26:16, 1.89s/it]
45%|████▌ | 2257/5000 [1:15:07<1:27:33, 1.92s/it]
45%|████▌ | 2257/5000 [1:15:07<1:27:33, 1.92s/it]
45%|████▌ | 2258/5000 [1:15:08<1:25:30, 1.87s/it]
45%|████▌ | 2258/5000 [1:15:08<1:25:30, 1.87s/it]
45%|████▌ | 2259/5000 [1:15:10<1:22:19, 1.80s/it]
45%|████▌ | 2259/5000 [1:15:10<1:22:19, 1.80s/it]
45%|████▌ | 2260/5000 [1:15:12<1:19:39, 1.74s/it]
45%|████▌ | 2260/5000 [1:15:12<1:19:39, 1.74s/it]
45%|████▌ | 2261/5000 [1:15:13<1:17:20, 1.69s/it]
45%|████▌ | 2261/5000 [1:15:13<1:17:20, 1.69s/it]
45%|████▌ | 2262/5000 [1:15:15<1:15:52, 1.66s/it]
45%|████▌ | 2262/5000 [1:15:15<1:15:52, 1.66s/it]
45%|████▌ | 2263/5000 [1:15:16<1:14:24, 1.63s/it]
45%|████▌ | 2263/5000 [1:15:16<1:14:24, 1.63s/it]
45%|████▌ | 2264/5000 [1:15:18<1:13:13, 1.61s/it]
45%|████▌ | 2264/5000 [1:15:18<1:13:13, 1.61s/it]
45%|████▌ | 2265/5000 [1:15:19<1:12:34, 1.59s/it]
45%|████▌ | 2265/5000 [1:15:19<1:12:34, 1.59s/it]
45%|████▌ | 2266/5000 [1:15:21<1:10:18, 1.54s/it]
45%|████▌ | 2266/5000 [1:15:21<1:10:18, 1.54s/it]
45%|████▌ | 2267/5000 [1:15:22<1:06:27, 1.46s/it]
45%|████▌ | 2267/5000 [1:15:22<1:06:27, 1.46s/it]
45%|████▌ | 2268/5000 [1:15:23<1:04:10, 1.41s/it]
45%|████▌ | 2268/5000 [1:15:23<1:04:10, 1.41s/it]
45%|████▌ | 2269/5000 [1:15:25<1:00:50, 1.34s/it]
45%|████▌ | 2269/5000 [1:15:25<1:00:50, 1.34s/it]
45%|████▌ | 2270/5000 [1:15:26<58:50, 1.29s/it]
45%|████▌ | 2270/5000 [1:15:26<58:50, 1.29s/it]
45%|████▌ | 2271/5000 [1:15:27<58:13, 1.28s/it]
45%|████▌ | 2271/5000 [1:15:27<58:13, 1.28s/it]
45%|████▌ | 2272/5000 [1:15:28<56:04, 1.23s/it]
45%|████▌ | 2272/5000 [1:15:28<56:04, 1.23s/it]
45%|████▌ | 2273/5000 [1:15:29<51:41, 1.14s/it]
45%|████▌ | 2273/5000 [1:15:29<51:41, 1.14s/it]
45%|████▌ | 2274/5000 [1:15:30<47:26, 1.04s/it]
45%|████▌ | 2274/5000 [1:15:30<47:26, 1.04s/it]
46%|████▌ | 2275/5000 [1:15:33<1:16:37, 1.69s/it]
46%|████▌ | 2275/5000 [1:15:33<1:16:37, 1.69s/it]
46%|████▌ | 2276/5000 [1:15:40<2:29:22, 3.29s/it]
46%|████▌ | 2276/5000 [1:15:40<2:29:22, 3.29s/it]
46%|████▌ | 2277/5000 [1:15:45<2:46:54, 3.68s/it]
46%|████▌ | 2277/5000 [1:15:45<2:46:54, 3.68s/it]
46%|████▌ | 2278/5000 [1:15:49<2:52:26, 3.80s/it]
46%|████▌ | 2278/5000 [1:15:49<2:52:26, 3.80s/it]
46%|████▌ | 2279/5000 [1:15:52<2:51:37, 3.78s/it]
46%|████▌ | 2279/5000 [1:15:53<2:51:37, 3.78s/it]
46%|████▌ | 2280/5000 [1:15:56<2:47:37, 3.70s/it]
46%|████▌ | 2280/5000 [1:15:56<2:47:37, 3.70s/it]
46%|████▌ | 2281/5000 [1:15:59<2:41:59, 3.57s/it]
46%|████▌ | 2281/5000 [1:15:59<2:41:59, 3.57s/it]
46%|████▌ | 2282/5000 [1:16:02<2:35:29, 3.43s/it]
46%|████▌ | 2282/5000 [1:16:02<2:35:29, 3.43s/it]
46%|████▌ | 2283/5000 [1:16:05<2:29:50, 3.31s/it]
46%|████▌ | 2283/5000 [1:16:05<2:29:50, 3.31s/it]
46%|████▌ | 2284/5000 [1:16:08<2:21:52, 3.13s/it]
46%|████▌ | 2284/5000 [1:16:08<2:21:52, 3.13s/it]
46%|████▌ | 2285/5000 [1:16:11<2:16:30, 3.02s/it]
46%|████▌ | 2285/5000 [1:16:11<2:16:30, 3.02s/it]
46%|████▌ | 2286/5000 [1:16:14<2:17:41, 3.04s/it]
46%|████▌ | 2286/5000 [1:16:14<2:17:41, 3.04s/it]
46%|████▌ | 2287/5000 [1:16:17<2:13:22, 2.95s/it]
46%|████▌ | 2287/5000 [1:16:17<2:13:22, 2.95s/it]
46%|████▌ | 2288/5000 [1:16:20<2:11:35, 2.91s/it]
46%|████▌ | 2288/5000 [1:16:20<2:11:35, 2.91s/it]
46%|████▌ | 2289/5000 [1:16:22<2:05:14, 2.77s/it]
46%|████▌ | 2289/5000 [1:16:22<2:05:14, 2.77s/it]
46%|████▌ | 2290/5000 [1:16:24<2:01:07, 2.68s/it]
46%|████▌ | 2290/5000 [1:16:24<2:01:07, 2.68s/it]
46%|████▌ | 2291/5000 [1:16:27<1:56:19, 2.58s/it]
46%|████▌ | 2291/5000 [1:16:27<1:56:19, 2.58s/it]
46%|████▌ | 2292/5000 [1:16:29<1:55:57, 2.57s/it]
46%|████▌ | 2292/5000 [1:16:29<1:55:57, 2.57s/it]
46%|████▌ | 2293/5000 [1:16:31<1:49:54, 2.44s/it]
46%|████▌ | 2293/5000 [1:16:31<1:49:54, 2.44s/it]
46%|████▌ | 2294/5000 [1:16:34<1:48:34, 2.41s/it]
46%|████▌ | 2294/5000 [1:16:34<1:48:34, 2.41s/it]
46%|████▌ | 2295/5000 [1:16:36<1:45:23, 2.34s/it]
46%|████▌ | 2295/5000 [1:16:36<1:45:23, 2.34s/it]
46%|████▌ | 2296/5000 [1:16:38<1:42:23, 2.27s/it]
46%|████▌ | 2296/5000 [1:16:38<1:42:23, 2.27s/it]
46%|████▌ | 2297/5000 [1:16:40<1:42:40, 2.28s/it]
46%|████▌ | 2297/5000 [1:16:40<1:42:40, 2.28s/it]
46%|████▌ | 2298/5000 [1:16:43<1:41:50, 2.26s/it]
46%|████▌ | 2298/5000 [1:16:43<1:41:50, 2.26s/it]
46%|████▌ | 2299/5000 [1:16:45<1:41:15, 2.25s/it]
46%|████▌ | 2299/5000 [1:16:45<1:41:15, 2.25s/it]
46%|████▌ | 2300/5000 [1:16:47<1:37:59, 2.18s/it]
46%|████▌ | 2300/5000 [1:16:47<1:37:59, 2.18s/it]
46%|████▌ | 2301/5000 [1:16:49<1:31:49, 2.04s/it]
46%|████▌ | 2301/5000 [1:16:49<1:31:49, 2.04s/it]
46%|████▌ | 2302/5000 [1:16:50<1:29:24, 1.99s/it]
46%|████▌ | 2302/5000 [1:16:50<1:29:24, 1.99s/it]
46%|████▌ | 2303/5000 [1:16:52<1:25:18, 1.90s/it]
46%|████▌ | 2303/5000 [1:16:52<1:25:18, 1.90s/it]
46%|████▌ | 2304/5000 [1:16:54<1:24:30, 1.88s/it]
46%|████▌ | 2304/5000 [1:16:54<1:24:30, 1.88s/it]
46%|████▌ | 2305/5000 [1:16:56<1:24:45, 1.89s/it]
46%|████▌ | 2305/5000 [1:16:56<1:24:45, 1.89s/it]
46%|████▌ | 2306/5000 [1:16:58<1:23:53, 1.87s/it]
46%|████▌ | 2306/5000 [1:16:58<1:23:53, 1.87s/it]
46%|████▌ | 2307/5000 [1:16:59<1:22:55, 1.85s/it]
46%|████▌ | 2307/5000 [1:17:00<1:22:55, 1.85s/it]
46%|████▌ | 2308/5000 [1:17:01<1:20:01, 1.78s/it]
46%|████▌ | 2308/5000 [1:17:01<1:20:01, 1.78s/it]
46%|████▌ | 2309/5000 [1:17:03<1:17:25, 1.73s/it]
46%|████▌ | 2309/5000 [1:17:03<1:17:25, 1.73s/it]
46%|████▌ | 2310/5000 [1:17:04<1:16:03, 1.70s/it]
46%|████▌ | 2310/5000 [1:17:04<1:16:03, 1.70s/it]
46%|████▌ | 2311/5000 [1:17:06<1:12:46, 1.62s/it]
46%|████▌ | 2311/5000 [1:17:06<1:12:46, 1.62s/it]
46%|████▌ | 2312/5000 [1:17:07<1:10:25, 1.57s/it]
46%|████▌ | 2312/5000 [1:17:07<1:10:25, 1.57s/it]
46%|████▋ | 2313/5000 [1:17:09<1:08:15, 1.52s/it]
46%|████▋ | 2313/5000 [1:17:09<1:08:15, 1.52s/it]
46%|████▋ | 2314/5000 [1:17:10<1:07:06, 1.50s/it]
46%|████▋ | 2314/5000 [1:17:10<1:07:06, 1.50s/it]
46%|████▋ | 2315/5000 [1:17:12<1:07:28, 1.51s/it]
46%|████▋ | 2315/5000 [1:17:12<1:07:28, 1.51s/it]
46%|████▋ | 2316/5000 [1:17:13<1:04:39, 1.45s/it]
46%|████▋ | 2316/5000 [1:17:13<1:04:39, 1.45s/it]
46%|████▋ | 2317/5000 [1:17:14<1:03:11, 1.41s/it]
46%|████▋ | 2317/5000 [1:17:14<1:03:11, 1.41s/it]
46%|████▋ | 2318/5000 [1:17:15<1:00:28, 1.35s/it]
46%|████▋ | 2318/5000 [1:17:15<1:00:28, 1.35s/it]
46%|████▋ | 2319/5000 [1:17:17<57:06, 1.28s/it]
46%|████▋ | 2319/5000 [1:17:17<57:06, 1.28s/it]
46%|████▋ | 2320/5000 [1:17:18<55:51, 1.25s/it]
46%|████▋ | 2320/5000 [1:17:18<55:51, 1.25s/it]
46%|████▋ | 2321/5000 [1:17:19<54:22, 1.22s/it]
46%|████▋ | 2321/5000 [1:17:19<54:22, 1.22s/it]
46%|████▋ | 2322/5000 [1:17:20<51:57, 1.16s/it]
46%|████▋ | 2322/5000 [1:17:20<51:57, 1.16s/it]
46%|████▋ | 2323/5000 [1:17:21<47:21, 1.06s/it]
46%|████▋ | 2323/5000 [1:17:21<47:21, 1.06s/it]
46%|████▋ | 2324/5000 [1:17:22<44:17, 1.01it/s]
46%|████▋ | 2324/5000 [1:17:22<44:17, 1.01it/s]
46%|████▋ | 2325/5000 [1:17:25<1:09:54, 1.57s/it]
46%|████▋ | 2325/5000 [1:17:25<1:09:54, 1.57s/it]
47%|████▋ | 2326/5000 [1:17:32<2:33:43, 3.45s/it]
47%|████▋ | 2326/5000 [1:17:32<2:33:43, 3.45s/it]
47%|████▋ | 2327/5000 [1:17:37<2:52:10, 3.86s/it]
47%|████▋ | 2327/5000 [1:17:37<2:52:10, 3.86s/it]
47%|████▋ | 2328/5000 [1:17:41<2:56:38, 3.97s/it]
47%|████▋ | 2328/5000 [1:17:41<2:56:38, 3.97s/it]
47%|████▋ | 2329/5000 [1:17:45<2:55:12, 3.94s/it]
47%|████▋ | 2329/5000 [1:17:45<2:55:12, 3.94s/it]
47%|████▋ | 2330/5000 [1:17:49<2:50:17, 3.83s/it]
47%|████▋ | 2330/5000 [1:17:49<2:50:17, 3.83s/it]
47%|████▋ | 2331/5000 [1:17:52<2:44:54, 3.71s/it]
47%|████▋ | 2331/5000 [1:17:52<2:44:54, 3.71s/it]
47%|████▋ | 2332/5000 [1:17:55<2:36:43, 3.52s/it]
47%|████▋ | 2332/5000 [1:17:55<2:36:43, 3.52s/it]
47%|████▋ | 2333/5000 [1:17:58<2:31:23, 3.41s/it]
47%|████▋ | 2333/5000 [1:17:58<2:31:23, 3.41s/it]
47%|████▋ | 2334/5000 [1:18:02<2:26:37, 3.30s/it]
47%|████▋ | 2334/5000 [1:18:02<2:26:37, 3.30s/it]
47%|████▋ | 2335/5000 [1:18:04<2:19:54, 3.15s/it]
47%|████▋ | 2335/5000 [1:18:04<2:19:54, 3.15s/it]
47%|████▋ | 2336/5000 [1:18:07<2:15:37, 3.05s/it]
47%|████▋ | 2336/5000 [1:18:07<2:15:37, 3.05s/it]
47%|████▋ | 2337/5000 [1:18:10<2:09:37, 2.92s/it]
47%|████▋ | 2337/5000 [1:18:10<2:09:37, 2.92s/it]
47%|████▋ | 2338/5000 [1:18:12<2:03:39, 2.79s/it]
47%|████▋ | 2338/5000 [1:18:12<2:03:39, 2.79s/it]
47%|████▋ | 2339/5000 [1:18:15<1:58:45, 2.68s/it]
47%|████▋ | 2339/5000 [1:18:15<1:58:45, 2.68s/it]
47%|████▋ | 2340/5000 [1:18:17<1:57:07, 2.64s/it]
47%|████▋ | 2340/5000 [1:18:17<1:57:07, 2.64s/it]
47%|████▋ | 2341/5000 [1:18:20<1:56:49, 2.64s/it]
47%|████▋ | 2341/5000 [1:18:20<1:56:49, 2.64s/it]
47%|████▋ | 2342/5000 [1:18:22<1:53:49, 2.57s/it]
47%|████▋ | 2342/5000 [1:18:22<1:53:49, 2.57s/it]
47%|████▋ | 2343/5000 [1:18:24<1:49:13, 2.47s/it]
47%|████▋ | 2343/5000 [1:18:25<1:49:13, 2.47s/it]
47%|████▋ | 2344/5000 [1:18:27<1:44:13, 2.35s/it]
47%|████▋ | 2344/5000 [1:18:27<1:44:13, 2.35s/it]
47%|████▋ | 2345/5000 [1:18:29<1:41:52, 2.30s/it]
47%|████▋ | 2345/5000 [1:18:29<1:41:52, 2.30s/it]
47%|████▋ | 2346/5000 [1:18:31<1:38:42, 2.23s/it]
47%|████▋ | 2346/5000 [1:18:31<1:38:42, 2.23s/it]
47%|████▋ | 2347/5000 [1:18:33<1:36:59, 2.19s/it]
47%|████▋ | 2347/5000 [1:18:33<1:36:59, 2.19s/it]
47%|████▋ | 2348/5000 [1:18:35<1:36:01, 2.17s/it]
47%|████▋ | 2348/5000 [1:18:35<1:36:01, 2.17s/it]
47%|████▋ | 2349/5000 [1:18:37<1:36:36, 2.19s/it]
47%|████▋ | 2349/5000 [1:18:37<1:36:36, 2.19s/it]
47%|████▋ | 2350/5000 [1:18:39<1:34:55, 2.15s/it]
47%|████▋ | 2350/5000 [1:18:39<1:34:55, 2.15s/it]
47%|████▋ | 2351/5000 [1:18:41<1:31:12, 2.07s/it]
47%|████▋ | 2351/5000 [1:18:41<1:31:12, 2.07s/it]
47%|████▋ | 2352/5000 [1:18:43<1:27:57, 1.99s/it]
47%|████▋ | 2352/5000 [1:18:43<1:27:57, 1.99s/it]
47%|████▋ | 2353/5000 [1:18:45<1:27:10, 1.98s/it]
47%|████▋ | 2353/5000 [1:18:45<1:27:10, 1.98s/it]
47%|████▋ | 2354/5000 [1:18:47<1:24:05, 1.91s/it]
47%|████▋ | 2354/5000 [1:18:47<1:24:05, 1.91s/it]
47%|████▋ | 2355/5000 [1:18:49<1:23:42, 1.90s/it]
47%|████▋ | 2355/5000 [1:18:49<1:23:42, 1.90s/it]
47%|████▋ | 2356/5000 [1:18:50<1:22:20, 1.87s/it]
47%|████▋ | 2356/5000 [1:18:50<1:22:20, 1.87s/it]
47%|████▋ | 2357/5000 [1:18:52<1:20:14, 1.82s/it]
47%|████▋ | 2357/5000 [1:18:52<1:20:14, 1.82s/it]
47%|████▋ | 2358/5000 [1:18:54<1:17:17, 1.76s/it]
47%|████▋ | 2358/5000 [1:18:54<1:17:17, 1.76s/it]
47%|████▋ | 2359/5000 [1:18:55<1:15:15, 1.71s/it]
47%|████▋ | 2359/5000 [1:18:55<1:15:15, 1.71s/it]
47%|████▋ | 2360/5000 [1:18:57<1:11:38, 1.63s/it]
47%|████▋ | 2360/5000 [1:18:57<1:11:38, 1.63s/it]
47%|████▋ | 2361/5000 [1:18:58<1:10:48, 1.61s/it]
47%|████▋ | 2361/5000 [1:18:58<1:10:48, 1.61s/it]
47%|████▋ | 2362/5000 [1:19:00<1:10:02, 1.59s/it]
47%|████▋ | 2362/5000 [1:19:00<1:10:02, 1.59s/it]
47%|████▋ | 2363/5000 [1:19:01<1:07:48, 1.54s/it]
47%|████▋ | 2363/5000 [1:19:01<1:07:48, 1.54s/it]
47%|████▋ | 2364/5000 [1:19:03<1:08:34, 1.56s/it]
47%|████▋ | 2364/5000 [1:19:03<1:08:34, 1.56s/it]
47%|████▋ | 2365/5000 [1:19:04<1:07:11, 1.53s/it]
47%|████▋ | 2365/5000 [1:19:04<1:07:11, 1.53s/it]
47%|████▋ | 2366/5000 [1:19:06<1:04:50, 1.48s/it]
47%|████▋ | 2366/5000 [1:19:06<1:04:50, 1.48s/it]
47%|████▋ | 2367/5000 [1:19:07<1:00:34, 1.38s/it]
47%|████▋ | 2367/5000 [1:19:07<1:00:34, 1.38s/it]
47%|████▋ | 2368/5000 [1:19:08<1:00:06, 1.37s/it]
47%|████▋ | 2368/5000 [1:19:08<1:00:06, 1.37s/it]
47%|████▋ | 2369/5000 [1:19:09<57:11, 1.30s/it]
47%|████▋ | 2369/5000 [1:19:09<57:11, 1.30s/it]
47%|████▋ | 2370/5000 [1:19:10<54:51, 1.25s/it]
47%|████▋ | 2370/5000 [1:19:11<54:51, 1.25s/it]
47%|████▋ | 2371/5000 [1:19:11<51:40, 1.18s/it]
47%|████▋ | 2371/5000 [1:19:12<51:40, 1.18s/it]
47%|████▋ | 2372/5000 [1:19:12<49:08, 1.12s/it]
47%|████▋ | 2372/5000 [1:19:13<49:08, 1.12s/it]
47%|████▋ | 2373/5000 [1:19:13<44:48, 1.02s/it]
47%|████▋ | 2373/5000 [1:19:13<44:48, 1.02s/it]
47%|████▋ | 2374/5000 [1:19:14<41:08, 1.06it/s]
47%|████▋ | 2374/5000 [1:19:14<41:08, 1.06it/s]
48%|████▊ | 2375/5000 [1:19:17<1:08:51, 1.57s/it]
48%|████▊ | 2375/5000 [1:19:17<1:08:51, 1.57s/it]
48%|████▊ | 2376/5000 [1:19:26<2:38:58, 3.64s/it]
48%|████▊ | 2376/5000 [1:19:26<2:38:58, 3.64s/it]
48%|████▊ | 2377/5000 [1:19:30<2:52:24, 3.94s/it]
48%|████▊ | 2377/5000 [1:19:30<2:52:24, 3.94s/it]
48%|████▊ | 2378/5000 [1:19:34<2:57:05, 4.05s/it]
48%|████▊ | 2378/5000 [1:19:35<2:57:05, 4.05s/it]
48%|████▊ | 2379/5000 [1:19:39<2:58:19, 4.08s/it]
48%|████▊ | 2379/5000 [1:19:39<2:58:19, 4.08s/it]
48%|████▊ | 2380/5000 [1:19:42<2:54:10, 3.99s/it]
48%|████▊ | 2380/5000 [1:19:42<2:54:10, 3.99s/it]
48%|████▊ | 2381/5000 [1:19:46<2:45:33, 3.79s/it]
48%|████▊ | 2381/5000 [1:19:46<2:45:33, 3.79s/it]
48%|████▊ | 2382/5000 [1:19:49<2:37:08, 3.60s/it]
48%|████▊ | 2382/5000 [1:19:49<2:37:08, 3.60s/it]
48%|████▊ | 2383/5000 [1:19:52<2:32:30, 3.50s/it]
48%|████▊ | 2383/5000 [1:19:52<2:32:30, 3.50s/it]
48%|████▊ | 2384/5000 [1:19:55<2:26:56, 3.37s/it]
48%|████▊ | 2384/5000 [1:19:55<2:26:56, 3.37s/it]
48%|████▊ | 2385/5000 [1:19:58<2:20:36, 3.23s/it]
48%|████▊ | 2385/5000 [1:19:58<2:20:36, 3.23s/it]
48%|████▊ | 2386/5000 [1:20:01<2:15:17, 3.11s/it]
48%|████▊ | 2386/5000 [1:20:01<2:15:17, 3.11s/it]
48%|████▊ | 2387/5000 [1:20:03<2:07:09, 2.92s/it]
48%|████▊ | 2387/5000 [1:20:03<2:07:09, 2.92s/it]
48%|████▊ | 2388/5000 [1:20:06<2:03:17, 2.83s/it]
48%|████▊ | 2388/5000 [1:20:06<2:03:17, 2.83s/it]
48%|████▊ | 2389/5000 [1:20:09<1:59:29, 2.75s/it]
48%|████▊ | 2389/5000 [1:20:09<1:59:29, 2.75s/it]
48%|████▊ | 2390/5000 [1:20:11<1:55:13, 2.65s/it]
48%|████▊ | 2390/5000 [1:20:11<1:55:13, 2.65s/it]
48%|████▊ | 2391/5000 [1:20:13<1:52:03, 2.58s/it]
48%|████▊ | 2391/5000 [1:20:13<1:52:03, 2.58s/it]
48%|████▊ | 2392/5000 [1:20:16<1:47:47, 2.48s/it]
48%|████▊ | 2392/5000 [1:20:16<1:47:47, 2.48s/it]
48%|████▊ | 2393/5000 [1:20:18<1:42:21, 2.36s/it]
48%|████▊ | 2393/5000 [1:20:18<1:42:21, 2.36s/it]
48%|████▊ | 2394/5000 [1:20:20<1:38:32, 2.27s/it]
48%|████▊ | 2394/5000 [1:20:20<1:38:32, 2.27s/it]
48%|████▊ | 2395/5000 [1:20:22<1:34:22, 2.17s/it]
48%|████▊ | 2395/5000 [1:20:22<1:34:22, 2.17s/it]
48%|████▊ | 2396/5000 [1:20:24<1:34:12, 2.17s/it]
48%|████▊ | 2396/5000 [1:20:24<1:34:12, 2.17s/it]
48%|████▊ | 2397/5000 [1:20:26<1:34:11, 2.17s/it]
48%|████▊ | 2397/5000 [1:20:26<1:34:11, 2.17s/it]
48%|████▊ | 2398/5000 [1:20:28<1:30:35, 2.09s/it]
48%|████▊ | 2398/5000 [1:20:28<1:30:35, 2.09s/it]
48%|████▊ | 2399/5000 [1:20:30<1:27:39, 2.02s/it]
48%|████▊ | 2399/5000 [1:20:30<1:27:39, 2.02s/it]
48%|████▊ | 2400/5000 [1:20:32<1:25:42, 1.98s/it]
48%|████▊ | 2400/5000 [1:20:32<1:25:42, 1.98s/it]
48%|████▊ | 2401/5000 [1:20:33<1:22:08, 1.90s/it]
48%|████▊ | 2401/5000 [1:20:33<1:22:08, 1.90s/it]
48%|████▊ | 2402/5000 [1:20:35<1:18:23, 1.81s/it]
48%|████▊ | 2402/5000 [1:20:35<1:18:23, 1.81s/it]
48%|████▊ | 2403/5000 [1:20:37<1:18:49, 1.82s/it]
48%|████▊ | 2403/5000 [1:20:37<1:18:49, 1.82s/it]
48%|████▊ | 2404/5000 [1:20:39<1:19:17, 1.83s/it]
48%|████▊ | 2404/5000 [1:20:39<1:19:17, 1.83s/it]
48%|████▊ | 2405/5000 [1:20:41<1:20:09, 1.85s/it]
48%|████▊ | 2405/5000 [1:20:41<1:20:09, 1.85s/it]
48%|████▊ | 2406/5000 [1:20:42<1:19:37, 1.84s/it]
48%|████▊ | 2406/5000 [1:20:43<1:19:37, 1.84s/it]
48%|████▊ | 2407/5000 [1:20:44<1:15:29, 1.75s/it]
48%|████▊ | 2407/5000 [1:20:44<1:15:29, 1.75s/it]
48%|████▊ | 2408/5000 [1:20:45<1:11:41, 1.66s/it]
48%|████▊ | 2408/5000 [1:20:45<1:11:41, 1.66s/it]
48%|████▊ | 2409/5000 [1:20:47<1:08:23, 1.58s/it]
48%|████▊ | 2409/5000 [1:20:47<1:08:23, 1.58s/it]
48%|████▊ | 2410/5000 [1:20:48<1:06:36, 1.54s/it]
48%|████▊ | 2410/5000 [1:20:48<1:06:36, 1.54s/it]
48%|████▊ | 2411/5000 [1:20:50<1:06:18, 1.54s/it]
48%|████▊ | 2411/5000 [1:20:50<1:06:18, 1.54s/it]
48%|████▊ | 2412/5000 [1:20:51<1:06:02, 1.53s/it]
48%|████▊ | 2412/5000 [1:20:51<1:06:02, 1.53s/it]
48%|████▊ | 2413/5000 [1:20:53<1:04:30, 1.50s/it]
48%|████▊ | 2413/5000 [1:20:53<1:04:30, 1.50s/it]
48%|████▊ | 2414/5000 [1:20:54<1:03:10, 1.47s/it]
48%|████▊ | 2414/5000 [1:20:54<1:03:10, 1.47s/it]
48%|████▊ | 2415/5000 [1:20:55<59:14, 1.37s/it]
48%|████▊ | 2415/5000 [1:20:55<59:14, 1.37s/it]
48%|████▊ | 2416/5000 [1:20:57<56:33, 1.31s/it]
48%|████▊ | 2416/5000 [1:20:57<56:33, 1.31s/it]
48%|████▊ | 2417/5000 [1:20:58<54:51, 1.27s/it]
48%|████▊ | 2417/5000 [1:20:58<54:51, 1.27s/it]
48%|████▊ | 2418/5000 [1:20:59<52:33, 1.22s/it]
48%|████▊ | 2418/5000 [1:20:59<52:33, 1.22s/it]
48%|████▊ | 2419/5000 [1:21:00<51:52, 1.21s/it]
48%|████▊ | 2419/5000 [1:21:00<51:52, 1.21s/it]
48%|████▊ | 2420/5000 [1:21:01<51:24, 1.20s/it]
48%|████▊ | 2420/5000 [1:21:01<51:24, 1.20s/it]
48%|████▊ | 2421/5000 [1:21:02<49:06, 1.14s/it]
48%|████▊ | 2421/5000 [1:21:02<49:06, 1.14s/it]
48%|████▊ | 2422/5000 [1:21:03<45:14, 1.05s/it]
48%|████▊ | 2422/5000 [1:21:03<45:14, 1.05s/it]
48%|████▊ | 2423/5000 [1:21:04<41:40, 1.03it/s]
48%|████▊ | 2423/5000 [1:21:04<41:40, 1.03it/s]
48%|████▊ | 2424/5000 [1:21:05<40:01, 1.07it/s]
48%|████▊ | 2424/5000 [1:21:05<40:01, 1.07it/s]
48%|████▊ | 2425/5000 [1:21:08<1:09:56, 1.63s/it]
48%|████▊ | 2425/5000 [1:21:08<1:09:56, 1.63s/it]
49%|████▊ | 2426/5000 [1:21:15<2:24:26, 3.37s/it]
49%|████▊ | 2426/5000 [1:21:15<2:24:26, 3.37s/it]
49%|████▊ | 2427/5000 [1:21:20<2:43:26, 3.81s/it]
49%|████▊ | 2427/5000 [1:21:20<2:43:26, 3.81s/it]
49%|████▊ | 2428/5000 [1:21:24<2:46:27, 3.88s/it]
49%|████▊ | 2428/5000 [1:21:24<2:46:27, 3.88s/it]
49%|████▊ | 2429/5000 [1:21:28<2:45:07, 3.85s/it]
49%|████▊ | 2429/5000 [1:21:28<2:45:07, 3.85s/it]
49%|████▊ | 2430/5000 [1:21:31<2:40:26, 3.75s/it]
49%|████▊ | 2430/5000 [1:21:31<2:40:26, 3.75s/it]
49%|████▊ | 2431/5000 [1:21:35<2:33:43, 3.59s/it]
49%|████▊ | 2431/5000 [1:21:35<2:33:43, 3.59s/it]
49%|████▊ | 2432/5000 [1:21:38<2:28:37, 3.47s/it]
49%|████▊ | 2432/5000 [1:21:38<2:28:37, 3.47s/it]
49%|████▊ | 2433/5000 [1:21:41<2:21:33, 3.31s/it]
49%|████▊ | 2433/5000 [1:21:41<2:21:33, 3.31s/it]
49%|████▊ | 2434/5000 [1:21:43<2:13:02, 3.11s/it]
49%|████▊ | 2434/5000 [1:21:43<2:13:02, 3.11s/it]
49%|████▊ | 2435/5000 [1:21:46<2:08:03, 3.00s/it]
49%|████▊ | 2435/5000 [1:21:46<2:08:03, 3.00s/it]
49%|████▊ | 2436/5000 [1:21:49<2:04:40, 2.92s/it]
49%|████▊ | 2436/5000 [1:21:49<2:04:40, 2.92s/it]
49%|████▊ | 2437/5000 [1:21:51<1:59:18, 2.79s/it]
49%|████▊ | 2437/5000 [1:21:51<1:59:18, 2.79s/it]
49%|████▉ | 2438/5000 [1:21:54<1:53:46, 2.66s/it]
49%|████▉ | 2438/5000 [1:21:54<1:53:46, 2.66s/it]
49%|████▉ | 2439/5000 [1:21:56<1:50:24, 2.59s/it]
49%|████▉ | 2439/5000 [1:21:56<1:50:24, 2.59s/it]
49%|████▉ | 2440/5000 [1:21:59<1:47:23, 2.52s/it]
49%|████▉ | 2440/5000 [1:21:59<1:47:23, 2.52s/it]
49%|████▉ | 2441/5000 [1:22:01<1:45:14, 2.47s/it]
49%|████▉ | 2441/5000 [1:22:01<1:45:14, 2.47s/it]
49%|████▉ | 2442/5000 [1:22:03<1:40:40, 2.36s/it]
49%|████▉ | 2442/5000 [1:22:03<1:40:40, 2.36s/it]
49%|████▉ | 2443/5000 [1:22:05<1:35:50, 2.25s/it]
49%|████▉ | 2443/5000 [1:22:05<1:35:50, 2.25s/it]
49%|████▉ | 2444/5000 [1:22:07<1:32:54, 2.18s/it]
49%|████▉ | 2444/5000 [1:22:07<1:32:54, 2.18s/it]
49%|████▉ | 2445/5000 [1:22:09<1:31:33, 2.15s/it]
49%|████▉ | 2445/5000 [1:22:09<1:31:33, 2.15s/it]
49%|████▉ | 2446/5000 [1:22:11<1:29:01, 2.09s/it]
49%|████▉ | 2446/5000 [1:22:11<1:29:01, 2.09s/it]
49%|████▉ | 2447/5000 [1:22:13<1:29:02, 2.09s/it]
49%|████▉ | 2447/5000 [1:22:13<1:29:02, 2.09s/it]
49%|████▉ | 2448/5000 [1:22:15<1:27:58, 2.07s/it]
49%|████▉ | 2448/5000 [1:22:15<1:27:58, 2.07s/it]
49%|████▉ | 2449/5000 [1:22:17<1:27:55, 2.07s/it]
49%|████▉ | 2449/5000 [1:22:17<1:27:55, 2.07s/it]
49%|████▉ | 2450/5000 [1:22:19<1:25:20, 2.01s/it]
49%|████▉ | 2450/5000 [1:22:19<1:25:20, 2.01s/it]
49%|████▉ | 2451/5000 [1:22:21<1:22:53, 1.95s/it]
49%|████▉ | 2451/5000 [1:22:21<1:22:53, 1.95s/it]
49%|████▉ | 2452/5000 [1:22:23<1:19:34, 1.87s/it]
49%|████▉ | 2452/5000 [1:22:23<1:19:34, 1.87s/it]
49%|████▉ | 2453/5000 [1:22:25<1:19:42, 1.88s/it]
49%|████▉ | 2453/5000 [1:22:25<1:19:42, 1.88s/it]
49%|████▉ | 2454/5000 [1:22:26<1:18:17, 1.84s/it]
49%|████▉ | 2454/5000 [1:22:26<1:18:17, 1.84s/it]
49%|████▉ | 2455/5000 [1:22:28<1:18:13, 1.84s/it]
49%|████▉ | 2455/5000 [1:22:28<1:18:13, 1.84s/it]
49%|████▉ | 2456/5000 [1:22:30<1:16:30, 1.80s/it]
49%|████▉ | 2456/5000 [1:22:30<1:16:30, 1.80s/it]
49%|████▉ | 2457/5000 [1:22:31<1:13:04, 1.72s/it]
49%|████▉ | 2457/5000 [1:22:31<1:13:04, 1.72s/it]
49%|████▉ | 2458/5000 [1:22:33<1:10:18, 1.66s/it]
49%|████▉ | 2458/5000 [1:22:33<1:10:18, 1.66s/it]
49%|████▉ | 2459/5000 [1:22:34<1:05:39, 1.55s/it]
49%|████▉ | 2459/5000 [1:22:34<1:05:39, 1.55s/it]
49%|████▉ | 2460/5000 [1:22:36<1:04:39, 1.53s/it]
49%|████▉ | 2460/5000 [1:22:36<1:04:39, 1.53s/it]
49%|████▉ | 2461/5000 [1:22:37<1:04:14, 1.52s/it]
49%|████▉ | 2461/5000 [1:22:37<1:04:14, 1.52s/it]
49%|████▉ | 2462/5000 [1:22:39<1:02:34, 1.48s/it]
49%|████▉ | 2462/5000 [1:22:39<1:02:34, 1.48s/it]
49%|████▉ | 2463/5000 [1:22:40<1:02:00, 1.47s/it]
49%|████▉ | 2463/5000 [1:22:40<1:02:00, 1.47s/it]
49%|████▉ | 2464/5000 [1:22:41<1:01:17, 1.45s/it]
49%|████▉ | 2464/5000 [1:22:41<1:01:17, 1.45s/it]
49%|████▉ | 2465/5000 [1:22:43<59:17, 1.40s/it]
49%|████▉ | 2465/5000 [1:22:43<59:17, 1.40s/it]
49%|████▉ | 2466/5000 [1:22:44<54:24, 1.29s/it]
49%|████▉ | 2466/5000 [1:22:44<54:24, 1.29s/it]
49%|████▉ | 2467/5000 [1:22:45<52:15, 1.24s/it]
49%|████▉ | 2467/5000 [1:22:45<52:15, 1.24s/it]
49%|████▉ | 2468/5000 [1:22:46<49:41, 1.18s/it]
49%|████▉ | 2468/5000 [1:22:46<49:41, 1.18s/it]
49%|████▉ | 2469/5000 [1:22:47<49:39, 1.18s/it]
49%|████▉ | 2469/5000 [1:22:47<49:39, 1.18s/it]
49%|████▉ | 2470/5000 [1:22:48<49:03, 1.16s/it]
49%|████▉ | 2470/5000 [1:22:48<49:03, 1.16s/it]
49%|████▉ | 2471/5000 [1:22:49<47:50, 1.13s/it]
49%|████▉ | 2471/5000 [1:22:49<47:50, 1.13s/it]
49%|████▉ | 2472/5000 [1:22:50<44:04, 1.05s/it]
49%|████▉ | 2472/5000 [1:22:50<44:04, 1.05s/it]
49%|████▉ | 2473/5000 [1:22:51<40:11, 1.05it/s]
49%|████▉ | 2473/5000 [1:22:51<40:11, 1.05it/s]
49%|████▉ | 2474/5000 [1:22:52<38:28, 1.09it/s]
49%|████▉ | 2474/5000 [1:22:52<38:28, 1.09it/s]
50%|████▉ | 2475/5000 [1:22:55<1:03:58, 1.52s/it]
50%|████▉ | 2475/5000 [1:22:55<1:03:58, 1.52s/it]
50%|████▉ | 2476/5000 [1:23:01<2:06:40, 3.01s/it]
50%|████▉ | 2476/5000 [1:23:01<2:06:40, 3.01s/it]
50%|████▉ | 2477/5000 [1:23:05<2:18:35, 3.30s/it]
50%|████▉ | 2477/5000 [1:23:05<2:18:35, 3.30s/it]
50%|████▉ | 2478/5000 [1:23:08<2:20:38, 3.35s/it]
50%|████▉ | 2478/5000 [1:23:08<2:20:38, 3.35s/it]
50%|████▉ | 2479/5000 [1:23:12<2:18:52, 3.31s/it]
50%|████▉ | 2479/5000 [1:23:12<2:18:52, 3.31s/it]
50%|████▉ | 2480/5000 [1:23:15<2:12:59, 3.17s/it]
50%|████▉ | 2480/5000 [1:23:15<2:12:59, 3.17s/it]
50%|████▉ | 2481/5000 [1:23:17<2:07:36, 3.04s/it]
50%|████▉ | 2481/5000 [1:23:17<2:07:36, 3.04s/it]
50%|████▉ | 2482/5000 [1:23:20<1:59:59, 2.86s/it]
50%|████▉ | 2482/5000 [1:23:20<1:59:59, 2.86s/it]
50%|████▉ | 2483/5000 [1:23:22<1:56:54, 2.79s/it]
50%|████▉ | 2483/5000 [1:23:22<1:56:54, 2.79s/it]
50%|████▉ | 2484/5000 [1:23:25<1:50:33, 2.64s/it]
50%|████▉ | 2484/5000 [1:23:25<1:50:33, 2.64s/it]
50%|████▉ | 2485/5000 [1:23:27<1:42:55, 2.46s/it]
50%|████▉ | 2485/5000 [1:23:27<1:42:55, 2.46s/it]
50%|████▉ | 2486/5000 [1:23:29<1:37:35, 2.33s/it]
50%|████▉ | 2486/5000 [1:23:29<1:37:35, 2.33s/it]
50%|████▉ | 2487/5000 [1:23:31<1:33:51, 2.24s/it]
50%|████▉ | 2487/5000 [1:23:31<1:33:51, 2.24s/it]
50%|████▉ | 2488/5000 [1:23:32<1:27:27, 2.09s/it]
50%|████▉ | 2488/5000 [1:23:32<1:27:27, 2.09s/it]
50%|████▉ | 2489/5000 [1:23:34<1:24:13, 2.01s/it]
50%|████▉ | 2489/5000 [1:23:34<1:24:13, 2.01s/it]
50%|████▉ | 2490/5000 [1:23:36<1:21:58, 1.96s/it]
50%|████▉ | 2490/5000 [1:23:36<1:21:58, 1.96s/it]
50%|████▉ | 2491/5000 [1:23:38<1:15:30, 1.81s/it]
50%|████▉ | 2491/5000 [1:23:38<1:15:30, 1.81s/it]
50%|████▉ | 2492/5000 [1:23:39<1:12:10, 1.73s/it]
50%|████▉ | 2492/5000 [1:23:39<1:12:10, 1.73s/it]
50%|████▉ | 2493/5000 [1:23:40<1:07:19, 1.61s/it]
50%|████▉ | 2493/5000 [1:23:40<1:07:19, 1.61s/it]
50%|████▉ | 2494/5000 [1:23:42<1:05:23, 1.57s/it]
50%|████▉ | 2494/5000 [1:23:42<1:05:23, 1.57s/it]
50%|████▉ | 2495/5000 [1:23:43<1:00:08, 1.44s/it]
50%|████▉ | 2495/5000 [1:23:43<1:00:08, 1.44s/it]
50%|████▉ | 2496/5000 [1:23:44<55:13, 1.32s/it]
50%|████▉ | 2496/5000 [1:23:44<55:13, 1.32s/it]
50%|████▉ | 2497/5000 [1:23:45<52:28, 1.26s/it]
50%|████▉ | 2497/5000 [1:23:45<52:28, 1.26s/it]
50%|████▉ | 2498/5000 [1:23:46<48:14, 1.16s/it]
50%|████▉ | 2498/5000 [1:23:46<48:14, 1.16s/it]
50%|████▉ | 2499/5000 [1:23:47<42:58, 1.03s/it]
50%|█��██▉ | 2499/5000 [1:23:47<42:58, 1.03s/it]
50%|█████ | 2500/5000 [1:23:47<36:06, 1.15it/s]
50%|█████ | 2500/5000 [1:23:47<36:06, 1.15it/s]{'loss': 88.1636, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 31.9774, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 0.0}
+{'loss': 28.7213, 'grad_norm': 25.727998733520508, 'learning_rate': 3e-07, 'epoch': 0.0}
+{'loss': 24.9668, 'grad_norm': 18.18585205078125, 'learning_rate': 6e-07, 'epoch': 0.01}
+{'loss': 25.6094, 'grad_norm': 18.16857147216797, 'learning_rate': 9e-07, 'epoch': 0.01}
+{'loss': 27.1836, 'grad_norm': 19.88906478881836, 'learning_rate': 1.2e-06, 'epoch': 0.01}
+{'loss': 25.1928, 'grad_norm': 17.007699966430664, 'learning_rate': 1.4999999999999998e-06, 'epoch': 0.01}
+{'loss': 25.8839, 'grad_norm': 19.113887786865234, 'learning_rate': 1.8e-06, 'epoch': 0.01}
+{'loss': 22.7303, 'grad_norm': 15.991517066955566, 'learning_rate': 2.1e-06, 'epoch': 0.01}
+{'loss': 23.029, 'grad_norm': 16.13288688659668, 'learning_rate': 2.4e-06, 'epoch': 0.02}
+{'loss': 21.1181, 'grad_norm': 14.396987915039062, 'learning_rate': 2.6999999999999996e-06, 'epoch': 0.02}
+{'loss': 20.1848, 'grad_norm': 13.756827354431152, 'learning_rate': 2.9999999999999997e-06, 'epoch': 0.02}
+{'loss': 21.5943, 'grad_norm': 14.755758285522461, 'learning_rate': 3.2999999999999993e-06, 'epoch': 0.02}
+{'loss': 21.7457, 'grad_norm': 15.602395057678223, 'learning_rate': 3.6e-06, 'epoch': 0.02}
+{'loss': 20.5424, 'grad_norm': 14.094840049743652, 'learning_rate': 3.899999999999999e-06, 'epoch': 0.02}
+{'loss': 22.0262, 'grad_norm': 15.644570350646973, 'learning_rate': 4.2e-06, 'epoch': 0.03}
+{'loss': 26.2437, 'grad_norm': 25.94748878479004, 'learning_rate': 4.499999999999999e-06, 'epoch': 0.03}
+{'loss': 23.1837, 'grad_norm': 16.23424530029297, 'learning_rate': 4.8e-06, 'epoch': 0.03}
+{'loss': 21.0343, 'grad_norm': 14.502126693725586, 'learning_rate': 5.1e-06, 'epoch': 0.03}
+{'loss': 26.3419, 'grad_norm': 20.787498474121094, 'learning_rate': 5.399999999999999e-06, 'epoch': 0.03}
+{'loss': 18.643, 'grad_norm': 13.608593940734863, 'learning_rate': 5.7e-06, 'epoch': 0.03}
+{'loss': 18.1019, 'grad_norm': 12.794872283935547, 'learning_rate': 5.999999999999999e-06, 'epoch': 0.04}
+{'loss': 20.7248, 'grad_norm': 14.386597633361816, 'learning_rate': 6.3e-06, 'epoch': 0.04}
+{'loss': 19.1159, 'grad_norm': 13.960803031921387, 'learning_rate': 6.599999999999999e-06, 'epoch': 0.04}
+{'loss': 20.7411, 'grad_norm': 15.56638240814209, 'learning_rate': 6.899999999999999e-06, 'epoch': 0.04}
+{'loss': 20.6842, 'grad_norm': 15.256016731262207, 'learning_rate': 7.2e-06, 'epoch': 0.04}
+{'loss': 18.8145, 'grad_norm': 21.440200805664062, 'learning_rate': 7.499999999999999e-06, 'epoch': 0.04}
+{'loss': 21.4534, 'grad_norm': 16.310436248779297, 'learning_rate': 7.799999999999998e-06, 'epoch': 0.04}
+{'loss': 19.9019, 'grad_norm': 17.503496170043945, 'learning_rate': 8.099999999999999e-06, 'epoch': 0.05}
+{'loss': 20.805, 'grad_norm': 16.19658660888672, 'learning_rate': 8.4e-06, 'epoch': 0.05}
+{'loss': 19.6898, 'grad_norm': 17.486013412475586, 'learning_rate': 8.7e-06, 'epoch': 0.05}
+{'loss': 21.2597, 'grad_norm': 16.73200225830078, 'learning_rate': 8.999999999999999e-06, 'epoch': 0.05}
+{'loss': 20.0767, 'grad_norm': 16.063310623168945, 'learning_rate': 9.299999999999999e-06, 'epoch': 0.05}
+{'loss': 20.4581, 'grad_norm': 16.689453125, 'learning_rate': 9.6e-06, 'epoch': 0.05}
+{'loss': 21.9053, 'grad_norm': 18.49964714050293, 'learning_rate': 9.9e-06, 'epoch': 0.06}
+{'loss': 20.7011, 'grad_norm': 17.38431167602539, 'learning_rate': 1.02e-05, 'epoch': 0.06}
+{'loss': 19.5237, 'grad_norm': 16.372385025024414, 'learning_rate': 1.05e-05, 'epoch': 0.06}
+{'loss': 21.3056, 'grad_norm': 18.400272369384766, 'learning_rate': 1.0799999999999998e-05, 'epoch': 0.06}
+{'loss': 22.7792, 'grad_norm': 20.40253257751465, 'learning_rate': 1.1099999999999999e-05, 'epoch': 0.06}
+{'loss': 19.5917, 'grad_norm': 16.800230026245117, 'learning_rate': 1.14e-05, 'epoch': 0.06}
+{'loss': 20.6041, 'grad_norm': 18.398941040039062, 'learning_rate': 1.17e-05, 'epoch': 0.07}
+{'loss': 17.352, 'grad_norm': 14.947763442993164, 'learning_rate': 1.1999999999999999e-05, 'epoch': 0.07}
+{'loss': 20.3232, 'grad_norm': 18.517053604125977, 'learning_rate': 1.2299999999999999e-05, 'epoch': 0.07}
+{'loss': 20.1034, 'grad_norm': 18.336021423339844, 'learning_rate': 1.26e-05, 'epoch': 0.07}
+{'loss': 21.4217, 'grad_norm': 20.530216217041016, 'learning_rate': 1.2899999999999998e-05, 'epoch': 0.07}
+{'loss': 21.2479, 'grad_norm': 20.346179962158203, 'learning_rate': 1.3199999999999997e-05, 'epoch': 0.07}
+{'loss': 25.558, 'grad_norm': 26.894554138183594, 'learning_rate': 1.3499999999999998e-05, 'epoch': 0.08}
+{'loss': 18.5759, 'grad_norm': 17.661767959594727, 'learning_rate': 1.3799999999999998e-05, 'epoch': 0.08}
+{'loss': 19.8242, 'grad_norm': 19.176250457763672, 'learning_rate': 1.4099999999999999e-05, 'epoch': 0.08}
+{'loss': 18.8538, 'grad_norm': nan, 'learning_rate': 1.4099999999999999e-05, 'epoch': 0.08}
+{'loss': 55.0316, 'grad_norm': nan, 'learning_rate': 1.4099999999999999e-05, 'epoch': 0.08}
+{'loss': 27.8855, 'grad_norm': 35.90843963623047, 'learning_rate': 1.44e-05, 'epoch': 0.08}
+{'loss': 32.342, 'grad_norm': 41.0328483581543, 'learning_rate': 1.47e-05, 'epoch': 0.08}
+{'loss': 27.2888, 'grad_norm': 32.60612869262695, 'learning_rate': 1.4999999999999999e-05, 'epoch': 0.09}
+{'loss': 28.7579, 'grad_norm': 36.59461212158203, 'learning_rate': 1.53e-05, 'epoch': 0.09}
+{'loss': 25.3167, 'grad_norm': 31.01473617553711, 'learning_rate': 1.5599999999999996e-05, 'epoch': 0.09}
+{'loss': 23.994, 'grad_norm': 29.129039764404297, 'learning_rate': 1.5899999999999997e-05, 'epoch': 0.09}
+{'loss': 20.6755, 'grad_norm': 26.573955535888672, 'learning_rate': 1.6199999999999997e-05, 'epoch': 0.09}
+{'loss': 23.024, 'grad_norm': 29.24463653564453, 'learning_rate': 1.6499999999999998e-05, 'epoch': 0.09}
+{'loss': 21.5849, 'grad_norm': 26.921775817871094, 'learning_rate': 1.68e-05, 'epoch': 0.1}
+{'loss': 21.6015, 'grad_norm': 27.8332462310791, 'learning_rate': 1.71e-05, 'epoch': 0.1}
+{'loss': 22.0914, 'grad_norm': 28.124608993530273, 'learning_rate': 1.74e-05, 'epoch': 0.1}
+{'loss': 22.5719, 'grad_norm': 30.353343963623047, 'learning_rate': 1.7699999999999997e-05, 'epoch': 0.1}
+{'loss': 21.8033, 'grad_norm': 29.733469009399414, 'learning_rate': 1.7999999999999997e-05, 'epoch': 0.1}
+{'loss': 19.152, 'grad_norm': 25.040752410888672, 'learning_rate': 1.8299999999999998e-05, 'epoch': 0.1}
+{'loss': 18.4214, 'grad_norm': 24.005868911743164, 'learning_rate': 1.8599999999999998e-05, 'epoch': 0.11}
+{'loss': 17.6597, 'grad_norm': 23.582408905029297, 'learning_rate': 1.89e-05, 'epoch': 0.11}
+{'loss': 17.4055, 'grad_norm': 23.405153274536133, 'learning_rate': 1.92e-05, 'epoch': 0.11}
+{'loss': 17.9656, 'grad_norm': 24.748991012573242, 'learning_rate': 1.95e-05, 'epoch': 0.11}
+{'loss': 18.421, 'grad_norm': 26.633638381958008, 'learning_rate': 1.98e-05, 'epoch': 0.11}
+{'loss': 17.8431, 'grad_norm': 26.72304344177246, 'learning_rate': 2.01e-05, 'epoch': 0.11}
+{'loss': 16.8414, 'grad_norm': 28.973541259765625, 'learning_rate': 2.04e-05, 'epoch': 0.12}
+{'loss': 17.8068, 'grad_norm': 27.353349685668945, 'learning_rate': 2.07e-05, 'epoch': 0.12}
+{'loss': 16.7757, 'grad_norm': 30.53626823425293, 'learning_rate': 2.1e-05, 'epoch': 0.12}
+{'loss': 16.9582, 'grad_norm': 27.967914581298828, 'learning_rate': 2.1299999999999996e-05, 'epoch': 0.12}
+{'loss': 18.2253, 'grad_norm': 31.028308868408203, 'learning_rate': 2.1599999999999996e-05, 'epoch': 0.12}
+{'loss': 16.2514, 'grad_norm': 27.322860717773438, 'learning_rate': 2.1899999999999997e-05, 'epoch': 0.12}
+{'loss': 15.9259, 'grad_norm': 27.86654281616211, 'learning_rate': 2.2199999999999998e-05, 'epoch': 0.12}
+{'loss': 16.0654, 'grad_norm': 28.512012481689453, 'learning_rate': 2.2499999999999998e-05, 'epoch': 0.13}
+{'loss': 16.1965, 'grad_norm': 29.90827751159668, 'learning_rate': 2.28e-05, 'epoch': 0.13}
+{'loss': 15.6856, 'grad_norm': 30.172544479370117, 'learning_rate': 2.31e-05, 'epoch': 0.13}
+{'loss': 16.8192, 'grad_norm': 34.49613571166992, 'learning_rate': 2.34e-05, 'epoch': 0.13}
+{'loss': 16.1658, 'grad_norm': 32.905250549316406, 'learning_rate': 2.3699999999999997e-05, 'epoch': 0.13}
+{'loss': 14.9915, 'grad_norm': 30.88019371032715, 'learning_rate': 2.3999999999999997e-05, 'epoch': 0.13}
+{'loss': 14.3373, 'grad_norm': 30.31485366821289, 'learning_rate': 2.4299999999999998e-05, 'epoch': 0.14}
+{'loss': 17.3286, 'grad_norm': 41.14937973022461, 'learning_rate': 2.4599999999999998e-05, 'epoch': 0.14}
+{'loss': 14.0104, 'grad_norm': 32.182125091552734, 'learning_rate': 2.49e-05, 'epoch': 0.14}
+{'loss': 15.6781, 'grad_norm': 40.61635208129883, 'learning_rate': 2.52e-05, 'epoch': 0.14}
+{'loss': 13.5609, 'grad_norm': 33.11867141723633, 'learning_rate': 2.55e-05, 'epoch': 0.14}
+{'loss': 13.2412, 'grad_norm': 34.575050354003906, 'learning_rate': 2.5799999999999997e-05, 'epoch': 0.14}
+{'loss': 14.6794, 'grad_norm': 62.21010971069336, 'learning_rate': 2.6099999999999997e-05, 'epoch': 0.15}
+{'loss': 12.4023, 'grad_norm': 34.05390167236328, 'learning_rate': 2.6399999999999995e-05, 'epoch': 0.15}
+{'loss': 15.1849, 'grad_norm': 49.62013244628906, 'learning_rate': 2.6699999999999995e-05, 'epoch': 0.15}
+{'loss': 12.0157, 'grad_norm': 35.7944450378418, 'learning_rate': 2.6999999999999996e-05, 'epoch': 0.15}
+{'loss': 13.118, 'grad_norm': 44.946651458740234, 'learning_rate': 2.7299999999999996e-05, 'epoch': 0.15}
+{'loss': 13.8204, 'grad_norm': 50.83009719848633, 'learning_rate': 2.7599999999999997e-05, 'epoch': 0.15}
+{'loss': 11.8124, 'grad_norm': 40.576942443847656, 'learning_rate': 2.7899999999999997e-05, 'epoch': 0.16}
+{'loss': 14.2831, 'grad_norm': 53.70853042602539, 'learning_rate': 2.8199999999999998e-05, 'epoch': 0.16}
+{'loss': 10.0583, 'grad_norm': 34.88117218017578, 'learning_rate': 2.8499999999999998e-05, 'epoch': 0.16}
+{'loss': 11.8564, 'grad_norm': 48.1845703125, 'learning_rate': 2.88e-05, 'epoch': 0.16}
+{'loss': 27.1439, 'grad_norm': inf, 'learning_rate': 2.88e-05, 'epoch': 0.16}
+{'loss': 14.243, 'grad_norm': 108.25672912597656, 'learning_rate': 2.91e-05, 'epoch': 0.16}
+{'loss': 15.1354, 'grad_norm': 134.4223175048828, 'learning_rate': 2.94e-05, 'epoch': 0.16}
+{'loss': 16.8895, 'grad_norm': 99.52935791015625, 'learning_rate': 2.97e-05, 'epoch': 0.17}
+{'loss': 15.3123, 'grad_norm': nan, 'learning_rate': 2.97e-05, 'epoch': 0.17}
+{'loss': 11.9997, 'grad_norm': 64.19481658935547, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.17}
+{'loss': 12.6204, 'grad_norm': 71.73747253417969, 'learning_rate': 3.0299999999999998e-05, 'epoch': 0.17}
+{'loss': 10.1112, 'grad_norm': 53.78099822998047, 'learning_rate': 3.06e-05, 'epoch': 0.17}
+{'loss': 9.2134, 'grad_norm': 51.031742095947266, 'learning_rate': 3.09e-05, 'epoch': 0.17}
+{'loss': 8.8334, 'grad_norm': 47.309574127197266, 'learning_rate': 3.119999999999999e-05, 'epoch': 0.18}
+{'loss': 8.8497, 'grad_norm': 49.82463073730469, 'learning_rate': 3.149999999999999e-05, 'epoch': 0.18}
+{'loss': 9.0849, 'grad_norm': 51.74225997924805, 'learning_rate': 3.1799999999999994e-05, 'epoch': 0.18}
+{'loss': 9.0814, 'grad_norm': 53.916893005371094, 'learning_rate': 3.2099999999999994e-05, 'epoch': 0.18}
+{'loss': 7.6543, 'grad_norm': 40.585506439208984, 'learning_rate': 3.2399999999999995e-05, 'epoch': 0.18}
+{'loss': 7.5272, 'grad_norm': 44.14476013183594, 'learning_rate': 3.2699999999999995e-05, 'epoch': 0.18}
+{'loss': 9.7604, 'grad_norm': 86.90267944335938, 'learning_rate': 3.2999999999999996e-05, 'epoch': 0.19}
+{'loss': 7.457, 'grad_norm': 43.009765625, 'learning_rate': 3.3299999999999996e-05, 'epoch': 0.19}
+{'loss': 7.6341, 'grad_norm': 45.4506721496582, 'learning_rate': 3.36e-05, 'epoch': 0.19}
+{'loss': 11.2971, 'grad_norm': 95.28884887695312, 'learning_rate': 3.39e-05, 'epoch': 0.19}
+{'loss': 6.9917, 'grad_norm': 40.490135192871094, 'learning_rate': 3.42e-05, 'epoch': 0.19}
+{'loss': 6.8346, 'grad_norm': 39.02360153198242, 'learning_rate': 3.45e-05, 'epoch': 0.19}
+{'loss': 6.5797, 'grad_norm': 36.35051345825195, 'learning_rate': 3.48e-05, 'epoch': 0.2}
+{'loss': 6.1, 'grad_norm': 30.45292854309082, 'learning_rate': 3.51e-05, 'epoch': 0.2}
+{'loss': 6.3145, 'grad_norm': 35.50273895263672, 'learning_rate': 3.539999999999999e-05, 'epoch': 0.2}
+{'loss': 5.9349, 'grad_norm': 28.981294631958008, 'learning_rate': 3.5699999999999994e-05, 'epoch': 0.2}
+{'loss': 5.6469, 'grad_norm': 24.302417755126953, 'learning_rate': 3.5999999999999994e-05, 'epoch': 0.2}
+{'loss': 5.5679, 'grad_norm': 24.433305740356445, 'learning_rate': 3.6299999999999995e-05, 'epoch': 0.2}
+{'loss': 5.6555, 'grad_norm': 26.34304428100586, 'learning_rate': 3.6599999999999995e-05, 'epoch': 0.2}
+{'loss': 5.7359, 'grad_norm': 27.908578872680664, 'learning_rate': 3.6899999999999996e-05, 'epoch': 0.21}
+{'loss': 5.407, 'grad_norm': 22.0655574798584, 'learning_rate': 3.7199999999999996e-05, 'epoch': 0.21}
+{'loss': 5.354, 'grad_norm': 21.288557052612305, 'learning_rate': 3.75e-05, 'epoch': 0.21}
+{'loss': 5.0068, 'grad_norm': 13.6961088180542, 'learning_rate': 3.78e-05, 'epoch': 0.21}
+{'loss': 5.0376, 'grad_norm': 15.53318977355957, 'learning_rate': 3.81e-05, 'epoch': 0.21}
+{'loss': 4.9991, 'grad_norm': 13.725676536560059, 'learning_rate': 3.84e-05, 'epoch': 0.21}
+{'loss': 4.9169, 'grad_norm': 10.959695816040039, 'learning_rate': 3.87e-05, 'epoch': 0.22}
+{'loss': 4.9547, 'grad_norm': 13.741371154785156, 'learning_rate': 3.9e-05, 'epoch': 0.22}
+{'loss': 4.7349, 'grad_norm': 7.589344501495361, 'learning_rate': 3.93e-05, 'epoch': 0.22}
+{'loss': 4.7968, 'grad_norm': 9.38797378540039, 'learning_rate': 3.96e-05, 'epoch': 0.22}
+{'loss': 4.7519, 'grad_norm': 7.912783145904541, 'learning_rate': 3.99e-05, 'epoch': 0.22}
+{'loss': 4.6283, 'grad_norm': 4.842776298522949, 'learning_rate': 4.02e-05, 'epoch': 0.22}
+{'loss': 4.6736, 'grad_norm': 3.9212424755096436, 'learning_rate': 4.05e-05, 'epoch': 0.23}
+{'loss': 4.5967, 'grad_norm': 3.5087013244628906, 'learning_rate': 4.08e-05, 'epoch': 0.23}
+{'loss': 4.7427, 'grad_norm': 7.529483318328857, 'learning_rate': 4.11e-05, 'epoch': 0.23}
+{'loss': 4.6156, 'grad_norm': 4.376472473144531, 'learning_rate': 4.14e-05, 'epoch': 0.23}
+{'loss': 4.5466, 'grad_norm': 3.8088197708129883, 'learning_rate': 4.17e-05, 'epoch': 0.23}
+{'loss': 4.4873, 'grad_norm': 3.3608834743499756, 'learning_rate': 4.2e-05, 'epoch': 0.23}
+{'loss': 4.7131, 'grad_norm': 6.499572277069092, 'learning_rate': 4.229999999999999e-05, 'epoch': 0.24}
+{'loss': 4.5439, 'grad_norm': 2.669039011001587, 'learning_rate': 4.259999999999999e-05, 'epoch': 0.24}
+{'loss': 4.5205, 'grad_norm': 3.3045642375946045, 'learning_rate': 4.289999999999999e-05, 'epoch': 0.24}
+{'loss': 4.5319, 'grad_norm': 4.260329246520996, 'learning_rate': 4.319999999999999e-05, 'epoch': 0.24}
+{'loss': 5.1855, 'grad_norm': 33.543827056884766, 'learning_rate': 4.3499999999999993e-05, 'epoch': 0.24}
+{'loss': 4.4256, 'grad_norm': 12.372523307800293, 'learning_rate': 4.3799999999999994e-05, 'epoch': 0.24}
+{'loss': 4.3393, 'grad_norm': 10.853720664978027, 'learning_rate': 4.4099999999999995e-05, 'epoch': 0.24}
+{'loss': 4.3422, 'grad_norm': 31.088172912597656, 'learning_rate': 4.4399999999999995e-05, 'epoch': 0.25}
+{'loss': 4.1807, 'grad_norm': 2.647914171218872, 'learning_rate': 4.4699999999999996e-05, 'epoch': 0.25}
+{'loss': 4.3605, 'grad_norm': 8.41458797454834, 'learning_rate': 4.4999999999999996e-05, 'epoch': 0.25}
+{'loss': 4.1126, 'grad_norm': 2.505411386489868, 'learning_rate': 4.5299999999999997e-05, 'epoch': 0.25}
+{'loss': 4.296, 'grad_norm': 6.82640266418457, 'learning_rate': 4.56e-05, 'epoch': 0.25}
+{'loss': 4.0944, 'grad_norm': 4.044186115264893, 'learning_rate': 4.59e-05, 'epoch': 0.25}
+{'loss': 4.0258, 'grad_norm': 2.907984495162964, 'learning_rate': 4.62e-05, 'epoch': 0.26}
+{'loss': 4.0542, 'grad_norm': 1.547238826751709, 'learning_rate': 4.65e-05, 'epoch': 0.26}
+{'loss': 4.0014, 'grad_norm': 2.2683465480804443, 'learning_rate': 4.68e-05, 'epoch': 0.26}
+{'loss': 4.0179, 'grad_norm': 2.3638885021209717, 'learning_rate': 4.709999999999999e-05, 'epoch': 0.26}
+{'loss': 4.0572, 'grad_norm': 1.394767165184021, 'learning_rate': 4.7399999999999993e-05, 'epoch': 0.26}
+{'loss': 3.9437, 'grad_norm': 1.4333173036575317, 'learning_rate': 4.7699999999999994e-05, 'epoch': 0.26}
+{'loss': 4.0472, 'grad_norm': 5.366274356842041, 'learning_rate': 4.7999999999999994e-05, 'epoch': 0.27}
+{'loss': 3.9291, 'grad_norm': 1.0423429012298584, 'learning_rate': 4.8299999999999995e-05, 'epoch': 0.27}
+{'loss': 3.945, 'grad_norm': 1.9777644872665405, 'learning_rate': 4.8599999999999995e-05, 'epoch': 0.27}
+{'loss': 3.9491, 'grad_norm': 1.1812388896942139, 'learning_rate': 4.8899999999999996e-05, 'epoch': 0.27}
+{'loss': 3.9102, 'grad_norm': 1.822695016860962, 'learning_rate': 4.9199999999999997e-05, 'epoch': 0.27}
+{'loss': 3.9744, 'grad_norm': 4.096814155578613, 'learning_rate': 4.95e-05, 'epoch': 0.27}
+{'loss': 4.0524, 'grad_norm': 6.548384666442871, 'learning_rate': 4.98e-05, 'epoch': 0.28}
+{'loss': 3.8676, 'grad_norm': 0.9052740931510925, 'learning_rate': 5.01e-05, 'epoch': 0.28}
+{'loss': 3.9335, 'grad_norm': 1.3036408424377441, 'learning_rate': 5.04e-05, 'epoch': 0.28}
+{'loss': 3.9693, 'grad_norm': 3.0321638584136963, 'learning_rate': 5.07e-05, 'epoch': 0.28}
+{'loss': 3.9222, 'grad_norm': 1.1829465627670288, 'learning_rate': 5.1e-05, 'epoch': 0.28}
+{'loss': 3.8752, 'grad_norm': 2.459949254989624, 'learning_rate': 5.13e-05, 'epoch': 0.28}
+{'loss': 3.8609, 'grad_norm': 2.6086926460266113, 'learning_rate': 5.1599999999999994e-05, 'epoch': 0.28}
+{'loss': 3.8512, 'grad_norm': 0.8744645118713379, 'learning_rate': 5.1899999999999994e-05, 'epoch': 0.29}
+{'loss': 3.91, 'grad_norm': 0.8597729802131653, 'learning_rate': 5.2199999999999995e-05, 'epoch': 0.29}
+{'loss': 3.8791, 'grad_norm': 0.656095564365387, 'learning_rate': 5.2499999999999995e-05, 'epoch': 0.29}
+{'loss': 3.8383, 'grad_norm': 1.1524940729141235, 'learning_rate': 5.279999999999999e-05, 'epoch': 0.29}
+{'loss': 3.9343, 'grad_norm': 1.2150574922561646, 'learning_rate': 5.309999999999999e-05, 'epoch': 0.29}
+{'loss': 3.8848, 'grad_norm': 3.4474704265594482, 'learning_rate': 5.339999999999999e-05, 'epoch': 0.29}
+{'loss': 3.8531, 'grad_norm': 3.4787559509277344, 'learning_rate': 5.369999999999999e-05, 'epoch': 0.3}
+{'loss': 3.82, 'grad_norm': 1.857994556427002, 'learning_rate': 5.399999999999999e-05, 'epoch': 0.3}
+{'loss': 3.8566, 'grad_norm': 1.522542953491211, 'learning_rate': 5.429999999999999e-05, 'epoch': 0.3}
+{'loss': 3.9485, 'grad_norm': 3.3759677410125732, 'learning_rate': 5.459999999999999e-05, 'epoch': 0.3}
+{'loss': 3.8288, 'grad_norm': 0.7935701012611389, 'learning_rate': 5.489999999999999e-05, 'epoch': 0.3}
+{'loss': 3.7754, 'grad_norm': 0.7905306816101074, 'learning_rate': 5.519999999999999e-05, 'epoch': 0.3}
+{'loss': 3.9019, 'grad_norm': 2.006058931350708, 'learning_rate': 5.5499999999999994e-05, 'epoch': 0.31}
+{'loss': 3.8752, 'grad_norm': 0.9049056768417358, 'learning_rate': 5.5799999999999994e-05, 'epoch': 0.31}
+{'loss': 3.9383, 'grad_norm': 0.7944461703300476, 'learning_rate': 5.6099999999999995e-05, 'epoch': 0.31}
+{'loss': 3.897, 'grad_norm': 2.660388469696045, 'learning_rate': 5.6399999999999995e-05, 'epoch': 0.31}
+{'loss': 3.8026, 'grad_norm': 1.1633754968643188, 'learning_rate': 5.6699999999999996e-05, 'epoch': 0.31}
+{'loss': 3.8239, 'grad_norm': 1.0256235599517822, 'learning_rate': 5.6999999999999996e-05, 'epoch': 0.31}
+{'loss': 3.8742, 'grad_norm': 0.90212082862854, 'learning_rate': 5.73e-05, 'epoch': 0.32}
+{'loss': 3.8631, 'grad_norm': 1.7041653394699097, 'learning_rate': 5.76e-05, 'epoch': 0.32}
+{'loss': 3.9776, 'grad_norm': 5.0367889404296875, 'learning_rate': 5.79e-05, 'epoch': 0.32}
+{'loss': 3.8886, 'grad_norm': 1.7132095098495483, 'learning_rate': 5.82e-05, 'epoch': 0.32}
+{'loss': 4.4781, 'grad_norm': 59.95878219604492, 'learning_rate': 5.85e-05, 'epoch': 0.32}
+{'loss': 4.1558, 'grad_norm': 20.7462215423584, 'learning_rate': 5.88e-05, 'epoch': 0.32}
+{'loss': 3.8673, 'grad_norm': 7.668243408203125, 'learning_rate': 5.91e-05, 'epoch': 0.32}
+{'loss': 4.2043, 'grad_norm': 20.701831817626953, 'learning_rate': 5.94e-05, 'epoch': 0.33}
+{'loss': 4.1824, 'grad_norm': 15.181974411010742, 'learning_rate': 5.97e-05, 'epoch': 0.33}
+{'loss': 3.8739, 'grad_norm': 6.447072982788086, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.33}
+{'loss': 3.7815, 'grad_norm': 1.1761301755905151, 'learning_rate': 6.0299999999999995e-05, 'epoch': 0.33}
+{'loss': 3.8145, 'grad_norm': 2.660413980484009, 'learning_rate': 6.0599999999999996e-05, 'epoch': 0.33}
+{'loss': 3.8349, 'grad_norm': 2.368325710296631, 'learning_rate': 6.0899999999999996e-05, 'epoch': 0.33}
+{'loss': 3.8754, 'grad_norm': 2.1028411388397217, 'learning_rate': 6.12e-05, 'epoch': 0.34}
+{'loss': 4.0562, 'grad_norm': 5.019386291503906, 'learning_rate': 6.149999999999999e-05, 'epoch': 0.34}
+{'loss': 3.8762, 'grad_norm': 1.4638348817825317, 'learning_rate': 6.18e-05, 'epoch': 0.34}
+{'loss': 3.8016, 'grad_norm': 4.489582061767578, 'learning_rate': 6.209999999999999e-05, 'epoch': 0.34}
+{'loss': 3.7819, 'grad_norm': 4.419440269470215, 'learning_rate': 6.239999999999999e-05, 'epoch': 0.34}
+{'loss': 3.8609, 'grad_norm': 1.0869696140289307, 'learning_rate': 6.269999999999999e-05, 'epoch': 0.34}
+{'loss': 3.7453, 'grad_norm': 2.233304738998413, 'learning_rate': 6.299999999999999e-05, 'epoch': 0.35}
+{'loss': 3.8022, 'grad_norm': 1.8570388555526733, 'learning_rate': 6.33e-05, 'epoch': 0.35}
+{'loss': 3.8208, 'grad_norm': 1.5490303039550781, 'learning_rate': 6.359999999999999e-05, 'epoch': 0.35}
+{'loss': 3.7659, 'grad_norm': 1.4915709495544434, 'learning_rate': 6.39e-05, 'epoch': 0.35}
+{'loss': 3.7905, 'grad_norm': 4.611435890197754, 'learning_rate': 6.419999999999999e-05, 'epoch': 0.35}
+{'loss': 3.769, 'grad_norm': 3.2338948249816895, 'learning_rate': 6.45e-05, 'epoch': 0.35}
+{'loss': 3.7948, 'grad_norm': 1.7731317281723022, 'learning_rate': 6.479999999999999e-05, 'epoch': 0.36}
+{'loss': 3.9139, 'grad_norm': 4.100704669952393, 'learning_rate': 6.51e-05, 'epoch': 0.36}
+{'loss': 3.7927, 'grad_norm': 2.826249599456787, 'learning_rate': 6.539999999999999e-05, 'epoch': 0.36}
+{'loss': 3.7451, 'grad_norm': 2.4306230545043945, 'learning_rate': 6.57e-05, 'epoch': 0.36}
+{'loss': 3.7458, 'grad_norm': 2.495347499847412, 'learning_rate': 6.599999999999999e-05, 'epoch': 0.36}
+{'loss': 3.7838, 'grad_norm': 1.5291261672973633, 'learning_rate': 6.63e-05, 'epoch': 0.36}
+{'loss': 3.7364, 'grad_norm': 1.6629663705825806, 'learning_rate': 6.659999999999999e-05, 'epoch': 0.36}
+{'loss': 3.7711, 'grad_norm': 1.6959452629089355, 'learning_rate': 6.69e-05, 'epoch': 0.37}
+{'loss': 3.7591, 'grad_norm': 2.6228511333465576, 'learning_rate': 6.72e-05, 'epoch': 0.37}
+{'loss': 3.9036, 'grad_norm': 7.408218860626221, 'learning_rate': 6.75e-05, 'epoch': 0.37}
+{'loss': 3.7256, 'grad_norm': 1.7726941108703613, 'learning_rate': 6.78e-05, 'epoch': 0.37}
+{'loss': 3.7479, 'grad_norm': 1.7417742013931274, 'learning_rate': 6.81e-05, 'epoch': 0.37}
+{'loss': 3.7953, 'grad_norm': 2.71058988571167, 'learning_rate': 6.84e-05, 'epoch': 0.37}
+{'loss': 3.7091, 'grad_norm': 1.043075442314148, 'learning_rate': 6.87e-05, 'epoch': 0.38}
+{'loss': 3.8753, 'grad_norm': 3.6556646823883057, 'learning_rate': 6.9e-05, 'epoch': 0.38}
+{'loss': 3.8208, 'grad_norm': 1.024652361869812, 'learning_rate': 6.93e-05, 'epoch': 0.38}
+{'loss': 3.7698, 'grad_norm': 2.1579537391662598, 'learning_rate': 6.96e-05, 'epoch': 0.38}
+{'loss': 3.7483, 'grad_norm': 2.586552858352661, 'learning_rate': 6.989999999999999e-05, 'epoch': 0.38}
+{'loss': 3.7447, 'grad_norm': 2.8830111026763916, 'learning_rate': 7.02e-05, 'epoch': 0.38}
+{'loss': 3.9125, 'grad_norm': 1.5939990282058716, 'learning_rate': 7.049999999999999e-05, 'epoch': 0.39}
+{'loss': 3.698, 'grad_norm': 1.9569231271743774, 'learning_rate': 7.079999999999999e-05, 'epoch': 0.39}
+{'loss': 3.7141, 'grad_norm': 2.1140618324279785, 'learning_rate': 7.11e-05, 'epoch': 0.39}
+{'loss': 3.7429, 'grad_norm': 2.5653762817382812, 'learning_rate': 7.139999999999999e-05, 'epoch': 0.39}
+{'loss': 3.8172, 'grad_norm': 4.119378089904785, 'learning_rate': 7.17e-05, 'epoch': 0.39}
+{'loss': 3.7213, 'grad_norm': 1.2246354818344116, 'learning_rate': 7.199999999999999e-05, 'epoch': 0.39}
+{'loss': 3.8297, 'grad_norm': 3.104062557220459, 'learning_rate': 7.23e-05, 'epoch': 0.4}
+{'loss': 3.8384, 'grad_norm': 2.702347993850708, 'learning_rate': 7.259999999999999e-05, 'epoch': 0.4}
+{'loss': 3.8097, 'grad_norm': 1.7538706064224243, 'learning_rate': 7.29e-05, 'epoch': 0.4}
+{'loss': 3.8442, 'grad_norm': 1.4835972785949707, 'learning_rate': 7.319999999999999e-05, 'epoch': 0.4}
+{'loss': 6.6492, 'grad_norm': 121.84357452392578, 'learning_rate': 7.35e-05, 'epoch': 0.4}
+{'loss': 3.7888, 'grad_norm': 6.5602216720581055, 'learning_rate': 7.379999999999999e-05, 'epoch': 0.4}
+{'loss': 3.8137, 'grad_norm': 6.373597145080566, 'learning_rate': 7.41e-05, 'epoch': 0.4}
+{'loss': 4.0826, 'grad_norm': 15.365026473999023, 'learning_rate': 7.439999999999999e-05, 'epoch': 0.41}
+{'loss': 3.8556, 'grad_norm': 4.488667964935303, 'learning_rate': 7.47e-05, 'epoch': 0.41}
+{'loss': 3.785, 'grad_norm': 1.5894265174865723, 'learning_rate': 7.5e-05, 'epoch': 0.41}
+{'loss': 3.7889, 'grad_norm': 2.2378318309783936, 'learning_rate': 7.529999999999999e-05, 'epoch': 0.41}
+{'loss': 3.8141, 'grad_norm': 2.854876756668091, 'learning_rate': 7.56e-05, 'epoch': 0.41}
+{'loss': 3.7821, 'grad_norm': 5.561819076538086, 'learning_rate': 7.589999999999999e-05, 'epoch': 0.41}
+{'loss': 3.7868, 'grad_norm': 3.3661203384399414, 'learning_rate': 7.62e-05, 'epoch': 0.42}
+{'loss': 3.8347, 'grad_norm': 1.3599531650543213, 'learning_rate': 7.649999999999999e-05, 'epoch': 0.42}
+{'loss': 3.7819, 'grad_norm': 1.306137204170227, 'learning_rate': 7.68e-05, 'epoch': 0.42}
+{'loss': 3.7242, 'grad_norm': 3.109072685241699, 'learning_rate': 7.709999999999999e-05, 'epoch': 0.42}
+{'loss': 3.7492, 'grad_norm': 1.8001930713653564, 'learning_rate': 7.74e-05, 'epoch': 0.42}
+{'loss': 3.7207, 'grad_norm': 0.8629224300384521, 'learning_rate': 7.769999999999999e-05, 'epoch': 0.42}
+{'loss': 3.7963, 'grad_norm': 3.7459707260131836, 'learning_rate': 7.8e-05, 'epoch': 0.43}
+{'loss': 3.6887, 'grad_norm': 1.336196780204773, 'learning_rate': 7.829999999999999e-05, 'epoch': 0.43}
+{'loss': 3.7572, 'grad_norm': 1.0606918334960938, 'learning_rate': 7.86e-05, 'epoch': 0.43}
+{'loss': 3.7525, 'grad_norm': 2.4319143295288086, 'learning_rate': 7.89e-05, 'epoch': 0.43}
+{'loss': 3.7485, 'grad_norm': 1.2231545448303223, 'learning_rate': 7.92e-05, 'epoch': 0.43}
+{'loss': 3.7035, 'grad_norm': 0.9850172400474548, 'learning_rate': 7.95e-05, 'epoch': 0.43}
+{'loss': 3.7558, 'grad_norm': 0.7243953347206116, 'learning_rate': 7.98e-05, 'epoch': 0.44}
+{'loss': 3.7261, 'grad_norm': 2.755706310272217, 'learning_rate': 8.01e-05, 'epoch': 0.44}
+{'loss': 3.7083, 'grad_norm': 1.264993667602539, 'learning_rate': 8.04e-05, 'epoch': 0.44}
+{'loss': 3.7071, 'grad_norm': 0.8790886402130127, 'learning_rate': 8.07e-05, 'epoch': 0.44}
+{'loss': 3.7469, 'grad_norm': 3.400172472000122, 'learning_rate': 8.1e-05, 'epoch': 0.44}
+{'loss': 3.6753, 'grad_norm': 2.231881856918335, 'learning_rate': 8.13e-05, 'epoch': 0.44}
+{'loss': 3.7519, 'grad_norm': 2.1918094158172607, 'learning_rate': 8.16e-05, 'epoch': 0.44}
+{'loss': 3.7235, 'grad_norm': 0.9959167242050171, 'learning_rate': 8.19e-05, 'epoch': 0.45}
+{'loss': 3.6868, 'grad_norm': 1.0441361665725708, 'learning_rate': 8.22e-05, 'epoch': 0.45}
+{'loss': 3.6998, 'grad_norm': 1.4733455181121826, 'learning_rate': 8.25e-05, 'epoch': 0.45}
+{'loss': 3.7039, 'grad_norm': 0.8500906229019165, 'learning_rate': 8.28e-05, 'epoch': 0.45}
+{'loss': 3.6784, 'grad_norm': 1.184400200843811, 'learning_rate': 8.31e-05, 'epoch': 0.45}
+{'loss': 3.7611, 'grad_norm': 0.7087394595146179, 'learning_rate': 8.34e-05, 'epoch': 0.45}
+{'loss': 3.7507, 'grad_norm': 1.7900768518447876, 'learning_rate': 8.37e-05, 'epoch': 0.46}
+{'loss': 3.7109, 'grad_norm': 0.7228295803070068, 'learning_rate': 8.4e-05, 'epoch': 0.46}
+{'loss': 3.759, 'grad_norm': 2.9249191284179688, 'learning_rate': 8.43e-05, 'epoch': 0.46}
+{'loss': 3.6881, 'grad_norm': 0.8148625493049622, 'learning_rate': 8.459999999999998e-05, 'epoch': 0.46}
+{'loss': 3.6867, 'grad_norm': 0.9529969692230225, 'learning_rate': 8.489999999999999e-05, 'epoch': 0.46}
+{'loss': 3.6983, 'grad_norm': 1.3643995523452759, 'learning_rate': 8.519999999999998e-05, 'epoch': 0.46}
+{'loss': 3.6865, 'grad_norm': 0.9659025073051453, 'learning_rate': 8.549999999999999e-05, 'epoch': 0.47}
+{'loss': 3.7463, 'grad_norm': 4.1877946853637695, 'learning_rate': 8.579999999999998e-05, 'epoch': 0.47}
+{'loss': 3.7738, 'grad_norm': 2.1806647777557373, 'learning_rate': 8.609999999999999e-05, 'epoch': 0.47}
+{'loss': 3.7514, 'grad_norm': 1.7634769678115845, 'learning_rate': 8.639999999999999e-05, 'epoch': 0.47}
+{'loss': 3.684, 'grad_norm': 1.0072358846664429, 'learning_rate': 8.669999999999998e-05, 'epoch': 0.47}
+{'loss': 3.7447, 'grad_norm': 0.8580794930458069, 'learning_rate': 8.699999999999999e-05, 'epoch': 0.47}
+{'loss': 3.7797, 'grad_norm': 1.7601121664047241, 'learning_rate': 8.729999999999998e-05, 'epoch': 0.48}
+{'loss': 3.723, 'grad_norm': 3.091855525970459, 'learning_rate': 8.759999999999999e-05, 'epoch': 0.48}
+{'loss': 3.7341, 'grad_norm': 1.7820290327072144, 'learning_rate': 8.789999999999998e-05, 'epoch': 0.48}
+{'loss': 4.0743, 'grad_norm': 4.246450901031494, 'learning_rate': 8.819999999999999e-05, 'epoch': 0.48}
+{'loss': 4.3474, 'grad_norm': 72.1017837524414, 'learning_rate': 8.849999999999998e-05, 'epoch': 0.48}
+{'loss': 3.862, 'grad_norm': 7.5009355545043945, 'learning_rate': 8.879999999999999e-05, 'epoch': 0.48}
+{'loss': 4.0007, 'grad_norm': 11.676750183105469, 'learning_rate': 8.909999999999998e-05, 'epoch': 0.48}
+{'loss': 3.737, 'grad_norm': 2.041074275970459, 'learning_rate': 8.939999999999999e-05, 'epoch': 0.49}
+{'loss': 3.9839, 'grad_norm': 7.677201747894287, 'learning_rate': 8.969999999999998e-05, 'epoch': 0.49}
+{'loss': 4.1026, 'grad_norm': 6.7263617515563965, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.49}
+{'loss': 3.8479, 'grad_norm': 4.236703395843506, 'learning_rate': 9.029999999999999e-05, 'epoch': 0.49}
+{'loss': 3.7812, 'grad_norm': 5.840229511260986, 'learning_rate': 9.059999999999999e-05, 'epoch': 0.49}
+{'loss': 3.8126, 'grad_norm': 8.028979301452637, 'learning_rate': 9.089999999999999e-05, 'epoch': 0.49}
+{'loss': 3.8407, 'grad_norm': 5.721709728240967, 'learning_rate': 9.12e-05, 'epoch': 0.5}
+{'loss': 3.8688, 'grad_norm': 2.0302011966705322, 'learning_rate': 9.149999999999999e-05, 'epoch': 0.5}
+{'loss': 3.7185, 'grad_norm': 3.8033218383789062, 'learning_rate': 9.18e-05, 'epoch': 0.5}
+{'loss': 3.6954, 'grad_norm': 8.654851913452148, 'learning_rate': 9.209999999999999e-05, 'epoch': 0.5}
+{'loss': 3.8454, 'grad_norm': 3.6997175216674805, 'learning_rate': 9.24e-05, 'epoch': 0.5}
+{'loss': 3.8321, 'grad_norm': 5.1004438400268555, 'learning_rate': 9.269999999999999e-05, 'epoch': 0.5}
+{'loss': 3.6619, 'grad_norm': 1.3075134754180908, 'learning_rate': 9.3e-05, 'epoch': 0.51}
+{'loss': 3.6382, 'grad_norm': 1.137516736984253, 'learning_rate': 9.329999999999999e-05, 'epoch': 0.51}
+{'loss': 4.1195, 'grad_norm': 9.24795913696289, 'learning_rate': 9.36e-05, 'epoch': 0.51}
+{'loss': 3.6742, 'grad_norm': 1.6506896018981934, 'learning_rate': 9.389999999999999e-05, 'epoch': 0.51}
+{'loss': 3.6605, 'grad_norm': 1.2333859205245972, 'learning_rate': 9.419999999999999e-05, 'epoch': 0.51}
+{'loss': 3.6296, 'grad_norm': 1.074317455291748, 'learning_rate': 9.449999999999999e-05, 'epoch': 0.51}
+{'loss': 3.6996, 'grad_norm': 0.8660179376602173, 'learning_rate': 9.479999999999999e-05, 'epoch': 0.52}
+{'loss': 3.6899, 'grad_norm': 4.370603084564209, 'learning_rate': 9.51e-05, 'epoch': 0.52}
+{'loss': 3.6464, 'grad_norm': 4.468715667724609, 'learning_rate': 9.539999999999999e-05, 'epoch': 0.52}
+{'loss': 3.6554, 'grad_norm': 3.4510672092437744, 'learning_rate': 9.57e-05, 'epoch': 0.52}
+{'loss': 3.6866, 'grad_norm': 4.948469638824463, 'learning_rate': 9.599999999999999e-05, 'epoch': 0.52}
+{'loss': 3.6517, 'grad_norm': 1.9473222494125366, 'learning_rate': 9.63e-05, 'epoch': 0.52}
+{'loss': 3.6118, 'grad_norm': 0.8309019207954407, 'learning_rate': 9.659999999999999e-05, 'epoch': 0.52}
+{'loss': 3.7663, 'grad_norm': 1.0858643054962158, 'learning_rate': 9.69e-05, 'epoch': 0.53}
+{'loss': 3.6217, 'grad_norm': 2.959810495376587, 'learning_rate': 9.719999999999999e-05, 'epoch': 0.53}
+{'loss': 3.6604, 'grad_norm': 3.2029099464416504, 'learning_rate': 9.75e-05, 'epoch': 0.53}
+{'loss': 3.6423, 'grad_norm': 2.6211912631988525, 'learning_rate': 9.779999999999999e-05, 'epoch': 0.53}
+{'loss': 3.656, 'grad_norm': 1.876083493232727, 'learning_rate': 9.81e-05, 'epoch': 0.53}
+{'loss': 3.6448, 'grad_norm': 1.3034205436706543, 'learning_rate': 9.839999999999999e-05, 'epoch': 0.53}
+{'loss': 3.6883, 'grad_norm': 2.9727463722229004, 'learning_rate': 9.87e-05, 'epoch': 0.54}
+{'loss': 3.7493, 'grad_norm': 5.742773532867432, 'learning_rate': 9.9e-05, 'epoch': 0.54}
+{'loss': 3.886, 'grad_norm': 11.241994857788086, 'learning_rate': 9.93e-05, 'epoch': 0.54}
+{'loss': 3.6835, 'grad_norm': 5.17420768737793, 'learning_rate': 9.96e-05, 'epoch': 0.54}
+{'loss': 3.6478, 'grad_norm': 5.169139385223389, 'learning_rate': 9.99e-05, 'epoch': 0.54}
+{'loss': 3.6164, 'grad_norm': 1.9756124019622803, 'learning_rate': 0.0001002, 'epoch': 0.54}
+{'loss': 3.6319, 'grad_norm': 2.4662652015686035, 'learning_rate': 0.0001005, 'epoch': 0.55}
+{'loss': 3.6865, 'grad_norm': 2.1132149696350098, 'learning_rate': 0.0001008, 'epoch': 0.55}
+{'loss': 3.6532, 'grad_norm': 2.5962605476379395, 'learning_rate': 0.0001011, 'epoch': 0.55}
+{'loss': 3.5703, 'grad_norm': 3.534571647644043, 'learning_rate': 0.0001014, 'epoch': 0.55}
+{'loss': 3.6295, 'grad_norm': 2.0960686206817627, 'learning_rate': 0.00010169999999999999, 'epoch': 0.55}
+{'loss': 3.6976, 'grad_norm': 1.5675119161605835, 'learning_rate': 0.000102, 'epoch': 0.55}
+{'loss': 3.6302, 'grad_norm': 1.5193946361541748, 'learning_rate': 0.00010229999999999999, 'epoch': 0.56}
+{'loss': 3.6557, 'grad_norm': 2.2176620960235596, 'learning_rate': 0.0001026, 'epoch': 0.56}
+{'loss': 3.5879, 'grad_norm': 1.6280394792556763, 'learning_rate': 0.0001029, 'epoch': 0.56}
+{'loss': 3.8835, 'grad_norm': nan, 'learning_rate': 0.0001029, 'epoch': 0.56}
+{'loss': 3.9648, 'grad_norm': 15.113051414489746, 'learning_rate': 0.00010319999999999999, 'epoch': 0.56}
+{'loss': 3.9607, 'grad_norm': 15.56413459777832, 'learning_rate': 0.00010349999999999998, 'epoch': 0.56}
+{'loss': 3.9409, 'grad_norm': 12.081535339355469, 'learning_rate': 0.00010379999999999999, 'epoch': 0.56}
+{'loss': 4.0052, 'grad_norm': 15.150484085083008, 'learning_rate': 0.00010409999999999998, 'epoch': 0.57}
+{'loss': 3.6932, 'grad_norm': 3.023535966873169, 'learning_rate': 0.00010439999999999999, 'epoch': 0.57}
+{'loss': 3.6472, 'grad_norm': 3.2386553287506104, 'learning_rate': 0.00010469999999999998, 'epoch': 0.57}
+{'loss': 3.7199, 'grad_norm': 3.457566022872925, 'learning_rate': 0.00010499999999999999, 'epoch': 0.57}
+{'loss': 3.678, 'grad_norm': 7.193448066711426, 'learning_rate': 0.00010529999999999998, 'epoch': 0.57}
+{'loss': 3.7412, 'grad_norm': 7.7766032218933105, 'learning_rate': 0.00010559999999999998, 'epoch': 0.57}
+{'loss': 3.6939, 'grad_norm': 7.320962905883789, 'learning_rate': 0.00010589999999999999, 'epoch': 0.58}
+{'loss': 3.6927, 'grad_norm': 6.841294288635254, 'learning_rate': 0.00010619999999999998, 'epoch': 0.58}
+{'loss': 3.9034, 'grad_norm': 3.793191909790039, 'learning_rate': 0.00010649999999999999, 'epoch': 0.58}
+{'loss': 3.6405, 'grad_norm': 6.122262954711914, 'learning_rate': 0.00010679999999999998, 'epoch': 0.58}
+{'loss': 3.6555, 'grad_norm': 5.361271381378174, 'learning_rate': 0.00010709999999999999, 'epoch': 0.58}
+{'loss': 3.6008, 'grad_norm': 3.1824538707733154, 'learning_rate': 0.00010739999999999998, 'epoch': 0.58}
+{'loss': 3.6435, 'grad_norm': 2.6935617923736572, 'learning_rate': 0.00010769999999999999, 'epoch': 0.59}
+{'loss': 3.6248, 'grad_norm': 3.3396615982055664, 'learning_rate': 0.00010799999999999998, 'epoch': 0.59}
+{'loss': 3.569, 'grad_norm': 4.874233722686768, 'learning_rate': 0.00010829999999999999, 'epoch': 0.59}
+{'loss': 3.5806, 'grad_norm': 6.270530700683594, 'learning_rate': 0.00010859999999999998, 'epoch': 0.59}
+{'loss': 3.6301, 'grad_norm': 5.3780837059021, 'learning_rate': 0.00010889999999999999, 'epoch': 0.59}
+{'loss': 3.6537, 'grad_norm': 7.1194634437561035, 'learning_rate': 0.00010919999999999998, 'epoch': 0.59}
+{'loss': 3.6081, 'grad_norm': 4.226306438446045, 'learning_rate': 0.00010949999999999999, 'epoch': 0.6}
+{'loss': 3.5842, 'grad_norm': 1.910267949104309, 'learning_rate': 0.00010979999999999999, 'epoch': 0.6}
+{'loss': 3.5371, 'grad_norm': 0.9893857836723328, 'learning_rate': 0.00011009999999999999, 'epoch': 0.6}
+{'loss': 3.6621, 'grad_norm': 2.1459553241729736, 'learning_rate': 0.00011039999999999999, 'epoch': 0.6}
+{'loss': 3.7058, 'grad_norm': 0.9111649394035339, 'learning_rate': 0.0001107, 'epoch': 0.6}
+{'loss': 3.5917, 'grad_norm': 1.2992879152297974, 'learning_rate': 0.00011099999999999999, 'epoch': 0.6}
+{'loss': 3.553, 'grad_norm': 1.082714319229126, 'learning_rate': 0.0001113, 'epoch': 0.6}
+{'loss': 3.5233, 'grad_norm': 1.2292723655700684, 'learning_rate': 0.00011159999999999999, 'epoch': 0.61}
+{'loss': 3.4612, 'grad_norm': 1.739877462387085, 'learning_rate': 0.0001119, 'epoch': 0.61}
+{'loss': 3.5631, 'grad_norm': 1.2230865955352783, 'learning_rate': 0.00011219999999999999, 'epoch': 0.61}
+{'loss': 3.4753, 'grad_norm': 2.661285877227783, 'learning_rate': 0.0001125, 'epoch': 0.61}
+{'loss': 3.5881, 'grad_norm': 4.004184246063232, 'learning_rate': 0.00011279999999999999, 'epoch': 0.61}
+{'loss': 3.4957, 'grad_norm': 2.7191810607910156, 'learning_rate': 0.00011309999999999998, 'epoch': 0.61}
+{'loss': 3.4449, 'grad_norm': 1.195847988128662, 'learning_rate': 0.00011339999999999999, 'epoch': 0.62}
+{'loss': 3.5439, 'grad_norm': 2.1945791244506836, 'learning_rate': 0.00011369999999999999, 'epoch': 0.62}
+{'loss': 3.5066, 'grad_norm': 1.4968360662460327, 'learning_rate': 0.00011399999999999999, 'epoch': 0.62}
+{'loss': 3.5232, 'grad_norm': 2.2760701179504395, 'learning_rate': 0.00011429999999999999, 'epoch': 0.62}
+{'loss': 3.5362, 'grad_norm': 0.8866758942604065, 'learning_rate': 0.0001146, 'epoch': 0.62}
+{'loss': 3.533, 'grad_norm': 1.5824236869812012, 'learning_rate': 0.00011489999999999999, 'epoch': 0.62}
+{'loss': 3.5246, 'grad_norm': 1.9433133602142334, 'learning_rate': 0.0001152, 'epoch': 0.63}
+{'loss': 3.5464, 'grad_norm': 1.2729533910751343, 'learning_rate': 0.00011549999999999999, 'epoch': 0.63}
+{'loss': 3.5223, 'grad_norm': 1.4902565479278564, 'learning_rate': 0.0001158, 'epoch': 0.63}
+{'loss': 3.535, 'grad_norm': 2.5921518802642822, 'learning_rate': 0.00011609999999999999, 'epoch': 0.63}
+{'loss': 3.4233, 'grad_norm': 1.2368192672729492, 'learning_rate': 0.0001164, 'epoch': 0.63}
+{'loss': 3.681, 'grad_norm': 1.8510901927947998, 'learning_rate': 0.00011669999999999999, 'epoch': 0.63}
+{'loss': 3.5726, 'grad_norm': 2.9283556938171387, 'learning_rate': 0.000117, 'epoch': 0.64}
+{'loss': 3.466, 'grad_norm': 3.5072672367095947, 'learning_rate': 0.00011729999999999999, 'epoch': 0.64}
+{'loss': 3.5429, 'grad_norm': 1.411615014076233, 'learning_rate': 0.0001176, 'epoch': 0.64}
+{'loss': 3.791, 'grad_norm': nan, 'learning_rate': 0.0001176, 'epoch': 0.64}
+{'loss': 4.8401, 'grad_norm': 148.1685028076172, 'learning_rate': 0.00011789999999999999, 'epoch': 0.64}
+{'loss': 3.9567, 'grad_norm': 12.178915977478027, 'learning_rate': 0.0001182, 'epoch': 0.64}
+{'loss': 3.6857, 'grad_norm': 5.5876264572143555, 'learning_rate': 0.0001185, 'epoch': 0.64}
+{'loss': 3.7207, 'grad_norm': 5.527307033538818, 'learning_rate': 0.0001188, 'epoch': 0.65}
+{'loss': 3.6194, 'grad_norm': 2.253143548965454, 'learning_rate': 0.0001191, 'epoch': 0.65}
+{'loss': 3.7182, 'grad_norm': 1.694656491279602, 'learning_rate': 0.0001194, 'epoch': 0.65}
+{'loss': 3.6074, 'grad_norm': 4.179173469543457, 'learning_rate': 0.0001197, 'epoch': 0.65}
+{'loss': 3.5508, 'grad_norm': 5.340901851654053, 'learning_rate': 0.00011999999999999999, 'epoch': 0.65}
+{'loss': 3.6077, 'grad_norm': 7.354061126708984, 'learning_rate': 0.0001203, 'epoch': 0.65}
+{'loss': 3.5619, 'grad_norm': 1.8508795499801636, 'learning_rate': 0.00012059999999999999, 'epoch': 0.66}
+{'loss': 3.4478, 'grad_norm': 4.04713249206543, 'learning_rate': 0.0001209, 'epoch': 0.66}
+{'loss': 3.5359, 'grad_norm': 6.989367485046387, 'learning_rate': 0.00012119999999999999, 'epoch': 0.66}
+{'loss': 3.4906, 'grad_norm': 2.084543466567993, 'learning_rate': 0.0001215, 'epoch': 0.66}
+{'loss': 3.4266, 'grad_norm': 1.3646767139434814, 'learning_rate': 0.00012179999999999999, 'epoch': 0.66}
+{'loss': 3.5448, 'grad_norm': 1.7721978425979614, 'learning_rate': 0.00012209999999999999, 'epoch': 0.66}
+{'loss': 3.4261, 'grad_norm': 1.3269426822662354, 'learning_rate': 0.0001224, 'epoch': 0.67}
+{'loss': 3.3502, 'grad_norm': 1.851492166519165, 'learning_rate': 0.00012269999999999997, 'epoch': 0.67}
+{'loss': 3.3928, 'grad_norm': 4.740501880645752, 'learning_rate': 0.00012299999999999998, 'epoch': 0.67}
+{'loss': 3.3864, 'grad_norm': 1.7381259202957153, 'learning_rate': 0.0001233, 'epoch': 0.67}
+{'loss': 3.3182, 'grad_norm': 2.608163833618164, 'learning_rate': 0.0001236, 'epoch': 0.67}
+{'loss': 3.367, 'grad_norm': 1.1638840436935425, 'learning_rate': 0.00012389999999999998, 'epoch': 0.67}
+{'loss': 3.3808, 'grad_norm': 1.1645619869232178, 'learning_rate': 0.00012419999999999998, 'epoch': 0.68}
+{'loss': 3.3585, 'grad_norm': 1.3737239837646484, 'learning_rate': 0.0001245, 'epoch': 0.68}
+{'loss': 3.3515, 'grad_norm': 42.222755432128906, 'learning_rate': 0.00012479999999999997, 'epoch': 0.68}
+{'loss': 3.3906, 'grad_norm': 2.465653419494629, 'learning_rate': 0.00012509999999999998, 'epoch': 0.68}
+{'loss': 3.4148, 'grad_norm': 1.9028306007385254, 'learning_rate': 0.00012539999999999999, 'epoch': 0.68}
+{'loss': 3.3085, 'grad_norm': 1.9519649744033813, 'learning_rate': 0.0001257, 'epoch': 0.68}
+{'loss': 3.42, 'grad_norm': 1.1407490968704224, 'learning_rate': 0.00012599999999999997, 'epoch': 0.68}
+{'loss': 3.2658, 'grad_norm': 0.9681979417800903, 'learning_rate': 0.00012629999999999998, 'epoch': 0.69}
+{'loss': 3.2536, 'grad_norm': 1.3614871501922607, 'learning_rate': 0.0001266, 'epoch': 0.69}
+{'loss': 3.171, 'grad_norm': 1.113405704498291, 'learning_rate': 0.0001269, 'epoch': 0.69}
+{'loss': 3.1676, 'grad_norm': 2.0724241733551025, 'learning_rate': 0.00012719999999999997, 'epoch': 0.69}
+{'loss': 3.1817, 'grad_norm': 3.1103081703186035, 'learning_rate': 0.00012749999999999998, 'epoch': 0.69}
+{'loss': 3.143, 'grad_norm': 3.0139989852905273, 'learning_rate': 0.0001278, 'epoch': 0.69}
+{'loss': 3.2375, 'grad_norm': 1.2784980535507202, 'learning_rate': 0.0001281, 'epoch': 0.7}
+{'loss': 3.1586, 'grad_norm': 1.6558539867401123, 'learning_rate': 0.00012839999999999998, 'epoch': 0.7}
+{'loss': 3.3419, 'grad_norm': 0.9733999967575073, 'learning_rate': 0.00012869999999999998, 'epoch': 0.7}
+{'loss': 3.1615, 'grad_norm': 1.0060323476791382, 'learning_rate': 0.000129, 'epoch': 0.7}
+{'loss': 3.283, 'grad_norm': 1.6919910907745361, 'learning_rate': 0.0001293, 'epoch': 0.7}
+{'loss': 3.4583, 'grad_norm': 1.88755202293396, 'learning_rate': 0.00012959999999999998, 'epoch': 0.7}
+{'loss': 3.0699, 'grad_norm': 1.442505121231079, 'learning_rate': 0.00012989999999999999, 'epoch': 0.71}
+{'loss': 3.1889, 'grad_norm': 1.363010287284851, 'learning_rate': 0.0001302, 'epoch': 0.71}
+{'loss': 3.152, 'grad_norm': 1.2752346992492676, 'learning_rate': 0.0001305, 'epoch': 0.71}
+{'loss': 3.2669, 'grad_norm': 1.477892518043518, 'learning_rate': 0.00013079999999999998, 'epoch': 0.71}
+{'loss': 3.1291, 'grad_norm': 1.7384015321731567, 'learning_rate': 0.0001311, 'epoch': 0.71}
+{'loss': 3.1201, 'grad_norm': 1.0315364599227905, 'learning_rate': 0.0001314, 'epoch': 0.71}
+{'loss': 3.2393, 'grad_norm': 1.4718317985534668, 'learning_rate': 0.00013169999999999998, 'epoch': 0.72}
+{'loss': 3.2598, 'grad_norm': 1.4238083362579346, 'learning_rate': 0.00013199999999999998, 'epoch': 0.72}
+{'loss': 3.3919, 'grad_norm': 1.4846147298812866, 'learning_rate': 0.0001323, 'epoch': 0.72}
+{'loss': 3.6552, 'grad_norm': 4.619383811950684, 'learning_rate': 0.0001326, 'epoch': 0.72}
+{'loss': 4.6791, 'grad_norm': 30.76251220703125, 'learning_rate': 0.00013289999999999998, 'epoch': 0.72}
+{'loss': 3.1795, 'grad_norm': 7.747359275817871, 'learning_rate': 0.00013319999999999999, 'epoch': 0.72}
+{'loss': 3.1374, 'grad_norm': 5.558343887329102, 'learning_rate': 0.0001335, 'epoch': 0.72}
+{'loss': 3.0504, 'grad_norm': 2.7429940700531006, 'learning_rate': 0.0001338, 'epoch': 0.73}
+{'loss': 3.0727, 'grad_norm': 1.343422293663025, 'learning_rate': 0.00013409999999999998, 'epoch': 0.73}
+{'loss': 3.1032, 'grad_norm': 1.5927385091781616, 'learning_rate': 0.0001344, 'epoch': 0.73}
+{'loss': 3.0035, 'grad_norm': 4.210255146026611, 'learning_rate': 0.0001347, 'epoch': 0.73}
+{'loss': 2.7915, 'grad_norm': 3.81455135345459, 'learning_rate': 0.000135, 'epoch': 0.73}
+{'loss': 2.9141, 'grad_norm': 2.9454805850982666, 'learning_rate': 0.00013529999999999998, 'epoch': 0.73}
+{'loss': 2.7512, 'grad_norm': 1.501758337020874, 'learning_rate': 0.0001356, 'epoch': 0.74}
+{'loss': 2.6789, 'grad_norm': 1.6795105934143066, 'learning_rate': 0.0001359, 'epoch': 0.74}
+{'loss': 2.7782, 'grad_norm': 2.2269608974456787, 'learning_rate': 0.0001362, 'epoch': 0.74}
+{'loss': 2.6121, 'grad_norm': 2.0078094005584717, 'learning_rate': 0.00013649999999999998, 'epoch': 0.74}
+{'loss': 2.6247, 'grad_norm': 2.3875632286071777, 'learning_rate': 0.0001368, 'epoch': 0.74}
+{'loss': 2.9894, 'grad_norm': 2.9569144248962402, 'learning_rate': 0.0001371, 'epoch': 0.74}
+{'loss': 2.6496, 'grad_norm': 1.4559426307678223, 'learning_rate': 0.0001374, 'epoch': 0.75}
+{'loss': 2.6579, 'grad_norm': 2.152031421661377, 'learning_rate': 0.00013769999999999999, 'epoch': 0.75}
+{'loss': 2.67, 'grad_norm': 1.1554604768753052, 'learning_rate': 0.000138, 'epoch': 0.75}
+{'loss': 2.5704, 'grad_norm': 1.7094281911849976, 'learning_rate': 0.0001383, 'epoch': 0.75}
+{'loss': 2.8019, 'grad_norm': 5.252382278442383, 'learning_rate': 0.0001386, 'epoch': 0.75}
+{'loss': 2.7668, 'grad_norm': 3.1910815238952637, 'learning_rate': 0.0001389, 'epoch': 0.75}
+{'loss': 2.5559, 'grad_norm': 1.2235437631607056, 'learning_rate': 0.0001392, 'epoch': 0.76}
+{'loss': 2.5642, 'grad_norm': 1.8325499296188354, 'learning_rate': 0.0001395, 'epoch': 0.76}
+{'loss': 2.6201, 'grad_norm': 1.3871606588363647, 'learning_rate': 0.00013979999999999998, 'epoch': 0.76}
+{'loss': 2.5613, 'grad_norm': 1.0033754110336304, 'learning_rate': 0.0001401, 'epoch': 0.76}
+{'loss': 2.3257, 'grad_norm': 0.9249265193939209, 'learning_rate': 0.0001404, 'epoch': 0.76}
+{'loss': 2.6483, 'grad_norm': 1.0387792587280273, 'learning_rate': 0.00014069999999999998, 'epoch': 0.76}
+{'loss': 2.4524, 'grad_norm': 1.5178635120391846, 'learning_rate': 0.00014099999999999998, 'epoch': 0.76}
+{'loss': 2.688, 'grad_norm': 4.191971302032471, 'learning_rate': 0.0001413, 'epoch': 0.77}
+{'loss': 2.4534, 'grad_norm': 3.055619955062866, 'learning_rate': 0.00014159999999999997, 'epoch': 0.77}
+{'loss': 2.4007, 'grad_norm': 2.205340623855591, 'learning_rate': 0.00014189999999999998, 'epoch': 0.77}
+{'loss': 2.3937, 'grad_norm': 0.9651008248329163, 'learning_rate': 0.0001422, 'epoch': 0.77}
+{'loss': 2.3266, 'grad_norm': 1.5760127305984497, 'learning_rate': 0.0001425, 'epoch': 0.77}
+{'loss': 2.606, 'grad_norm': 1.0742831230163574, 'learning_rate': 0.00014279999999999997, 'epoch': 0.77}
+{'loss': 2.5657, 'grad_norm': 1.195465087890625, 'learning_rate': 0.00014309999999999998, 'epoch': 0.78}
+{'loss': 2.2895, 'grad_norm': 1.0587530136108398, 'learning_rate': 0.0001434, 'epoch': 0.78}
+{'loss': 2.2882, 'grad_norm': 1.911810040473938, 'learning_rate': 0.00014369999999999997, 'epoch': 0.78}
+{'loss': 2.3568, 'grad_norm': 1.0950274467468262, 'learning_rate': 0.00014399999999999998, 'epoch': 0.78}
+{'loss': 2.5129, 'grad_norm': 1.563812494277954, 'learning_rate': 0.00014429999999999998, 'epoch': 0.78}
+{'loss': 2.3818, 'grad_norm': 0.9567598104476929, 'learning_rate': 0.0001446, 'epoch': 0.78}
+{'loss': 2.1914, 'grad_norm': 0.9638680815696716, 'learning_rate': 0.00014489999999999997, 'epoch': 0.79}
+{'loss': 2.5106, 'grad_norm': 1.8414331674575806, 'learning_rate': 0.00014519999999999998, 'epoch': 0.79}
+{'loss': 2.1566, 'grad_norm': 1.2512167692184448, 'learning_rate': 0.00014549999999999999, 'epoch': 0.79}
+{'loss': 2.1137, 'grad_norm': 1.4093244075775146, 'learning_rate': 0.0001458, 'epoch': 0.79}
+{'loss': 2.4738, 'grad_norm': 1.3009130954742432, 'learning_rate': 0.00014609999999999997, 'epoch': 0.79}
+{'loss': 2.7082, 'grad_norm': 1.0954293012619019, 'learning_rate': 0.00014639999999999998, 'epoch': 0.79}
+{'loss': 2.4871, 'grad_norm': 1.9157133102416992, 'learning_rate': 0.0001467, 'epoch': 0.8}
+{'loss': 2.5936, 'grad_norm': 1.6690477132797241, 'learning_rate': 0.000147, 'epoch': 0.8}
+{'loss': 2.4619, 'grad_norm': 1.933651089668274, 'learning_rate': 0.00014729999999999998, 'epoch': 0.8}
+{'loss': 3.235, 'grad_norm': nan, 'learning_rate': 0.00014729999999999998, 'epoch': 0.8}
+{'loss': 2.7598, 'grad_norm': 7.1725873947143555, 'learning_rate': 0.00014759999999999998, 'epoch': 0.8}
+{'loss': 2.3616, 'grad_norm': 5.490133762359619, 'learning_rate': 0.0001479, 'epoch': 0.8}
+{'loss': 2.2612, 'grad_norm': 1.2265512943267822, 'learning_rate': 0.0001482, 'epoch': 0.8}
+{'loss': 2.6145, 'grad_norm': 2.705599069595337, 'learning_rate': 0.00014849999999999998, 'epoch': 0.81}
+{'loss': 2.305, 'grad_norm': 1.0577749013900757, 'learning_rate': 0.00014879999999999998, 'epoch': 0.81}
+{'loss': 2.2658, 'grad_norm': 2.958197593688965, 'learning_rate': 0.0001491, 'epoch': 0.81}
+{'loss': 2.3687, 'grad_norm': 1.8943955898284912, 'learning_rate': 0.0001494, 'epoch': 0.81}
+{'loss': 1.9508, 'grad_norm': 1.8153882026672363, 'learning_rate': 0.00014969999999999998, 'epoch': 0.81}
+{'loss': 2.1255, 'grad_norm': 1.5181827545166016, 'learning_rate': 0.00015, 'epoch': 0.81}
+{'loss': 2.1064, 'grad_norm': 1.3731355667114258, 'learning_rate': 0.0001503, 'epoch': 0.82}
+{'loss': 2.3098, 'grad_norm': 3.0102975368499756, 'learning_rate': 0.00015059999999999997, 'epoch': 0.82}
+{'loss': 1.9189, 'grad_norm': 3.4178948402404785, 'learning_rate': 0.00015089999999999998, 'epoch': 0.82}
+{'loss': 2.2278, 'grad_norm': 2.359294891357422, 'learning_rate': 0.0001512, 'epoch': 0.82}
+{'loss': 1.7545, 'grad_norm': 1.2816225290298462, 'learning_rate': 0.0001515, 'epoch': 0.82}
+{'loss': 2.0563, 'grad_norm': 1.676662564277649, 'learning_rate': 0.00015179999999999998, 'epoch': 0.82}
+{'loss': 1.9042, 'grad_norm': 1.036680817604065, 'learning_rate': 0.00015209999999999998, 'epoch': 0.83}
+{'loss': 1.9305, 'grad_norm': 0.8826329708099365, 'learning_rate': 0.0001524, 'epoch': 0.83}
+{'loss': 2.5653, 'grad_norm': 6.336912631988525, 'learning_rate': 0.0001527, 'epoch': 0.83}
+{'loss': 1.8931, 'grad_norm': 1.77652907371521, 'learning_rate': 0.00015299999999999998, 'epoch': 0.83}
+{'loss': 1.7564, 'grad_norm': 1.2775630950927734, 'learning_rate': 0.00015329999999999999, 'epoch': 0.83}
+{'loss': 1.7173, 'grad_norm': 1.01466965675354, 'learning_rate': 0.0001536, 'epoch': 0.83}
+{'loss': 1.9266, 'grad_norm': 1.1461132764816284, 'learning_rate': 0.0001539, 'epoch': 0.84}
+{'loss': 1.6062, 'grad_norm': 1.6386278867721558, 'learning_rate': 0.00015419999999999998, 'epoch': 0.84}
+{'loss': 1.6551, 'grad_norm': 1.1096084117889404, 'learning_rate': 0.0001545, 'epoch': 0.84}
+{'loss': 1.6422, 'grad_norm': 1.0475767850875854, 'learning_rate': 0.0001548, 'epoch': 0.84}
+{'loss': 1.8283, 'grad_norm': 1.8000061511993408, 'learning_rate': 0.0001551, 'epoch': 0.84}
+{'loss': 1.6057, 'grad_norm': 1.2773330211639404, 'learning_rate': 0.00015539999999999998, 'epoch': 0.84}
+{'loss': 1.9903, 'grad_norm': 2.812037944793701, 'learning_rate': 0.0001557, 'epoch': 0.84}
+{'loss': 2.1515, 'grad_norm': 1.1310831308364868, 'learning_rate': 0.000156, 'epoch': 0.85}
+{'loss': 1.6635, 'grad_norm': 1.6405916213989258, 'learning_rate': 0.0001563, 'epoch': 0.85}
+{'loss': 1.7994, 'grad_norm': 1.143716812133789, 'learning_rate': 0.00015659999999999998, 'epoch': 0.85}
+{'loss': 1.6934, 'grad_norm': 1.5526354312896729, 'learning_rate': 0.0001569, 'epoch': 0.85}
+{'loss': 2.0692, 'grad_norm': 1.5130469799041748, 'learning_rate': 0.0001572, 'epoch': 0.85}
+{'loss': 2.178, 'grad_norm': 2.715682029724121, 'learning_rate': 0.00015749999999999998, 'epoch': 0.85}
+{'loss': 2.0984, 'grad_norm': 1.2512975931167603, 'learning_rate': 0.0001578, 'epoch': 0.86}
+{'loss': 2.0069, 'grad_norm': 1.528995394706726, 'learning_rate': 0.0001581, 'epoch': 0.86}
+{'loss': 1.8528, 'grad_norm': 2.7194480895996094, 'learning_rate': 0.0001584, 'epoch': 0.86}
+{'loss': 2.0246, 'grad_norm': 1.1557732820510864, 'learning_rate': 0.00015869999999999998, 'epoch': 0.86}
+{'loss': 2.1268, 'grad_norm': 1.606906771659851, 'learning_rate': 0.000159, 'epoch': 0.86}
+{'loss': 1.7476, 'grad_norm': 1.176815152168274, 'learning_rate': 0.0001593, 'epoch': 0.86}
+{'loss': 2.1414, 'grad_norm': 1.139367699623108, 'learning_rate': 0.0001596, 'epoch': 0.87}
+{'loss': 2.1052, 'grad_norm': 1.1354289054870605, 'learning_rate': 0.00015989999999999998, 'epoch': 0.87}
+{'loss': 2.0711, 'grad_norm': 1.374079942703247, 'learning_rate': 0.0001602, 'epoch': 0.87}
+{'loss': 2.3558, 'grad_norm': 1.9494390487670898, 'learning_rate': 0.0001605, 'epoch': 0.87}
+{'loss': 2.0471, 'grad_norm': 1.1053131818771362, 'learning_rate': 0.0001608, 'epoch': 0.87}
+{'loss': 1.6801, 'grad_norm': 1.0600978136062622, 'learning_rate': 0.00016109999999999999, 'epoch': 0.87}
+{'loss': 2.222, 'grad_norm': 1.5583279132843018, 'learning_rate': 0.0001614, 'epoch': 0.88}
+{'loss': 2.0222, 'grad_norm': 1.5233080387115479, 'learning_rate': 0.0001617, 'epoch': 0.88}
+{'loss': 2.3573, 'grad_norm': 1.6784640550613403, 'learning_rate': 0.000162, 'epoch': 0.88}
+{'loss': 1.9713, 'grad_norm': nan, 'learning_rate': 0.000162, 'epoch': 0.88}
+{'loss': 4.5456, 'grad_norm': 22.64229393005371, 'learning_rate': 0.0001623, 'epoch': 0.88}
+{'loss': 1.9073, 'grad_norm': 3.1680028438568115, 'learning_rate': 0.0001626, 'epoch': 0.88}
+{'loss': 1.8575, 'grad_norm': 1.5461392402648926, 'learning_rate': 0.0001629, 'epoch': 0.88}
+{'loss': 2.1306, 'grad_norm': 1.6578490734100342, 'learning_rate': 0.0001632, 'epoch': 0.89}
+{'loss': 2.0791, 'grad_norm': 2.54394793510437, 'learning_rate': 0.0001635, 'epoch': 0.89}
+{'loss': 2.0151, 'grad_norm': 4.085062026977539, 'learning_rate': 0.0001638, 'epoch': 0.89}
+{'loss': 1.9562, 'grad_norm': 1.3918102979660034, 'learning_rate': 0.0001641, 'epoch': 0.89}
+{'loss': 2.3353, 'grad_norm': 1.7889790534973145, 'learning_rate': 0.0001644, 'epoch': 0.89}
+{'loss': 1.5553, 'grad_norm': 1.9378011226654053, 'learning_rate': 0.0001647, 'epoch': 0.89}
+{'loss': 1.6519, 'grad_norm': 1.3917180299758911, 'learning_rate': 0.000165, 'epoch': 0.9}
+{'loss': 2.2321, 'grad_norm': 5.907794952392578, 'learning_rate': 0.0001653, 'epoch': 0.9}
+{'loss': 1.9859, 'grad_norm': 1.9292672872543335, 'learning_rate': 0.0001656, 'epoch': 0.9}
+{'loss': 1.656, 'grad_norm': 1.9389235973358154, 'learning_rate': 0.0001659, 'epoch': 0.9}
+{'loss': 1.7168, 'grad_norm': 1.0009876489639282, 'learning_rate': 0.0001662, 'epoch': 0.9}
+{'loss': 1.3794, 'grad_norm': 1.138958215713501, 'learning_rate': 0.0001665, 'epoch': 0.9}
+{'loss': 1.5395, 'grad_norm': 1.236640453338623, 'learning_rate': 0.0001668, 'epoch': 0.91}
+{'loss': 1.6903, 'grad_norm': 0.8538547158241272, 'learning_rate': 0.0001671, 'epoch': 0.91}
+{'loss': 1.6005, 'grad_norm': 1.112789273262024, 'learning_rate': 0.0001674, 'epoch': 0.91}
+{'loss': 1.6596, 'grad_norm': 0.9694105982780457, 'learning_rate': 0.0001677, 'epoch': 0.91}
+{'loss': 1.3571, 'grad_norm': 0.9604489803314209, 'learning_rate': 0.000168, 'epoch': 0.91}
+{'loss': 1.9352, 'grad_norm': 1.1342942714691162, 'learning_rate': 0.0001683, 'epoch': 0.91}
+{'loss': 1.5642, 'grad_norm': 1.059465765953064, 'learning_rate': 0.0001686, 'epoch': 0.92}
+{'loss': 1.5281, 'grad_norm': 1.3122626543045044, 'learning_rate': 0.00016889999999999996, 'epoch': 0.92}
+{'loss': 2.0261, 'grad_norm': 4.926758289337158, 'learning_rate': 0.00016919999999999997, 'epoch': 0.92}
+{'loss': 1.6621, 'grad_norm': 3.0546226501464844, 'learning_rate': 0.00016949999999999997, 'epoch': 0.92}
+{'loss': 2.0468, 'grad_norm': 2.96925687789917, 'learning_rate': 0.00016979999999999998, 'epoch': 0.92}
+{'loss': 1.4683, 'grad_norm': 1.883144736289978, 'learning_rate': 0.00017009999999999996, 'epoch': 0.92}
+{'loss': 1.4475, 'grad_norm': 1.6988012790679932, 'learning_rate': 0.00017039999999999997, 'epoch': 0.92}
+{'loss': 1.475, 'grad_norm': 1.6453936100006104, 'learning_rate': 0.00017069999999999998, 'epoch': 0.93}
+{'loss': 1.5596, 'grad_norm': 2.155768871307373, 'learning_rate': 0.00017099999999999998, 'epoch': 0.93}
+{'loss': 1.8129, 'grad_norm': 1.20650053024292, 'learning_rate': 0.00017129999999999996, 'epoch': 0.93}
+{'loss': 1.5443, 'grad_norm': 1.2697020769119263, 'learning_rate': 0.00017159999999999997, 'epoch': 0.93}
+{'loss': 1.4867, 'grad_norm': 1.6629301309585571, 'learning_rate': 0.00017189999999999998, 'epoch': 0.93}
+{'loss': 1.7197, 'grad_norm': 1.982050895690918, 'learning_rate': 0.00017219999999999998, 'epoch': 0.93}
+{'loss': 1.5931, 'grad_norm': 2.2001729011535645, 'learning_rate': 0.00017249999999999996, 'epoch': 0.94}
+{'loss': 1.6565, 'grad_norm': 1.925163984298706, 'learning_rate': 0.00017279999999999997, 'epoch': 0.94}
+{'loss': 1.5769, 'grad_norm': 1.163279414176941, 'learning_rate': 0.00017309999999999998, 'epoch': 0.94}
+{'loss': 1.4949, 'grad_norm': 1.164640188217163, 'learning_rate': 0.00017339999999999996, 'epoch': 0.94}
+{'loss': 1.6192, 'grad_norm': 1.5389615297317505, 'learning_rate': 0.00017369999999999997, 'epoch': 0.94}
+{'loss': 2.1662, 'grad_norm': 3.1581554412841797, 'learning_rate': 0.00017399999999999997, 'epoch': 0.94}
+{'loss': 2.0104, 'grad_norm': 1.5341241359710693, 'learning_rate': 0.00017429999999999998, 'epoch': 0.95}
+{'loss': 1.6697, 'grad_norm': 2.192890167236328, 'learning_rate': 0.00017459999999999996, 'epoch': 0.95}
+{'loss': 2.1618, 'grad_norm': 1.1967136859893799, 'learning_rate': 0.00017489999999999997, 'epoch': 0.95}
+{'loss': 1.6773, 'grad_norm': 1.4983010292053223, 'learning_rate': 0.00017519999999999998, 'epoch': 0.95}
+{'loss': 2.1347, 'grad_norm': 1.8660876750946045, 'learning_rate': 0.00017549999999999998, 'epoch': 0.95}
+{'loss': 2.0521, 'grad_norm': 2.4708802700042725, 'learning_rate': 0.00017579999999999996, 'epoch': 0.95}
+{'loss': 2.3289, 'grad_norm': 1.22525954246521, 'learning_rate': 0.00017609999999999997, 'epoch': 0.96}
+{'loss': 2.3451, 'grad_norm': 2.8093461990356445, 'learning_rate': 0.00017639999999999998, 'epoch': 0.96}
+{'loss': 1.8311, 'grad_norm': 2.3243844509124756, 'learning_rate': 0.00017669999999999999, 'epoch': 0.96}
+{'loss': 1.9821, 'grad_norm': nan, 'learning_rate': 0.00017669999999999999, 'epoch': 0.96}
+{'loss': 1.8856, 'grad_norm': 2.1118686199188232, 'learning_rate': 0.00017699999999999997, 'epoch': 0.96}
+{'loss': 2.4598, 'grad_norm': 3.0222251415252686, 'learning_rate': 0.00017729999999999997, 'epoch': 0.96}
+{'loss': 2.2719, 'grad_norm': 2.8710968494415283, 'learning_rate': 0.00017759999999999998, 'epoch': 0.96}
+{'loss': 1.7081, 'grad_norm': 3.6922225952148438, 'learning_rate': 0.0001779, 'epoch': 0.97}
+{'loss': 1.7774, 'grad_norm': 4.826087951660156, 'learning_rate': 0.00017819999999999997, 'epoch': 0.97}
+{'loss': 1.7018, 'grad_norm': 3.9629127979278564, 'learning_rate': 0.00017849999999999997, 'epoch': 0.97}
+{'loss': 1.5971, 'grad_norm': 3.826023817062378, 'learning_rate': 0.00017879999999999998, 'epoch': 0.97}
+{'loss': 1.9029, 'grad_norm': 1.6545122861862183, 'learning_rate': 0.0001791, 'epoch': 0.97}
+{'loss': 1.584, 'grad_norm': 1.552114725112915, 'learning_rate': 0.00017939999999999997, 'epoch': 0.97}
+{'loss': 1.6172, 'grad_norm': 1.2096900939941406, 'learning_rate': 0.00017969999999999998, 'epoch': 0.98}
+{'loss': 1.2749, 'grad_norm': 2.817974328994751, 'learning_rate': 0.00017999999999999998, 'epoch': 0.98}
+{'loss': 2.0863, 'grad_norm': 3.8628475666046143, 'learning_rate': 0.00018029999999999996, 'epoch': 0.98}
+{'loss': 1.3319, 'grad_norm': 4.558107852935791, 'learning_rate': 0.00018059999999999997, 'epoch': 0.98}
+{'loss': 1.5316, 'grad_norm': 3.5585508346557617, 'learning_rate': 0.00018089999999999998, 'epoch': 0.98}
+{'loss': 1.7669, 'grad_norm': 3.8311831951141357, 'learning_rate': 0.00018119999999999999, 'epoch': 0.98}
+{'loss': 1.6969, 'grad_norm': 3.750258207321167, 'learning_rate': 0.00018149999999999997, 'epoch': 0.99}
+{'loss': 1.6474, 'grad_norm': 2.679804801940918, 'learning_rate': 0.00018179999999999997, 'epoch': 0.99}
+{'loss': 1.5411, 'grad_norm': 1.5909662246704102, 'learning_rate': 0.00018209999999999998, 'epoch': 0.99}
+{'loss': 1.7017, 'grad_norm': 1.123789668083191, 'learning_rate': 0.0001824, 'epoch': 0.99}
+{'loss': 1.3411, 'grad_norm': 1.4218626022338867, 'learning_rate': 0.00018269999999999997, 'epoch': 0.99}
+{'loss': 2.159, 'grad_norm': 1.5946886539459229, 'learning_rate': 0.00018299999999999998, 'epoch': 0.99}
+{'loss': 1.8949, 'grad_norm': 1.3549202680587769, 'learning_rate': 0.00018329999999999998, 'epoch': 1.0}
+{'loss': 1.7881, 'grad_norm': 1.5221611261367798, 'learning_rate': 0.0001836, 'epoch': 1.0}
+{'loss': 1.8924, 'grad_norm': 1.4437967538833618, 'learning_rate': 0.00018389999999999997, 'epoch': 1.0}
+{'loss': 2.3162, 'grad_norm': 2.5355899333953857, 'learning_rate': 0.00018419999999999998, 'epoch': 1.0}
+{'loss': 3.2662, 'grad_norm': 17.70075798034668, 'learning_rate': 0.00018449999999999999, 'epoch': 1.0}
+{'loss': 2.1297, 'grad_norm': 5.143967151641846, 'learning_rate': 0.0001848, 'epoch': 1.0}
+{'loss': 2.5585, 'grad_norm': 7.86220645904541, 'learning_rate': 0.00018509999999999997, 'epoch': 1.0}
+{'loss': 2.479, 'grad_norm': 5.712104797363281, 'learning_rate': 0.00018539999999999998, 'epoch': 1.01}
+{'loss': 2.7763, 'grad_norm': 8.05717658996582, 'learning_rate': 0.0001857, 'epoch': 1.01}
+{'loss': 1.9077, 'grad_norm': 2.07607102394104, 'learning_rate': 0.000186, 'epoch': 1.01}
+{'loss': 1.7525, 'grad_norm': 3.5380396842956543, 'learning_rate': 0.00018629999999999997, 'epoch': 1.01}
+{'loss': 1.8469, 'grad_norm': 4.81820011138916, 'learning_rate': 0.00018659999999999998, 'epoch': 1.01}
+{'loss': 1.8129, 'grad_norm': 4.835049629211426, 'learning_rate': 0.0001869, 'epoch': 1.01}
+{'loss': 1.8239, 'grad_norm': 5.322865962982178, 'learning_rate': 0.0001872, 'epoch': 1.02}
+{'loss': 1.5825, 'grad_norm': 4.629301071166992, 'learning_rate': 0.00018749999999999998, 'epoch': 1.02}
+{'loss': 1.8754, 'grad_norm': 1.5236226320266724, 'learning_rate': 0.00018779999999999998, 'epoch': 1.02}
+{'loss': 1.4363, 'grad_norm': 1.857738733291626, 'learning_rate': 0.0001881, 'epoch': 1.02}
+{'loss': 1.6648, 'grad_norm': 0.8692172765731812, 'learning_rate': 0.00018839999999999997, 'epoch': 1.02}
+{'loss': 1.6678, 'grad_norm': 3.064953088760376, 'learning_rate': 0.00018869999999999998, 'epoch': 1.02}
+{'loss': 1.9777, 'grad_norm': 5.139404773712158, 'learning_rate': 0.00018899999999999999, 'epoch': 1.03}
+{'loss': 1.4951, 'grad_norm': 2.796144723892212, 'learning_rate': 0.0001893, 'epoch': 1.03}
+{'loss': 1.5257, 'grad_norm': 2.954390048980713, 'learning_rate': 0.00018959999999999997, 'epoch': 1.03}
+{'loss': 1.8541, 'grad_norm': 3.8204727172851562, 'learning_rate': 0.00018989999999999998, 'epoch': 1.03}
+{'loss': 1.5582, 'grad_norm': 3.7258269786834717, 'learning_rate': 0.0001902, 'epoch': 1.03}
+{'loss': 1.382, 'grad_norm': 1.9401317834854126, 'learning_rate': 0.0001905, 'epoch': 1.03}
+{'loss': 1.3877, 'grad_norm': 2.4146273136138916, 'learning_rate': 0.00019079999999999998, 'epoch': 1.04}
+{'loss': 1.476, 'grad_norm': 1.2937108278274536, 'learning_rate': 0.00019109999999999998, 'epoch': 1.04}
+{'loss': 1.5663, 'grad_norm': 0.9674957394599915, 'learning_rate': 0.0001914, 'epoch': 1.04}
+{'loss': 1.3558, 'grad_norm': 1.0743024349212646, 'learning_rate': 0.0001917, 'epoch': 1.04}
+{'loss': 1.2761, 'grad_norm': 1.2061973810195923, 'learning_rate': 0.00019199999999999998, 'epoch': 1.04}
+{'loss': 1.5368, 'grad_norm': 1.1233325004577637, 'learning_rate': 0.00019229999999999999, 'epoch': 1.04}
+{'loss': 1.4238, 'grad_norm': 0.894705593585968, 'learning_rate': 0.0001926, 'epoch': 1.04}
+{'loss': 1.3999, 'grad_norm': 1.2992541790008545, 'learning_rate': 0.0001929, 'epoch': 1.05}
+{'loss': 1.6165, 'grad_norm': 1.919297695159912, 'learning_rate': 0.00019319999999999998, 'epoch': 1.05}
+{'loss': 1.4777, 'grad_norm': 1.7403674125671387, 'learning_rate': 0.0001935, 'epoch': 1.05}
+{'loss': 1.4263, 'grad_norm': 1.8304212093353271, 'learning_rate': 0.0001938, 'epoch': 1.05}
+{'loss': 1.5995, 'grad_norm': 5.81217622756958, 'learning_rate': 0.0001941, 'epoch': 1.05}
+{'loss': 1.6648, 'grad_norm': 2.001800775527954, 'learning_rate': 0.00019439999999999998, 'epoch': 1.05}
+{'loss': 1.9484, 'grad_norm': 2.0674045085906982, 'learning_rate': 0.0001947, 'epoch': 1.06}
+{'loss': 1.5397, 'grad_norm': 1.6843963861465454, 'learning_rate': 0.000195, 'epoch': 1.06}
+{'loss': 1.9416, 'grad_norm': 1.1019186973571777, 'learning_rate': 0.00019529999999999998, 'epoch': 1.06}
+{'loss': 1.3641, 'grad_norm': 1.1988193988800049, 'learning_rate': 0.00019559999999999998, 'epoch': 1.06}
+{'loss': 1.5757, 'grad_norm': 1.044538974761963, 'learning_rate': 0.0001959, 'epoch': 1.06}
+{'loss': 1.6955, 'grad_norm': 2.194228172302246, 'learning_rate': 0.0001962, 'epoch': 1.06}
+{'loss': 1.7652, 'grad_norm': 1.3142859935760498, 'learning_rate': 0.00019649999999999998, 'epoch': 1.07}
+{'loss': 1.5292, 'grad_norm': 2.0349411964416504, 'learning_rate': 0.00019679999999999999, 'epoch': 1.07}
+{'loss': 2.1332, 'grad_norm': 2.3026349544525146, 'learning_rate': 0.0001971, 'epoch': 1.07}
+{'loss': 1.6047, 'grad_norm': 1.8887361288070679, 'learning_rate': 0.0001974, 'epoch': 1.07}
+{'loss': 1.4923, 'grad_norm': 2.026123523712158, 'learning_rate': 0.00019769999999999998, 'epoch': 1.07}
+{'loss': 2.2244, 'grad_norm': 1.346245527267456, 'learning_rate': 0.000198, 'epoch': 1.07}
+{'loss': 2.0532, 'grad_norm': 1.6142189502716064, 'learning_rate': 0.0001983, 'epoch': 1.08}
+{'loss': 1.4883, 'grad_norm': 1.4740869998931885, 'learning_rate': 0.0001986, 'epoch': 1.08}
+{'loss': 2.5934, 'grad_norm': 2.6052584648132324, 'learning_rate': 0.00019889999999999998, 'epoch': 1.08}
+{'loss': 2.2343, 'grad_norm': 1.7282607555389404, 'learning_rate': 0.0001992, 'epoch': 1.08}
+{'loss': 2.2084, 'grad_norm': 4.516241073608398, 'learning_rate': 0.0001995, 'epoch': 1.08}
+{'loss': 2.0985, 'grad_norm': 4.2023162841796875, 'learning_rate': 0.0001998, 'epoch': 1.08}
+{'loss': 2.6756, 'grad_norm': 7.1226325035095215, 'learning_rate': 0.00020009999999999998, 'epoch': 1.08}
+{'loss': 2.074, 'grad_norm': 2.7742109298706055, 'learning_rate': 0.0002004, 'epoch': 1.09}
+{'loss': 2.0783, 'grad_norm': 1.4542862176895142, 'learning_rate': 0.0002007, 'epoch': 1.09}
+{'loss': 1.7689, 'grad_norm': 3.168198585510254, 'learning_rate': 0.000201, 'epoch': 1.09}
+{'loss': 1.9546, 'grad_norm': 3.7544302940368652, 'learning_rate': 0.0002013, 'epoch': 1.09}
+{'loss': 1.9613, 'grad_norm': 3.380309820175171, 'learning_rate': 0.0002016, 'epoch': 1.09}
+{'loss': 1.7351, 'grad_norm': 1.9851268529891968, 'learning_rate': 0.0002019, 'epoch': 1.09}
+{'loss': 1.6944, 'grad_norm': 1.1245828866958618, 'learning_rate': 0.0002022, 'epoch': 1.1}
+{'loss': 1.176, 'grad_norm': 1.3622814416885376, 'learning_rate': 0.0002025, 'epoch': 1.1}
+{'loss': 1.4127, 'grad_norm': 3.036677837371826, 'learning_rate': 0.0002028, 'epoch': 1.1}
+{'loss': 1.9776, 'grad_norm': 5.2766337394714355, 'learning_rate': 0.0002031, 'epoch': 1.1}
+{'loss': 1.6777, 'grad_norm': 3.7435624599456787, 'learning_rate': 0.00020339999999999998, 'epoch': 1.1}
+{'loss': 1.3577, 'grad_norm': 2.5562703609466553, 'learning_rate': 0.0002037, 'epoch': 1.1}
+{'loss': 3.3387, 'grad_norm': 7.86569356918335, 'learning_rate': 0.000204, 'epoch': 1.11}
+{'loss': 1.5658, 'grad_norm': 2.577002763748169, 'learning_rate': 0.0002043, 'epoch': 1.11}
+{'loss': 1.7374, 'grad_norm': 1.7518302202224731, 'learning_rate': 0.00020459999999999999, 'epoch': 1.11}
+{'loss': 1.3374, 'grad_norm': 1.0395740270614624, 'learning_rate': 0.0002049, 'epoch': 1.11}
+{'loss': 1.3842, 'grad_norm': 1.0535399913787842, 'learning_rate': 0.0002052, 'epoch': 1.11}
+{'loss': 1.2359, 'grad_norm': 1.3788182735443115, 'learning_rate': 0.0002055, 'epoch': 1.11}
+{'loss': 1.8388, 'grad_norm': 2.2207717895507812, 'learning_rate': 0.0002058, 'epoch': 1.12}
+{'loss': 1.4118, 'grad_norm': 2.8598082065582275, 'learning_rate': 0.0002061, 'epoch': 1.12}
+{'loss': 1.4376, 'grad_norm': 1.4320859909057617, 'learning_rate': 0.00020639999999999998, 'epoch': 1.12}
+{'loss': 1.3912, 'grad_norm': 0.9855818152427673, 'learning_rate': 0.00020669999999999996, 'epoch': 1.12}
+{'loss': 1.3984, 'grad_norm': 1.0571755170822144, 'learning_rate': 0.00020699999999999996, 'epoch': 1.12}
+{'loss': 1.5948, 'grad_norm': 1.7968964576721191, 'learning_rate': 0.00020729999999999997, 'epoch': 1.12}
+{'loss': 1.8038, 'grad_norm': 2.7255570888519287, 'learning_rate': 0.00020759999999999998, 'epoch': 1.12}
+{'loss': 1.6942, 'grad_norm': 3.1238272190093994, 'learning_rate': 0.00020789999999999996, 'epoch': 1.13}
+{'loss': 1.4243, 'grad_norm': 2.947319984436035, 'learning_rate': 0.00020819999999999996, 'epoch': 1.13}
+{'loss': 1.4778, 'grad_norm': 2.5516934394836426, 'learning_rate': 0.00020849999999999997, 'epoch': 1.13}
+{'loss': 1.6869, 'grad_norm': 2.3497977256774902, 'learning_rate': 0.00020879999999999998, 'epoch': 1.13}
+{'loss': 1.3769, 'grad_norm': 1.1373237371444702, 'learning_rate': 0.00020909999999999996, 'epoch': 1.13}
+{'loss': 1.5282, 'grad_norm': 1.186307430267334, 'learning_rate': 0.00020939999999999997, 'epoch': 1.13}
+{'loss': 1.5939, 'grad_norm': 1.152564525604248, 'learning_rate': 0.00020969999999999997, 'epoch': 1.14}
+{'loss': 1.3393, 'grad_norm': 1.2839113473892212, 'learning_rate': 0.00020999999999999998, 'epoch': 1.14}
+{'loss': 1.5591, 'grad_norm': 1.3416848182678223, 'learning_rate': 0.00021029999999999996, 'epoch': 1.14}
+{'loss': 1.5227, 'grad_norm': 1.4146075248718262, 'learning_rate': 0.00021059999999999997, 'epoch': 1.14}
+{'loss': 2.0963, 'grad_norm': 2.817870616912842, 'learning_rate': 0.00021089999999999998, 'epoch': 1.14}
+{'loss': 1.2714, 'grad_norm': 1.0793464183807373, 'learning_rate': 0.00021119999999999996, 'epoch': 1.14}
+{'loss': 1.6881, 'grad_norm': 1.9559093713760376, 'learning_rate': 0.00021149999999999996, 'epoch': 1.15}
+{'loss': 1.7142, 'grad_norm': 1.690061330795288, 'learning_rate': 0.00021179999999999997, 'epoch': 1.15}
+{'loss': 1.5926, 'grad_norm': 1.6061111688613892, 'learning_rate': 0.00021209999999999998, 'epoch': 1.15}
+{'loss': 1.9628, 'grad_norm': 1.7083910703659058, 'learning_rate': 0.00021239999999999996, 'epoch': 1.15}
+{'loss': 1.6522, 'grad_norm': 1.864904522895813, 'learning_rate': 0.00021269999999999997, 'epoch': 1.15}
+{'loss': 1.7124, 'grad_norm': 1.7691465616226196, 'learning_rate': 0.00021299999999999997, 'epoch': 1.15}
+{'loss': 1.6296, 'grad_norm': 1.6824963092803955, 'learning_rate': 0.00021329999999999998, 'epoch': 1.16}
+{'loss': 1.9528, 'grad_norm': 1.7225028276443481, 'learning_rate': 0.00021359999999999996, 'epoch': 1.16}
+{'loss': 1.686, 'grad_norm': 2.096581220626831, 'learning_rate': 0.00021389999999999997, 'epoch': 1.16}
+{'loss': 1.5142, 'grad_norm': nan, 'learning_rate': 0.00021389999999999997, 'epoch': 1.16}
+{'loss': 7.8505, 'grad_norm': 32.82332229614258, 'learning_rate': 0.00021419999999999998, 'epoch': 1.16}
+{'loss': 2.772, 'grad_norm': 6.196145534515381, 'learning_rate': 0.00021449999999999998, 'epoch': 1.16}
+{'loss': 1.8117, 'grad_norm': 1.9611283540725708, 'learning_rate': 0.00021479999999999996, 'epoch': 1.16}
+{'loss': 2.1499, 'grad_norm': 2.0812253952026367, 'learning_rate': 0.00021509999999999997, 'epoch': 1.17}
+{'loss': 1.8366, 'grad_norm': 4.227649211883545, 'learning_rate': 0.00021539999999999998, 'epoch': 1.17}
+{'loss': 1.9702, 'grad_norm': 3.2809646129608154, 'learning_rate': 0.00021569999999999998, 'epoch': 1.17}
+{'loss': 1.8251, 'grad_norm': 3.782552480697632, 'learning_rate': 0.00021599999999999996, 'epoch': 1.17}
+{'loss': 1.7244, 'grad_norm': 3.1371798515319824, 'learning_rate': 0.00021629999999999997, 'epoch': 1.17}
+{'loss': 1.58, 'grad_norm': 2.922322988510132, 'learning_rate': 0.00021659999999999998, 'epoch': 1.17}
+{'loss': 1.7604, 'grad_norm': 1.2136024236679077, 'learning_rate': 0.0002169, 'epoch': 1.18}
+{'loss': 1.5032, 'grad_norm': 1.53628408908844, 'learning_rate': 0.00021719999999999997, 'epoch': 1.18}
+{'loss': 1.3641, 'grad_norm': 1.3501044511795044, 'learning_rate': 0.00021749999999999997, 'epoch': 1.18}
+{'loss': 1.3152, 'grad_norm': 1.7561484575271606, 'learning_rate': 0.00021779999999999998, 'epoch': 1.18}
+{'loss': 1.291, 'grad_norm': 2.1395440101623535, 'learning_rate': 0.00021809999999999996, 'epoch': 1.18}
+{'loss': 2.4686, 'grad_norm': 7.072542190551758, 'learning_rate': 0.00021839999999999997, 'epoch': 1.18}
+{'loss': 1.4452, 'grad_norm': 2.9105377197265625, 'learning_rate': 0.00021869999999999998, 'epoch': 1.19}
+{'loss': 1.6603, 'grad_norm': 2.0918514728546143, 'learning_rate': 0.00021899999999999998, 'epoch': 1.19}
+{'loss': 2.2748, 'grad_norm': 6.477406024932861, 'learning_rate': 0.00021929999999999996, 'epoch': 1.19}
+{'loss': 1.6605, 'grad_norm': 1.854599952697754, 'learning_rate': 0.00021959999999999997, 'epoch': 1.19}
+{'loss': 1.8005, 'grad_norm': 1.2816931009292603, 'learning_rate': 0.00021989999999999998, 'epoch': 1.19}
+{'loss': 1.4313, 'grad_norm': 1.2794959545135498, 'learning_rate': 0.00022019999999999999, 'epoch': 1.19}
+{'loss': 1.4062, 'grad_norm': 1.2156718969345093, 'learning_rate': 0.00022049999999999997, 'epoch': 1.2}
+{'loss': 1.4398, 'grad_norm': 1.478219747543335, 'learning_rate': 0.00022079999999999997, 'epoch': 1.2}
+{'loss': 1.7798, 'grad_norm': 1.091399908065796, 'learning_rate': 0.00022109999999999998, 'epoch': 1.2}
+{'loss': 1.4661, 'grad_norm': 2.1215689182281494, 'learning_rate': 0.0002214, 'epoch': 1.2}
+{'loss': 1.5076, 'grad_norm': 1.341286301612854, 'learning_rate': 0.00022169999999999997, 'epoch': 1.2}
+{'loss': 1.8552, 'grad_norm': 2.618873357772827, 'learning_rate': 0.00022199999999999998, 'epoch': 1.2}
+{'loss': 1.3625, 'grad_norm': 1.0336085557937622, 'learning_rate': 0.00022229999999999998, 'epoch': 1.2}
+{'loss': 1.4139, 'grad_norm': 1.1739717721939087, 'learning_rate': 0.0002226, 'epoch': 1.21}
+{'loss': 1.2256, 'grad_norm': 1.650221586227417, 'learning_rate': 0.00022289999999999997, 'epoch': 1.21}
+{'loss': 1.7144, 'grad_norm': 1.2740941047668457, 'learning_rate': 0.00022319999999999998, 'epoch': 1.21}
+{'loss': 1.7299, 'grad_norm': 1.0344876050949097, 'learning_rate': 0.00022349999999999998, 'epoch': 1.21}
+{'loss': 1.4581, 'grad_norm': 1.5889973640441895, 'learning_rate': 0.0002238, 'epoch': 1.21}
+{'loss': 1.4694, 'grad_norm': 1.274186372756958, 'learning_rate': 0.00022409999999999997, 'epoch': 1.21}
+{'loss': 1.5496, 'grad_norm': 1.1714391708374023, 'learning_rate': 0.00022439999999999998, 'epoch': 1.22}
+{'loss': 1.6381, 'grad_norm': 1.1633304357528687, 'learning_rate': 0.0002247, 'epoch': 1.22}
+{'loss': 1.3814, 'grad_norm': 1.6656583547592163, 'learning_rate': 0.000225, 'epoch': 1.22}
+{'loss': 1.3805, 'grad_norm': 1.7100461721420288, 'learning_rate': 0.00022529999999999997, 'epoch': 1.22}
+{'loss': 1.4335, 'grad_norm': 1.6684997081756592, 'learning_rate': 0.00022559999999999998, 'epoch': 1.22}
+{'loss': 1.6239, 'grad_norm': 1.9306715726852417, 'learning_rate': 0.0002259, 'epoch': 1.22}
+{'loss': 1.9, 'grad_norm': 1.488796353340149, 'learning_rate': 0.00022619999999999997, 'epoch': 1.23}
+{'loss': 1.501, 'grad_norm': 1.65590500831604, 'learning_rate': 0.00022649999999999998, 'epoch': 1.23}
+{'loss': 1.6754, 'grad_norm': 1.105634331703186, 'learning_rate': 0.00022679999999999998, 'epoch': 1.23}
+{'loss': 2.0468, 'grad_norm': 1.3590998649597168, 'learning_rate': 0.0002271, 'epoch': 1.23}
+{'loss': 1.4335, 'grad_norm': 1.2433547973632812, 'learning_rate': 0.00022739999999999997, 'epoch': 1.23}
+{'loss': 1.465, 'grad_norm': 1.7231038808822632, 'learning_rate': 0.00022769999999999998, 'epoch': 1.23}
+{'loss': 1.9477, 'grad_norm': 1.6311777830123901, 'learning_rate': 0.00022799999999999999, 'epoch': 1.24}
+{'loss': 1.4479, 'grad_norm': 1.3222523927688599, 'learning_rate': 0.0002283, 'epoch': 1.24}
+{'loss': 1.7486, 'grad_norm': 1.449326992034912, 'learning_rate': 0.00022859999999999997, 'epoch': 1.24}
+{'loss': 1.6244, 'grad_norm': nan, 'learning_rate': 0.00022859999999999997, 'epoch': 1.24}
+{'loss': 3.0317, 'grad_norm': 8.872183799743652, 'learning_rate': 0.00022889999999999998, 'epoch': 1.24}
+{'loss': 1.7795, 'grad_norm': 3.2334752082824707, 'learning_rate': 0.0002292, 'epoch': 1.24}
+{'loss': 1.8597, 'grad_norm': 2.064131259918213, 'learning_rate': 0.0002295, 'epoch': 1.24}
+{'loss': 2.193, 'grad_norm': 2.9841063022613525, 'learning_rate': 0.00022979999999999997, 'epoch': 1.25}
+{'loss': 1.7662, 'grad_norm': 1.8428844213485718, 'learning_rate': 0.00023009999999999998, 'epoch': 1.25}
+{'loss': 2.0471, 'grad_norm': 1.9402704238891602, 'learning_rate': 0.0002304, 'epoch': 1.25}
+{'loss': 1.8941, 'grad_norm': 1.971617341041565, 'learning_rate': 0.0002307, 'epoch': 1.25}
+{'loss': 1.8762, 'grad_norm': 3.7281742095947266, 'learning_rate': 0.00023099999999999998, 'epoch': 1.25}
+{'loss': 1.7298, 'grad_norm': 1.6704293489456177, 'learning_rate': 0.00023129999999999998, 'epoch': 1.25}
+{'loss': 1.6819, 'grad_norm': 1.1760116815567017, 'learning_rate': 0.0002316, 'epoch': 1.26}
+{'loss': 1.4823, 'grad_norm': 1.6610198020935059, 'learning_rate': 0.0002319, 'epoch': 1.26}
+{'loss': 1.7275, 'grad_norm': 2.954132318496704, 'learning_rate': 0.00023219999999999998, 'epoch': 1.26}
+{'loss': 1.9728, 'grad_norm': 4.86627197265625, 'learning_rate': 0.00023249999999999999, 'epoch': 1.26}
+{'loss': 1.5752, 'grad_norm': 3.5794413089752197, 'learning_rate': 0.0002328, 'epoch': 1.26}
+{'loss': 1.6367, 'grad_norm': 3.866424322128296, 'learning_rate': 0.00023309999999999997, 'epoch': 1.26}
+{'loss': 1.8715, 'grad_norm': 4.216460704803467, 'learning_rate': 0.00023339999999999998, 'epoch': 1.27}
+{'loss': 1.3454, 'grad_norm': 2.919419288635254, 'learning_rate': 0.0002337, 'epoch': 1.27}
+{'loss': 1.6547, 'grad_norm': 2.455012798309326, 'learning_rate': 0.000234, 'epoch': 1.27}
+{'loss': 1.4472, 'grad_norm': 1.444284439086914, 'learning_rate': 0.00023429999999999998, 'epoch': 1.27}
+{'loss': 1.4115, 'grad_norm': 1.5226218700408936, 'learning_rate': 0.00023459999999999998, 'epoch': 1.27}
+{'loss': 1.4998, 'grad_norm': 1.4698041677474976, 'learning_rate': 0.0002349, 'epoch': 1.27}
+{'loss': 1.3246, 'grad_norm': 0.9360406994819641, 'learning_rate': 0.0002352, 'epoch': 1.28}
+{'loss': 1.7864, 'grad_norm': 0.9899576902389526, 'learning_rate': 0.00023549999999999998, 'epoch': 1.28}
+{'loss': 1.7181, 'grad_norm': 1.042768955230713, 'learning_rate': 0.00023579999999999999, 'epoch': 1.28}
+{'loss': 1.3929, 'grad_norm': 0.9345083236694336, 'learning_rate': 0.0002361, 'epoch': 1.28}
+{'loss': 1.6232, 'grad_norm': 1.2019685506820679, 'learning_rate': 0.0002364, 'epoch': 1.28}
+{'loss': 1.3208, 'grad_norm': 1.1262824535369873, 'learning_rate': 0.00023669999999999998, 'epoch': 1.28}
+{'loss': 1.484, 'grad_norm': 2.1480746269226074, 'learning_rate': 0.000237, 'epoch': 1.28}
+{'loss': 1.4428, 'grad_norm': 1.6011468172073364, 'learning_rate': 0.0002373, 'epoch': 1.29}
+{'loss': 1.4815, 'grad_norm': 1.681715965270996, 'learning_rate': 0.0002376, 'epoch': 1.29}
+{'loss': 1.583, 'grad_norm': 1.0105364322662354, 'learning_rate': 0.00023789999999999998, 'epoch': 1.29}
+{'loss': 1.6736, 'grad_norm': 2.4335265159606934, 'learning_rate': 0.0002382, 'epoch': 1.29}
+{'loss': 1.7259, 'grad_norm': 1.1832919120788574, 'learning_rate': 0.0002385, 'epoch': 1.29}
+{'loss': 1.5519, 'grad_norm': 1.4895908832550049, 'learning_rate': 0.0002388, 'epoch': 1.29}
+{'loss': 1.7638, 'grad_norm': 0.9306002855300903, 'learning_rate': 0.00023909999999999998, 'epoch': 1.3}
+{'loss': 1.3956, 'grad_norm': 0.862756609916687, 'learning_rate': 0.0002394, 'epoch': 1.3}
+{'loss': 1.741, 'grad_norm': 0.9873697757720947, 'learning_rate': 0.0002397, 'epoch': 1.3}
+{'loss': 1.6026, 'grad_norm': 0.8924622535705566, 'learning_rate': 0.00023999999999999998, 'epoch': 1.3}
+{'loss': 1.2882, 'grad_norm': 0.9441061615943909, 'learning_rate': 0.00024029999999999999, 'epoch': 1.3}
+{'loss': 1.4606, 'grad_norm': 1.0321191549301147, 'learning_rate': 0.0002406, 'epoch': 1.3}
+{'loss': 1.6286, 'grad_norm': 1.8343979120254517, 'learning_rate': 0.0002409, 'epoch': 1.31}
+{'loss': 1.8307, 'grad_norm': 1.3048229217529297, 'learning_rate': 0.00024119999999999998, 'epoch': 1.31}
+{'loss': 1.8301, 'grad_norm': 1.3279473781585693, 'learning_rate': 0.0002415, 'epoch': 1.31}
+{'loss': 1.5125, 'grad_norm': 1.0777429342269897, 'learning_rate': 0.0002418, 'epoch': 1.31}
+{'loss': 1.5399, 'grad_norm': 1.0291649103164673, 'learning_rate': 0.0002421, 'epoch': 1.31}
+{'loss': 1.6562, 'grad_norm': 1.1538206338882446, 'learning_rate': 0.00024239999999999998, 'epoch': 1.31}
+{'loss': 1.7324, 'grad_norm': 1.9606250524520874, 'learning_rate': 0.0002427, 'epoch': 1.32}
+{'loss': 1.8767, 'grad_norm': 1.927132248878479, 'learning_rate': 0.000243, 'epoch': 1.32}
+{'loss': 2.3164, 'grad_norm': 1.565555453300476, 'learning_rate': 0.0002433, 'epoch': 1.32}
+{'loss': 2.2162, 'grad_norm': nan, 'learning_rate': 0.0002433, 'epoch': 1.32}
+{'loss': 1.9052, 'grad_norm': 4.660001754760742, 'learning_rate': 0.00024359999999999999, 'epoch': 1.32}
+{'loss': 2.2262, 'grad_norm': 4.901458740234375, 'learning_rate': 0.00024389999999999997, 'epoch': 1.32}
+{'loss': 2.609, 'grad_norm': 6.842830657958984, 'learning_rate': 0.00024419999999999997, 'epoch': 1.32}
+{'loss': 1.9541, 'grad_norm': 5.018871307373047, 'learning_rate': 0.0002445, 'epoch': 1.33}
+{'loss': 1.7591, 'grad_norm': 2.6428186893463135, 'learning_rate': 0.0002448, 'epoch': 1.33}
+{'loss': 1.8893, 'grad_norm': 3.7194108963012695, 'learning_rate': 0.00024509999999999994, 'epoch': 1.33}
+{'loss': 1.6199, 'grad_norm': 1.5559850931167603, 'learning_rate': 0.00024539999999999995, 'epoch': 1.33}
+{'loss': 1.7948, 'grad_norm': 1.6611255407333374, 'learning_rate': 0.00024569999999999995, 'epoch': 1.33}
+{'loss': 1.3697, 'grad_norm': 2.756481170654297, 'learning_rate': 0.00024599999999999996, 'epoch': 1.33}
+{'loss': 1.6154, 'grad_norm': 3.1236398220062256, 'learning_rate': 0.00024629999999999997, 'epoch': 1.34}
+{'loss': 1.7594, 'grad_norm': 3.052428722381592, 'learning_rate': 0.0002466, 'epoch': 1.34}
+{'loss': 2.4307, 'grad_norm': 2.0928995609283447, 'learning_rate': 0.0002469, 'epoch': 1.34}
+{'loss': 1.8485, 'grad_norm': 1.914813756942749, 'learning_rate': 0.0002472, 'epoch': 1.34}
+{'loss': 1.8105, 'grad_norm': 1.9151816368103027, 'learning_rate': 0.00024749999999999994, 'epoch': 1.34}
+{'loss': 1.812, 'grad_norm': 1.0234382152557373, 'learning_rate': 0.00024779999999999995, 'epoch': 1.34}
+{'loss': 1.8388, 'grad_norm': 2.383925199508667, 'learning_rate': 0.00024809999999999996, 'epoch': 1.35}
+{'loss': 2.2525, 'grad_norm': 6.021166801452637, 'learning_rate': 0.00024839999999999997, 'epoch': 1.35}
+{'loss': 1.9297, 'grad_norm': 5.078658580780029, 'learning_rate': 0.0002487, 'epoch': 1.35}
+{'loss': 2.1607, 'grad_norm': 7.2157063484191895, 'learning_rate': 0.000249, 'epoch': 1.35}
+{'loss': 2.2679, 'grad_norm': 7.366926193237305, 'learning_rate': 0.0002493, 'epoch': 1.35}
+{'loss': 2.5445, 'grad_norm': 8.579809188842773, 'learning_rate': 0.00024959999999999994, 'epoch': 1.35}
+{'loss': 2.7447, 'grad_norm': 9.298418998718262, 'learning_rate': 0.00024989999999999995, 'epoch': 1.36}
+{'loss': 2.3292, 'grad_norm': 4.966423988342285, 'learning_rate': 0.00025019999999999996, 'epoch': 1.36}
+{'loss': 2.1082, 'grad_norm': 3.2994112968444824, 'learning_rate': 0.00025049999999999996, 'epoch': 1.36}
+{'loss': 2.0868, 'grad_norm': 2.276888370513916, 'learning_rate': 0.00025079999999999997, 'epoch': 1.36}
+{'loss': 2.0474, 'grad_norm': 1.3332836627960205, 'learning_rate': 0.0002511, 'epoch': 1.36}
+{'loss': 2.0204, 'grad_norm': 1.1775461435317993, 'learning_rate': 0.0002514, 'epoch': 1.36}
+{'loss': 2.0342, 'grad_norm': 1.3132644891738892, 'learning_rate': 0.0002517, 'epoch': 1.36}
+{'loss': 2.0199, 'grad_norm': 1.407052755355835, 'learning_rate': 0.00025199999999999995, 'epoch': 1.37}
+{'loss': 1.9461, 'grad_norm': 0.9322783350944519, 'learning_rate': 0.00025229999999999995, 'epoch': 1.37}
+{'loss': 1.9301, 'grad_norm': 1.6221606731414795, 'learning_rate': 0.00025259999999999996, 'epoch': 1.37}
+{'loss': 2.1221, 'grad_norm': 1.9470421075820923, 'learning_rate': 0.00025289999999999997, 'epoch': 1.37}
+{'loss': 1.9257, 'grad_norm': 2.600743532180786, 'learning_rate': 0.0002532, 'epoch': 1.37}
+{'loss': 2.6232, 'grad_norm': 4.783127784729004, 'learning_rate': 0.0002535, 'epoch': 1.37}
+{'loss': 1.8527, 'grad_norm': 2.1699776649475098, 'learning_rate': 0.0002538, 'epoch': 1.38}
+{'loss': 1.9053, 'grad_norm': 1.9697574377059937, 'learning_rate': 0.0002541, 'epoch': 1.38}
+{'loss': 1.7472, 'grad_norm': 1.9653360843658447, 'learning_rate': 0.00025439999999999995, 'epoch': 1.38}
+{'loss': 1.5276, 'grad_norm': 0.975303053855896, 'learning_rate': 0.00025469999999999996, 'epoch': 1.38}
+{'loss': 1.9605, 'grad_norm': 0.8114136457443237, 'learning_rate': 0.00025499999999999996, 'epoch': 1.38}
+{'loss': 1.964, 'grad_norm': 1.0743026733398438, 'learning_rate': 0.00025529999999999997, 'epoch': 1.38}
+{'loss': 2.0769, 'grad_norm': 0.572559118270874, 'learning_rate': 0.0002556, 'epoch': 1.39}
+{'loss': 1.9341, 'grad_norm': 1.8745307922363281, 'learning_rate': 0.0002559, 'epoch': 1.39}
+{'loss': 2.0994, 'grad_norm': 2.8381495475769043, 'learning_rate': 0.0002562, 'epoch': 1.39}
+{'loss': 1.6848, 'grad_norm': 1.837712287902832, 'learning_rate': 0.00025649999999999995, 'epoch': 1.39}
+{'loss': 1.9728, 'grad_norm': 1.0406761169433594, 'learning_rate': 0.00025679999999999995, 'epoch': 1.39}
+{'loss': 1.9183, 'grad_norm': 0.8133671879768372, 'learning_rate': 0.00025709999999999996, 'epoch': 1.39}
+{'loss': 1.7447, 'grad_norm': 1.488303780555725, 'learning_rate': 0.00025739999999999997, 'epoch': 1.4}
+{'loss': 2.1065, 'grad_norm': 0.8098030686378479, 'learning_rate': 0.0002577, 'epoch': 1.4}
+{'loss': 1.8567, 'grad_norm': 1.3492127656936646, 'learning_rate': 0.000258, 'epoch': 1.4}
+{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.000258, 'epoch': 1.4}
+{'loss': 2.1654, 'grad_norm': 3.2372701168060303, 'learning_rate': 0.0002583, 'epoch': 1.4}
+{'loss': 1.8519, 'grad_norm': 1.9243760108947754, 'learning_rate': 0.0002586, 'epoch': 1.4}
+{'loss': 1.9246, 'grad_norm': 1.633375883102417, 'learning_rate': 0.00025889999999999995, 'epoch': 1.4}
+{'loss': 1.796, 'grad_norm': 1.862678050994873, 'learning_rate': 0.00025919999999999996, 'epoch': 1.41}
+{'loss': 2.1167, 'grad_norm': 1.930555820465088, 'learning_rate': 0.00025949999999999997, 'epoch': 1.41}
+{'loss': 1.8125, 'grad_norm': 3.6139817237854004, 'learning_rate': 0.00025979999999999997, 'epoch': 1.41}
+{'loss': 1.6891, 'grad_norm': 4.2841691970825195, 'learning_rate': 0.0002601, 'epoch': 1.41}
+{'loss': 1.9731, 'grad_norm': 4.878454685211182, 'learning_rate': 0.0002604, 'epoch': 1.41}
+{'loss': 2.3051, 'grad_norm': 2.765392541885376, 'learning_rate': 0.0002607, 'epoch': 1.41}
+{'loss': 2.044, 'grad_norm': 5.951148986816406, 'learning_rate': 0.000261, 'epoch': 1.42}
+{'loss': 2.267, 'grad_norm': 6.356194496154785, 'learning_rate': 0.00026129999999999995, 'epoch': 1.42}
+{'loss': 2.3927, 'grad_norm': 7.16682767868042, 'learning_rate': 0.00026159999999999996, 'epoch': 1.42}
+{'loss': 2.2649, 'grad_norm': 6.482820987701416, 'learning_rate': 0.00026189999999999997, 'epoch': 1.42}
+{'loss': 2.4487, 'grad_norm': 6.568836688995361, 'learning_rate': 0.0002622, 'epoch': 1.42}
+{'loss': 2.3971, 'grad_norm': 6.718606472015381, 'learning_rate': 0.0002625, 'epoch': 1.42}
+{'loss': 2.2921, 'grad_norm': 5.949743747711182, 'learning_rate': 0.0002628, 'epoch': 1.43}
+{'loss': 2.0761, 'grad_norm': 4.38700532913208, 'learning_rate': 0.0002631, 'epoch': 1.43}
+{'loss': 2.1059, 'grad_norm': 4.077221393585205, 'learning_rate': 0.00026339999999999995, 'epoch': 1.43}
+{'loss': 2.1777, 'grad_norm': 1.6001068353652954, 'learning_rate': 0.00026369999999999996, 'epoch': 1.43}
+{'loss': 2.216, 'grad_norm': 1.2680809497833252, 'learning_rate': 0.00026399999999999997, 'epoch': 1.43}
+{'loss': 1.9073, 'grad_norm': 0.9712734222412109, 'learning_rate': 0.0002643, 'epoch': 1.43}
+{'loss': 1.8749, 'grad_norm': 2.31636381149292, 'learning_rate': 0.0002646, 'epoch': 1.44}
+{'loss': 2.1202, 'grad_norm': 3.8894119262695312, 'learning_rate': 0.0002649, 'epoch': 1.44}
+{'loss': 1.9118, 'grad_norm': 5.789621353149414, 'learning_rate': 0.0002652, 'epoch': 1.44}
+{'loss': 2.2179, 'grad_norm': 7.5779619216918945, 'learning_rate': 0.0002655, 'epoch': 1.44}
+{'loss': 2.8742, 'grad_norm': 10.712891578674316, 'learning_rate': 0.00026579999999999996, 'epoch': 1.44}
+{'loss': 2.4353, 'grad_norm': 8.757124900817871, 'learning_rate': 0.00026609999999999996, 'epoch': 1.44}
+{'loss': 2.646, 'grad_norm': 9.56799602508545, 'learning_rate': 0.00026639999999999997, 'epoch': 1.44}
+{'loss': 2.5576, 'grad_norm': 8.285284996032715, 'learning_rate': 0.0002667, 'epoch': 1.45}
+{'loss': 2.4627, 'grad_norm': 7.641500473022461, 'learning_rate': 0.000267, 'epoch': 1.45}
+{'loss': 2.4342, 'grad_norm': 9.177940368652344, 'learning_rate': 0.0002673, 'epoch': 1.45}
+{'loss': 2.5166, 'grad_norm': 8.318049430847168, 'learning_rate': 0.0002676, 'epoch': 1.45}
+{'loss': 2.4509, 'grad_norm': 6.994287967681885, 'learning_rate': 0.0002679, 'epoch': 1.45}
+{'loss': 2.4563, 'grad_norm': 6.329995632171631, 'learning_rate': 0.00026819999999999996, 'epoch': 1.45}
+{'loss': 2.2929, 'grad_norm': 5.76509952545166, 'learning_rate': 0.00026849999999999997, 'epoch': 1.46}
+{'loss': 2.0108, 'grad_norm': 3.3530473709106445, 'learning_rate': 0.0002688, 'epoch': 1.46}
+{'loss': 2.0606, 'grad_norm': 2.6256699562072754, 'learning_rate': 0.0002691, 'epoch': 1.46}
+{'loss': 1.9538, 'grad_norm': 1.4539761543273926, 'learning_rate': 0.0002694, 'epoch': 1.46}
+{'loss': 2.1957, 'grad_norm': 1.3113408088684082, 'learning_rate': 0.0002697, 'epoch': 1.46}
+{'loss': 2.0123, 'grad_norm': 1.1808632612228394, 'learning_rate': 0.00027, 'epoch': 1.46}
+{'loss': 2.0029, 'grad_norm': 0.9282050728797913, 'learning_rate': 0.00027029999999999996, 'epoch': 1.47}
+{'loss': 1.9543, 'grad_norm': 1.2517030239105225, 'learning_rate': 0.00027059999999999996, 'epoch': 1.47}
+{'loss': 1.8131, 'grad_norm': 1.2844178676605225, 'learning_rate': 0.00027089999999999997, 'epoch': 1.47}
+{'loss': 1.9653, 'grad_norm': 0.7779868841171265, 'learning_rate': 0.0002712, 'epoch': 1.47}
+{'loss': 1.8809, 'grad_norm': 1.8325669765472412, 'learning_rate': 0.0002715, 'epoch': 1.47}
+{'loss': 1.9198, 'grad_norm': 2.3614306449890137, 'learning_rate': 0.0002718, 'epoch': 1.47}
+{'loss': 2.319, 'grad_norm': 1.5548219680786133, 'learning_rate': 0.0002721, 'epoch': 1.48}
+{'loss': 2.2114, 'grad_norm': 1.010625958442688, 'learning_rate': 0.0002724, 'epoch': 1.48}
+{'loss': 2.4394, 'grad_norm': 2.4790525436401367, 'learning_rate': 0.00027269999999999996, 'epoch': 1.48}
+{'loss': 2.2607, 'grad_norm': 3.139253616333008, 'learning_rate': 0.00027299999999999997, 'epoch': 1.48}
+{'loss': 4.0305, 'grad_norm': 21.243789672851562, 'learning_rate': 0.0002733, 'epoch': 1.48}
+{'loss': 2.5432, 'grad_norm': 6.695805549621582, 'learning_rate': 0.0002736, 'epoch': 1.48}
+{'loss': 2.1313, 'grad_norm': 2.8859128952026367, 'learning_rate': 0.0002739, 'epoch': 1.48}
+{'loss': 2.0824, 'grad_norm': 2.9990243911743164, 'learning_rate': 0.0002742, 'epoch': 1.49}
+{'loss': 1.9647, 'grad_norm': 0.9504282474517822, 'learning_rate': 0.0002745, 'epoch': 1.49}
+{'loss': 1.9534, 'grad_norm': 1.416487693786621, 'learning_rate': 0.0002748, 'epoch': 1.49}
+{'loss': 2.1581, 'grad_norm': 3.924936532974243, 'learning_rate': 0.00027509999999999996, 'epoch': 1.49}
+{'loss': 2.0693, 'grad_norm': 4.775065898895264, 'learning_rate': 0.00027539999999999997, 'epoch': 1.49}
+{'loss': 2.0134, 'grad_norm': 4.829035758972168, 'learning_rate': 0.0002757, 'epoch': 1.49}
+{'loss': 2.2973, 'grad_norm': 4.46183443069458, 'learning_rate': 0.000276, 'epoch': 1.5}
+{'loss': 2.2353, 'grad_norm': 5.705532550811768, 'learning_rate': 0.0002763, 'epoch': 1.5}
+{'loss': 2.4058, 'grad_norm': 5.170881748199463, 'learning_rate': 0.0002766, 'epoch': 1.5}
+{'loss': 2.006, 'grad_norm': 5.087926864624023, 'learning_rate': 0.0002769, 'epoch': 1.5}
+{'loss': 2.2158, 'grad_norm': 5.493293762207031, 'learning_rate': 0.0002772, 'epoch': 1.5}
+{'loss': 2.2086, 'grad_norm': 4.74140739440918, 'learning_rate': 0.00027749999999999997, 'epoch': 1.5}
+{'loss': 2.1634, 'grad_norm': 3.2799718379974365, 'learning_rate': 0.0002778, 'epoch': 1.51}
+{'loss': 2.2917, 'grad_norm': 2.608619451522827, 'learning_rate': 0.0002781, 'epoch': 1.51}
+{'loss': 2.0337, 'grad_norm': 1.8219605684280396, 'learning_rate': 0.0002784, 'epoch': 1.51}
+{'loss': 2.0357, 'grad_norm': 0.5471847653388977, 'learning_rate': 0.0002787, 'epoch': 1.51}
+{'loss': 1.8157, 'grad_norm': 1.5796411037445068, 'learning_rate': 0.000279, 'epoch': 1.51}
+{'loss': 1.9289, 'grad_norm': 3.0464274883270264, 'learning_rate': 0.0002793, 'epoch': 1.51}
+{'loss': 2.1435, 'grad_norm': 4.224644660949707, 'learning_rate': 0.00027959999999999997, 'epoch': 1.52}
+{'loss': 1.9621, 'grad_norm': 5.403804302215576, 'learning_rate': 0.0002799, 'epoch': 1.52}
+{'loss': 2.2405, 'grad_norm': 4.696282863616943, 'learning_rate': 0.0002802, 'epoch': 1.52}
+{'loss': 2.2135, 'grad_norm': 5.692913055419922, 'learning_rate': 0.0002805, 'epoch': 1.52}
+{'loss': 2.1851, 'grad_norm': 6.66227912902832, 'learning_rate': 0.0002808, 'epoch': 1.52}
+{'loss': 2.1455, 'grad_norm': 7.124788761138916, 'learning_rate': 0.0002811, 'epoch': 1.52}
+{'loss': 2.2038, 'grad_norm': 6.634387016296387, 'learning_rate': 0.00028139999999999996, 'epoch': 1.52}
+{'loss': 1.9655, 'grad_norm': 4.773592948913574, 'learning_rate': 0.00028169999999999996, 'epoch': 1.53}
+{'loss': 2.1953, 'grad_norm': 6.511046409606934, 'learning_rate': 0.00028199999999999997, 'epoch': 1.53}
+{'loss': 2.298, 'grad_norm': 5.800004005432129, 'learning_rate': 0.0002823, 'epoch': 1.53}
+{'loss': 2.6741, 'grad_norm': 8.844927787780762, 'learning_rate': 0.0002826, 'epoch': 1.53}
+{'loss': 2.0405, 'grad_norm': 2.801509141921997, 'learning_rate': 0.00028289999999999994, 'epoch': 1.53}
+{'loss': 2.0097, 'grad_norm': 1.441400170326233, 'learning_rate': 0.00028319999999999994, 'epoch': 1.53}
+{'loss': 1.9012, 'grad_norm': 0.6606685519218445, 'learning_rate': 0.00028349999999999995, 'epoch': 1.54}
+{'loss': 2.1164, 'grad_norm': 1.0121657848358154, 'learning_rate': 0.00028379999999999996, 'epoch': 1.54}
+{'loss': 2.1646, 'grad_norm': 2.11448073387146, 'learning_rate': 0.00028409999999999997, 'epoch': 1.54}
+{'loss': 2.0593, 'grad_norm': 1.660666823387146, 'learning_rate': 0.0002844, 'epoch': 1.54}
+{'loss': 1.9912, 'grad_norm': 0.7296435236930847, 'learning_rate': 0.0002847, 'epoch': 1.54}
+{'loss': 2.1308, 'grad_norm': 0.8172574639320374, 'learning_rate': 0.000285, 'epoch': 1.54}
+{'loss': 2.4858, 'grad_norm': 3.529291868209839, 'learning_rate': 0.00028529999999999994, 'epoch': 1.55}
+{'loss': 2.3045, 'grad_norm': 3.8260555267333984, 'learning_rate': 0.00028559999999999995, 'epoch': 1.55}
+{'loss': 2.5007, 'grad_norm': 5.841991901397705, 'learning_rate': 0.00028589999999999996, 'epoch': 1.55}
+{'loss': 2.1947, 'grad_norm': 5.58250093460083, 'learning_rate': 0.00028619999999999996, 'epoch': 1.55}
+{'loss': 2.2422, 'grad_norm': 6.479895114898682, 'learning_rate': 0.00028649999999999997, 'epoch': 1.55}
+{'loss': 2.3023, 'grad_norm': 5.577583312988281, 'learning_rate': 0.0002868, 'epoch': 1.55}
+{'loss': 2.7231, 'grad_norm': 4.665249824523926, 'learning_rate': 0.0002871, 'epoch': 1.56}
+{'loss': 2.3567, 'grad_norm': 3.4380602836608887, 'learning_rate': 0.00028739999999999994, 'epoch': 1.56}
+{'loss': 2.7469, 'grad_norm': 2.9674761295318604, 'learning_rate': 0.00028769999999999995, 'epoch': 1.56}
+{'loss': 2.4228, 'grad_norm': 2.04423189163208, 'learning_rate': 0.00028799999999999995, 'epoch': 1.56}
+{'loss': 3.0674, 'grad_norm': 10.190044403076172, 'learning_rate': 0.00028829999999999996, 'epoch': 1.56}
+{'loss': 2.4471, 'grad_norm': 2.3500773906707764, 'learning_rate': 0.00028859999999999997, 'epoch': 1.56}
+{'loss': 2.3215, 'grad_norm': 1.5877519845962524, 'learning_rate': 0.0002889, 'epoch': 1.56}
+{'loss': 2.5779, 'grad_norm': 2.7796225547790527, 'learning_rate': 0.0002892, 'epoch': 1.57}
+{'loss': 2.5889, 'grad_norm': 2.8195817470550537, 'learning_rate': 0.0002895, 'epoch': 1.57}
+{'loss': 2.4993, 'grad_norm': 2.0445921421051025, 'learning_rate': 0.00028979999999999994, 'epoch': 1.57}
+{'loss': 2.29, 'grad_norm': 3.8158059120178223, 'learning_rate': 0.00029009999999999995, 'epoch': 1.57}
+{'loss': 2.4405, 'grad_norm': 5.886443614959717, 'learning_rate': 0.00029039999999999996, 'epoch': 1.57}
+{'loss': 2.4418, 'grad_norm': 4.135772228240967, 'learning_rate': 0.00029069999999999996, 'epoch': 1.57}
+{'loss': 2.4061, 'grad_norm': 6.405320644378662, 'learning_rate': 0.00029099999999999997, 'epoch': 1.58}
+{'loss': 2.0997, 'grad_norm': 5.528068542480469, 'learning_rate': 0.0002913, 'epoch': 1.58}
+{'loss': 2.4048, 'grad_norm': 5.618749618530273, 'learning_rate': 0.0002916, 'epoch': 1.58}
+{'loss': 2.3788, 'grad_norm': 5.455833911895752, 'learning_rate': 0.0002919, 'epoch': 1.58}
+{'loss': 2.1703, 'grad_norm': 5.045185089111328, 'learning_rate': 0.00029219999999999995, 'epoch': 1.58}
+{'loss': 2.4022, 'grad_norm': 3.192173480987549, 'learning_rate': 0.00029249999999999995, 'epoch': 1.58}
+{'loss': 2.1956, 'grad_norm': 3.1793525218963623, 'learning_rate': 0.00029279999999999996, 'epoch': 1.59}
+{'loss': 2.1388, 'grad_norm': 1.323548674583435, 'learning_rate': 0.00029309999999999997, 'epoch': 1.59}
+{'loss': 2.1403, 'grad_norm': 1.1508042812347412, 'learning_rate': 0.0002934, 'epoch': 1.59}
+{'loss': 2.0843, 'grad_norm': 2.786349058151245, 'learning_rate': 0.0002937, 'epoch': 1.59}
+{'loss': 2.2627, 'grad_norm': 4.274806499481201, 'learning_rate': 0.000294, 'epoch': 1.59}
+{'loss': 2.2727, 'grad_norm': 4.96270751953125, 'learning_rate': 0.00029429999999999994, 'epoch': 1.59}
+{'loss': 2.2626, 'grad_norm': 5.281583786010742, 'learning_rate': 0.00029459999999999995, 'epoch': 1.6}
+{'loss': 2.258, 'grad_norm': 6.537198066711426, 'learning_rate': 0.00029489999999999996, 'epoch': 1.6}
+{'loss': 2.3156, 'grad_norm': 7.0249223709106445, 'learning_rate': 0.00029519999999999997, 'epoch': 1.6}
+{'loss': 2.3959, 'grad_norm': 5.909872055053711, 'learning_rate': 0.00029549999999999997, 'epoch': 1.6}
+{'loss': 2.4885, 'grad_norm': 7.637903213500977, 'learning_rate': 0.0002958, 'epoch': 1.6}
+{'loss': 2.3817, 'grad_norm': 6.988182067871094, 'learning_rate': 0.0002961, 'epoch': 1.6}
+{'loss': 2.4426, 'grad_norm': 6.992365837097168, 'learning_rate': 0.0002964, 'epoch': 1.6}
+{'loss': 2.397, 'grad_norm': 5.621988296508789, 'learning_rate': 0.00029669999999999995, 'epoch': 1.61}
+{'loss': 2.403, 'grad_norm': 3.53421688079834, 'learning_rate': 0.00029699999999999996, 'epoch': 1.61}
+{'loss': 2.2512, 'grad_norm': 2.6446614265441895, 'learning_rate': 0.00029729999999999996, 'epoch': 1.61}
+{'loss': 2.0068, 'grad_norm': 2.235408306121826, 'learning_rate': 0.00029759999999999997, 'epoch': 1.61}
+{'loss': 2.1133, 'grad_norm': 1.4316028356552124, 'learning_rate': 0.0002979, 'epoch': 1.61}
+{'loss': 2.1428, 'grad_norm': 1.0931628942489624, 'learning_rate': 0.0002982, 'epoch': 1.61}
+{'loss': 2.212, 'grad_norm': 1.0988737344741821, 'learning_rate': 0.0002985, 'epoch': 1.62}
+{'loss': 2.2145, 'grad_norm': 0.8665049076080322, 'learning_rate': 0.0002988, 'epoch': 1.62}
+{'loss': 2.2136, 'grad_norm': 0.6521317362785339, 'learning_rate': 0.00029909999999999995, 'epoch': 1.62}
+{'loss': 2.2025, 'grad_norm': 1.2333879470825195, 'learning_rate': 0.00029939999999999996, 'epoch': 1.62}
+{'loss': 2.3032, 'grad_norm': 1.2490397691726685, 'learning_rate': 0.00029969999999999997, 'epoch': 1.62}
+{'loss': 2.6045, 'grad_norm': 1.9451225996017456, 'learning_rate': 0.0003, 'epoch': 1.62}
+{'loss': 2.2674, 'grad_norm': 3.870406150817871, 'learning_rate': 0.0003002999999999999, 'epoch': 1.63}
+{'loss': 2.2744, 'grad_norm': 3.619330644607544, 'learning_rate': 0.0003006, 'epoch': 1.63}
+{'loss': 2.3574, 'grad_norm': 4.24730920791626, 'learning_rate': 0.00030089999999999994, 'epoch': 1.63}
+{'loss': 2.4282, 'grad_norm': 4.763134002685547, 'learning_rate': 0.00030119999999999995, 'epoch': 1.63}
+{'loss': 2.6336, 'grad_norm': 4.33074426651001, 'learning_rate': 0.00030149999999999996, 'epoch': 1.63}
+{'loss': 2.0806, 'grad_norm': 2.6049580574035645, 'learning_rate': 0.00030179999999999996, 'epoch': 1.63}
+{'loss': 2.5478, 'grad_norm': 6.9189839363098145, 'learning_rate': 0.0003020999999999999, 'epoch': 1.64}
+{'loss': 2.7747, 'grad_norm': 1.222205638885498, 'learning_rate': 0.0003024, 'epoch': 1.64}
+{'loss': 2.5852, 'grad_norm': 1.9943503141403198, 'learning_rate': 0.00030269999999999993, 'epoch': 1.64}
+{'loss': 2.8456, 'grad_norm': 0.903025209903717, 'learning_rate': 0.000303, 'epoch': 1.64}
+{'loss': 3.5966, 'grad_norm': 17.016794204711914, 'learning_rate': 0.00030329999999999995, 'epoch': 1.64}
+{'loss': 2.6173, 'grad_norm': 3.820300340652466, 'learning_rate': 0.00030359999999999995, 'epoch': 1.64}
+{'loss': 2.834, 'grad_norm': 6.402599811553955, 'learning_rate': 0.00030389999999999996, 'epoch': 1.64}
+{'loss': 3.2254, 'grad_norm': 10.509306907653809, 'learning_rate': 0.00030419999999999997, 'epoch': 1.65}
+{'loss': 2.3757, 'grad_norm': 2.164959192276001, 'learning_rate': 0.0003044999999999999, 'epoch': 1.65}
+{'loss': 2.371, 'grad_norm': 1.8674250841140747, 'learning_rate': 0.0003048, 'epoch': 1.65}
+{'loss': 2.5602, 'grad_norm': 4.218185901641846, 'learning_rate': 0.00030509999999999994, 'epoch': 1.65}
+{'loss': 2.4103, 'grad_norm': 4.413148880004883, 'learning_rate': 0.0003054, 'epoch': 1.65}
+{'loss': 2.2613, 'grad_norm': 5.600552558898926, 'learning_rate': 0.00030569999999999995, 'epoch': 1.65}
+{'loss': 2.3748, 'grad_norm': 4.799594402313232, 'learning_rate': 0.00030599999999999996, 'epoch': 1.66}
+{'loss': 2.3916, 'grad_norm': 1.1949158906936646, 'learning_rate': 0.00030629999999999996, 'epoch': 1.66}
+{'loss': 2.3753, 'grad_norm': 4.209189414978027, 'learning_rate': 0.00030659999999999997, 'epoch': 1.66}
+{'loss': 2.2942, 'grad_norm': 4.924483299255371, 'learning_rate': 0.0003068999999999999, 'epoch': 1.66}
+{'loss': 2.2493, 'grad_norm': 5.148475170135498, 'learning_rate': 0.0003072, 'epoch': 1.66}
+{'loss': 2.1704, 'grad_norm': 4.989164352416992, 'learning_rate': 0.00030749999999999994, 'epoch': 1.66}
+{'loss': 2.4185, 'grad_norm': 4.440720558166504, 'learning_rate': 0.0003078, 'epoch': 1.67}
+{'loss': 2.1599, 'grad_norm': 3.280564308166504, 'learning_rate': 0.00030809999999999995, 'epoch': 1.67}
+{'loss': 2.1695, 'grad_norm': 1.5916945934295654, 'learning_rate': 0.00030839999999999996, 'epoch': 1.67}
+{'loss': 2.1445, 'grad_norm': 1.1902886629104614, 'learning_rate': 0.00030869999999999997, 'epoch': 1.67}
+{'loss': 2.1879, 'grad_norm': 1.2258431911468506, 'learning_rate': 0.000309, 'epoch': 1.67}
+{'loss': 1.9961, 'grad_norm': 2.241992473602295, 'learning_rate': 0.00030929999999999993, 'epoch': 1.67}
+{'loss': 2.074, 'grad_norm': 3.9534943103790283, 'learning_rate': 0.0003096, 'epoch': 1.68}
+{'loss': 2.2004, 'grad_norm': 5.947170257568359, 'learning_rate': 0.00030989999999999994, 'epoch': 1.68}
+{'loss': 2.4244, 'grad_norm': 7.540464878082275, 'learning_rate': 0.0003102, 'epoch': 1.68}
+{'loss': 2.1152, 'grad_norm': 4.6932172775268555, 'learning_rate': 0.00031049999999999996, 'epoch': 1.68}
+{'loss': 2.3487, 'grad_norm': 6.5101318359375, 'learning_rate': 0.00031079999999999997, 'epoch': 1.68}
+{'loss': 2.4663, 'grad_norm': 5.6864013671875, 'learning_rate': 0.00031109999999999997, 'epoch': 1.68}
+{'loss': 2.2667, 'grad_norm': 5.695480823516846, 'learning_rate': 0.0003114, 'epoch': 1.68}
+{'loss': 2.199, 'grad_norm': 5.523344993591309, 'learning_rate': 0.00031169999999999993, 'epoch': 1.69}
+{'loss': 2.2399, 'grad_norm': 4.021401405334473, 'learning_rate': 0.000312, 'epoch': 1.69}
+{'loss': 2.235, 'grad_norm': 3.751222848892212, 'learning_rate': 0.00031229999999999995, 'epoch': 1.69}
+{'loss': 2.1857, 'grad_norm': 2.249674081802368, 'learning_rate': 0.0003126, 'epoch': 1.69}
+{'loss': 2.1195, 'grad_norm': 2.001965284347534, 'learning_rate': 0.00031289999999999996, 'epoch': 1.69}
+{'loss': 2.1389, 'grad_norm': 1.0671782493591309, 'learning_rate': 0.00031319999999999997, 'epoch': 1.69}
+{'loss': 2.4445, 'grad_norm': 0.9789913296699524, 'learning_rate': 0.0003135, 'epoch': 1.7}
+{'loss': 2.1766, 'grad_norm': 1.2904689311981201, 'learning_rate': 0.0003138, 'epoch': 1.7}
+{'loss': 2.221, 'grad_norm': 0.7292619943618774, 'learning_rate': 0.00031409999999999994, 'epoch': 1.7}
+{'loss': 2.1054, 'grad_norm': 0.7377645373344421, 'learning_rate': 0.0003144, 'epoch': 1.7}
+{'loss': 2.362, 'grad_norm': 1.674381136894226, 'learning_rate': 0.00031469999999999995, 'epoch': 1.7}
+{'loss': 2.634, 'grad_norm': 6.733413219451904, 'learning_rate': 0.00031499999999999996, 'epoch': 1.7}
+{'loss': 2.3274, 'grad_norm': 3.1459693908691406, 'learning_rate': 0.00031529999999999997, 'epoch': 1.71}
+{'loss': 2.7282, 'grad_norm': 3.5573384761810303, 'learning_rate': 0.0003156, 'epoch': 1.71}
+{'loss': 2.4335, 'grad_norm': 3.3276679515838623, 'learning_rate': 0.0003158999999999999, 'epoch': 1.71}
+{'loss': 2.6206, 'grad_norm': 3.3725104331970215, 'learning_rate': 0.0003162, 'epoch': 1.71}
+{'loss': 2.4624, 'grad_norm': 1.2234220504760742, 'learning_rate': 0.00031649999999999994, 'epoch': 1.71}
+{'loss': 2.5879, 'grad_norm': 0.8122461438179016, 'learning_rate': 0.0003168, 'epoch': 1.71}
+{'loss': 2.4474, 'grad_norm': 0.7520931363105774, 'learning_rate': 0.00031709999999999996, 'epoch': 1.72}
+{'loss': 2.873, 'grad_norm': 2.023834228515625, 'learning_rate': 0.00031739999999999996, 'epoch': 1.72}
+{'loss': 2.5504, 'grad_norm': 1.4827693700790405, 'learning_rate': 0.00031769999999999997, 'epoch': 1.72}
+{'loss': 2.2876, 'grad_norm': nan, 'learning_rate': 0.00031769999999999997, 'epoch': 1.72}
+{'loss': 3.5108, 'grad_norm': 16.413217544555664, 'learning_rate': 0.000318, 'epoch': 1.72}
+{'loss': 3.0809, 'grad_norm': 8.193089485168457, 'learning_rate': 0.00031829999999999993, 'epoch': 1.72}
+{'loss': 2.8905, 'grad_norm': 4.528853416442871, 'learning_rate': 0.0003186, 'epoch': 1.72}
+{'loss': 2.8106, 'grad_norm': 2.9132778644561768, 'learning_rate': 0.00031889999999999995, 'epoch': 1.73}
+{'loss': 3.121, 'grad_norm': 6.130316257476807, 'learning_rate': 0.0003192, 'epoch': 1.73}
+{'loss': 2.7423, 'grad_norm': 1.5412960052490234, 'learning_rate': 0.00031949999999999996, 'epoch': 1.73}
+{'loss': 2.6641, 'grad_norm': 2.8891286849975586, 'learning_rate': 0.00031979999999999997, 'epoch': 1.73}
+{'loss': 2.7299, 'grad_norm': 1.3349493741989136, 'learning_rate': 0.0003201, 'epoch': 1.73}
+{'loss': 2.7078, 'grad_norm': 2.5229907035827637, 'learning_rate': 0.0003204, 'epoch': 1.73}
+{'loss': 2.4799, 'grad_norm': 3.7961184978485107, 'learning_rate': 0.00032069999999999993, 'epoch': 1.74}
+{'loss': 2.4731, 'grad_norm': 3.6919217109680176, 'learning_rate': 0.000321, 'epoch': 1.74}
+{'loss': 2.6901, 'grad_norm': 3.6608409881591797, 'learning_rate': 0.00032129999999999995, 'epoch': 1.74}
+{'loss': 2.4138, 'grad_norm': 2.5811784267425537, 'learning_rate': 0.0003216, 'epoch': 1.74}
+{'loss': 2.3692, 'grad_norm': 1.4929311275482178, 'learning_rate': 0.00032189999999999996, 'epoch': 1.74}
+{'loss': 2.4005, 'grad_norm': 1.622512698173523, 'learning_rate': 0.00032219999999999997, 'epoch': 1.74}
+{'loss': 2.4661, 'grad_norm': 1.0638054609298706, 'learning_rate': 0.0003225, 'epoch': 1.75}
+{'loss': 2.4535, 'grad_norm': 1.3987395763397217, 'learning_rate': 0.0003228, 'epoch': 1.75}
+{'loss': 2.5941, 'grad_norm': 3.8728277683258057, 'learning_rate': 0.00032309999999999994, 'epoch': 1.75}
+{'loss': 2.553, 'grad_norm': 2.725276470184326, 'learning_rate': 0.0003234, 'epoch': 1.75}
+{'loss': 2.2451, 'grad_norm': 2.4425482749938965, 'learning_rate': 0.00032369999999999995, 'epoch': 1.75}
+{'loss': 2.4025, 'grad_norm': 2.31581711769104, 'learning_rate': 0.000324, 'epoch': 1.75}
+{'loss': 2.6523, 'grad_norm': 6.327169418334961, 'learning_rate': 0.00032429999999999997, 'epoch': 1.76}
+{'loss': 2.7057, 'grad_norm': 6.215856552124023, 'learning_rate': 0.0003246, 'epoch': 1.76}
+{'loss': 2.4095, 'grad_norm': 0.9872040748596191, 'learning_rate': 0.0003249, 'epoch': 1.76}
+{'loss': 2.3173, 'grad_norm': 1.473762035369873, 'learning_rate': 0.0003252, 'epoch': 1.76}
+{'loss': 2.4215, 'grad_norm': 1.889335036277771, 'learning_rate': 0.00032549999999999994, 'epoch': 1.76}
+{'loss': 2.2987, 'grad_norm': 2.3463101387023926, 'learning_rate': 0.0003258, 'epoch': 1.76}
+{'loss': 2.2642, 'grad_norm': 1.228926420211792, 'learning_rate': 0.00032609999999999996, 'epoch': 1.76}
+{'loss': 2.2548, 'grad_norm': 0.8833368420600891, 'learning_rate': 0.0003264, 'epoch': 1.77}
+{'loss': 2.4638, 'grad_norm': 0.7233026027679443, 'learning_rate': 0.00032669999999999997, 'epoch': 1.77}
+{'loss': 2.3391, 'grad_norm': 0.7442961931228638, 'learning_rate': 0.000327, 'epoch': 1.77}
+{'loss': 2.1627, 'grad_norm': 0.688629150390625, 'learning_rate': 0.0003273, 'epoch': 1.77}
+{'loss': 2.6653, 'grad_norm': 2.3164734840393066, 'learning_rate': 0.0003276, 'epoch': 1.77}
+{'loss': 2.3615, 'grad_norm': 0.7344738245010376, 'learning_rate': 0.00032789999999999995, 'epoch': 1.77}
+{'loss': 2.2903, 'grad_norm': 3.150681734085083, 'learning_rate': 0.0003282, 'epoch': 1.78}
+{'loss': 2.3161, 'grad_norm': 3.1520416736602783, 'learning_rate': 0.00032849999999999996, 'epoch': 1.78}
+{'loss': 2.3981, 'grad_norm': 1.8366395235061646, 'learning_rate': 0.0003288, 'epoch': 1.78}
+{'loss': 2.279, 'grad_norm': 1.1598656177520752, 'learning_rate': 0.0003291, 'epoch': 1.78}
+{'loss': 2.4606, 'grad_norm': 1.057368278503418, 'learning_rate': 0.0003294, 'epoch': 1.78}
+{'loss': 2.3197, 'grad_norm': 0.8108821511268616, 'learning_rate': 0.0003297, 'epoch': 1.78}
+{'loss': 2.3071, 'grad_norm': 0.7972817420959473, 'learning_rate': 0.00033, 'epoch': 1.79}
+{'loss': 2.36, 'grad_norm': 0.7329958081245422, 'learning_rate': 0.00033029999999999995, 'epoch': 1.79}
+{'loss': 2.494, 'grad_norm': 0.9914326667785645, 'learning_rate': 0.0003306, 'epoch': 1.79}
+{'loss': 2.1681, 'grad_norm': 1.2104322910308838, 'learning_rate': 0.00033089999999999997, 'epoch': 1.79}
+{'loss': 2.707, 'grad_norm': 2.939289093017578, 'learning_rate': 0.0003312, 'epoch': 1.79}
+{'loss': 2.6272, 'grad_norm': 1.4465129375457764, 'learning_rate': 0.0003315, 'epoch': 1.79}
+{'loss': 2.7562, 'grad_norm': 0.9196242094039917, 'learning_rate': 0.0003318, 'epoch': 1.8}
+{'loss': 2.7036, 'grad_norm': 3.128715991973877, 'learning_rate': 0.00033209999999999994, 'epoch': 1.8}
+{'loss': 2.412, 'grad_norm': 1.085696816444397, 'learning_rate': 0.0003324, 'epoch': 1.8}
+{'loss': 2.7249, 'grad_norm': 2.5047450065612793, 'learning_rate': 0.00033269999999999996, 'epoch': 1.8}
+{'loss': 2.7462, 'grad_norm': 4.3478922843933105, 'learning_rate': 0.000333, 'epoch': 1.8}
+{'loss': 2.7354, 'grad_norm': 3.4352104663848877, 'learning_rate': 0.00033329999999999997, 'epoch': 1.8}
+{'loss': 2.9036, 'grad_norm': 8.34579849243164, 'learning_rate': 0.0003336, 'epoch': 1.8}
+{'loss': 2.6318, 'grad_norm': 1.7377263307571411, 'learning_rate': 0.0003339, 'epoch': 1.81}
+{'loss': 2.4611, 'grad_norm': 0.8710009455680847, 'learning_rate': 0.0003342, 'epoch': 1.81}
+{'loss': 2.6149, 'grad_norm': 0.7961373329162598, 'learning_rate': 0.00033449999999999994, 'epoch': 1.81}
+{'loss': 2.4834, 'grad_norm': 1.2493680715560913, 'learning_rate': 0.0003348, 'epoch': 1.81}
+{'loss': 2.4858, 'grad_norm': 2.2496654987335205, 'learning_rate': 0.00033509999999999996, 'epoch': 1.81}
+{'loss': 2.5253, 'grad_norm': 1.7312769889831543, 'learning_rate': 0.0003354, 'epoch': 1.81}
+{'loss': 2.8019, 'grad_norm': 1.8472027778625488, 'learning_rate': 0.0003357, 'epoch': 1.82}
+{'loss': 2.383, 'grad_norm': 3.3026609420776367, 'learning_rate': 0.000336, 'epoch': 1.82}
+{'loss': 2.4224, 'grad_norm': 2.8907511234283447, 'learning_rate': 0.0003363, 'epoch': 1.82}
+{'loss': 2.2473, 'grad_norm': 2.530062437057495, 'learning_rate': 0.0003366, 'epoch': 1.82}
+{'loss': 2.3729, 'grad_norm': 1.1952489614486694, 'learning_rate': 0.00033689999999999995, 'epoch': 1.82}
+{'loss': 2.2322, 'grad_norm': 1.2493127584457397, 'learning_rate': 0.0003372, 'epoch': 1.82}
+{'loss': 2.1936, 'grad_norm': 1.3810757398605347, 'learning_rate': 0.00033749999999999996, 'epoch': 1.83}
+{'loss': 2.1006, 'grad_norm': 0.6716127395629883, 'learning_rate': 0.0003377999999999999, 'epoch': 1.83}
+{'loss': 2.5418, 'grad_norm': 4.641638278961182, 'learning_rate': 0.0003381, 'epoch': 1.83}
+{'loss': 2.1303, 'grad_norm': 0.7420514225959778, 'learning_rate': 0.00033839999999999993, 'epoch': 1.83}
+{'loss': 2.2456, 'grad_norm': 0.6666918992996216, 'learning_rate': 0.0003387, 'epoch': 1.83}
+{'loss': 2.2268, 'grad_norm': 0.5805254578590393, 'learning_rate': 0.00033899999999999995, 'epoch': 1.83}
+{'loss': 2.2048, 'grad_norm': 0.6321543455123901, 'learning_rate': 0.00033929999999999995, 'epoch': 1.84}
+{'loss': 2.5881, 'grad_norm': 3.640864849090576, 'learning_rate': 0.00033959999999999996, 'epoch': 1.84}
+{'loss': 2.1501, 'grad_norm': 2.1340978145599365, 'learning_rate': 0.00033989999999999997, 'epoch': 1.84}
+{'loss': 2.4225, 'grad_norm': 2.5168700218200684, 'learning_rate': 0.0003401999999999999, 'epoch': 1.84}
+{'loss': 2.172, 'grad_norm': 1.6082960367202759, 'learning_rate': 0.0003405, 'epoch': 1.84}
+{'loss': 2.1434, 'grad_norm': 2.326335906982422, 'learning_rate': 0.00034079999999999994, 'epoch': 1.84}
+{'loss': 2.1625, 'grad_norm': 0.920198380947113, 'learning_rate': 0.0003411, 'epoch': 1.84}
+{'loss': 2.1452, 'grad_norm': 1.2494739294052124, 'learning_rate': 0.00034139999999999995, 'epoch': 1.85}
+{'loss': 2.171, 'grad_norm': 1.2549406290054321, 'learning_rate': 0.00034169999999999996, 'epoch': 1.85}
+{'loss': 2.1439, 'grad_norm': 1.5478543043136597, 'learning_rate': 0.00034199999999999996, 'epoch': 1.85}
+{'loss': 2.056, 'grad_norm': 1.768579125404358, 'learning_rate': 0.00034229999999999997, 'epoch': 1.85}
+{'loss': 2.3397, 'grad_norm': 0.6443532109260559, 'learning_rate': 0.0003425999999999999, 'epoch': 1.85}
+{'loss': 2.2165, 'grad_norm': 0.5668714046478271, 'learning_rate': 0.0003429, 'epoch': 1.85}
+{'loss': 2.33, 'grad_norm': 1.3049060106277466, 'learning_rate': 0.00034319999999999994, 'epoch': 1.86}
+{'loss': 2.1462, 'grad_norm': 0.6785088777542114, 'learning_rate': 0.0003435, 'epoch': 1.86}
+{'loss': 2.5508, 'grad_norm': 1.5797127485275269, 'learning_rate': 0.00034379999999999995, 'epoch': 1.86}
+{'loss': 2.3856, 'grad_norm': 1.1962186098098755, 'learning_rate': 0.00034409999999999996, 'epoch': 1.86}
+{'loss': 2.0005, 'grad_norm': 0.6989690661430359, 'learning_rate': 0.00034439999999999997, 'epoch': 1.86}
+{'loss': 2.3053, 'grad_norm': 0.8127622604370117, 'learning_rate': 0.0003447, 'epoch': 1.86}
+{'loss': 2.1876, 'grad_norm': 0.8483240604400635, 'learning_rate': 0.00034499999999999993, 'epoch': 1.87}
+{'loss': 2.5235, 'grad_norm': 0.9150612950325012, 'learning_rate': 0.0003453, 'epoch': 1.87}
+{'loss': 2.2692, 'grad_norm': 0.6177669167518616, 'learning_rate': 0.00034559999999999994, 'epoch': 1.87}
+{'loss': 2.3864, 'grad_norm': 0.7125779986381531, 'learning_rate': 0.00034589999999999995, 'epoch': 1.87}
+{'loss': 2.3914, 'grad_norm': 0.5423337817192078, 'learning_rate': 0.00034619999999999996, 'epoch': 1.87}
+{'loss': 2.2606, 'grad_norm': 0.8027876019477844, 'learning_rate': 0.00034649999999999997, 'epoch': 1.87}
+{'loss': 2.435, 'grad_norm': 3.676344156265259, 'learning_rate': 0.0003467999999999999, 'epoch': 1.88}
+{'loss': 2.4396, 'grad_norm': 0.8745720386505127, 'learning_rate': 0.0003471, 'epoch': 1.88}
+{'loss': 2.505, 'grad_norm': 2.438420534133911, 'learning_rate': 0.00034739999999999993, 'epoch': 1.88}
+{'loss': 3.2354, 'grad_norm': nan, 'learning_rate': 0.00034739999999999993, 'epoch': 1.88}
+{'loss': 3.0164, 'grad_norm': 13.595325469970703, 'learning_rate': 0.0003477, 'epoch': 1.88}
+{'loss': 2.7017, 'grad_norm': 4.952884674072266, 'learning_rate': 0.00034799999999999995, 'epoch': 1.88}
+{'loss': 2.4942, 'grad_norm': 3.7639901638031006, 'learning_rate': 0.00034829999999999996, 'epoch': 1.88}
+{'loss': 2.7815, 'grad_norm': 5.62662935256958, 'learning_rate': 0.00034859999999999996, 'epoch': 1.89}
+{'loss': 2.5347, 'grad_norm': 1.9343209266662598, 'learning_rate': 0.00034889999999999997, 'epoch': 1.89}
+{'loss': 2.4285, 'grad_norm': 0.9629626870155334, 'learning_rate': 0.0003491999999999999, 'epoch': 1.89}
+{'loss': 2.4941, 'grad_norm': 3.4893319606781006, 'learning_rate': 0.0003495, 'epoch': 1.89}
+{'loss': 2.3566, 'grad_norm': 5.90111780166626, 'learning_rate': 0.00034979999999999994, 'epoch': 1.89}
+{'loss': 2.3439, 'grad_norm': 6.313168525695801, 'learning_rate': 0.0003501, 'epoch': 1.89}
+{'loss': 2.5063, 'grad_norm': 5.150593280792236, 'learning_rate': 0.00035039999999999995, 'epoch': 1.9}
+{'loss': 2.1988, 'grad_norm': 5.239500522613525, 'learning_rate': 0.00035069999999999996, 'epoch': 1.9}
+{'loss': 2.47, 'grad_norm': 5.032492160797119, 'learning_rate': 0.00035099999999999997, 'epoch': 1.9}
+{'loss': 2.477, 'grad_norm': 4.160557270050049, 'learning_rate': 0.0003513, 'epoch': 1.9}
+{'loss': 2.2105, 'grad_norm': 2.1352810859680176, 'learning_rate': 0.0003515999999999999, 'epoch': 1.9}
+{'loss': 2.1445, 'grad_norm': 2.577263832092285, 'learning_rate': 0.0003519, 'epoch': 1.9}
+{'loss': 2.0875, 'grad_norm': 1.5833125114440918, 'learning_rate': 0.00035219999999999994, 'epoch': 1.91}
+{'loss': 2.357, 'grad_norm': 0.9110488295555115, 'learning_rate': 0.0003525, 'epoch': 1.91}
+{'loss': 2.2269, 'grad_norm': 2.1670477390289307, 'learning_rate': 0.00035279999999999996, 'epoch': 1.91}
+{'loss': 2.277, 'grad_norm': 2.896484136581421, 'learning_rate': 0.00035309999999999996, 'epoch': 1.91}
+{'loss': 2.2654, 'grad_norm': 2.396368980407715, 'learning_rate': 0.00035339999999999997, 'epoch': 1.91}
+{'loss': 2.1887, 'grad_norm': 2.8805601596832275, 'learning_rate': 0.0003537, 'epoch': 1.91}
+{'loss': 2.3864, 'grad_norm': 1.5967847108840942, 'learning_rate': 0.00035399999999999993, 'epoch': 1.92}
+{'loss': 2.0803, 'grad_norm': 3.0907437801361084, 'learning_rate': 0.0003543, 'epoch': 1.92}
+{'loss': 2.4314, 'grad_norm': 3.411078691482544, 'learning_rate': 0.00035459999999999995, 'epoch': 1.92}
+{'loss': 2.2706, 'grad_norm': 3.378351926803589, 'learning_rate': 0.0003549, 'epoch': 1.92}
+{'loss': 2.0895, 'grad_norm': 0.8546525835990906, 'learning_rate': 0.00035519999999999996, 'epoch': 1.92}
+{'loss': 2.1679, 'grad_norm': 1.635798454284668, 'learning_rate': 0.00035549999999999997, 'epoch': 1.92}
+{'loss': 2.2493, 'grad_norm': 1.9297326803207397, 'learning_rate': 0.0003558, 'epoch': 1.92}
+{'loss': 2.0785, 'grad_norm': 2.8344545364379883, 'learning_rate': 0.0003561, 'epoch': 1.93}
+{'loss': 2.3996, 'grad_norm': 2.0780208110809326, 'learning_rate': 0.00035639999999999994, 'epoch': 1.93}
+{'loss': 1.9828, 'grad_norm': 1.769015908241272, 'learning_rate': 0.0003567, 'epoch': 1.93}
+{'loss': 2.0324, 'grad_norm': 1.2962875366210938, 'learning_rate': 0.00035699999999999995, 'epoch': 1.93}
+{'loss': 2.228, 'grad_norm': 1.9676580429077148, 'learning_rate': 0.0003573, 'epoch': 1.93}
+{'loss': 2.0663, 'grad_norm': 1.318317174911499, 'learning_rate': 0.00035759999999999996, 'epoch': 1.93}
+{'loss': 2.2146, 'grad_norm': 1.430823564529419, 'learning_rate': 0.00035789999999999997, 'epoch': 1.94}
+{'loss': 2.2954, 'grad_norm': 1.1980717182159424, 'learning_rate': 0.0003582, 'epoch': 1.94}
+{'loss': 2.3383, 'grad_norm': 0.9021552801132202, 'learning_rate': 0.0003585, 'epoch': 1.94}
+{'loss': 2.3008, 'grad_norm': 0.9370974898338318, 'learning_rate': 0.00035879999999999994, 'epoch': 1.94}
+{'loss': 2.1052, 'grad_norm': 0.6908053755760193, 'learning_rate': 0.0003591, 'epoch': 1.94}
+{'loss': 2.4055, 'grad_norm': 1.6524698734283447, 'learning_rate': 0.00035939999999999995, 'epoch': 1.94}
+{'loss': 2.4952, 'grad_norm': 2.5479085445404053, 'learning_rate': 0.00035969999999999996, 'epoch': 1.95}
+{'loss': 2.0211, 'grad_norm': 0.8158350586891174, 'learning_rate': 0.00035999999999999997, 'epoch': 1.95}
+{'loss': 2.3557, 'grad_norm': 1.3673202991485596, 'learning_rate': 0.0003603, 'epoch': 1.95}
+{'loss': 2.1276, 'grad_norm': 2.5113394260406494, 'learning_rate': 0.00036059999999999993, 'epoch': 1.95}
+{'loss': 2.3532, 'grad_norm': 1.964048147201538, 'learning_rate': 0.0003609, 'epoch': 1.95}
+{'loss': 2.082, 'grad_norm': 1.1110976934432983, 'learning_rate': 0.00036119999999999994, 'epoch': 1.95}
+{'loss': 2.2084, 'grad_norm': 1.0433621406555176, 'learning_rate': 0.0003615, 'epoch': 1.96}
+{'loss': 2.5833, 'grad_norm': 0.9254918694496155, 'learning_rate': 0.00036179999999999996, 'epoch': 1.96}
+{'loss': 2.3376, 'grad_norm': 1.4809350967407227, 'learning_rate': 0.00036209999999999997, 'epoch': 1.96}
+{'loss': 3.0309, 'grad_norm': 3.355405569076538, 'learning_rate': 0.00036239999999999997, 'epoch': 1.96}
+{'loss': 3.2238, 'grad_norm': 17.264118194580078, 'learning_rate': 0.0003627, 'epoch': 1.96}
+{'loss': 2.3729, 'grad_norm': 1.5916332006454468, 'learning_rate': 0.00036299999999999993, 'epoch': 1.96}
+{'loss': 2.4696, 'grad_norm': 2.5827670097351074, 'learning_rate': 0.0003633, 'epoch': 1.96}
+{'loss': 2.241, 'grad_norm': 1.2073217630386353, 'learning_rate': 0.00036359999999999995, 'epoch': 1.97}
+{'loss': 2.3808, 'grad_norm': 1.464860200881958, 'learning_rate': 0.0003639, 'epoch': 1.97}
+{'loss': 2.1668, 'grad_norm': 3.0144131183624268, 'learning_rate': 0.00036419999999999996, 'epoch': 1.97}
+{'loss': 2.1334, 'grad_norm': 3.701151132583618, 'learning_rate': 0.00036449999999999997, 'epoch': 1.97}
+{'loss': 2.0689, 'grad_norm': 2.9317760467529297, 'learning_rate': 0.0003648, 'epoch': 1.97}
+{'loss': 1.8842, 'grad_norm': 1.4119415283203125, 'learning_rate': 0.0003651, 'epoch': 1.97}
+{'loss': 2.0602, 'grad_norm': 1.5282409191131592, 'learning_rate': 0.00036539999999999994, 'epoch': 1.98}
+{'loss': 2.1239, 'grad_norm': 1.0516180992126465, 'learning_rate': 0.0003657, 'epoch': 1.98}
+{'loss': 2.1571, 'grad_norm': 0.7870113253593445, 'learning_rate': 0.00036599999999999995, 'epoch': 1.98}
+{'loss': 1.8778, 'grad_norm': 2.4591481685638428, 'learning_rate': 0.0003663, 'epoch': 1.98}
+{'loss': 2.1993, 'grad_norm': 1.552952527999878, 'learning_rate': 0.00036659999999999997, 'epoch': 1.98}
+{'loss': 2.1846, 'grad_norm': 4.520159721374512, 'learning_rate': 0.0003669, 'epoch': 1.98}
+{'loss': 1.9337, 'grad_norm': 2.377891778945923, 'learning_rate': 0.0003672, 'epoch': 1.99}
+{'loss': 2.068, 'grad_norm': 0.9092377424240112, 'learning_rate': 0.0003675, 'epoch': 1.99}
+{'loss': 2.0708, 'grad_norm': 2.321300506591797, 'learning_rate': 0.00036779999999999994, 'epoch': 1.99}
+{'loss': 2.1614, 'grad_norm': 0.7131252884864807, 'learning_rate': 0.0003681, 'epoch': 1.99}
+{'loss': 2.1221, 'grad_norm': 0.8142818212509155, 'learning_rate': 0.00036839999999999996, 'epoch': 1.99}
+{'loss': 2.434, 'grad_norm': 1.1560027599334717, 'learning_rate': 0.0003687, 'epoch': 1.99}
+{'loss': 2.3639, 'grad_norm': 2.076456069946289, 'learning_rate': 0.00036899999999999997, 'epoch': 2.0}
+{'loss': 2.463, 'grad_norm': 3.1738593578338623, 'learning_rate': 0.0003693, 'epoch': 2.0}
+{'loss': 2.7723, 'grad_norm': 1.0733180046081543, 'learning_rate': 0.0003696, 'epoch': 2.0}
+{'loss': 2.8313, 'grad_norm': 4.47441291809082, 'learning_rate': 0.0003699, 'epoch': 2.0}
+{'loss': 3.2352, 'grad_norm': 16.142398834228516, 'learning_rate': 0.00037019999999999995, 'epoch': 2.0}
+{'loss': 2.2324, 'grad_norm': 1.3956218957901, 'learning_rate': 0.0003705, 'epoch': 2.0}
+{'loss': 2.4111, 'grad_norm': 3.2037904262542725, 'learning_rate': 0.00037079999999999996, 'epoch': 2.0}
+{'loss': 2.4119, 'grad_norm': 3.279060125350952, 'learning_rate': 0.0003711, 'epoch': 2.01}
+{'loss': 2.1714, 'grad_norm': 2.2401888370513916, 'learning_rate': 0.0003714, 'epoch': 2.01}
+{'loss': 2.5566, 'grad_norm': 1.0563182830810547, 'learning_rate': 0.0003717, 'epoch': 2.01}
+{'loss': 2.2229, 'grad_norm': 2.3503923416137695, 'learning_rate': 0.000372, 'epoch': 2.01}
+{'loss': 2.1712, 'grad_norm': 2.3854825496673584, 'learning_rate': 0.0003723, 'epoch': 2.01}
+{'loss': 2.2321, 'grad_norm': 1.7842551469802856, 'learning_rate': 0.00037259999999999995, 'epoch': 2.01}
+{'loss': 2.3389, 'grad_norm': 0.7852015495300293, 'learning_rate': 0.0003729, 'epoch': 2.02}
+{'loss': 1.9826, 'grad_norm': 1.1106822490692139, 'learning_rate': 0.00037319999999999996, 'epoch': 2.02}
+{'loss': 1.9273, 'grad_norm': 0.7619666457176208, 'learning_rate': 0.0003735, 'epoch': 2.02}
+{'loss': 1.978, 'grad_norm': 0.7985825538635254, 'learning_rate': 0.0003738, 'epoch': 2.02}
+{'loss': 2.0277, 'grad_norm': 0.5993479490280151, 'learning_rate': 0.0003741, 'epoch': 2.02}
+{'loss': 2.3771, 'grad_norm': 5.699611186981201, 'learning_rate': 0.0003744, 'epoch': 2.02}
+{'loss': 2.2158, 'grad_norm': 1.6110634803771973, 'learning_rate': 0.0003747, 'epoch': 2.03}
+{'loss': 2.0358, 'grad_norm': 2.9092864990234375, 'learning_rate': 0.00037499999999999995, 'epoch': 2.03}
+{'loss': 2.1937, 'grad_norm': 1.1097922325134277, 'learning_rate': 0.00037529999999999996, 'epoch': 2.03}
+{'loss': 2.2668, 'grad_norm': 2.0541391372680664, 'learning_rate': 0.00037559999999999997, 'epoch': 2.03}
+{'loss': 2.0615, 'grad_norm': 0.8676146268844604, 'learning_rate': 0.0003758999999999999, 'epoch': 2.03}
+{'loss': 2.0727, 'grad_norm': 1.396476149559021, 'learning_rate': 0.0003762, 'epoch': 2.03}
+{'loss': 1.957, 'grad_norm': 0.6552128791809082, 'learning_rate': 0.00037649999999999994, 'epoch': 2.04}
+{'loss': 1.9888, 'grad_norm': 0.5469757318496704, 'learning_rate': 0.00037679999999999994, 'epoch': 2.04}
+{'loss': 2.0644, 'grad_norm': 1.1260696649551392, 'learning_rate': 0.00037709999999999995, 'epoch': 2.04}
+{'loss': 2.09, 'grad_norm': 0.48484399914741516, 'learning_rate': 0.00037739999999999996, 'epoch': 2.04}
+{'loss': 2.0482, 'grad_norm': 1.1584820747375488, 'learning_rate': 0.0003776999999999999, 'epoch': 2.04}
+{'loss': 2.0385, 'grad_norm': 1.8108872175216675, 'learning_rate': 0.00037799999999999997, 'epoch': 2.04}
+{'loss': 1.9413, 'grad_norm': 1.7837122678756714, 'learning_rate': 0.0003782999999999999, 'epoch': 2.04}
+{'loss': 1.968, 'grad_norm': 1.3678404092788696, 'learning_rate': 0.0003786, 'epoch': 2.05}
+{'loss': 1.9819, 'grad_norm': 0.7513062953948975, 'learning_rate': 0.00037889999999999994, 'epoch': 2.05}
+{'loss': 1.9809, 'grad_norm': 0.7749692797660828, 'learning_rate': 0.00037919999999999995, 'epoch': 2.05}
+{'loss': 1.9025, 'grad_norm': 1.3065149784088135, 'learning_rate': 0.00037949999999999995, 'epoch': 2.05}
+{'loss': 2.1342, 'grad_norm': 0.6770661473274231, 'learning_rate': 0.00037979999999999996, 'epoch': 2.05}
+{'loss': 2.0686, 'grad_norm': 1.5681331157684326, 'learning_rate': 0.0003800999999999999, 'epoch': 2.05}
+{'loss': 2.0118, 'grad_norm': 1.1625335216522217, 'learning_rate': 0.0003804, 'epoch': 2.06}
+{'loss': 2.0614, 'grad_norm': 0.9901454448699951, 'learning_rate': 0.00038069999999999993, 'epoch': 2.06}
+{'loss': 2.0299, 'grad_norm': 1.948578119277954, 'learning_rate': 0.000381, 'epoch': 2.06}
+{'loss': 2.0481, 'grad_norm': 1.5582636594772339, 'learning_rate': 0.00038129999999999994, 'epoch': 2.06}
+{'loss': 2.3433, 'grad_norm': 1.2568862438201904, 'learning_rate': 0.00038159999999999995, 'epoch': 2.06}
+{'loss': 2.0881, 'grad_norm': 1.8581323623657227, 'learning_rate': 0.00038189999999999996, 'epoch': 2.06}
+{'loss': 2.6312, 'grad_norm': 1.954257607460022, 'learning_rate': 0.00038219999999999997, 'epoch': 2.07}
+{'loss': 1.9754, 'grad_norm': 2.38853120803833, 'learning_rate': 0.0003824999999999999, 'epoch': 2.07}
+{'loss': 2.2999, 'grad_norm': 0.8991557955741882, 'learning_rate': 0.0003828, 'epoch': 2.07}
+{'loss': 2.0209, 'grad_norm': 2.9160866737365723, 'learning_rate': 0.00038309999999999993, 'epoch': 2.07}
+{'loss': 2.1019, 'grad_norm': 2.4676144123077393, 'learning_rate': 0.0003834, 'epoch': 2.07}
+{'loss': 2.355, 'grad_norm': 1.0132110118865967, 'learning_rate': 0.00038369999999999995, 'epoch': 2.07}
+{'loss': 2.1014, 'grad_norm': 1.3484665155410767, 'learning_rate': 0.00038399999999999996, 'epoch': 2.08}
+{'loss': 2.1293, 'grad_norm': 2.196345567703247, 'learning_rate': 0.00038429999999999996, 'epoch': 2.08}
+{'loss': 2.347, 'grad_norm': 2.6476728916168213, 'learning_rate': 0.00038459999999999997, 'epoch': 2.08}
+{'loss': 2.6989, 'grad_norm': 1.3819998502731323, 'learning_rate': 0.0003848999999999999, 'epoch': 2.08}
+{'loss': 2.7856, 'grad_norm': 8.731172561645508, 'learning_rate': 0.0003852, 'epoch': 2.08}
+{'loss': 2.9622, 'grad_norm': 11.080965042114258, 'learning_rate': 0.00038549999999999994, 'epoch': 2.08}
+{'loss': 2.3932, 'grad_norm': 2.8074939250946045, 'learning_rate': 0.0003858, 'epoch': 2.08}
+{'loss': 2.2092, 'grad_norm': 2.6564383506774902, 'learning_rate': 0.00038609999999999995, 'epoch': 2.09}
+{'loss': 2.0047, 'grad_norm': 4.33972692489624, 'learning_rate': 0.00038639999999999996, 'epoch': 2.09}
+{'loss': 2.2548, 'grad_norm': 1.5930198431015015, 'learning_rate': 0.00038669999999999997, 'epoch': 2.09}
+{'loss': 2.0923, 'grad_norm': 4.321974754333496, 'learning_rate': 0.000387, 'epoch': 2.09}
+{'loss': 2.2425, 'grad_norm': 3.0230000019073486, 'learning_rate': 0.00038729999999999993, 'epoch': 2.09}
+{'loss': 1.9095, 'grad_norm': 4.086137294769287, 'learning_rate': 0.0003876, 'epoch': 2.09}
+{'loss': 1.9992, 'grad_norm': 3.24074387550354, 'learning_rate': 0.00038789999999999994, 'epoch': 2.1}
+{'loss': 1.7777, 'grad_norm': 2.870512008666992, 'learning_rate': 0.0003882, 'epoch': 2.1}
+{'loss': 2.0465, 'grad_norm': 1.1426403522491455, 'learning_rate': 0.00038849999999999996, 'epoch': 2.1}
+{'loss': 2.5261, 'grad_norm': 8.122888565063477, 'learning_rate': 0.00038879999999999996, 'epoch': 2.1}
+{'loss': 2.1316, 'grad_norm': 1.0429184436798096, 'learning_rate': 0.00038909999999999997, 'epoch': 2.1}
+{'loss': 2.1585, 'grad_norm': 2.0756289958953857, 'learning_rate': 0.0003894, 'epoch': 2.1}
+{'loss': 2.2013, 'grad_norm': 2.4256415367126465, 'learning_rate': 0.00038969999999999993, 'epoch': 2.11}
+{'loss': 1.8589, 'grad_norm': 0.8627563118934631, 'learning_rate': 0.00039, 'epoch': 2.11}
+{'loss': 1.8394, 'grad_norm': 1.7571260929107666, 'learning_rate': 0.00039029999999999995, 'epoch': 2.11}
+{'loss': 2.2086, 'grad_norm': 1.1963249444961548, 'learning_rate': 0.00039059999999999995, 'epoch': 2.11}
+{'loss': 1.8113, 'grad_norm': 0.7731038331985474, 'learning_rate': 0.00039089999999999996, 'epoch': 2.11}
+{'loss': 1.8982, 'grad_norm': 0.5587062835693359, 'learning_rate': 0.00039119999999999997, 'epoch': 2.11}
+{'loss': 1.8954, 'grad_norm': 0.5626364946365356, 'learning_rate': 0.0003914999999999999, 'epoch': 2.12}
+{'loss': 1.7425, 'grad_norm': 1.408499002456665, 'learning_rate': 0.0003918, 'epoch': 2.12}
+{'loss': 2.1664, 'grad_norm': 1.6526440382003784, 'learning_rate': 0.00039209999999999994, 'epoch': 2.12}
+{'loss': 1.9262, 'grad_norm': 0.4821324050426483, 'learning_rate': 0.0003924, 'epoch': 2.12}
+{'loss': 1.6703, 'grad_norm': 0.7852998375892639, 'learning_rate': 0.00039269999999999995, 'epoch': 2.12}
+{'loss': 1.8964, 'grad_norm': 3.967268943786621, 'learning_rate': 0.00039299999999999996, 'epoch': 2.12}
+{'loss': 2.0235, 'grad_norm': 0.44754117727279663, 'learning_rate': 0.00039329999999999996, 'epoch': 2.12}
+{'loss': 1.9802, 'grad_norm': 0.6954207420349121, 'learning_rate': 0.00039359999999999997, 'epoch': 2.13}
+{'loss': 1.9033, 'grad_norm': 1.3386781215667725, 'learning_rate': 0.0003938999999999999, 'epoch': 2.13}
+{'loss': 2.1433, 'grad_norm': 1.4398391246795654, 'learning_rate': 0.0003942, 'epoch': 2.13}
+{'loss': 2.2894, 'grad_norm': 3.3130927085876465, 'learning_rate': 0.00039449999999999994, 'epoch': 2.13}
+{'loss': 1.6613, 'grad_norm': 0.6074516177177429, 'learning_rate': 0.0003948, 'epoch': 2.13}
+{'loss': 1.9249, 'grad_norm': 0.8905891180038452, 'learning_rate': 0.00039509999999999995, 'epoch': 2.13}
+{'loss': 2.1552, 'grad_norm': 0.693198025226593, 'learning_rate': 0.00039539999999999996, 'epoch': 2.14}
+{'loss': 2.1719, 'grad_norm': 1.595231056213379, 'learning_rate': 0.00039569999999999997, 'epoch': 2.14}
+{'loss': 2.2147, 'grad_norm': 0.9253241419792175, 'learning_rate': 0.000396, 'epoch': 2.14}
+{'loss': 1.7626, 'grad_norm': 0.9581746459007263, 'learning_rate': 0.00039629999999999993, 'epoch': 2.14}
+{'loss': 2.1862, 'grad_norm': 0.6418152451515198, 'learning_rate': 0.0003966, 'epoch': 2.14}
+{'loss': 1.7163, 'grad_norm': 2.4077084064483643, 'learning_rate': 0.00039689999999999994, 'epoch': 2.14}
+{'loss': 2.1605, 'grad_norm': 0.8226627111434937, 'learning_rate': 0.0003972, 'epoch': 2.15}
+{'loss': 1.9728, 'grad_norm': 0.8403061628341675, 'learning_rate': 0.00039749999999999996, 'epoch': 2.15}
+{'loss': 1.7164, 'grad_norm': 0.5522119402885437, 'learning_rate': 0.00039779999999999997, 'epoch': 2.15}
+{'loss': 2.069, 'grad_norm': 0.8088909387588501, 'learning_rate': 0.0003981, 'epoch': 2.15}
+{'loss': 2.0172, 'grad_norm': 0.649395763874054, 'learning_rate': 0.0003984, 'epoch': 2.15}
+{'loss': 2.0648, 'grad_norm': 1.245216965675354, 'learning_rate': 0.00039869999999999993, 'epoch': 2.15}
+{'loss': 2.2123, 'grad_norm': 2.028209686279297, 'learning_rate': 0.000399, 'epoch': 2.16}
+{'loss': 2.1696, 'grad_norm': 1.16299569606781, 'learning_rate': 0.00039929999999999995, 'epoch': 2.16}
+{'loss': 2.5852, 'grad_norm': 2.0417158603668213, 'learning_rate': 0.0003996, 'epoch': 2.16}
+{'loss': 2.6632, 'grad_norm': 1.194480538368225, 'learning_rate': 0.00039989999999999996, 'epoch': 2.16}
+{'loss': 2.2968, 'grad_norm': 4.301017761230469, 'learning_rate': 0.00040019999999999997, 'epoch': 2.16}
+{'loss': 2.2294, 'grad_norm': 5.509984970092773, 'learning_rate': 0.0004005, 'epoch': 2.16}
+{'loss': 2.4747, 'grad_norm': 2.9739537239074707, 'learning_rate': 0.0004008, 'epoch': 2.16}
+{'loss': 2.4353, 'grad_norm': 5.930892467498779, 'learning_rate': 0.00040109999999999994, 'epoch': 2.17}
+{'loss': 2.3522, 'grad_norm': 3.7599174976348877, 'learning_rate': 0.0004014, 'epoch': 2.17}
+{'loss': 2.6316, 'grad_norm': 1.8498942852020264, 'learning_rate': 0.00040169999999999995, 'epoch': 2.17}
+{'loss': 2.7012, 'grad_norm': 6.10044002532959, 'learning_rate': 0.000402, 'epoch': 2.17}
+{'loss': 2.4794, 'grad_norm': 4.401482582092285, 'learning_rate': 0.00040229999999999997, 'epoch': 2.17}
+{'loss': 2.4327, 'grad_norm': 5.523442268371582, 'learning_rate': 0.0004026, 'epoch': 2.17}
+{'loss': 2.2722, 'grad_norm': 4.25037956237793, 'learning_rate': 0.0004029, 'epoch': 2.18}
+{'loss': 2.9387, 'grad_norm': 5.356450080871582, 'learning_rate': 0.0004032, 'epoch': 2.18}
+{'loss': 2.5264, 'grad_norm': 3.4604556560516357, 'learning_rate': 0.00040349999999999994, 'epoch': 2.18}
+{'loss': 2.3071, 'grad_norm': 4.26166296005249, 'learning_rate': 0.0004038, 'epoch': 2.18}
+{'loss': 2.2555, 'grad_norm': 4.863035202026367, 'learning_rate': 0.00040409999999999996, 'epoch': 2.18}
+{'loss': 2.383, 'grad_norm': 4.790585041046143, 'learning_rate': 0.0004044, 'epoch': 2.18}
+{'loss': 2.3042, 'grad_norm': 4.248513698577881, 'learning_rate': 0.00040469999999999997, 'epoch': 2.19}
+{'loss': 2.3719, 'grad_norm': 3.236246109008789, 'learning_rate': 0.000405, 'epoch': 2.19}
+{'loss': 2.3266, 'grad_norm': 1.0238962173461914, 'learning_rate': 0.00040529999999999993, 'epoch': 2.19}
+{'loss': 2.3052, 'grad_norm': 0.859204888343811, 'learning_rate': 0.0004056, 'epoch': 2.19}
+{'loss': 2.3872, 'grad_norm': 0.8815178275108337, 'learning_rate': 0.00040589999999999995, 'epoch': 2.19}
+{'loss': 2.1615, 'grad_norm': 1.2759977579116821, 'learning_rate': 0.0004062, 'epoch': 2.19}
+{'loss': 2.2023, 'grad_norm': 1.6016004085540771, 'learning_rate': 0.00040649999999999996, 'epoch': 2.2}
+{'loss': 2.1016, 'grad_norm': 1.93936026096344, 'learning_rate': 0.00040679999999999997, 'epoch': 2.2}
+{'loss': 2.3746, 'grad_norm': 0.9935839772224426, 'learning_rate': 0.0004071, 'epoch': 2.2}
+{'loss': 2.1396, 'grad_norm': 2.0738706588745117, 'learning_rate': 0.0004074, 'epoch': 2.2}
+{'loss': 2.0896, 'grad_norm': 0.7379969954490662, 'learning_rate': 0.00040769999999999994, 'epoch': 2.2}
+{'loss': 2.1598, 'grad_norm': 1.2633837461471558, 'learning_rate': 0.000408, 'epoch': 2.2}
+{'loss': 2.1767, 'grad_norm': 0.7961741089820862, 'learning_rate': 0.00040829999999999995, 'epoch': 2.2}
+{'loss': 2.3359, 'grad_norm': 1.836298942565918, 'learning_rate': 0.0004086, 'epoch': 2.21}
+{'loss': 2.3435, 'grad_norm': 2.328185796737671, 'learning_rate': 0.00040889999999999996, 'epoch': 2.21}
+{'loss': 2.5522, 'grad_norm': 1.825183629989624, 'learning_rate': 0.00040919999999999997, 'epoch': 2.21}
+{'loss': 2.3269, 'grad_norm': 0.8028872609138489, 'learning_rate': 0.0004095, 'epoch': 2.21}
+{'loss': 2.4156, 'grad_norm': 0.9807519316673279, 'learning_rate': 0.0004098, 'epoch': 2.21}
+{'loss': 2.0652, 'grad_norm': 2.0771546363830566, 'learning_rate': 0.00041009999999999994, 'epoch': 2.21}
+{'loss': 2.2988, 'grad_norm': 2.1903600692749023, 'learning_rate': 0.0004104, 'epoch': 2.22}
+{'loss': 2.3518, 'grad_norm': 2.105729579925537, 'learning_rate': 0.00041069999999999995, 'epoch': 2.22}
+{'loss': 2.4327, 'grad_norm': 2.26141619682312, 'learning_rate': 0.000411, 'epoch': 2.22}
+{'loss': 2.2783, 'grad_norm': 2.7038395404815674, 'learning_rate': 0.00041129999999999997, 'epoch': 2.22}
+{'loss': 2.4459, 'grad_norm': 0.9944401383399963, 'learning_rate': 0.0004116, 'epoch': 2.22}
+{'loss': 2.3234, 'grad_norm': 0.8764882683753967, 'learning_rate': 0.0004119, 'epoch': 2.22}
+{'loss': 2.5689, 'grad_norm': 3.0021326541900635, 'learning_rate': 0.0004122, 'epoch': 2.23}
+{'loss': 2.2978, 'grad_norm': 2.121433734893799, 'learning_rate': 0.00041249999999999994, 'epoch': 2.23}
+{'loss': 2.3756, 'grad_norm': 4.0318121910095215, 'learning_rate': 0.00041279999999999995, 'epoch': 2.23}
+{'loss': 2.4183, 'grad_norm': 4.119312763214111, 'learning_rate': 0.00041309999999999996, 'epoch': 2.23}
+{'loss': 2.6106, 'grad_norm': 6.8856940269470215, 'learning_rate': 0.0004133999999999999, 'epoch': 2.23}
+{'loss': 2.5119, 'grad_norm': 5.660776138305664, 'learning_rate': 0.00041369999999999997, 'epoch': 2.23}
+{'loss': 2.1634, 'grad_norm': 4.50926399230957, 'learning_rate': 0.0004139999999999999, 'epoch': 2.24}
+{'loss': 2.7285, 'grad_norm': 6.12561559677124, 'learning_rate': 0.0004143, 'epoch': 2.24}
+{'loss': 2.4774, 'grad_norm': 2.332390546798706, 'learning_rate': 0.00041459999999999994, 'epoch': 2.24}
+{'loss': 2.7869, 'grad_norm': 3.783649444580078, 'learning_rate': 0.00041489999999999995, 'epoch': 2.24}
+{'loss': 3.6933, 'grad_norm': 15.439468383789062, 'learning_rate': 0.00041519999999999995, 'epoch': 2.24}
+{'loss': 2.9789, 'grad_norm': 4.923689842224121, 'learning_rate': 0.00041549999999999996, 'epoch': 2.24}
+{'loss': 2.9776, 'grad_norm': 10.209508895874023, 'learning_rate': 0.0004157999999999999, 'epoch': 2.24}
+{'loss': 2.8077, 'grad_norm': 4.802323818206787, 'learning_rate': 0.0004161, 'epoch': 2.25}
+{'loss': 3.0581, 'grad_norm': 10.365413665771484, 'learning_rate': 0.00041639999999999993, 'epoch': 2.25}
+{'loss': 2.5003, 'grad_norm': 3.0222530364990234, 'learning_rate': 0.0004167, 'epoch': 2.25}
+{'loss': 2.664, 'grad_norm': 4.738245010375977, 'learning_rate': 0.00041699999999999994, 'epoch': 2.25}
+{'loss': 2.661, 'grad_norm': 0.694865882396698, 'learning_rate': 0.00041729999999999995, 'epoch': 2.25}
+{'loss': 2.5017, 'grad_norm': 1.4679259061813354, 'learning_rate': 0.00041759999999999996, 'epoch': 2.25}
+{'loss': 2.6454, 'grad_norm': 3.7848410606384277, 'learning_rate': 0.00041789999999999997, 'epoch': 2.26}
+{'loss': 2.3759, 'grad_norm': 2.437657594680786, 'learning_rate': 0.0004181999999999999, 'epoch': 2.26}
+{'loss': 2.6115, 'grad_norm': 0.982265830039978, 'learning_rate': 0.0004185, 'epoch': 2.26}
+{'loss': 2.2263, 'grad_norm': 5.4903788566589355, 'learning_rate': 0.00041879999999999993, 'epoch': 2.26}
+{'loss': 2.2023, 'grad_norm': 6.109436511993408, 'learning_rate': 0.0004191, 'epoch': 2.26}
+{'loss': 2.5806, 'grad_norm': 8.365518569946289, 'learning_rate': 0.00041939999999999995, 'epoch': 2.26}
+{'loss': 2.7747, 'grad_norm': 8.561690330505371, 'learning_rate': 0.00041969999999999996, 'epoch': 2.27}
+{'loss': 2.6602, 'grad_norm': 8.934793472290039, 'learning_rate': 0.00041999999999999996, 'epoch': 2.27}
+{'loss': 2.6439, 'grad_norm': 4.877744197845459, 'learning_rate': 0.00042029999999999997, 'epoch': 2.27}
+{'loss': 2.4732, 'grad_norm': 7.499762535095215, 'learning_rate': 0.0004205999999999999, 'epoch': 2.27}
+{'loss': 2.5265, 'grad_norm': 6.877169609069824, 'learning_rate': 0.0004209, 'epoch': 2.27}
+{'loss': 2.3668, 'grad_norm': 5.535276889801025, 'learning_rate': 0.00042119999999999994, 'epoch': 2.27}
+{'loss': 2.4487, 'grad_norm': 4.566375255584717, 'learning_rate': 0.00042149999999999995, 'epoch': 2.28}
+{'loss': 2.426, 'grad_norm': 2.4168081283569336, 'learning_rate': 0.00042179999999999995, 'epoch': 2.28}
+{'loss': 3.1391, 'grad_norm': 3.585942506790161, 'learning_rate': 0.00042209999999999996, 'epoch': 2.28}
+{'loss': 2.4168, 'grad_norm': 1.2044767141342163, 'learning_rate': 0.0004223999999999999, 'epoch': 2.28}
+{'loss': 2.2756, 'grad_norm': 1.4629987478256226, 'learning_rate': 0.0004227, 'epoch': 2.28}
+{'loss': 2.2438, 'grad_norm': 1.5924323797225952, 'learning_rate': 0.00042299999999999993, 'epoch': 2.28}
+{'loss': 2.3787, 'grad_norm': 0.9790437817573547, 'learning_rate': 0.0004233, 'epoch': 2.28}
+{'loss': 2.5208, 'grad_norm': 2.070406675338745, 'learning_rate': 0.00042359999999999994, 'epoch': 2.29}
+{'loss': 2.2397, 'grad_norm': 1.5404846668243408, 'learning_rate': 0.00042389999999999995, 'epoch': 2.29}
+{'loss': 2.4266, 'grad_norm': 1.684266448020935, 'learning_rate': 0.00042419999999999996, 'epoch': 2.29}
+{'loss': 2.2046, 'grad_norm': 2.2368626594543457, 'learning_rate': 0.00042449999999999996, 'epoch': 2.29}
+{'loss': 2.2177, 'grad_norm': 1.125388264656067, 'learning_rate': 0.0004247999999999999, 'epoch': 2.29}
+{'loss': 2.3616, 'grad_norm': 1.5939106941223145, 'learning_rate': 0.0004251, 'epoch': 2.29}
+{'loss': 2.3863, 'grad_norm': 1.2981842756271362, 'learning_rate': 0.00042539999999999993, 'epoch': 2.3}
+{'loss': 2.6792, 'grad_norm': 0.7831336259841919, 'learning_rate': 0.0004257, 'epoch': 2.3}
+{'loss': 2.3886, 'grad_norm': 1.4698004722595215, 'learning_rate': 0.00042599999999999995, 'epoch': 2.3}
+{'loss': 2.3127, 'grad_norm': 0.9203685522079468, 'learning_rate': 0.00042629999999999995, 'epoch': 2.3}
+{'loss': 2.3799, 'grad_norm': 0.5544130206108093, 'learning_rate': 0.00042659999999999996, 'epoch': 2.3}
+{'loss': 2.4408, 'grad_norm': 2.3812172412872314, 'learning_rate': 0.00042689999999999997, 'epoch': 2.3}
+{'loss': 2.3087, 'grad_norm': 2.6237330436706543, 'learning_rate': 0.0004271999999999999, 'epoch': 2.31}
+{'loss': 2.1371, 'grad_norm': 2.7588069438934326, 'learning_rate': 0.0004275, 'epoch': 2.31}
+{'loss': 2.2978, 'grad_norm': 0.6106075048446655, 'learning_rate': 0.00042779999999999994, 'epoch': 2.31}
+{'loss': 2.4839, 'grad_norm': 0.6980108022689819, 'learning_rate': 0.0004281, 'epoch': 2.31}
+{'loss': 2.5316, 'grad_norm': 1.6969398260116577, 'learning_rate': 0.00042839999999999995, 'epoch': 2.31}
+{'loss': 2.3753, 'grad_norm': 1.0797035694122314, 'learning_rate': 0.00042869999999999996, 'epoch': 2.31}
+{'loss': 2.9357, 'grad_norm': 1.6315916776657104, 'learning_rate': 0.00042899999999999997, 'epoch': 2.32}
+{'loss': 2.4578, 'grad_norm': 2.026221990585327, 'learning_rate': 0.00042929999999999997, 'epoch': 2.32}
+{'loss': 2.5209, 'grad_norm': 1.5287202596664429, 'learning_rate': 0.0004295999999999999, 'epoch': 2.32}
+{'loss': 3.0858, 'grad_norm': 3.8067626953125, 'learning_rate': 0.0004299, 'epoch': 2.32}
+{'loss': 3.6091, 'grad_norm': 16.87346076965332, 'learning_rate': 0.00043019999999999994, 'epoch': 2.32}
+{'loss': 2.7344, 'grad_norm': 2.06990385055542, 'learning_rate': 0.0004305, 'epoch': 2.32}
+{'loss': 2.7445, 'grad_norm': 2.008976459503174, 'learning_rate': 0.00043079999999999995, 'epoch': 2.32}
+{'loss': 2.8305, 'grad_norm': 1.7746312618255615, 'learning_rate': 0.00043109999999999996, 'epoch': 2.33}
+{'loss': 2.884, 'grad_norm': 3.5500175952911377, 'learning_rate': 0.00043139999999999997, 'epoch': 2.33}
+{'loss': 2.774, 'grad_norm': 5.436251163482666, 'learning_rate': 0.0004317, 'epoch': 2.33}
+{'loss': 2.6914, 'grad_norm': 7.481227874755859, 'learning_rate': 0.00043199999999999993, 'epoch': 2.33}
+{'loss': 2.5741, 'grad_norm': 4.893389701843262, 'learning_rate': 0.0004323, 'epoch': 2.33}
+{'loss': 2.5954, 'grad_norm': 7.032483100891113, 'learning_rate': 0.00043259999999999994, 'epoch': 2.33}
+{'loss': 2.6022, 'grad_norm': 6.124364852905273, 'learning_rate': 0.0004329, 'epoch': 2.34}
+{'loss': 2.6718, 'grad_norm': 7.075193881988525, 'learning_rate': 0.00043319999999999996, 'epoch': 2.34}
+{'loss': 2.5274, 'grad_norm': 4.350131988525391, 'learning_rate': 0.00043349999999999997, 'epoch': 2.34}
+{'loss': 2.3757, 'grad_norm': 1.6107730865478516, 'learning_rate': 0.0004338, 'epoch': 2.34}
+{'loss': 2.6995, 'grad_norm': 2.455488443374634, 'learning_rate': 0.0004341, 'epoch': 2.34}
+{'loss': 2.5708, 'grad_norm': 1.2672028541564941, 'learning_rate': 0.00043439999999999993, 'epoch': 2.34}
+{'loss': 2.5716, 'grad_norm': 2.2092881202697754, 'learning_rate': 0.0004347, 'epoch': 2.35}
+{'loss': 2.294, 'grad_norm': 1.2420680522918701, 'learning_rate': 0.00043499999999999995, 'epoch': 2.35}
+{'loss': 2.2936, 'grad_norm': 2.2376654148101807, 'learning_rate': 0.00043529999999999996, 'epoch': 2.35}
+{'loss': 2.4192, 'grad_norm': 3.4342873096466064, 'learning_rate': 0.00043559999999999996, 'epoch': 2.35}
+{'loss': 2.6571, 'grad_norm': 5.39082670211792, 'learning_rate': 0.00043589999999999997, 'epoch': 2.35}
+{'loss': 2.2135, 'grad_norm': 1.075791597366333, 'learning_rate': 0.0004361999999999999, 'epoch': 2.35}
+{'loss': 2.4113, 'grad_norm': 2.4903030395507812, 'learning_rate': 0.0004365, 'epoch': 2.36}
+{'loss': 2.2446, 'grad_norm': 2.7636349201202393, 'learning_rate': 0.00043679999999999994, 'epoch': 2.36}
+{'loss': 2.333, 'grad_norm': 3.5851831436157227, 'learning_rate': 0.0004371, 'epoch': 2.36}
+{'loss': 2.4006, 'grad_norm': 3.596482515335083, 'learning_rate': 0.00043739999999999995, 'epoch': 2.36}
+{'loss': 2.336, 'grad_norm': 3.66230845451355, 'learning_rate': 0.00043769999999999996, 'epoch': 2.36}
+{'loss': 2.4821, 'grad_norm': 3.6934595108032227, 'learning_rate': 0.00043799999999999997, 'epoch': 2.36}
+{'loss': 2.3221, 'grad_norm': 1.861146330833435, 'learning_rate': 0.0004383, 'epoch': 2.36}
+{'loss': 2.4531, 'grad_norm': 3.078958511352539, 'learning_rate': 0.00043859999999999993, 'epoch': 2.37}
+{'loss': 2.3416, 'grad_norm': 0.9115749597549438, 'learning_rate': 0.0004389, 'epoch': 2.37}
+{'loss': 2.2444, 'grad_norm': 3.4467458724975586, 'learning_rate': 0.00043919999999999994, 'epoch': 2.37}
+{'loss': 2.6449, 'grad_norm': 0.5655205845832825, 'learning_rate': 0.0004395, 'epoch': 2.37}
+{'loss': 2.3346, 'grad_norm': 3.295214891433716, 'learning_rate': 0.00043979999999999996, 'epoch': 2.37}
+{'loss': 2.2891, 'grad_norm': 4.051139831542969, 'learning_rate': 0.00044009999999999996, 'epoch': 2.37}
+{'loss': 2.2741, 'grad_norm': 1.997973084449768, 'learning_rate': 0.00044039999999999997, 'epoch': 2.38}
+{'loss': 2.4009, 'grad_norm': 1.6853876113891602, 'learning_rate': 0.0004407, 'epoch': 2.38}
+{'loss': 2.3812, 'grad_norm': 1.9763381481170654, 'learning_rate': 0.00044099999999999993, 'epoch': 2.38}
+{'loss': 2.3768, 'grad_norm': 1.633191466331482, 'learning_rate': 0.0004413, 'epoch': 2.38}
+{'loss': 2.2952, 'grad_norm': 1.3585143089294434, 'learning_rate': 0.00044159999999999995, 'epoch': 2.38}
+{'loss': 2.6077, 'grad_norm': 0.6596494913101196, 'learning_rate': 0.0004419, 'epoch': 2.38}
+{'loss': 2.3303, 'grad_norm': 1.646826982498169, 'learning_rate': 0.00044219999999999996, 'epoch': 2.39}
+{'loss': 2.3328, 'grad_norm': 1.6970372200012207, 'learning_rate': 0.00044249999999999997, 'epoch': 2.39}
+{'loss': 2.6301, 'grad_norm': 2.27344012260437, 'learning_rate': 0.0004428, 'epoch': 2.39}
+{'loss': 2.4525, 'grad_norm': 0.710404098033905, 'learning_rate': 0.0004431, 'epoch': 2.39}
+{'loss': 2.7767, 'grad_norm': 0.9620774388313293, 'learning_rate': 0.00044339999999999994, 'epoch': 2.39}
+{'loss': 2.546, 'grad_norm': 1.4343668222427368, 'learning_rate': 0.0004437, 'epoch': 2.39}
+{'loss': 2.7277, 'grad_norm': 2.0133700370788574, 'learning_rate': 0.00044399999999999995, 'epoch': 2.4}
+{'loss': 2.4666, 'grad_norm': 1.0265851020812988, 'learning_rate': 0.0004443, 'epoch': 2.4}
+{'loss': 3.0378, 'grad_norm': 4.100027561187744, 'learning_rate': 0.00044459999999999996, 'epoch': 2.4}
+{'loss': 3.3142, 'grad_norm': 5.678374767303467, 'learning_rate': 0.00044489999999999997, 'epoch': 2.4}
+{'loss': 3.2102, 'grad_norm': 4.942265510559082, 'learning_rate': 0.0004452, 'epoch': 2.4}
+{'loss': 2.9047, 'grad_norm': 1.7186299562454224, 'learning_rate': 0.0004455, 'epoch': 2.4}
+{'loss': 3.0197, 'grad_norm': 2.8937320709228516, 'learning_rate': 0.00044579999999999994, 'epoch': 2.4}
+{'loss': 2.9995, 'grad_norm': 3.7428622245788574, 'learning_rate': 0.0004461, 'epoch': 2.41}
+{'loss': 2.9252, 'grad_norm': 4.141154766082764, 'learning_rate': 0.00044639999999999995, 'epoch': 2.41}
+{'loss': 3.0031, 'grad_norm': 4.670098304748535, 'learning_rate': 0.0004467, 'epoch': 2.41}
+{'loss': 2.7867, 'grad_norm': 5.129536151885986, 'learning_rate': 0.00044699999999999997, 'epoch': 2.41}
+{'loss': 2.9749, 'grad_norm': 5.81210470199585, 'learning_rate': 0.0004473, 'epoch': 2.41}
+{'loss': 2.6915, 'grad_norm': 2.4536852836608887, 'learning_rate': 0.0004476, 'epoch': 2.41}
+{'loss': 2.6715, 'grad_norm': 2.283811569213867, 'learning_rate': 0.0004479, 'epoch': 2.42}
+{'loss': 2.5841, 'grad_norm': 1.1368249654769897, 'learning_rate': 0.00044819999999999994, 'epoch': 2.42}
+{'loss': 2.7656, 'grad_norm': 2.950226068496704, 'learning_rate': 0.0004485, 'epoch': 2.42}
+{'loss': 2.5429, 'grad_norm': 3.2112069129943848, 'learning_rate': 0.00044879999999999996, 'epoch': 2.42}
+{'loss': 2.5638, 'grad_norm': 3.645280361175537, 'learning_rate': 0.0004491, 'epoch': 2.42}
+{'loss': 2.8091, 'grad_norm': 1.3241567611694336, 'learning_rate': 0.0004494, 'epoch': 2.42}
+{'loss': 2.5652, 'grad_norm': 2.1697170734405518, 'learning_rate': 0.0004497, 'epoch': 2.43}
+{'loss': 2.5103, 'grad_norm': 0.6105273962020874, 'learning_rate': 0.00045, 'epoch': 2.43}
+{'loss': 2.6103, 'grad_norm': 0.6202393174171448, 'learning_rate': 0.00045029999999999994, 'epoch': 2.43}
+{'loss': 2.6113, 'grad_norm': 1.3199430704116821, 'learning_rate': 0.00045059999999999995, 'epoch': 2.43}
+{'loss': 2.6316, 'grad_norm': 1.5840743780136108, 'learning_rate': 0.0004508999999999999, 'epoch': 2.43}
+{'loss': 2.483, 'grad_norm': 1.0554815530776978, 'learning_rate': 0.00045119999999999996, 'epoch': 2.43}
+{'loss': 2.623, 'grad_norm': 2.019838333129883, 'learning_rate': 0.0004514999999999999, 'epoch': 2.44}
+{'loss': 2.562, 'grad_norm': 1.290846586227417, 'learning_rate': 0.0004518, 'epoch': 2.44}
+{'loss': 2.7231, 'grad_norm': 1.3342317342758179, 'learning_rate': 0.00045209999999999993, 'epoch': 2.44}
+{'loss': 2.6006, 'grad_norm': 2.423088788986206, 'learning_rate': 0.00045239999999999994, 'epoch': 2.44}
+{'loss': 2.6124, 'grad_norm': 1.3409308195114136, 'learning_rate': 0.00045269999999999994, 'epoch': 2.44}
+{'loss': 2.3889, 'grad_norm': 1.8538460731506348, 'learning_rate': 0.00045299999999999995, 'epoch': 2.44}
+{'loss': 2.4413, 'grad_norm': 1.0645954608917236, 'learning_rate': 0.0004532999999999999, 'epoch': 2.44}
+{'loss': 2.7019, 'grad_norm': 1.1003177165985107, 'learning_rate': 0.00045359999999999997, 'epoch': 2.45}
+{'loss': 2.6847, 'grad_norm': 1.1214135885238647, 'learning_rate': 0.0004538999999999999, 'epoch': 2.45}
+{'loss': 2.7017, 'grad_norm': 0.5774716734886169, 'learning_rate': 0.0004542, 'epoch': 2.45}
+{'loss': 2.5284, 'grad_norm': 4.226199150085449, 'learning_rate': 0.00045449999999999993, 'epoch': 2.45}
+{'loss': 2.5032, 'grad_norm': 1.6718403100967407, 'learning_rate': 0.00045479999999999994, 'epoch': 2.45}
+{'loss': 2.4638, 'grad_norm': 0.8635501861572266, 'learning_rate': 0.00045509999999999995, 'epoch': 2.45}
+{'loss': 2.5861, 'grad_norm': 0.8180009722709656, 'learning_rate': 0.00045539999999999996, 'epoch': 2.46}
+{'loss': 2.6967, 'grad_norm': 1.2235063314437866, 'learning_rate': 0.0004556999999999999, 'epoch': 2.46}
+{'loss': 2.7573, 'grad_norm': 1.6099307537078857, 'learning_rate': 0.00045599999999999997, 'epoch': 2.46}
+{'loss': 2.3741, 'grad_norm': 0.6623131036758423, 'learning_rate': 0.0004562999999999999, 'epoch': 2.46}
+{'loss': 2.6461, 'grad_norm': 0.9379790425300598, 'learning_rate': 0.0004566, 'epoch': 2.46}
+{'loss': 2.5278, 'grad_norm': 1.9863440990447998, 'learning_rate': 0.00045689999999999994, 'epoch': 2.46}
+{'loss': 2.6311, 'grad_norm': 1.1242375373840332, 'learning_rate': 0.00045719999999999995, 'epoch': 2.47}
+{'loss': 2.5263, 'grad_norm': 1.4005846977233887, 'learning_rate': 0.00045749999999999995, 'epoch': 2.47}
+{'loss': 2.7778, 'grad_norm': 3.9240052700042725, 'learning_rate': 0.00045779999999999996, 'epoch': 2.47}
+{'loss': 2.8233, 'grad_norm': 1.3024487495422363, 'learning_rate': 0.0004580999999999999, 'epoch': 2.47}
+{'loss': 2.5476, 'grad_norm': 2.5846259593963623, 'learning_rate': 0.0004584, 'epoch': 2.47}
+{'loss': 2.7712, 'grad_norm': 0.9445663690567017, 'learning_rate': 0.00045869999999999993, 'epoch': 2.47}
+{'loss': 2.6738, 'grad_norm': 2.509721279144287, 'learning_rate': 0.000459, 'epoch': 2.48}
+{'loss': 2.7306, 'grad_norm': 2.4532852172851562, 'learning_rate': 0.00045929999999999994, 'epoch': 2.48}
+{'loss': 2.7596, 'grad_norm': 2.668494462966919, 'learning_rate': 0.00045959999999999995, 'epoch': 2.48}
+{'loss': 2.7976, 'grad_norm': nan, 'learning_rate': 0.00045959999999999995, 'epoch': 2.48}
+{'loss': 3.2758, 'grad_norm': 6.9989013671875, 'learning_rate': 0.00045989999999999996, 'epoch': 2.48}
+{'loss': 3.071, 'grad_norm': 5.862189769744873, 'learning_rate': 0.00046019999999999996, 'epoch': 2.48}
+{'loss': 3.192, 'grad_norm': 8.821229934692383, 'learning_rate': 0.0004604999999999999, 'epoch': 2.48}
+{'loss': 3.1139, 'grad_norm': 5.29599666595459, 'learning_rate': 0.0004608, 'epoch': 2.49}
+{'loss': 3.1756, 'grad_norm': 3.378632068634033, 'learning_rate': 0.00046109999999999993, 'epoch': 2.49}
+{'loss': 3.141, 'grad_norm': 7.168362140655518, 'learning_rate': 0.0004614, 'epoch': 2.49}
+{'loss': 2.991, 'grad_norm': 2.826796770095825, 'learning_rate': 0.00046169999999999995, 'epoch': 2.49}
+{'loss': 2.7976, 'grad_norm': 1.08731210231781, 'learning_rate': 0.00046199999999999995, 'epoch': 2.49}
+{'loss': 2.8825, 'grad_norm': 1.3502941131591797, 'learning_rate': 0.00046229999999999996, 'epoch': 2.49}
+{'loss': 2.7296, 'grad_norm': 0.9165865182876587, 'learning_rate': 0.00046259999999999997, 'epoch': 2.5}
+{'loss': 2.9291, 'grad_norm': 0.846776008605957, 'learning_rate': 0.0004628999999999999, 'epoch': 2.5}
+{'loss': 2.7399, 'grad_norm': 1.5572160482406616, 'learning_rate': 0.0004632, 'epoch': 2.5}
+{'loss': 2.839, 'grad_norm': 1.5787986516952515, 'learning_rate': 0.00046349999999999994, 'epoch': 2.5}
+{'loss': 3.2249, 'grad_norm': 2.3490312099456787, 'learning_rate': 0.0004638, 'epoch': 2.5}
+{'loss': 2.565, 'grad_norm': 5.96341609954834, 'learning_rate': 0.00046409999999999995, 'epoch': 2.5}
+{'loss': 2.7132, 'grad_norm': 6.891876697540283, 'learning_rate': 0.00046439999999999996, 'epoch': 2.51}
+{'loss': 2.7519, 'grad_norm': 8.918244361877441, 'learning_rate': 0.00046469999999999997, 'epoch': 2.51}
+{'loss': 2.7456, 'grad_norm': 9.990086555480957, 'learning_rate': 0.00046499999999999997, 'epoch': 2.51}
+{'loss': 2.6391, 'grad_norm': 8.708830833435059, 'learning_rate': 0.0004652999999999999, 'epoch': 2.51}
+{'loss': 2.6381, 'grad_norm': 6.798332214355469, 'learning_rate': 0.0004656, 'epoch': 2.51}
+{'loss': 2.6923, 'grad_norm': 7.431624412536621, 'learning_rate': 0.00046589999999999994, 'epoch': 2.51}
+{'loss': 2.7874, 'grad_norm': 6.813911437988281, 'learning_rate': 0.00046619999999999995, 'epoch': 2.52}
+{'loss': 2.6047, 'grad_norm': 3.9901123046875, 'learning_rate': 0.00046649999999999996, 'epoch': 2.52}
+{'loss': 2.8424, 'grad_norm': 2.224478006362915, 'learning_rate': 0.00046679999999999996, 'epoch': 2.52}
+{'loss': 2.8194, 'grad_norm': 4.089131832122803, 'learning_rate': 0.0004670999999999999, 'epoch': 2.52}
+{'loss': 2.6133, 'grad_norm': 2.967945098876953, 'learning_rate': 0.0004674, 'epoch': 2.52}
+{'loss': 2.6445, 'grad_norm': 2.259937286376953, 'learning_rate': 0.00046769999999999993, 'epoch': 2.52}
+{'loss': 2.6527, 'grad_norm': 2.3867623805999756, 'learning_rate': 0.000468, 'epoch': 2.52}
+{'loss': 2.6492, 'grad_norm': 0.7020841836929321, 'learning_rate': 0.00046829999999999994, 'epoch': 2.53}
+{'loss': 2.5377, 'grad_norm': 2.115121841430664, 'learning_rate': 0.00046859999999999995, 'epoch': 2.53}
+{'loss': 2.4602, 'grad_norm': 1.013954997062683, 'learning_rate': 0.00046889999999999996, 'epoch': 2.53}
+{'loss': 2.7264, 'grad_norm': 5.609471797943115, 'learning_rate': 0.00046919999999999997, 'epoch': 2.53}
+{'loss': 2.7404, 'grad_norm': 1.7620587348937988, 'learning_rate': 0.0004694999999999999, 'epoch': 2.53}
+{'loss': 2.6936, 'grad_norm': 2.578216075897217, 'learning_rate': 0.0004698, 'epoch': 2.53}
+{'loss': 2.7589, 'grad_norm': 2.9530296325683594, 'learning_rate': 0.00047009999999999993, 'epoch': 2.54}
+{'loss': 2.6856, 'grad_norm': 2.248521566390991, 'learning_rate': 0.0004704, 'epoch': 2.54}
+{'loss': 2.5873, 'grad_norm': 0.7185359001159668, 'learning_rate': 0.00047069999999999995, 'epoch': 2.54}
+{'loss': 2.702, 'grad_norm': 0.950563371181488, 'learning_rate': 0.00047099999999999996, 'epoch': 2.54}
+{'loss': 2.5006, 'grad_norm': 4.2564191818237305, 'learning_rate': 0.00047129999999999996, 'epoch': 2.54}
+{'loss': 2.6586, 'grad_norm': 0.7628245949745178, 'learning_rate': 0.00047159999999999997, 'epoch': 2.54}
+{'loss': 2.5925, 'grad_norm': 3.4643051624298096, 'learning_rate': 0.0004718999999999999, 'epoch': 2.55}
+{'loss': 2.6902, 'grad_norm': 2.054396152496338, 'learning_rate': 0.0004722, 'epoch': 2.55}
+{'loss': 2.4568, 'grad_norm': 1.0989121198654175, 'learning_rate': 0.00047249999999999994, 'epoch': 2.55}
+{'loss': 2.4971, 'grad_norm': 2.788877248764038, 'learning_rate': 0.0004728, 'epoch': 2.55}
+{'loss': 2.6616, 'grad_norm': 2.4059903621673584, 'learning_rate': 0.00047309999999999995, 'epoch': 2.55}
+{'loss': 2.6371, 'grad_norm': 2.420016288757324, 'learning_rate': 0.00047339999999999996, 'epoch': 2.55}
+{'loss': 2.7256, 'grad_norm': 3.306741952896118, 'learning_rate': 0.00047369999999999997, 'epoch': 2.56}
+{'loss': 2.6461, 'grad_norm': 1.3698875904083252, 'learning_rate': 0.000474, 'epoch': 2.56}
+{'loss': 2.8663, 'grad_norm': 3.0524322986602783, 'learning_rate': 0.00047429999999999993, 'epoch': 2.56}
+{'loss': 3.3413, 'grad_norm': 4.398044586181641, 'learning_rate': 0.0004746, 'epoch': 2.56}
+{'loss': 3.4181, 'grad_norm': 11.20898151397705, 'learning_rate': 0.00047489999999999994, 'epoch': 2.56}
+{'loss': 2.9986, 'grad_norm': 2.485570192337036, 'learning_rate': 0.0004752, 'epoch': 2.56}
+{'loss': 3.2206, 'grad_norm': 9.538570404052734, 'learning_rate': 0.00047549999999999996, 'epoch': 2.56}
+{'loss': 2.9533, 'grad_norm': 4.369180679321289, 'learning_rate': 0.00047579999999999996, 'epoch': 2.57}
+{'loss': 3.2309, 'grad_norm': 9.760275840759277, 'learning_rate': 0.00047609999999999997, 'epoch': 2.57}
+{'loss': 2.7691, 'grad_norm': 1.91250741481781, 'learning_rate': 0.0004764, 'epoch': 2.57}
+{'loss': 2.8651, 'grad_norm': 0.9459549188613892, 'learning_rate': 0.00047669999999999993, 'epoch': 2.57}
+{'loss': 2.9374, 'grad_norm': 0.77849942445755, 'learning_rate': 0.000477, 'epoch': 2.57}
+{'loss': 2.8133, 'grad_norm': 3.6616194248199463, 'learning_rate': 0.00047729999999999995, 'epoch': 2.57}
+{'loss': 2.7227, 'grad_norm': 3.393961191177368, 'learning_rate': 0.0004776, 'epoch': 2.58}
+{'loss': 2.9257, 'grad_norm': 1.0827534198760986, 'learning_rate': 0.00047789999999999996, 'epoch': 2.58}
+{'loss': 2.7961, 'grad_norm': 1.3316205739974976, 'learning_rate': 0.00047819999999999997, 'epoch': 2.58}
+{'loss': 2.6238, 'grad_norm': 2.686330795288086, 'learning_rate': 0.0004785, 'epoch': 2.58}
+{'loss': 2.5468, 'grad_norm': 0.7391074895858765, 'learning_rate': 0.0004788, 'epoch': 2.58}
+{'loss': 2.5595, 'grad_norm': 3.1132357120513916, 'learning_rate': 0.00047909999999999994, 'epoch': 2.58}
+{'loss': 2.6619, 'grad_norm': 1.5804221630096436, 'learning_rate': 0.0004794, 'epoch': 2.59}
+{'loss': 2.6271, 'grad_norm': 0.633274257183075, 'learning_rate': 0.00047969999999999995, 'epoch': 2.59}
+{'loss': 2.6379, 'grad_norm': 0.8176840543746948, 'learning_rate': 0.00047999999999999996, 'epoch': 2.59}
+{'loss': 2.6628, 'grad_norm': 0.6381813287734985, 'learning_rate': 0.00048029999999999997, 'epoch': 2.59}
+{'loss': 2.6104, 'grad_norm': 0.7543144226074219, 'learning_rate': 0.00048059999999999997, 'epoch': 2.59}
+{'loss': 2.6753, 'grad_norm': 1.0972641706466675, 'learning_rate': 0.0004808999999999999, 'epoch': 2.59}
+{'loss': 2.5652, 'grad_norm': 1.9060057401657104, 'learning_rate': 0.0004812, 'epoch': 2.6}
+{'loss': 2.6658, 'grad_norm': 1.4949616193771362, 'learning_rate': 0.00048149999999999994, 'epoch': 2.6}
+{'loss': 2.6667, 'grad_norm': 1.245529055595398, 'learning_rate': 0.0004818, 'epoch': 2.6}
+{'loss': 2.6539, 'grad_norm': 0.5955816507339478, 'learning_rate': 0.00048209999999999995, 'epoch': 2.6}
+{'loss': 2.6025, 'grad_norm': 4.172550201416016, 'learning_rate': 0.00048239999999999996, 'epoch': 2.6}
+{'loss': 2.5869, 'grad_norm': 1.587763786315918, 'learning_rate': 0.00048269999999999997, 'epoch': 2.6}
+{'loss': 2.5114, 'grad_norm': 1.7045336961746216, 'learning_rate': 0.000483, 'epoch': 2.6}
+{'loss': 2.6275, 'grad_norm': 1.0802538394927979, 'learning_rate': 0.00048329999999999993, 'epoch': 2.61}
+{'loss': 2.6264, 'grad_norm': 1.2180992364883423, 'learning_rate': 0.0004836, 'epoch': 2.61}
+{'loss': 2.6329, 'grad_norm': 0.6582339406013489, 'learning_rate': 0.00048389999999999994, 'epoch': 2.61}
+{'loss': 2.5624, 'grad_norm': 0.9185123443603516, 'learning_rate': 0.0004842, 'epoch': 2.61}
+{'loss': 2.4889, 'grad_norm': 0.6815674304962158, 'learning_rate': 0.00048449999999999996, 'epoch': 2.61}
+{'loss': 2.5491, 'grad_norm': 1.176547646522522, 'learning_rate': 0.00048479999999999997, 'epoch': 2.61}
+{'loss': 2.5999, 'grad_norm': 7.645500659942627, 'learning_rate': 0.0004851, 'epoch': 2.62}
+{'loss': 2.6153, 'grad_norm': 0.7159596681594849, 'learning_rate': 0.0004854, 'epoch': 2.62}
+{'loss': 2.4501, 'grad_norm': 0.8762513995170593, 'learning_rate': 0.00048569999999999993, 'epoch': 2.62}
+{'loss': 2.7459, 'grad_norm': 2.3339498043060303, 'learning_rate': 0.000486, 'epoch': 2.62}
+{'loss': 2.7411, 'grad_norm': 3.838904619216919, 'learning_rate': 0.00048629999999999995, 'epoch': 2.62}
+{'loss': 2.4974, 'grad_norm': 2.539436101913452, 'learning_rate': 0.0004866, 'epoch': 2.62}
+{'loss': 2.6559, 'grad_norm': 1.0629886388778687, 'learning_rate': 0.00048689999999999996, 'epoch': 2.63}
+{'loss': 2.5446, 'grad_norm': 0.8675243258476257, 'learning_rate': 0.00048719999999999997, 'epoch': 2.63}
+{'loss': 2.3971, 'grad_norm': 1.6415584087371826, 'learning_rate': 0.0004875, 'epoch': 2.63}
+{'loss': 2.5962, 'grad_norm': 0.995968222618103, 'learning_rate': 0.00048779999999999993, 'epoch': 2.63}
+{'loss': 2.6166, 'grad_norm': 0.7832150459289551, 'learning_rate': 0.00048809999999999994, 'epoch': 2.63}
+{'loss': 2.7621, 'grad_norm': 2.025477170944214, 'learning_rate': 0.0004883999999999999, 'epoch': 2.63}
+{'loss': 2.8696, 'grad_norm': 1.517505407333374, 'learning_rate': 0.0004887, 'epoch': 2.64}
+{'loss': 2.6362, 'grad_norm': 1.3974066972732544, 'learning_rate': 0.000489, 'epoch': 2.64}
+{'loss': 2.6683, 'grad_norm': 1.3067556619644165, 'learning_rate': 0.0004892999999999999, 'epoch': 2.64}
+{'loss': 2.3979, 'grad_norm': nan, 'learning_rate': 0.0004892999999999999, 'epoch': 2.64}
+{'loss': 3.2359, 'grad_norm': 7.526185035705566, 'learning_rate': 0.0004896, 'epoch': 2.64}
+{'loss': 3.0194, 'grad_norm': 1.8751859664916992, 'learning_rate': 0.0004898999999999999, 'epoch': 2.64}
+{'loss': 2.9794, 'grad_norm': 1.6169847249984741, 'learning_rate': 0.0004901999999999999, 'epoch': 2.64}
+{'loss': 3.23, 'grad_norm': 3.470064878463745, 'learning_rate': 0.0004904999999999999, 'epoch': 2.65}
+{'loss': 3.0643, 'grad_norm': 1.2958786487579346, 'learning_rate': 0.0004907999999999999, 'epoch': 2.65}
+{'loss': 2.6688, 'grad_norm': 3.670785903930664, 'learning_rate': 0.0004911, 'epoch': 2.65}
+{'loss': 2.6845, 'grad_norm': 5.36950159072876, 'learning_rate': 0.0004913999999999999, 'epoch': 2.65}
+{'loss': 2.807, 'grad_norm': 5.3715338706970215, 'learning_rate': 0.0004917, 'epoch': 2.65}
+{'loss': 2.984, 'grad_norm': 1.8697935342788696, 'learning_rate': 0.0004919999999999999, 'epoch': 2.65}
+{'loss': 2.7468, 'grad_norm': 2.8437161445617676, 'learning_rate': 0.0004923, 'epoch': 2.66}
+{'loss': 2.6693, 'grad_norm': 1.6597505807876587, 'learning_rate': 0.0004925999999999999, 'epoch': 2.66}
+{'loss': 2.7273, 'grad_norm': 1.2704110145568848, 'learning_rate': 0.0004929, 'epoch': 2.66}
+{'loss': 2.6624, 'grad_norm': 1.4806967973709106, 'learning_rate': 0.0004932, 'epoch': 2.66}
+{'loss': 2.7391, 'grad_norm': 3.6257212162017822, 'learning_rate': 0.0004935, 'epoch': 2.66}
+{'loss': 2.5829, 'grad_norm': 3.1111960411071777, 'learning_rate': 0.0004938, 'epoch': 2.66}
+{'loss': 2.5868, 'grad_norm': 3.902526617050171, 'learning_rate': 0.0004940999999999999, 'epoch': 2.67}
+{'loss': 2.7117, 'grad_norm': 5.665694236755371, 'learning_rate': 0.0004944, 'epoch': 2.67}
+{'loss': 2.512, 'grad_norm': 2.3080103397369385, 'learning_rate': 0.0004946999999999999, 'epoch': 2.67}
+{'loss': 2.5534, 'grad_norm': 1.7370351552963257, 'learning_rate': 0.0004949999999999999, 'epoch': 2.67}
+{'loss': 2.5723, 'grad_norm': 1.2155604362487793, 'learning_rate': 0.0004953, 'epoch': 2.67}
+{'loss': 2.4879, 'grad_norm': 1.4938063621520996, 'learning_rate': 0.0004955999999999999, 'epoch': 2.67}
+{'loss': 2.6292, 'grad_norm': 4.0337419509887695, 'learning_rate': 0.0004959, 'epoch': 2.68}
+{'loss': 2.7822, 'grad_norm': 2.6993560791015625, 'learning_rate': 0.0004961999999999999, 'epoch': 2.68}
+{'loss': 2.5086, 'grad_norm': 1.474229097366333, 'learning_rate': 0.0004965, 'epoch': 2.68}
+{'loss': 2.408, 'grad_norm': 2.241969108581543, 'learning_rate': 0.0004967999999999999, 'epoch': 2.68}
+{'loss': 2.5079, 'grad_norm': 1.253790259361267, 'learning_rate': 0.0004971, 'epoch': 2.68}
+{'loss': 2.5499, 'grad_norm': 2.400538206100464, 'learning_rate': 0.0004974, 'epoch': 2.68}
+{'loss': 2.4777, 'grad_norm': 2.866384267807007, 'learning_rate': 0.0004977, 'epoch': 2.68}
+{'loss': 2.4503, 'grad_norm': 3.607046604156494, 'learning_rate': 0.000498, 'epoch': 2.69}
+{'loss': 2.5933, 'grad_norm': 4.765000343322754, 'learning_rate': 0.0004982999999999999, 'epoch': 2.69}
+{'loss': 2.5683, 'grad_norm': 2.517519950866699, 'learning_rate': 0.0004986, 'epoch': 2.69}
+{'loss': 2.7788, 'grad_norm': 0.8712690472602844, 'learning_rate': 0.0004988999999999999, 'epoch': 2.69}
+{'loss': 2.4722, 'grad_norm': 1.0803961753845215, 'learning_rate': 0.0004991999999999999, 'epoch': 2.69}
+{'loss': 2.486, 'grad_norm': 0.6999735832214355, 'learning_rate': 0.0004994999999999999, 'epoch': 2.69}
+{'loss': 2.48, 'grad_norm': 1.2827504873275757, 'learning_rate': 0.0004997999999999999, 'epoch': 2.7}
+{'loss': 2.3659, 'grad_norm': 0.8345691561698914, 'learning_rate': 0.0005001, 'epoch': 2.7}
+{'loss': 2.4629, 'grad_norm': 0.798511266708374, 'learning_rate': 0.0005003999999999999, 'epoch': 2.7}
+{'loss': 2.523, 'grad_norm': 1.9487131834030151, 'learning_rate': 0.0005007, 'epoch': 2.7}
+{'loss': 2.4581, 'grad_norm': 0.9477632641792297, 'learning_rate': 0.0005009999999999999, 'epoch': 2.7}
+{'loss': 2.5933, 'grad_norm': 1.6193513870239258, 'learning_rate': 0.0005013, 'epoch': 2.7}
+{'loss': 2.8349, 'grad_norm': 1.8013644218444824, 'learning_rate': 0.0005015999999999999, 'epoch': 2.71}
+{'loss': 2.8021, 'grad_norm': 2.3376691341400146, 'learning_rate': 0.0005019, 'epoch': 2.71}
+{'loss': 2.6318, 'grad_norm': 3.678694009780884, 'learning_rate': 0.0005022, 'epoch': 2.71}
+{'loss': 2.8046, 'grad_norm': 1.4150782823562622, 'learning_rate': 0.0005025, 'epoch': 2.71}
+{'loss': 2.7794, 'grad_norm': 3.379930019378662, 'learning_rate': 0.0005028, 'epoch': 2.71}
+{'loss': 2.6174, 'grad_norm': 1.2813504934310913, 'learning_rate': 0.0005030999999999999, 'epoch': 2.71}
+{'loss': 2.9687, 'grad_norm': 0.9052807688713074, 'learning_rate': 0.0005034, 'epoch': 2.72}
+{'loss': 2.773, 'grad_norm': 2.1118052005767822, 'learning_rate': 0.0005036999999999999, 'epoch': 2.72}
+{'loss': 2.7635, 'grad_norm': 1.609099268913269, 'learning_rate': 0.0005039999999999999, 'epoch': 2.72}
+{'loss': 3.1193, 'grad_norm': nan, 'learning_rate': 0.0005039999999999999, 'epoch': 2.72}
+{'loss': 3.4776, 'grad_norm': 13.232641220092773, 'learning_rate': 0.0005043, 'epoch': 2.72}
+{'loss': 3.0714, 'grad_norm': 7.2539873123168945, 'learning_rate': 0.0005045999999999999, 'epoch': 2.72}
+{'loss': 3.1389, 'grad_norm': 5.081768035888672, 'learning_rate': 0.0005049, 'epoch': 2.72}
+{'loss': 3.0545, 'grad_norm': 2.3188507556915283, 'learning_rate': 0.0005051999999999999, 'epoch': 2.73}
+{'loss': 3.0174, 'grad_norm': 3.5873944759368896, 'learning_rate': 0.0005055, 'epoch': 2.73}
+{'loss': 2.8348, 'grad_norm': 4.156705379486084, 'learning_rate': 0.0005057999999999999, 'epoch': 2.73}
+{'loss': 2.9599, 'grad_norm': 2.0585386753082275, 'learning_rate': 0.0005061, 'epoch': 2.73}
+{'loss': 2.9435, 'grad_norm': 4.402909278869629, 'learning_rate': 0.0005064, 'epoch': 2.73}
+{'loss': 2.7322, 'grad_norm': 1.3773367404937744, 'learning_rate': 0.0005067, 'epoch': 2.73}
+{'loss': 2.6582, 'grad_norm': 1.3306688070297241, 'learning_rate': 0.000507, 'epoch': 2.74}
+{'loss': 2.7469, 'grad_norm': 6.887178897857666, 'learning_rate': 0.0005073, 'epoch': 2.74}
+{'loss': 2.7386, 'grad_norm': 5.434063911437988, 'learning_rate': 0.0005076, 'epoch': 2.74}
+{'loss': 2.7037, 'grad_norm': 2.059262275695801, 'learning_rate': 0.0005078999999999999, 'epoch': 2.74}
+{'loss': 2.6632, 'grad_norm': 3.2821879386901855, 'learning_rate': 0.0005082, 'epoch': 2.74}
+{'loss': 2.8453, 'grad_norm': 1.6987167596817017, 'learning_rate': 0.0005085, 'epoch': 2.74}
+{'loss': 2.7244, 'grad_norm': 1.0021125078201294, 'learning_rate': 0.0005087999999999999, 'epoch': 2.75}
+{'loss': 2.6291, 'grad_norm': 1.5165038108825684, 'learning_rate': 0.0005091, 'epoch': 2.75}
+{'loss': 2.8931, 'grad_norm': 5.8641767501831055, 'learning_rate': 0.0005093999999999999, 'epoch': 2.75}
+{'loss': 2.586, 'grad_norm': 1.7871204614639282, 'learning_rate': 0.0005097, 'epoch': 2.75}
+{'loss': 2.593, 'grad_norm': 1.9642881155014038, 'learning_rate': 0.0005099999999999999, 'epoch': 2.75}
+{'loss': 2.6729, 'grad_norm': 1.1813987493515015, 'learning_rate': 0.0005103, 'epoch': 2.75}
+{'loss': 2.4355, 'grad_norm': 1.2921805381774902, 'learning_rate': 0.0005105999999999999, 'epoch': 2.76}
+{'loss': 2.5492, 'grad_norm': 0.7591195702552795, 'learning_rate': 0.0005109, 'epoch': 2.76}
+{'loss': 2.5241, 'grad_norm': 0.9900460243225098, 'learning_rate': 0.0005112, 'epoch': 2.76}
+{'loss': 2.5323, 'grad_norm': 0.8340640068054199, 'learning_rate': 0.0005115, 'epoch': 2.76}
+{'loss': 2.6332, 'grad_norm': 0.8422091007232666, 'learning_rate': 0.0005118, 'epoch': 2.76}
+{'loss': 2.5152, 'grad_norm': 1.318156123161316, 'learning_rate': 0.0005120999999999999, 'epoch': 2.76}
+{'loss': 2.4252, 'grad_norm': 0.7750735282897949, 'learning_rate': 0.0005124, 'epoch': 2.76}
+{'loss': 2.5499, 'grad_norm': 1.509163737297058, 'learning_rate': 0.0005126999999999999, 'epoch': 2.77}
+{'loss': 2.555, 'grad_norm': 0.9951829314231873, 'learning_rate': 0.0005129999999999999, 'epoch': 2.77}
+{'loss': 2.4509, 'grad_norm': 0.9104136228561401, 'learning_rate': 0.0005133, 'epoch': 2.77}
+{'loss': 2.5816, 'grad_norm': 1.038901925086975, 'learning_rate': 0.0005135999999999999, 'epoch': 2.77}
+{'loss': 2.4119, 'grad_norm': 2.0173180103302, 'learning_rate': 0.0005139, 'epoch': 2.77}
+{'loss': 2.4564, 'grad_norm': 2.1461172103881836, 'learning_rate': 0.0005141999999999999, 'epoch': 2.77}
+{'loss': 2.5007, 'grad_norm': 0.8707074522972107, 'learning_rate': 0.0005145, 'epoch': 2.78}
+{'loss': 2.6064, 'grad_norm': 1.6499031782150269, 'learning_rate': 0.0005147999999999999, 'epoch': 2.78}
+{'loss': 2.4206, 'grad_norm': 0.86881422996521, 'learning_rate': 0.0005151, 'epoch': 2.78}
+{'loss': 2.3982, 'grad_norm': 0.8201207518577576, 'learning_rate': 0.0005154, 'epoch': 2.78}
+{'loss': 2.578, 'grad_norm': 1.2034120559692383, 'learning_rate': 0.0005157, 'epoch': 2.78}
+{'loss': 2.3112, 'grad_norm': 0.7777190804481506, 'learning_rate': 0.000516, 'epoch': 2.78}
+{'loss': 2.5456, 'grad_norm': 0.82183837890625, 'learning_rate': 0.0005163, 'epoch': 2.79}
+{'loss': 2.4209, 'grad_norm': 1.6097009181976318, 'learning_rate': 0.0005166, 'epoch': 2.79}
+{'loss': 2.6127, 'grad_norm': 0.803339421749115, 'learning_rate': 0.0005168999999999999, 'epoch': 2.79}
+{'loss': 2.7093, 'grad_norm': 1.109894871711731, 'learning_rate': 0.0005172, 'epoch': 2.79}
+{'loss': 2.394, 'grad_norm': 3.9808509349823, 'learning_rate': 0.0005175, 'epoch': 2.79}
+{'loss': 2.8151, 'grad_norm': 1.2084410190582275, 'learning_rate': 0.0005177999999999999, 'epoch': 2.79}
+{'loss': 2.5713, 'grad_norm': 1.0662058591842651, 'learning_rate': 0.0005181, 'epoch': 2.8}
+{'loss': 2.5872, 'grad_norm': 0.6551415324211121, 'learning_rate': 0.0005183999999999999, 'epoch': 2.8}
+{'loss': 2.4416, 'grad_norm': 1.0831410884857178, 'learning_rate': 0.0005187, 'epoch': 2.8}
+{'loss': 3.438, 'grad_norm': 1.6357882022857666, 'learning_rate': 0.0005189999999999999, 'epoch': 2.8}
+{'loss': 3.6123, 'grad_norm': 15.630077362060547, 'learning_rate': 0.0005193, 'epoch': 2.8}
+{'loss': 3.0755, 'grad_norm': 4.824563980102539, 'learning_rate': 0.0005195999999999999, 'epoch': 2.8}
+{'loss': 3.1672, 'grad_norm': 3.7035696506500244, 'learning_rate': 0.0005199, 'epoch': 2.8}
+{'loss': 2.9867, 'grad_norm': 1.7311122417449951, 'learning_rate': 0.0005202, 'epoch': 2.81}
+{'loss': 2.8987, 'grad_norm': 1.3840744495391846, 'learning_rate': 0.0005205, 'epoch': 2.81}
+{'loss': 2.8573, 'grad_norm': 5.936819076538086, 'learning_rate': 0.0005208, 'epoch': 2.81}
+{'loss': 2.6146, 'grad_norm': 4.638219356536865, 'learning_rate': 0.0005211, 'epoch': 2.81}
+{'loss': 2.6315, 'grad_norm': 5.056271553039551, 'learning_rate': 0.0005214, 'epoch': 2.81}
+{'loss': 2.7745, 'grad_norm': 6.352563381195068, 'learning_rate': 0.0005216999999999999, 'epoch': 2.81}
+{'loss': 2.7158, 'grad_norm': 2.4548048973083496, 'learning_rate': 0.000522, 'epoch': 2.82}
+{'loss': 2.7262, 'grad_norm': 1.3754136562347412, 'learning_rate': 0.0005223, 'epoch': 2.82}
+{'loss': 2.6656, 'grad_norm': 1.041412353515625, 'learning_rate': 0.0005225999999999999, 'epoch': 2.82}
+{'loss': 2.4963, 'grad_norm': 2.493197441101074, 'learning_rate': 0.0005229, 'epoch': 2.82}
+{'loss': 2.5916, 'grad_norm': 0.7722348570823669, 'learning_rate': 0.0005231999999999999, 'epoch': 2.82}
+{'loss': 2.5123, 'grad_norm': 2.9039366245269775, 'learning_rate': 0.0005235, 'epoch': 2.82}
+{'loss': 2.6058, 'grad_norm': 2.1121346950531006, 'learning_rate': 0.0005237999999999999, 'epoch': 2.83}
+{'loss': 2.4736, 'grad_norm': 0.9812942743301392, 'learning_rate': 0.0005241, 'epoch': 2.83}
+{'loss': 2.5537, 'grad_norm': 1.2289108037948608, 'learning_rate': 0.0005244, 'epoch': 2.83}
+{'loss': 2.6518, 'grad_norm': 3.8981456756591797, 'learning_rate': 0.0005247, 'epoch': 2.83}
+{'loss': 2.5605, 'grad_norm': 2.036348342895508, 'learning_rate': 0.000525, 'epoch': 2.83}
+{'loss': 2.4834, 'grad_norm': 1.4323660135269165, 'learning_rate': 0.0005252999999999999, 'epoch': 2.83}
+{'loss': 2.5572, 'grad_norm': 1.9249393939971924, 'learning_rate': 0.0005256, 'epoch': 2.84}
+{'loss': 2.3995, 'grad_norm': 1.6773697137832642, 'learning_rate': 0.0005258999999999999, 'epoch': 2.84}
+{'loss': 2.5901, 'grad_norm': 1.1707098484039307, 'learning_rate': 0.0005262, 'epoch': 2.84}
+{'loss': 2.5273, 'grad_norm': 0.7177858948707581, 'learning_rate': 0.0005265, 'epoch': 2.84}
+{'loss': 2.4347, 'grad_norm': 0.754425048828125, 'learning_rate': 0.0005267999999999999, 'epoch': 2.84}
+{'loss': 2.5219, 'grad_norm': 2.790383815765381, 'learning_rate': 0.0005271, 'epoch': 2.84}
+{'loss': 2.5522, 'grad_norm': 4.15537166595459, 'learning_rate': 0.0005273999999999999, 'epoch': 2.84}
+{'loss': 2.5126, 'grad_norm': 3.3372390270233154, 'learning_rate': 0.0005276999999999999, 'epoch': 2.85}
+{'loss': 2.4318, 'grad_norm': 1.7653952836990356, 'learning_rate': 0.0005279999999999999, 'epoch': 2.85}
+{'loss': 2.5744, 'grad_norm': 1.198250412940979, 'learning_rate': 0.0005282999999999999, 'epoch': 2.85}
+{'loss': 2.4265, 'grad_norm': 2.5732247829437256, 'learning_rate': 0.0005286, 'epoch': 2.85}
+{'loss': 2.4897, 'grad_norm': 1.0462865829467773, 'learning_rate': 0.0005288999999999999, 'epoch': 2.85}
+{'loss': 2.2267, 'grad_norm': 0.891711950302124, 'learning_rate': 0.0005292, 'epoch': 2.85}
+{'loss': 2.467, 'grad_norm': 1.0404731035232544, 'learning_rate': 0.0005294999999999999, 'epoch': 2.86}
+{'loss': 2.4414, 'grad_norm': 0.6127783060073853, 'learning_rate': 0.0005298, 'epoch': 2.86}
+{'loss': 2.5055, 'grad_norm': 2.071681022644043, 'learning_rate': 0.0005300999999999999, 'epoch': 2.86}
+{'loss': 2.4044, 'grad_norm': 1.3703131675720215, 'learning_rate': 0.0005304, 'epoch': 2.86}
+{'loss': 2.7501, 'grad_norm': 1.315367341041565, 'learning_rate': 0.0005306999999999999, 'epoch': 2.86}
+{'loss': 2.4622, 'grad_norm': 1.6619805097579956, 'learning_rate': 0.000531, 'epoch': 2.86}
+{'loss': 2.5714, 'grad_norm': 0.6953228116035461, 'learning_rate': 0.0005313, 'epoch': 2.87}
+{'loss': 2.4817, 'grad_norm': 1.0954629182815552, 'learning_rate': 0.0005315999999999999, 'epoch': 2.87}
+{'loss': 2.5893, 'grad_norm': 2.2827250957489014, 'learning_rate': 0.0005319, 'epoch': 2.87}
+{'loss': 2.5491, 'grad_norm': 0.9044419527053833, 'learning_rate': 0.0005321999999999999, 'epoch': 2.87}
+{'loss': 2.8427, 'grad_norm': 1.5412472486495972, 'learning_rate': 0.0005324999999999999, 'epoch': 2.87}
+{'loss': 2.7391, 'grad_norm': 1.7915852069854736, 'learning_rate': 0.0005327999999999999, 'epoch': 2.87}
+{'loss': 2.6614, 'grad_norm': 0.6722069382667542, 'learning_rate': 0.0005330999999999999, 'epoch': 2.88}
+{'loss': 2.8621, 'grad_norm': 3.3082215785980225, 'learning_rate': 0.0005334, 'epoch': 2.88}
+{'loss': 2.7225, 'grad_norm': 1.5828150510787964, 'learning_rate': 0.0005336999999999999, 'epoch': 2.88}
+{'loss': 2.5517, 'grad_norm': nan, 'learning_rate': 0.0005336999999999999, 'epoch': 2.88}
+{'loss': 3.5065, 'grad_norm': 11.708396911621094, 'learning_rate': 0.000534, 'epoch': 2.88}
+{'loss': 3.1792, 'grad_norm': 4.113176345825195, 'learning_rate': 0.0005342999999999999, 'epoch': 2.88}
+{'loss': 3.097, 'grad_norm': 2.708540916442871, 'learning_rate': 0.0005346, 'epoch': 2.88}
+{'loss': 2.9355, 'grad_norm': 1.2130831480026245, 'learning_rate': 0.0005348999999999999, 'epoch': 2.89}
+{'loss': 2.4884, 'grad_norm': 3.173293113708496, 'learning_rate': 0.0005352, 'epoch': 2.89}
+{'loss': 2.7102, 'grad_norm': 1.250343918800354, 'learning_rate': 0.0005355, 'epoch': 2.89}
+{'loss': 2.6662, 'grad_norm': 1.3402652740478516, 'learning_rate': 0.0005358, 'epoch': 2.89}
+{'loss': 2.696, 'grad_norm': 0.8727527856826782, 'learning_rate': 0.0005361, 'epoch': 2.89}
+{'loss': 2.4603, 'grad_norm': 2.339231014251709, 'learning_rate': 0.0005363999999999999, 'epoch': 2.89}
+{'loss': 3.0912, 'grad_norm': 13.718860626220703, 'learning_rate': 0.0005367, 'epoch': 2.9}
+{'loss': 2.4037, 'grad_norm': 3.7470011711120605, 'learning_rate': 0.0005369999999999999, 'epoch': 2.9}
+{'loss': 2.7615, 'grad_norm': 7.758830547332764, 'learning_rate': 0.0005372999999999999, 'epoch': 2.9}
+{'loss': 2.6428, 'grad_norm': 1.4061205387115479, 'learning_rate': 0.0005376, 'epoch': 2.9}
+{'loss': 2.5062, 'grad_norm': 1.3114807605743408, 'learning_rate': 0.0005378999999999999, 'epoch': 2.9}
+{'loss': 2.5246, 'grad_norm': 1.0546765327453613, 'learning_rate': 0.0005382, 'epoch': 2.9}
+{'loss': 2.7387, 'grad_norm': 1.1753357648849487, 'learning_rate': 0.0005384999999999999, 'epoch': 2.91}
+{'loss': 2.4745, 'grad_norm': 0.7613487839698792, 'learning_rate': 0.0005388, 'epoch': 2.91}
+{'loss': 2.5202, 'grad_norm': 0.9472857713699341, 'learning_rate': 0.0005390999999999999, 'epoch': 2.91}
+{'loss': 2.5207, 'grad_norm': 0.7422348856925964, 'learning_rate': 0.0005394, 'epoch': 2.91}
+{'loss': 2.4471, 'grad_norm': 4.3653883934021, 'learning_rate': 0.0005396999999999999, 'epoch': 2.91}
+{'loss': 2.2509, 'grad_norm': 2.8848469257354736, 'learning_rate': 0.00054, 'epoch': 2.91}
+{'loss': 2.3507, 'grad_norm': 1.0910775661468506, 'learning_rate': 0.0005403, 'epoch': 2.92}
+{'loss': 2.4938, 'grad_norm': 1.115868330001831, 'learning_rate': 0.0005405999999999999, 'epoch': 2.92}
+{'loss': 2.8903, 'grad_norm': 4.200908184051514, 'learning_rate': 0.0005409, 'epoch': 2.92}
+{'loss': 2.3932, 'grad_norm': 0.9364967346191406, 'learning_rate': 0.0005411999999999999, 'epoch': 2.92}
+{'loss': 2.3253, 'grad_norm': 1.9644137620925903, 'learning_rate': 0.0005414999999999999, 'epoch': 2.92}
+{'loss': 2.475, 'grad_norm': 0.847099244594574, 'learning_rate': 0.0005417999999999999, 'epoch': 2.92}
+{'loss': 2.6673, 'grad_norm': 4.294593811035156, 'learning_rate': 0.0005420999999999999, 'epoch': 2.92}
+{'loss': 2.3189, 'grad_norm': 1.6129556894302368, 'learning_rate': 0.0005424, 'epoch': 2.93}
+{'loss': 2.4761, 'grad_norm': 1.0951628684997559, 'learning_rate': 0.0005426999999999999, 'epoch': 2.93}
+{'loss': 2.5185, 'grad_norm': 0.8047678470611572, 'learning_rate': 0.000543, 'epoch': 2.93}
+{'loss': 2.3002, 'grad_norm': 0.8008071184158325, 'learning_rate': 0.0005432999999999999, 'epoch': 2.93}
+{'loss': 2.2973, 'grad_norm': 2.075387477874756, 'learning_rate': 0.0005436, 'epoch': 2.93}
+{'loss': 2.4137, 'grad_norm': 0.7697364091873169, 'learning_rate': 0.0005438999999999999, 'epoch': 2.93}
+{'loss': 2.5328, 'grad_norm': 1.1987799406051636, 'learning_rate': 0.0005442, 'epoch': 2.94}
+{'loss': 2.3681, 'grad_norm': 1.0034129619598389, 'learning_rate': 0.0005445, 'epoch': 2.94}
+{'loss': 2.5604, 'grad_norm': 0.910660982131958, 'learning_rate': 0.0005448, 'epoch': 2.94}
+{'loss': 2.4479, 'grad_norm': 4.149611949920654, 'learning_rate': 0.0005451, 'epoch': 2.94}
+{'loss': 2.4518, 'grad_norm': 1.1839433908462524, 'learning_rate': 0.0005453999999999999, 'epoch': 2.94}
+{'loss': 2.5315, 'grad_norm': 3.1271791458129883, 'learning_rate': 0.0005457, 'epoch': 2.94}
+{'loss': 2.3553, 'grad_norm': 1.6314308643341064, 'learning_rate': 0.0005459999999999999, 'epoch': 2.95}
+{'loss': 2.4249, 'grad_norm': 1.4227911233901978, 'learning_rate': 0.0005462999999999999, 'epoch': 2.95}
+{'loss': 2.3452, 'grad_norm': 1.3367630243301392, 'learning_rate': 0.0005466, 'epoch': 2.95}
+{'loss': 2.243, 'grad_norm': 1.0855189561843872, 'learning_rate': 0.0005468999999999999, 'epoch': 2.95}
+{'loss': 2.4281, 'grad_norm': 2.145113945007324, 'learning_rate': 0.0005472, 'epoch': 2.95}
+{'loss': 2.5112, 'grad_norm': 2.266225576400757, 'learning_rate': 0.0005474999999999999, 'epoch': 2.95}
+{'loss': 2.6551, 'grad_norm': 1.2084014415740967, 'learning_rate': 0.0005478, 'epoch': 2.96}
+{'loss': 2.8256, 'grad_norm': 2.3133509159088135, 'learning_rate': 0.0005480999999999999, 'epoch': 2.96}
+{'loss': 2.549, 'grad_norm': 2.073927879333496, 'learning_rate': 0.0005484, 'epoch': 2.96}
+{'loss': 3.4224, 'grad_norm': nan, 'learning_rate': 0.0005484, 'epoch': 2.96}
+{'loss': 3.5822, 'grad_norm': 16.866920471191406, 'learning_rate': 0.0005487, 'epoch': 2.96}
+{'loss': 3.0191, 'grad_norm': 6.754800319671631, 'learning_rate': 0.000549, 'epoch': 2.96}
+{'loss': 2.8276, 'grad_norm': 1.5004948377609253, 'learning_rate': 0.0005493, 'epoch': 2.96}
+{'loss': 3.3777, 'grad_norm': 14.171708106994629, 'learning_rate': 0.0005496, 'epoch': 2.97}
+{'loss': 2.5501, 'grad_norm': 1.8601189851760864, 'learning_rate': 0.0005499, 'epoch': 2.97}
+{'loss': 2.7187, 'grad_norm': 2.106257677078247, 'learning_rate': 0.0005501999999999999, 'epoch': 2.97}
+{'loss': 2.6169, 'grad_norm': 1.215472936630249, 'learning_rate': 0.0005505, 'epoch': 2.97}
+{'loss': 2.5181, 'grad_norm': 1.326351523399353, 'learning_rate': 0.0005507999999999999, 'epoch': 2.97}
+{'loss': 2.5987, 'grad_norm': 1.5959700345993042, 'learning_rate': 0.0005510999999999999, 'epoch': 2.97}
+{'loss': 2.3588, 'grad_norm': 1.368794322013855, 'learning_rate': 0.0005514, 'epoch': 2.98}
+{'loss': 2.398, 'grad_norm': 0.9404537677764893, 'learning_rate': 0.0005516999999999999, 'epoch': 2.98}
+{'loss': 2.3012, 'grad_norm': 3.2774293422698975, 'learning_rate': 0.000552, 'epoch': 2.98}
+{'loss': 2.6416, 'grad_norm': 1.7845696210861206, 'learning_rate': 0.0005522999999999999, 'epoch': 2.98}
+{'loss': 2.708, 'grad_norm': 2.4613161087036133, 'learning_rate': 0.0005526, 'epoch': 2.98}
+{'loss': 2.4808, 'grad_norm': 3.9170267581939697, 'learning_rate': 0.0005528999999999999, 'epoch': 2.98}
+{'loss': 2.1382, 'grad_norm': 3.9187498092651367, 'learning_rate': 0.0005532, 'epoch': 2.99}
+{'loss': 2.6534, 'grad_norm': 3.5691933631896973, 'learning_rate': 0.0005535, 'epoch': 2.99}
+{'loss': 2.4064, 'grad_norm': 1.9193207025527954, 'learning_rate': 0.0005538, 'epoch': 2.99}
+{'loss': 2.2612, 'grad_norm': 0.9679790735244751, 'learning_rate': 0.0005541, 'epoch': 2.99}
+{'loss': 2.3644, 'grad_norm': 0.8689792156219482, 'learning_rate': 0.0005544, 'epoch': 2.99}
+{'loss': 2.6756, 'grad_norm': 1.476846694946289, 'learning_rate': 0.0005547, 'epoch': 2.99}
+{'loss': 2.5747, 'grad_norm': 1.7874386310577393, 'learning_rate': 0.0005549999999999999, 'epoch': 3.0}
+{'loss': 2.5029, 'grad_norm': 1.3470101356506348, 'learning_rate': 0.0005552999999999999, 'epoch': 3.0}
+{'loss': 2.9071, 'grad_norm': 1.982383131980896, 'learning_rate': 0.0005556, 'epoch': 3.0}
+{'loss': 3.1407, 'grad_norm': nan, 'learning_rate': 0.0005556, 'epoch': 3.0}
+{'loss': 3.837, 'grad_norm': 25.29146385192871, 'learning_rate': 0.0005558999999999999, 'epoch': 3.0}
+{'loss': 2.9761, 'grad_norm': 9.291911125183105, 'learning_rate': 0.0005562, 'epoch': 3.0}
+{'loss': 3.0185, 'grad_norm': 4.966324329376221, 'learning_rate': 0.0005564999999999999, 'epoch': 3.0}
+{'loss': 2.7161, 'grad_norm': 2.462636709213257, 'learning_rate': 0.0005568, 'epoch': 3.01}
+{'loss': 2.669, 'grad_norm': 1.5384327173233032, 'learning_rate': 0.0005570999999999999, 'epoch': 3.01}
+{'loss': 2.8147, 'grad_norm': 2.980968713760376, 'learning_rate': 0.0005574, 'epoch': 3.01}
+{'loss': 2.6561, 'grad_norm': 5.0100908279418945, 'learning_rate': 0.0005577, 'epoch': 3.01}
+{'loss': 2.8438, 'grad_norm': 2.8315351009368896, 'learning_rate': 0.000558, 'epoch': 3.01}
+{'loss': 2.7352, 'grad_norm': 2.2698962688446045, 'learning_rate': 0.0005583, 'epoch': 3.01}
+{'loss': 2.3665, 'grad_norm': 1.6499841213226318, 'learning_rate': 0.0005586, 'epoch': 3.02}
+{'loss': 2.9253, 'grad_norm': 7.6851091384887695, 'learning_rate': 0.0005589, 'epoch': 3.02}
+{'loss': 2.848, 'grad_norm': 9.859707832336426, 'learning_rate': 0.0005591999999999999, 'epoch': 3.02}
+{'loss': 2.5253, 'grad_norm': 2.2398126125335693, 'learning_rate': 0.0005595, 'epoch': 3.02}
+{'loss': 2.4375, 'grad_norm': 3.5129432678222656, 'learning_rate': 0.0005598, 'epoch': 3.02}
+{'loss': 2.3901, 'grad_norm': 2.765233278274536, 'learning_rate': 0.0005600999999999999, 'epoch': 3.02}
+{'loss': 2.4001, 'grad_norm': 2.178379774093628, 'learning_rate': 0.0005604, 'epoch': 3.03}
+{'loss': 2.7783, 'grad_norm': 5.110830307006836, 'learning_rate': 0.0005606999999999999, 'epoch': 3.03}
+{'loss': 2.4922, 'grad_norm': 1.4218653440475464, 'learning_rate': 0.000561, 'epoch': 3.03}
+{'loss': 2.4771, 'grad_norm': 2.5468997955322266, 'learning_rate': 0.0005612999999999999, 'epoch': 3.03}
+{'loss': 2.4955, 'grad_norm': 1.7513118982315063, 'learning_rate': 0.0005616, 'epoch': 3.03}
+{'loss': 2.3897, 'grad_norm': 1.6879457235336304, 'learning_rate': 0.0005618999999999999, 'epoch': 3.03}
+{'loss': 2.2501, 'grad_norm': 1.5849945545196533, 'learning_rate': 0.0005622, 'epoch': 3.04}
+{'loss': 2.3634, 'grad_norm': 1.4570404291152954, 'learning_rate': 0.0005625, 'epoch': 3.04}
+{'loss': 2.5295, 'grad_norm': 1.2244665622711182, 'learning_rate': 0.0005627999999999999, 'epoch': 3.04}
+{'loss': 2.2068, 'grad_norm': 1.8930087089538574, 'learning_rate': 0.0005631, 'epoch': 3.04}
+{'loss': 2.3666, 'grad_norm': 1.3034899234771729, 'learning_rate': 0.0005633999999999999, 'epoch': 3.04}
+{'loss': 2.2791, 'grad_norm': 2.7985405921936035, 'learning_rate': 0.0005637, 'epoch': 3.04}
+{'loss': 2.3868, 'grad_norm': 1.738775610923767, 'learning_rate': 0.0005639999999999999, 'epoch': 3.04}
+{'loss': 2.4722, 'grad_norm': 4.025388240814209, 'learning_rate': 0.0005643, 'epoch': 3.05}
+{'loss': 2.3586, 'grad_norm': 2.4662373065948486, 'learning_rate': 0.0005646, 'epoch': 3.05}
+{'loss': 2.5808, 'grad_norm': 2.3425092697143555, 'learning_rate': 0.0005648999999999999, 'epoch': 3.05}
+{'loss': 2.2679, 'grad_norm': 3.2466976642608643, 'learning_rate': 0.0005652, 'epoch': 3.05}
+{'loss': 2.5386, 'grad_norm': 2.766129493713379, 'learning_rate': 0.0005654999999999999, 'epoch': 3.05}
+{'loss': 2.7793, 'grad_norm': 1.7741740942001343, 'learning_rate': 0.0005657999999999999, 'epoch': 3.05}
+{'loss': 2.3047, 'grad_norm': 1.4344654083251953, 'learning_rate': 0.0005660999999999999, 'epoch': 3.06}
+{'loss': 2.3451, 'grad_norm': 2.42335844039917, 'learning_rate': 0.0005663999999999999, 'epoch': 3.06}
+{'loss': 2.1713, 'grad_norm': 1.0476360321044922, 'learning_rate': 0.0005667, 'epoch': 3.06}
+{'loss': 2.2454, 'grad_norm': 1.0051932334899902, 'learning_rate': 0.0005669999999999999, 'epoch': 3.06}
+{'loss': 2.6067, 'grad_norm': 3.0773088932037354, 'learning_rate': 0.0005673, 'epoch': 3.06}
+{'loss': 2.3492, 'grad_norm': 4.21511173248291, 'learning_rate': 0.0005675999999999999, 'epoch': 3.06}
+{'loss': 2.5079, 'grad_norm': 2.3126461505889893, 'learning_rate': 0.0005679, 'epoch': 3.07}
+{'loss': 2.7256, 'grad_norm': 2.4149043560028076, 'learning_rate': 0.0005681999999999999, 'epoch': 3.07}
+{'loss': 2.7068, 'grad_norm': 2.686859607696533, 'learning_rate': 0.0005685, 'epoch': 3.07}
+{'loss': 2.6735, 'grad_norm': 3.6169612407684326, 'learning_rate': 0.0005688, 'epoch': 3.07}
+{'loss': 2.3301, 'grad_norm': 1.6046686172485352, 'learning_rate': 0.0005691, 'epoch': 3.07}
+{'loss': 2.6546, 'grad_norm': 2.102391242980957, 'learning_rate': 0.0005694, 'epoch': 3.07}
+{'loss': 2.6443, 'grad_norm': 2.0405120849609375, 'learning_rate': 0.0005696999999999999, 'epoch': 3.08}
+{'loss': 2.3251, 'grad_norm': 2.9234347343444824, 'learning_rate': 0.00057, 'epoch': 3.08}
+{'loss': 2.4312, 'grad_norm': 1.348129153251648, 'learning_rate': 0.0005702999999999999, 'epoch': 3.08}
+{'loss': 2.1661, 'grad_norm': nan, 'learning_rate': 0.0005702999999999999, 'epoch': 3.08}
+{'loss': 2.9023, 'grad_norm': 2.0966081619262695, 'learning_rate': 0.0005705999999999999, 'epoch': 3.08}
+{'loss': 2.7179, 'grad_norm': 1.7861617803573608, 'learning_rate': 0.0005708999999999999, 'epoch': 3.08}
+{'loss': 3.2361, 'grad_norm': 10.112266540527344, 'learning_rate': 0.0005711999999999999, 'epoch': 3.08}
+{'loss': 3.095, 'grad_norm': 11.517034530639648, 'learning_rate': 0.0005715, 'epoch': 3.09}
+{'loss': 2.9547, 'grad_norm': 11.801773071289062, 'learning_rate': 0.0005717999999999999, 'epoch': 3.09}
+{'loss': 2.4528, 'grad_norm': 5.743291854858398, 'learning_rate': 0.0005721, 'epoch': 3.09}
+{'loss': 2.7744, 'grad_norm': 2.2978971004486084, 'learning_rate': 0.0005723999999999999, 'epoch': 3.09}
+{'loss': 2.6278, 'grad_norm': 3.952575206756592, 'learning_rate': 0.0005727, 'epoch': 3.09}
+{'loss': 2.51, 'grad_norm': 1.861054539680481, 'learning_rate': 0.0005729999999999999, 'epoch': 3.09}
+{'loss': 2.7883, 'grad_norm': 4.444493293762207, 'learning_rate': 0.0005733, 'epoch': 3.1}
+{'loss': 2.4545, 'grad_norm': 2.688218593597412, 'learning_rate': 0.0005736, 'epoch': 3.1}
+{'loss': 2.5803, 'grad_norm': 3.14324951171875, 'learning_rate': 0.0005738999999999999, 'epoch': 3.1}
+{'loss': 2.3113, 'grad_norm': 2.0566539764404297, 'learning_rate': 0.0005742, 'epoch': 3.1}
+{'loss': 2.4176, 'grad_norm': 1.8503978252410889, 'learning_rate': 0.0005744999999999999, 'epoch': 3.1}
+{'loss': 2.4964, 'grad_norm': 2.6355438232421875, 'learning_rate': 0.0005747999999999999, 'epoch': 3.1}
+{'loss': 2.4573, 'grad_norm': 1.8768773078918457, 'learning_rate': 0.0005750999999999999, 'epoch': 3.11}
+{'loss': 2.6418, 'grad_norm': 3.4046988487243652, 'learning_rate': 0.0005753999999999999, 'epoch': 3.11}
+{'loss': 2.4697, 'grad_norm': 1.7340015172958374, 'learning_rate': 0.0005757, 'epoch': 3.11}
+{'loss': 2.5012, 'grad_norm': 2.1641948223114014, 'learning_rate': 0.0005759999999999999, 'epoch': 3.11}
+{'loss': 2.4757, 'grad_norm': 3.7307941913604736, 'learning_rate': 0.0005763, 'epoch': 3.11}
+{'loss': 2.4441, 'grad_norm': 2.3845276832580566, 'learning_rate': 0.0005765999999999999, 'epoch': 3.11}
+{'loss': 2.2891, 'grad_norm': 2.855138063430786, 'learning_rate': 0.0005769, 'epoch': 3.12}
+{'loss': 2.1741, 'grad_norm': 2.2033305168151855, 'learning_rate': 0.0005771999999999999, 'epoch': 3.12}
+{'loss': 2.849, 'grad_norm': 3.501863479614258, 'learning_rate': 0.0005775, 'epoch': 3.12}
+{'loss': 2.3158, 'grad_norm': 2.6321678161621094, 'learning_rate': 0.0005778, 'epoch': 3.12}
+{'loss': 2.3013, 'grad_norm': 1.6110666990280151, 'learning_rate': 0.0005781, 'epoch': 3.12}
+{'loss': 2.3759, 'grad_norm': 1.646638035774231, 'learning_rate': 0.0005784, 'epoch': 3.12}
+{'loss': 2.3256, 'grad_norm': 3.533754587173462, 'learning_rate': 0.0005786999999999999, 'epoch': 3.12}
+{'loss': 2.4358, 'grad_norm': 2.3070497512817383, 'learning_rate': 0.000579, 'epoch': 3.13}
+{'loss': 2.4647, 'grad_norm': 2.581441879272461, 'learning_rate': 0.0005792999999999999, 'epoch': 3.13}
+{'loss': 2.3173, 'grad_norm': 2.834535598754883, 'learning_rate': 0.0005795999999999999, 'epoch': 3.13}
+{'loss': 2.7147, 'grad_norm': 1.163590908050537, 'learning_rate': 0.0005799, 'epoch': 3.13}
+{'loss': 2.7112, 'grad_norm': 5.1326375007629395, 'learning_rate': 0.0005801999999999999, 'epoch': 3.13}
+{'loss': 2.4191, 'grad_norm': 2.296224594116211, 'learning_rate': 0.0005805, 'epoch': 3.13}
+{'loss': 2.3378, 'grad_norm': 3.148940086364746, 'learning_rate': 0.0005807999999999999, 'epoch': 3.14}
+{'loss': 2.5719, 'grad_norm': 1.3591207265853882, 'learning_rate': 0.0005811, 'epoch': 3.14}
+{'loss': 2.1871, 'grad_norm': 2.0001440048217773, 'learning_rate': 0.0005813999999999999, 'epoch': 3.14}
+{'loss': 2.4727, 'grad_norm': 1.4580248594284058, 'learning_rate': 0.0005817, 'epoch': 3.14}
+{'loss': 2.4377, 'grad_norm': 1.5752590894699097, 'learning_rate': 0.0005819999999999999, 'epoch': 3.14}
+{'loss': 2.2526, 'grad_norm': 2.6746673583984375, 'learning_rate': 0.0005823, 'epoch': 3.14}
+{'loss': 2.5686, 'grad_norm': 1.5736886262893677, 'learning_rate': 0.0005826, 'epoch': 3.15}
+{'loss': 2.5909, 'grad_norm': 1.3866643905639648, 'learning_rate': 0.0005829, 'epoch': 3.15}
+{'loss': 2.7079, 'grad_norm': 1.2823047637939453, 'learning_rate': 0.0005832, 'epoch': 3.15}
+{'loss': 2.6945, 'grad_norm': 1.206445336341858, 'learning_rate': 0.0005834999999999999, 'epoch': 3.15}
+{'loss': 2.4911, 'grad_norm': 1.8165123462677002, 'learning_rate': 0.0005838, 'epoch': 3.15}
+{'loss': 2.4485, 'grad_norm': 4.777324199676514, 'learning_rate': 0.0005840999999999999, 'epoch': 3.15}
+{'loss': 2.8384, 'grad_norm': 2.511350393295288, 'learning_rate': 0.0005843999999999999, 'epoch': 3.16}
+{'loss': 2.7788, 'grad_norm': 2.9431605339050293, 'learning_rate': 0.0005847, 'epoch': 3.16}
+{'loss': 2.6043, 'grad_norm': 2.0299463272094727, 'learning_rate': 0.0005849999999999999, 'epoch': 3.16}
+{'loss': 3.039, 'grad_norm': 1.5065081119537354, 'learning_rate': 0.0005853, 'epoch': 3.16}
+{'loss': 3.272, 'grad_norm': 15.988265991210938, 'learning_rate': 0.0005855999999999999, 'epoch': 3.16}
+{'loss': 3.2078, 'grad_norm': 3.07070255279541, 'learning_rate': 0.0005859, 'epoch': 3.16}
+{'loss': 3.2354, 'grad_norm': 8.927387237548828, 'learning_rate': 0.0005861999999999999, 'epoch': 3.16}
+{'loss': 3.3638, 'grad_norm': 14.451622009277344, 'learning_rate': 0.0005865, 'epoch': 3.17}
+{'loss': 2.9126, 'grad_norm': 2.183037757873535, 'learning_rate': 0.0005868, 'epoch': 3.17}
+{'loss': 3.0289, 'grad_norm': 3.3495078086853027, 'learning_rate': 0.0005871, 'epoch': 3.17}
+{'loss': 2.6892, 'grad_norm': 2.572366714477539, 'learning_rate': 0.0005874, 'epoch': 3.17}
+{'loss': 3.0979, 'grad_norm': 1.9703586101531982, 'learning_rate': 0.0005876999999999999, 'epoch': 3.17}
+{'loss': 2.8213, 'grad_norm': 3.3965091705322266, 'learning_rate': 0.000588, 'epoch': 3.17}
+{'loss': 2.7087, 'grad_norm': 2.5969173908233643, 'learning_rate': 0.0005882999999999999, 'epoch': 3.18}
+{'loss': 2.3701, 'grad_norm': 3.7670791149139404, 'learning_rate': 0.0005885999999999999, 'epoch': 3.18}
+{'loss': 2.6189, 'grad_norm': 2.7813947200775146, 'learning_rate': 0.0005889, 'epoch': 3.18}
+{'loss': 2.4803, 'grad_norm': 2.1592915058135986, 'learning_rate': 0.0005891999999999999, 'epoch': 3.18}
+{'loss': 2.504, 'grad_norm': 1.573058009147644, 'learning_rate': 0.0005895, 'epoch': 3.18}
+{'loss': 2.4572, 'grad_norm': 2.9862351417541504, 'learning_rate': 0.0005897999999999999, 'epoch': 3.18}
+{'loss': 2.4623, 'grad_norm': 2.136756420135498, 'learning_rate': 0.0005901, 'epoch': 3.19}
+{'loss': 2.3356, 'grad_norm': 2.619926929473877, 'learning_rate': 0.0005903999999999999, 'epoch': 3.19}
+{'loss': 3.5301, 'grad_norm': 12.829959869384766, 'learning_rate': 0.0005907, 'epoch': 3.19}
+{'loss': 2.3499, 'grad_norm': 2.9119503498077393, 'learning_rate': 0.0005909999999999999, 'epoch': 3.19}
+{'loss': 2.7329, 'grad_norm': 6.323517799377441, 'learning_rate': 0.0005913, 'epoch': 3.19}
+{'loss': 2.5666, 'grad_norm': 3.644813060760498, 'learning_rate': 0.0005916, 'epoch': 3.19}
+{'loss': 2.7859, 'grad_norm': 5.822663307189941, 'learning_rate': 0.0005919, 'epoch': 3.2}
+{'loss': 2.1818, 'grad_norm': 2.3552889823913574, 'learning_rate': 0.0005922, 'epoch': 3.2}
+{'loss': 2.6502, 'grad_norm': 3.3351669311523438, 'learning_rate': 0.0005924999999999999, 'epoch': 3.2}
+{'loss': 2.4085, 'grad_norm': 3.1912646293640137, 'learning_rate': 0.0005928, 'epoch': 3.2}
+{'loss': 2.3544, 'grad_norm': 2.0900375843048096, 'learning_rate': 0.0005930999999999999, 'epoch': 3.2}
+{'loss': 2.4058, 'grad_norm': 1.7966182231903076, 'learning_rate': 0.0005933999999999999, 'epoch': 3.2}
+{'loss': 2.2235, 'grad_norm': 4.029713153839111, 'learning_rate': 0.0005937, 'epoch': 3.2}
+{'loss': 2.6818, 'grad_norm': 5.860076427459717, 'learning_rate': 0.0005939999999999999, 'epoch': 3.21}
+{'loss': 2.3783, 'grad_norm': 9.5676851272583, 'learning_rate': 0.0005943, 'epoch': 3.21}
+{'loss': 2.2907, 'grad_norm': 3.6261396408081055, 'learning_rate': 0.0005945999999999999, 'epoch': 3.21}
+{'loss': 2.249, 'grad_norm': 1.9345386028289795, 'learning_rate': 0.0005949, 'epoch': 3.21}
+{'loss': 2.3189, 'grad_norm': 1.471825122833252, 'learning_rate': 0.0005951999999999999, 'epoch': 3.21}
+{'loss': 2.4003, 'grad_norm': 1.4700121879577637, 'learning_rate': 0.0005955, 'epoch': 3.21}
+{'loss': 2.3744, 'grad_norm': 1.4592626094818115, 'learning_rate': 0.0005958, 'epoch': 3.22}
+{'loss': 2.4525, 'grad_norm': 1.8481483459472656, 'learning_rate': 0.0005961, 'epoch': 3.22}
+{'loss': 2.6025, 'grad_norm': 2.111783266067505, 'learning_rate': 0.0005964, 'epoch': 3.22}
+{'loss': 2.4959, 'grad_norm': 1.3971112966537476, 'learning_rate': 0.0005967, 'epoch': 3.22}
+{'loss': 2.6663, 'grad_norm': 2.5589585304260254, 'learning_rate': 0.000597, 'epoch': 3.22}
+{'loss': 2.5798, 'grad_norm': 4.524598598480225, 'learning_rate': 0.0005972999999999999, 'epoch': 3.22}
+{'loss': 2.3817, 'grad_norm': 6.212462902069092, 'learning_rate': 0.0005976, 'epoch': 3.23}
+{'loss': 2.7171, 'grad_norm': 3.290090560913086, 'learning_rate': 0.0005979, 'epoch': 3.23}
+{'loss': 2.2308, 'grad_norm': 4.479714393615723, 'learning_rate': 0.0005981999999999999, 'epoch': 3.23}
+{'loss': 2.7637, 'grad_norm': 1.692572832107544, 'learning_rate': 0.0005985, 'epoch': 3.23}
+{'loss': 2.615, 'grad_norm': 1.6728739738464355, 'learning_rate': 0.0005987999999999999, 'epoch': 3.23}
+{'loss': 2.6417, 'grad_norm': 1.3036847114562988, 'learning_rate': 0.0005991, 'epoch': 3.23}
+{'loss': 2.8424, 'grad_norm': 1.48746919631958, 'learning_rate': 0.0005993999999999999, 'epoch': 3.24}
+{'loss': 2.469, 'grad_norm': 1.4318227767944336, 'learning_rate': 0.0005997, 'epoch': 3.24}
+{'loss': 3.4372, 'grad_norm': 5.054473876953125, 'learning_rate': 0.0006, 'epoch': 3.24}
+{'loss': 2.7082, 'grad_norm': nan, 'learning_rate': 0.0006, 'epoch': 3.24}
+{'loss': 4.3039, 'grad_norm': 34.61737823486328, 'learning_rate': 0.0005997999999999999, 'epoch': 3.24}
+{'loss': 2.9205, 'grad_norm': 3.473752021789551, 'learning_rate': 0.0005995999999999999, 'epoch': 3.24}
+{'loss': 3.0236, 'grad_norm': 3.742560625076294, 'learning_rate': 0.0005993999999999999, 'epoch': 3.24}
+{'loss': 2.862, 'grad_norm': 2.6675426959991455, 'learning_rate': 0.0005991999999999999, 'epoch': 3.25}
+{'loss': 3.2253, 'grad_norm': 3.681030750274658, 'learning_rate': 0.0005989999999999999, 'epoch': 3.25}
+{'loss': 3.0141, 'grad_norm': 3.5721378326416016, 'learning_rate': 0.0005987999999999999, 'epoch': 3.25}
+{'loss': 2.6375, 'grad_norm': 2.2624754905700684, 'learning_rate': 0.0005986, 'epoch': 3.25}
+{'loss': 2.6202, 'grad_norm': 2.0107228755950928, 'learning_rate': 0.0005983999999999999, 'epoch': 3.25}
+{'loss': 2.6874, 'grad_norm': 2.3134191036224365, 'learning_rate': 0.0005981999999999999, 'epoch': 3.25}
+{'loss': 3.7857, 'grad_norm': 27.417612075805664, 'learning_rate': 0.000598, 'epoch': 3.26}
+{'loss': 2.9672, 'grad_norm': 10.154114723205566, 'learning_rate': 0.0005977999999999999, 'epoch': 3.26}
+{'loss': 2.6946, 'grad_norm': 5.68153715133667, 'learning_rate': 0.0005976, 'epoch': 3.26}
+{'loss': 2.5735, 'grad_norm': 3.4215259552001953, 'learning_rate': 0.0005974, 'epoch': 3.26}
+{'loss': 2.7988, 'grad_norm': 9.281172752380371, 'learning_rate': 0.0005971999999999999, 'epoch': 3.26}
+{'loss': 2.6848, 'grad_norm': 4.832975387573242, 'learning_rate': 0.000597, 'epoch': 3.26}
+{'loss': 2.951, 'grad_norm': 4.111706256866455, 'learning_rate': 0.0005968, 'epoch': 3.27}
+{'loss': 2.9283, 'grad_norm': 2.7047650814056396, 'learning_rate': 0.0005966, 'epoch': 3.27}
+{'loss': 2.6947, 'grad_norm': 3.965059995651245, 'learning_rate': 0.0005964, 'epoch': 3.27}
+{'loss': 2.4638, 'grad_norm': 2.8490593433380127, 'learning_rate': 0.0005962, 'epoch': 3.27}
+{'loss': 2.3995, 'grad_norm': 3.065896511077881, 'learning_rate': 0.000596, 'epoch': 3.27}
+{'loss': 2.5321, 'grad_norm': 4.135379314422607, 'learning_rate': 0.0005958, 'epoch': 3.27}
+{'loss': 2.3867, 'grad_norm': 3.0422980785369873, 'learning_rate': 0.0005956, 'epoch': 3.28}
+{'loss': 2.3821, 'grad_norm': 3.1054189205169678, 'learning_rate': 0.0005953999999999999, 'epoch': 3.28}
+{'loss': 2.4836, 'grad_norm': 1.8611743450164795, 'learning_rate': 0.0005951999999999999, 'epoch': 3.28}
+{'loss': 2.7678, 'grad_norm': 3.28997540473938, 'learning_rate': 0.0005949999999999999, 'epoch': 3.28}
+{'loss': 2.4457, 'grad_norm': 3.161947011947632, 'learning_rate': 0.0005947999999999999, 'epoch': 3.28}
+{'loss': 2.2187, 'grad_norm': 3.553466558456421, 'learning_rate': 0.0005945999999999999, 'epoch': 3.28}
+{'loss': 2.4322, 'grad_norm': 2.138315439224243, 'learning_rate': 0.0005943999999999999, 'epoch': 3.28}
+{'loss': 2.5734, 'grad_norm': 2.237607717514038, 'learning_rate': 0.0005941999999999999, 'epoch': 3.29}
+{'loss': 2.4021, 'grad_norm': 2.6869661808013916, 'learning_rate': 0.0005939999999999999, 'epoch': 3.29}
+{'loss': 2.533, 'grad_norm': 1.8337856531143188, 'learning_rate': 0.0005938, 'epoch': 3.29}
+{'loss': 2.5023, 'grad_norm': 4.238888263702393, 'learning_rate': 0.0005935999999999999, 'epoch': 3.29}
+{'loss': 2.6831, 'grad_norm': 5.389216899871826, 'learning_rate': 0.0005933999999999999, 'epoch': 3.29}
+{'loss': 2.7044, 'grad_norm': 7.200102806091309, 'learning_rate': 0.0005932, 'epoch': 3.29}
+{'loss': 2.7682, 'grad_norm': 6.210408687591553, 'learning_rate': 0.0005929999999999999, 'epoch': 3.3}
+{'loss': 2.504, 'grad_norm': 2.685565233230591, 'learning_rate': 0.0005928, 'epoch': 3.3}
+{'loss': 2.4779, 'grad_norm': 3.0856990814208984, 'learning_rate': 0.0005926, 'epoch': 3.3}
+{'loss': 2.3513, 'grad_norm': 2.0148448944091797, 'learning_rate': 0.0005923999999999999, 'epoch': 3.3}
+{'loss': 2.612, 'grad_norm': 2.684429883956909, 'learning_rate': 0.0005922, 'epoch': 3.3}
+{'loss': 2.2172, 'grad_norm': 1.8254823684692383, 'learning_rate': 0.000592, 'epoch': 3.3}
+{'loss': 2.5103, 'grad_norm': 2.231571674346924, 'learning_rate': 0.0005918, 'epoch': 3.31}
+{'loss': 2.5327, 'grad_norm': 1.586329698562622, 'learning_rate': 0.0005916, 'epoch': 3.31}
+{'loss': 3.0766, 'grad_norm': 2.507460832595825, 'learning_rate': 0.0005914, 'epoch': 3.31}
+{'loss': 2.6095, 'grad_norm': 2.443678855895996, 'learning_rate': 0.0005912, 'epoch': 3.31}
+{'loss': 2.3947, 'grad_norm': 5.117314338684082, 'learning_rate': 0.0005909999999999999, 'epoch': 3.31}
+{'loss': 3.0027, 'grad_norm': 8.64423656463623, 'learning_rate': 0.0005907999999999999, 'epoch': 3.31}
+{'loss': 2.4804, 'grad_norm': 3.596308946609497, 'learning_rate': 0.0005905999999999999, 'epoch': 3.32}
+{'loss': 2.5104, 'grad_norm': 2.0442867279052734, 'learning_rate': 0.0005903999999999999, 'epoch': 3.32}
+{'loss': 2.6682, 'grad_norm': 1.5353082418441772, 'learning_rate': 0.0005901999999999999, 'epoch': 3.32}
+{'loss': 3.3712, 'grad_norm': nan, 'learning_rate': 0.0005901999999999999, 'epoch': 3.32}
+{'loss': 3.4196, 'grad_norm': 5.499607563018799, 'learning_rate': 0.0005899999999999999, 'epoch': 3.32}
+{'loss': 2.9806, 'grad_norm': 2.8983004093170166, 'learning_rate': 0.0005897999999999999, 'epoch': 3.32}
+{'loss': 2.9869, 'grad_norm': 3.1704025268554688, 'learning_rate': 0.0005895999999999999, 'epoch': 3.32}
+{'loss': 3.5013, 'grad_norm': 14.21891975402832, 'learning_rate': 0.0005893999999999999, 'epoch': 3.33}
+{'loss': 3.1626, 'grad_norm': 11.844083786010742, 'learning_rate': 0.0005891999999999999, 'epoch': 3.33}
+{'loss': 3.3018, 'grad_norm': 18.769367218017578, 'learning_rate': 0.000589, 'epoch': 3.33}
+{'loss': 3.0258, 'grad_norm': 5.585927963256836, 'learning_rate': 0.0005887999999999999, 'epoch': 3.33}
+{'loss': 2.7815, 'grad_norm': 6.997848987579346, 'learning_rate': 0.0005885999999999999, 'epoch': 3.33}
+{'loss': 2.7257, 'grad_norm': 7.808254718780518, 'learning_rate': 0.0005884, 'epoch': 3.33}
+{'loss': 2.631, 'grad_norm': 3.34100604057312, 'learning_rate': 0.0005881999999999999, 'epoch': 3.34}
+{'loss': 2.6013, 'grad_norm': 2.386023998260498, 'learning_rate': 0.000588, 'epoch': 3.34}
+{'loss': 2.4455, 'grad_norm': 2.3267204761505127, 'learning_rate': 0.0005878, 'epoch': 3.34}
+{'loss': 2.5229, 'grad_norm': 3.6707804203033447, 'learning_rate': 0.0005875999999999999, 'epoch': 3.34}
+{'loss': 2.5236, 'grad_norm': 2.1236207485198975, 'learning_rate': 0.0005874, 'epoch': 3.34}
+{'loss': 2.642, 'grad_norm': 3.2923009395599365, 'learning_rate': 0.0005872, 'epoch': 3.34}
+{'loss': 2.5033, 'grad_norm': 5.383463382720947, 'learning_rate': 0.000587, 'epoch': 3.35}
+{'loss': 3.8571, 'grad_norm': 18.03877067565918, 'learning_rate': 0.0005868, 'epoch': 3.35}
+{'loss': 2.5824, 'grad_norm': 3.8737637996673584, 'learning_rate': 0.0005866, 'epoch': 3.35}
+{'loss': 2.6839, 'grad_norm': 3.6687588691711426, 'learning_rate': 0.0005863999999999999, 'epoch': 3.35}
+{'loss': 2.9145, 'grad_norm': 2.334989547729492, 'learning_rate': 0.0005861999999999999, 'epoch': 3.35}
+{'loss': 2.7732, 'grad_norm': 2.323333501815796, 'learning_rate': 0.0005859999999999999, 'epoch': 3.35}
+{'loss': 2.5097, 'grad_norm': 2.2676596641540527, 'learning_rate': 0.0005857999999999999, 'epoch': 3.36}
+{'loss': 2.5556, 'grad_norm': 6.144402503967285, 'learning_rate': 0.0005855999999999999, 'epoch': 3.36}
+{'loss': 2.8186, 'grad_norm': 3.086674690246582, 'learning_rate': 0.0005853999999999999, 'epoch': 3.36}
+{'loss': 2.7517, 'grad_norm': 2.0040550231933594, 'learning_rate': 0.0005852, 'epoch': 3.36}
+{'loss': 2.2774, 'grad_norm': 2.953817367553711, 'learning_rate': 0.0005849999999999999, 'epoch': 3.36}
+{'loss': 2.5014, 'grad_norm': 3.084397554397583, 'learning_rate': 0.0005848, 'epoch': 3.36}
+{'loss': 2.5644, 'grad_norm': 4.549737453460693, 'learning_rate': 0.0005846, 'epoch': 3.36}
+{'loss': 2.4014, 'grad_norm': 4.3595356941223145, 'learning_rate': 0.0005843999999999999, 'epoch': 3.37}
+{'loss': 2.6751, 'grad_norm': 7.38173770904541, 'learning_rate': 0.0005842, 'epoch': 3.37}
+{'loss': 2.5866, 'grad_norm': 2.3727738857269287, 'learning_rate': 0.000584, 'epoch': 3.37}
+{'loss': 2.735, 'grad_norm': 2.507899045944214, 'learning_rate': 0.0005838, 'epoch': 3.37}
+{'loss': 2.9674, 'grad_norm': 1.9190720319747925, 'learning_rate': 0.0005836, 'epoch': 3.37}
+{'loss': 2.5277, 'grad_norm': 3.665943145751953, 'learning_rate': 0.0005834, 'epoch': 3.37}
+{'loss': 2.5458, 'grad_norm': 6.320660591125488, 'learning_rate': 0.0005832, 'epoch': 3.38}
+{'loss': 2.1244, 'grad_norm': 4.5971503257751465, 'learning_rate': 0.000583, 'epoch': 3.38}
+{'loss': 2.5984, 'grad_norm': 4.167581558227539, 'learning_rate': 0.0005828, 'epoch': 3.38}
+{'loss': 2.6531, 'grad_norm': 3.1671297550201416, 'learning_rate': 0.0005826, 'epoch': 3.38}
+{'loss': 2.2473, 'grad_norm': 1.7537808418273926, 'learning_rate': 0.0005824, 'epoch': 3.38}
+{'loss': 2.6241, 'grad_norm': 2.429500102996826, 'learning_rate': 0.0005822, 'epoch': 3.38}
+{'loss': 2.5622, 'grad_norm': 7.364534378051758, 'learning_rate': 0.0005819999999999999, 'epoch': 3.39}
+{'loss': 2.7381, 'grad_norm': 2.009014844894409, 'learning_rate': 0.0005817999999999999, 'epoch': 3.39}
+{'loss': 2.6733, 'grad_norm': 4.46831750869751, 'learning_rate': 0.0005815999999999999, 'epoch': 3.39}
+{'loss': 2.7984, 'grad_norm': 1.760084629058838, 'learning_rate': 0.0005813999999999999, 'epoch': 3.39}
+{'loss': 3.2522, 'grad_norm': 1.8434828519821167, 'learning_rate': 0.0005811999999999999, 'epoch': 3.39}
+{'loss': 2.8036, 'grad_norm': 5.597031593322754, 'learning_rate': 0.000581, 'epoch': 3.39}
+{'loss': 2.7302, 'grad_norm': 5.435385227203369, 'learning_rate': 0.0005807999999999999, 'epoch': 3.4}
+{'loss': 2.7353, 'grad_norm': 3.0995161533355713, 'learning_rate': 0.0005805999999999999, 'epoch': 3.4}
+{'loss': 2.9114, 'grad_norm': 3.709087610244751, 'learning_rate': 0.0005804, 'epoch': 3.4}
+{'loss': 2.6715, 'grad_norm': nan, 'learning_rate': 0.0005804, 'epoch': 3.4}
+{'loss': 4.7221, 'grad_norm': 36.76521682739258, 'learning_rate': 0.0005801999999999999, 'epoch': 3.4}
+{'loss': 3.1805, 'grad_norm': 2.8888540267944336, 'learning_rate': 0.00058, 'epoch': 3.4}
+{'loss': 3.751, 'grad_norm': 3.92763614654541, 'learning_rate': 0.0005798, 'epoch': 3.4}
+{'loss': 3.4025, 'grad_norm': 3.051140785217285, 'learning_rate': 0.0005795999999999999, 'epoch': 3.41}
+{'loss': 3.3216, 'grad_norm': 4.9858574867248535, 'learning_rate': 0.0005794, 'epoch': 3.41}
+{'loss': 3.0417, 'grad_norm': 1.9907106161117554, 'learning_rate': 0.0005792, 'epoch': 3.41}
+{'loss': 2.9545, 'grad_norm': 5.9723920822143555, 'learning_rate': 0.000579, 'epoch': 3.41}
+{'loss': 3.3907, 'grad_norm': 4.6594929695129395, 'learning_rate': 0.0005788, 'epoch': 3.41}
+{'loss': 2.7718, 'grad_norm': 3.687283754348755, 'learning_rate': 0.0005786, 'epoch': 3.41}
+{'loss': 2.6572, 'grad_norm': 2.3645780086517334, 'learning_rate': 0.0005784, 'epoch': 3.42}
+{'loss': 3.1178, 'grad_norm': 4.219537734985352, 'learning_rate': 0.0005782, 'epoch': 3.42}
+{'loss': 2.7765, 'grad_norm': 8.279850006103516, 'learning_rate': 0.000578, 'epoch': 3.42}
+{'loss': 2.9478, 'grad_norm': 8.785918235778809, 'learning_rate': 0.0005778, 'epoch': 3.42}
+{'loss': 2.7274, 'grad_norm': 4.895820617675781, 'learning_rate': 0.0005775999999999999, 'epoch': 3.42}
+{'loss': 2.761, 'grad_norm': 4.281044006347656, 'learning_rate': 0.0005773999999999999, 'epoch': 3.42}
+{'loss': 2.6285, 'grad_norm': 6.915059566497803, 'learning_rate': 0.0005771999999999999, 'epoch': 3.43}
+{'loss': 2.5224, 'grad_norm': 4.3538737297058105, 'learning_rate': 0.0005769999999999999, 'epoch': 3.43}
+{'loss': 3.0929, 'grad_norm': 3.245569944381714, 'learning_rate': 0.0005767999999999999, 'epoch': 3.43}
+{'loss': 2.7562, 'grad_norm': 3.608419179916382, 'learning_rate': 0.0005765999999999999, 'epoch': 3.43}
+{'loss': 3.4305, 'grad_norm': 3.6872401237487793, 'learning_rate': 0.0005763999999999999, 'epoch': 3.43}
+{'loss': 3.7485, 'grad_norm': 6.966886043548584, 'learning_rate': 0.0005762, 'epoch': 3.43}
+{'loss': 2.6345, 'grad_norm': 3.857985496520996, 'learning_rate': 0.0005759999999999999, 'epoch': 3.44}
+{'loss': 2.4628, 'grad_norm': 2.1783053874969482, 'learning_rate': 0.0005757999999999999, 'epoch': 3.44}
+{'loss': 2.4832, 'grad_norm': 3.5218007564544678, 'learning_rate': 0.0005756, 'epoch': 3.44}
+{'loss': 2.6505, 'grad_norm': 3.616251230239868, 'learning_rate': 0.0005753999999999999, 'epoch': 3.44}
+{'loss': 2.672, 'grad_norm': 9.68862533569336, 'learning_rate': 0.0005752, 'epoch': 3.44}
+{'loss': 2.7261, 'grad_norm': 8.697070121765137, 'learning_rate': 0.000575, 'epoch': 3.44}
+{'loss': 2.955, 'grad_norm': 4.014763832092285, 'learning_rate': 0.0005747999999999999, 'epoch': 3.44}
+{'loss': 2.541, 'grad_norm': 6.026673793792725, 'learning_rate': 0.0005746, 'epoch': 3.45}
+{'loss': 2.7884, 'grad_norm': 2.990135908126831, 'learning_rate': 0.0005744, 'epoch': 3.45}
+{'loss': 2.6858, 'grad_norm': 2.3250844478607178, 'learning_rate': 0.0005742, 'epoch': 3.45}
+{'loss': 2.6458, 'grad_norm': 2.917367696762085, 'learning_rate': 0.000574, 'epoch': 3.45}
+{'loss': 2.7368, 'grad_norm': 3.353424310684204, 'learning_rate': 0.0005738, 'epoch': 3.45}
+{'loss': 2.8494, 'grad_norm': 4.0551323890686035, 'learning_rate': 0.0005736, 'epoch': 3.45}
+{'loss': 2.4518, 'grad_norm': 2.2357308864593506, 'learning_rate': 0.0005734, 'epoch': 3.46}
+{'loss': 2.4907, 'grad_norm': 2.1687746047973633, 'learning_rate': 0.0005732, 'epoch': 3.46}
+{'loss': 3.0182, 'grad_norm': 2.188624143600464, 'learning_rate': 0.0005729999999999999, 'epoch': 3.46}
+{'loss': 2.6255, 'grad_norm': 3.905832052230835, 'learning_rate': 0.0005727999999999999, 'epoch': 3.46}
+{'loss': 2.6728, 'grad_norm': 2.897252321243286, 'learning_rate': 0.0005725999999999999, 'epoch': 3.46}
+{'loss': 2.8212, 'grad_norm': 4.757837772369385, 'learning_rate': 0.0005723999999999999, 'epoch': 3.46}
+{'loss': 3.5648, 'grad_norm': 5.804827690124512, 'learning_rate': 0.0005721999999999999, 'epoch': 3.47}
+{'loss': 2.8125, 'grad_norm': 4.273700714111328, 'learning_rate': 0.0005719999999999999, 'epoch': 3.47}
+{'loss': 2.6748, 'grad_norm': 3.1538400650024414, 'learning_rate': 0.0005717999999999999, 'epoch': 3.47}
+{'loss': 2.8008, 'grad_norm': 2.156485080718994, 'learning_rate': 0.0005715999999999999, 'epoch': 3.47}
+{'loss': 3.0445, 'grad_norm': 2.4508657455444336, 'learning_rate': 0.0005714, 'epoch': 3.47}
+{'loss': 3.0013, 'grad_norm': 2.667672634124756, 'learning_rate': 0.0005711999999999999, 'epoch': 3.47}
+{'loss': 2.8604, 'grad_norm': 2.244243860244751, 'learning_rate': 0.0005709999999999999, 'epoch': 3.48}
+{'loss': 3.1734, 'grad_norm': 2.0999715328216553, 'learning_rate': 0.0005708, 'epoch': 3.48}
+{'loss': 3.456, 'grad_norm': 3.0818936824798584, 'learning_rate': 0.0005705999999999999, 'epoch': 3.48}
+{'loss': 3.211, 'grad_norm': 2.844378709793091, 'learning_rate': 0.0005704, 'epoch': 3.48}
+{'loss': 4.3387, 'grad_norm': 19.489864349365234, 'learning_rate': 0.0005702, 'epoch': 3.48}
+{'loss': 3.8751, 'grad_norm': 20.620067596435547, 'learning_rate': 0.00057, 'epoch': 3.48}
+{'loss': 3.9736, 'grad_norm': 20.510961532592773, 'learning_rate': 0.0005698, 'epoch': 3.48}
+{'loss': 3.1943, 'grad_norm': 13.105198860168457, 'learning_rate': 0.0005696, 'epoch': 3.49}
+{'loss': 3.9101, 'grad_norm': 16.707609176635742, 'learning_rate': 0.0005694, 'epoch': 3.49}
+{'loss': 3.3959, 'grad_norm': 11.06164836883545, 'learning_rate': 0.0005692, 'epoch': 3.49}
+{'loss': 4.1144, 'grad_norm': 10.18997573852539, 'learning_rate': 0.000569, 'epoch': 3.49}
+{'loss': 3.6712, 'grad_norm': 3.5979034900665283, 'learning_rate': 0.0005688, 'epoch': 3.49}
+{'loss': 3.3385, 'grad_norm': 5.594130992889404, 'learning_rate': 0.0005685999999999999, 'epoch': 3.49}
+{'loss': 2.8457, 'grad_norm': 4.669001579284668, 'learning_rate': 0.0005683999999999999, 'epoch': 3.5}
+{'loss': 3.1379, 'grad_norm': 3.709428310394287, 'learning_rate': 0.0005681999999999999, 'epoch': 3.5}
+{'loss': 2.9813, 'grad_norm': 2.764406204223633, 'learning_rate': 0.0005679999999999999, 'epoch': 3.5}
+{'loss': 3.1149, 'grad_norm': 5.064258575439453, 'learning_rate': 0.0005677999999999999, 'epoch': 3.5}
+{'loss': 2.8176, 'grad_norm': 7.851861953735352, 'learning_rate': 0.0005675999999999999, 'epoch': 3.5}
+{'loss': 3.3833, 'grad_norm': 11.211861610412598, 'learning_rate': 0.0005673999999999999, 'epoch': 3.5}
+{'loss': 3.6712, 'grad_norm': 11.95122241973877, 'learning_rate': 0.0005672, 'epoch': 3.51}
+{'loss': 3.233, 'grad_norm': 10.484594345092773, 'learning_rate': 0.0005669999999999999, 'epoch': 3.51}
+{'loss': 4.0065, 'grad_norm': 34.02505874633789, 'learning_rate': 0.0005667999999999999, 'epoch': 3.51}
+{'loss': 2.5542, 'grad_norm': 7.815525531768799, 'learning_rate': 0.0005666, 'epoch': 3.51}
+{'loss': 2.8195, 'grad_norm': 2.106872320175171, 'learning_rate': 0.0005663999999999999, 'epoch': 3.51}
+{'loss': 3.145, 'grad_norm': 3.031090497970581, 'learning_rate': 0.0005662, 'epoch': 3.51}
+{'loss': 2.8421, 'grad_norm': 2.442329168319702, 'learning_rate': 0.000566, 'epoch': 3.52}
+{'loss': 3.4521, 'grad_norm': 2.5574185848236084, 'learning_rate': 0.0005657999999999999, 'epoch': 3.52}
+{'loss': 2.9609, 'grad_norm': 4.203116416931152, 'learning_rate': 0.0005656, 'epoch': 3.52}
+{'loss': 3.5474, 'grad_norm': 6.534364223480225, 'learning_rate': 0.0005654, 'epoch': 3.52}
+{'loss': 3.1475, 'grad_norm': 8.213438034057617, 'learning_rate': 0.0005652, 'epoch': 3.52}
+{'loss': 3.3337, 'grad_norm': 8.855327606201172, 'learning_rate': 0.000565, 'epoch': 3.52}
+{'loss': 2.9456, 'grad_norm': 5.681925296783447, 'learning_rate': 0.0005648, 'epoch': 3.52}
+{'loss': 3.1749, 'grad_norm': 10.223812103271484, 'learning_rate': 0.0005646, 'epoch': 3.53}
+{'loss': 3.2825, 'grad_norm': 4.700658321380615, 'learning_rate': 0.0005644, 'epoch': 3.53}
+{'loss': 2.734, 'grad_norm': 3.4023351669311523, 'learning_rate': 0.0005641999999999999, 'epoch': 3.53}
+{'loss': 2.5598, 'grad_norm': 4.814945220947266, 'learning_rate': 0.0005639999999999999, 'epoch': 3.53}
+{'loss': 2.9104, 'grad_norm': 4.566649436950684, 'learning_rate': 0.0005637999999999999, 'epoch': 3.53}
+{'loss': 2.575, 'grad_norm': 2.31830096244812, 'learning_rate': 0.0005635999999999999, 'epoch': 3.53}
+{'loss': 3.195, 'grad_norm': 4.133569717407227, 'learning_rate': 0.0005633999999999999, 'epoch': 3.54}
+{'loss': 3.7206, 'grad_norm': 2.573678731918335, 'learning_rate': 0.0005631999999999999, 'epoch': 3.54}
+{'loss': 3.3338, 'grad_norm': 7.069974422454834, 'learning_rate': 0.0005629999999999999, 'epoch': 3.54}
+{'loss': 2.5689, 'grad_norm': 3.81504225730896, 'learning_rate': 0.0005627999999999999, 'epoch': 3.54}
+{'loss': 3.3907, 'grad_norm': 8.163509368896484, 'learning_rate': 0.0005625999999999999, 'epoch': 3.54}
+{'loss': 2.9082, 'grad_norm': 5.199379920959473, 'learning_rate': 0.0005624, 'epoch': 3.54}
+{'loss': 2.9105, 'grad_norm': 3.8271634578704834, 'learning_rate': 0.0005622, 'epoch': 3.55}
+{'loss': 2.8964, 'grad_norm': 3.3696279525756836, 'learning_rate': 0.0005619999999999999, 'epoch': 3.55}
+{'loss': 2.9344, 'grad_norm': 2.7918050289154053, 'learning_rate': 0.0005618, 'epoch': 3.55}
+{'loss': 3.0515, 'grad_norm': 2.721285343170166, 'learning_rate': 0.0005616, 'epoch': 3.55}
+{'loss': 2.8442, 'grad_norm': 2.7775137424468994, 'learning_rate': 0.0005614, 'epoch': 3.55}
+{'loss': 3.2262, 'grad_norm': 2.965029001235962, 'learning_rate': 0.0005612, 'epoch': 3.55}
+{'loss': 3.0243, 'grad_norm': 2.9676098823547363, 'learning_rate': 0.000561, 'epoch': 3.56}
+{'loss': 3.2154, 'grad_norm': 2.839040756225586, 'learning_rate': 0.0005608, 'epoch': 3.56}
+{'loss': 2.9206, 'grad_norm': 5.983321666717529, 'learning_rate': 0.0005606, 'epoch': 3.56}
+{'loss': 3.0367, 'grad_norm': nan, 'learning_rate': 0.0005606, 'epoch': 3.56}
+{'loss': 6.4386, 'grad_norm': 55.5407600402832, 'learning_rate': 0.0005604, 'epoch': 3.56}
+{'loss': 4.0924, 'grad_norm': 9.289352416992188, 'learning_rate': 0.0005602, 'epoch': 3.56}
+{'loss': 4.1028, 'grad_norm': 14.431886672973633, 'learning_rate': 0.00056, 'epoch': 3.56}
+{'loss': 5.3427, 'grad_norm': 24.23824119567871, 'learning_rate': 0.0005598, 'epoch': 3.57}
+{'loss': 4.0412, 'grad_norm': 8.971092224121094, 'learning_rate': 0.0005595999999999999, 'epoch': 3.57}
+{'loss': 3.9749, 'grad_norm': 17.683528900146484, 'learning_rate': 0.0005593999999999999, 'epoch': 3.57}
+{'loss': 4.0728, 'grad_norm': 3.934190511703491, 'learning_rate': 0.0005591999999999999, 'epoch': 3.57}
+{'loss': 3.2269, 'grad_norm': 4.2022705078125, 'learning_rate': 0.0005589999999999999, 'epoch': 3.57}
+{'loss': 3.4502, 'grad_norm': 6.388844013214111, 'learning_rate': 0.0005587999999999999, 'epoch': 3.57}
+{'loss': 3.6688, 'grad_norm': 2.6255085468292236, 'learning_rate': 0.0005586, 'epoch': 3.58}
+{'loss': 3.9305, 'grad_norm': 3.0032479763031006, 'learning_rate': 0.0005583999999999999, 'epoch': 3.58}
+{'loss': 3.3079, 'grad_norm': 2.0182929039001465, 'learning_rate': 0.0005581999999999999, 'epoch': 3.58}
+{'loss': 3.6745, 'grad_norm': 6.957843780517578, 'learning_rate': 0.000558, 'epoch': 3.58}
+{'loss': 2.9602, 'grad_norm': 4.60112190246582, 'learning_rate': 0.0005577999999999999, 'epoch': 3.58}
+{'loss': 3.9476, 'grad_norm': 6.672953128814697, 'learning_rate': 0.0005576, 'epoch': 3.58}
+{'loss': 3.1406, 'grad_norm': 16.332260131835938, 'learning_rate': 0.0005574, 'epoch': 3.59}
+{'loss': 3.3363, 'grad_norm': 7.7880401611328125, 'learning_rate': 0.0005571999999999999, 'epoch': 3.59}
+{'loss': 3.4756, 'grad_norm': 9.519548416137695, 'learning_rate': 0.000557, 'epoch': 3.59}
+{'loss': 3.4255, 'grad_norm': 7.101512908935547, 'learning_rate': 0.0005568, 'epoch': 3.59}
+{'loss': 2.7506, 'grad_norm': 5.652818202972412, 'learning_rate': 0.0005566, 'epoch': 3.59}
+{'loss': 2.9571, 'grad_norm': 5.916102886199951, 'learning_rate': 0.0005564, 'epoch': 3.59}
+{'loss': 2.5523, 'grad_norm': 2.533904790878296, 'learning_rate': 0.0005562, 'epoch': 3.6}
+{'loss': 3.6372, 'grad_norm': 2.5718328952789307, 'learning_rate': 0.000556, 'epoch': 3.6}
+{'loss': 4.7817, 'grad_norm': 2.4668445587158203, 'learning_rate': 0.0005558, 'epoch': 3.6}
+{'loss': 3.0265, 'grad_norm': 3.1797170639038086, 'learning_rate': 0.0005556, 'epoch': 3.6}
+{'loss': 2.495, 'grad_norm': 2.3671298027038574, 'learning_rate': 0.0005554, 'epoch': 3.6}
+{'loss': 3.3338, 'grad_norm': 7.401203155517578, 'learning_rate': 0.0005551999999999999, 'epoch': 3.6}
+{'loss': 3.638, 'grad_norm': 7.648886680603027, 'learning_rate': 0.0005549999999999999, 'epoch': 3.6}
+{'loss': 3.1476, 'grad_norm': 9.498307228088379, 'learning_rate': 0.0005547999999999999, 'epoch': 3.61}
+{'loss': 2.9936, 'grad_norm': 10.403427124023438, 'learning_rate': 0.0005545999999999999, 'epoch': 3.61}
+{'loss': 3.9072, 'grad_norm': 10.709396362304688, 'learning_rate': 0.0005544, 'epoch': 3.61}
+{'loss': 3.3232, 'grad_norm': 5.007658958435059, 'learning_rate': 0.0005541999999999999, 'epoch': 3.61}
+{'loss': 3.2679, 'grad_norm': 5.138033390045166, 'learning_rate': 0.0005539999999999999, 'epoch': 3.61}
+{'loss': 3.2151, 'grad_norm': 4.138444423675537, 'learning_rate': 0.0005538, 'epoch': 3.61}
+{'loss': 3.6335, 'grad_norm': 2.749028205871582, 'learning_rate': 0.0005535999999999999, 'epoch': 3.62}
+{'loss': 2.5717, 'grad_norm': 2.672708511352539, 'learning_rate': 0.0005534, 'epoch': 3.62}
+{'loss': 3.0575, 'grad_norm': 2.188662528991699, 'learning_rate': 0.0005532, 'epoch': 3.62}
+{'loss': 3.5481, 'grad_norm': 4.486994743347168, 'learning_rate': 0.0005529999999999999, 'epoch': 3.62}
+{'loss': 3.0689, 'grad_norm': 2.5265097618103027, 'learning_rate': 0.0005528, 'epoch': 3.62}
+{'loss': 3.017, 'grad_norm': 3.3407726287841797, 'learning_rate': 0.0005526, 'epoch': 3.62}
+{'loss': 2.7306, 'grad_norm': 6.142095565795898, 'learning_rate': 0.0005524, 'epoch': 3.63}
+{'loss': 5.4735, 'grad_norm': 7.358902931213379, 'learning_rate': 0.0005522, 'epoch': 3.63}
+{'loss': 5.4242, 'grad_norm': 9.835092544555664, 'learning_rate': 0.000552, 'epoch': 3.63}
+{'loss': 2.8247, 'grad_norm': 6.334985733032227, 'learning_rate': 0.0005518, 'epoch': 3.63}
+{'loss': 3.1278, 'grad_norm': 3.05710506439209, 'learning_rate': 0.0005516, 'epoch': 3.63}
+{'loss': 2.4559, 'grad_norm': 3.3504600524902344, 'learning_rate': 0.0005514, 'epoch': 3.63}
+{'loss': 3.9111, 'grad_norm': 4.229508876800537, 'learning_rate': 0.0005512, 'epoch': 3.64}
+{'loss': 3.8723, 'grad_norm': 2.7114548683166504, 'learning_rate': 0.000551, 'epoch': 3.64}
+{'loss': 3.4165, 'grad_norm': 6.074462413787842, 'learning_rate': 0.0005507999999999999, 'epoch': 3.64}
+{'loss': 3.5407, 'grad_norm': nan, 'learning_rate': 0.0005507999999999999, 'epoch': 3.64}
+{'loss': 4.6945, 'grad_norm': 7.515296936035156, 'learning_rate': 0.0005505999999999999, 'epoch': 3.64}
+{'loss': 4.4873, 'grad_norm': 0.9642918109893799, 'learning_rate': 0.0005503999999999999, 'epoch': 3.64}
+{'loss': 4.744, 'grad_norm': 3.470863103866577, 'learning_rate': 0.0005501999999999999, 'epoch': 3.64}
+{'loss': 3.9066, 'grad_norm': 1.6295921802520752, 'learning_rate': 0.0005499999999999999, 'epoch': 3.65}
+{'loss': 3.3472, 'grad_norm': 0.9528029561042786, 'learning_rate': 0.0005497999999999999, 'epoch': 3.65}
+{'loss': 3.4575, 'grad_norm': 0.9496387839317322, 'learning_rate': 0.0005496, 'epoch': 3.65}
+{'loss': 3.2515, 'grad_norm': 1.0395222902297974, 'learning_rate': 0.0005493999999999999, 'epoch': 3.65}
+{'loss': 3.6947, 'grad_norm': 1.5674383640289307, 'learning_rate': 0.0005491999999999999, 'epoch': 3.65}
+{'loss': 3.0947, 'grad_norm': 1.2627230882644653, 'learning_rate': 0.000549, 'epoch': 3.65}
+{'loss': 4.4352, 'grad_norm': 1.4390543699264526, 'learning_rate': 0.0005487999999999999, 'epoch': 3.66}
+{'loss': 3.9516, 'grad_norm': 1.4020869731903076, 'learning_rate': 0.0005486, 'epoch': 3.66}
+{'loss': 4.0214, 'grad_norm': 3.6883347034454346, 'learning_rate': 0.0005484, 'epoch': 3.66}
+{'loss': 3.2447, 'grad_norm': 4.250986576080322, 'learning_rate': 0.0005481999999999999, 'epoch': 3.66}
+{'loss': 4.1801, 'grad_norm': 2.007300615310669, 'learning_rate': 0.000548, 'epoch': 3.66}
+{'loss': 4.7246, 'grad_norm': 3.120436191558838, 'learning_rate': 0.0005478, 'epoch': 3.66}
+{'loss': 3.4444, 'grad_norm': 3.354717254638672, 'learning_rate': 0.0005476, 'epoch': 3.67}
+{'loss': 3.7239, 'grad_norm': 2.1865100860595703, 'learning_rate': 0.0005474, 'epoch': 3.67}
+{'loss': 4.016, 'grad_norm': 2.3343372344970703, 'learning_rate': 0.0005472, 'epoch': 3.67}
+{'loss': 4.0466, 'grad_norm': 3.9303016662597656, 'learning_rate': 0.000547, 'epoch': 3.67}
+{'loss': 3.3989, 'grad_norm': 4.819889068603516, 'learning_rate': 0.0005468, 'epoch': 3.67}
+{'loss': 4.0242, 'grad_norm': 3.13912296295166, 'learning_rate': 0.0005466, 'epoch': 3.67}
+{'loss': 3.1699, 'grad_norm': 2.8301594257354736, 'learning_rate': 0.0005463999999999999, 'epoch': 3.68}
+{'loss': 3.1893, 'grad_norm': 1.9209338426589966, 'learning_rate': 0.0005461999999999999, 'epoch': 3.68}
+{'loss': 3.2806, 'grad_norm': 1.8804454803466797, 'learning_rate': 0.0005459999999999999, 'epoch': 3.68}
+{'loss': 2.8408, 'grad_norm': 2.186152458190918, 'learning_rate': 0.0005457999999999999, 'epoch': 3.68}
+{'loss': 3.7474, 'grad_norm': 4.055525779724121, 'learning_rate': 0.0005455999999999999, 'epoch': 3.68}
+{'loss': 3.3388, 'grad_norm': 4.328959941864014, 'learning_rate': 0.0005453999999999999, 'epoch': 3.68}
+{'loss': 4.7525, 'grad_norm': 12.9420804977417, 'learning_rate': 0.0005451999999999999, 'epoch': 3.68}
+{'loss': 3.9676, 'grad_norm': 3.576298236846924, 'learning_rate': 0.0005449999999999999, 'epoch': 3.69}
+{'loss': 3.3703, 'grad_norm': 2.730264186859131, 'learning_rate': 0.0005448, 'epoch': 3.69}
+{'loss': 3.0003, 'grad_norm': 1.9057469367980957, 'learning_rate': 0.0005445999999999999, 'epoch': 3.69}
+{'loss': 3.6165, 'grad_norm': 2.068631172180176, 'learning_rate': 0.0005443999999999999, 'epoch': 3.69}
+{'loss': 4.0022, 'grad_norm': 3.0546584129333496, 'learning_rate': 0.0005442, 'epoch': 3.69}
+{'loss': 3.903, 'grad_norm': 5.953769207000732, 'learning_rate': 0.0005439999999999999, 'epoch': 3.69}
+{'loss': 2.8817, 'grad_norm': 3.818378448486328, 'learning_rate': 0.0005438, 'epoch': 3.7}
+{'loss': 4.2538, 'grad_norm': 6.505511283874512, 'learning_rate': 0.0005436, 'epoch': 3.7}
+{'loss': 2.9049, 'grad_norm': 3.884477138519287, 'learning_rate': 0.0005433999999999999, 'epoch': 3.7}
+{'loss': 3.8679, 'grad_norm': 5.818808555603027, 'learning_rate': 0.0005432, 'epoch': 3.7}
+{'loss': 3.1927, 'grad_norm': 2.5341482162475586, 'learning_rate': 0.000543, 'epoch': 3.7}
+{'loss': 4.2163, 'grad_norm': 2.6208629608154297, 'learning_rate': 0.0005428, 'epoch': 3.7}
+{'loss': 2.5342, 'grad_norm': 2.189680337905884, 'learning_rate': 0.0005426, 'epoch': 3.71}
+{'loss': 3.01, 'grad_norm': 2.4418387413024902, 'learning_rate': 0.0005424, 'epoch': 3.71}
+{'loss': 2.6786, 'grad_norm': 2.613811731338501, 'learning_rate': 0.0005422, 'epoch': 3.71}
+{'loss': 3.3229, 'grad_norm': 8.510128021240234, 'learning_rate': 0.000542, 'epoch': 3.71}
+{'loss': 2.6784, 'grad_norm': 3.6487812995910645, 'learning_rate': 0.0005417999999999999, 'epoch': 3.71}
+{'loss': 3.1996, 'grad_norm': 3.9220001697540283, 'learning_rate': 0.0005415999999999999, 'epoch': 3.71}
+{'loss': 3.2684, 'grad_norm': 2.069011688232422, 'learning_rate': 0.0005413999999999999, 'epoch': 3.72}
+{'loss': 3.0774, 'grad_norm': 3.0379621982574463, 'learning_rate': 0.0005411999999999999, 'epoch': 3.72}
+{'loss': 3.2742, 'grad_norm': 2.2943036556243896, 'learning_rate': 0.0005409999999999999, 'epoch': 3.72}
+{'loss': 4.7077, 'grad_norm': 6.881977081298828, 'learning_rate': 0.0005407999999999999, 'epoch': 3.72}
+{'loss': 7.5684, 'grad_norm': 81.76461791992188, 'learning_rate': 0.0005405999999999999, 'epoch': 3.72}
+{'loss': 4.9986, 'grad_norm': 10.492643356323242, 'learning_rate': 0.0005403999999999999, 'epoch': 3.72}
+{'loss': 3.9451, 'grad_norm': 4.756387710571289, 'learning_rate': 0.0005401999999999999, 'epoch': 3.72}
+{'loss': 3.8227, 'grad_norm': 2.5230603218078613, 'learning_rate': 0.00054, 'epoch': 3.73}
+{'loss': 3.8123, 'grad_norm': 2.209505796432495, 'learning_rate': 0.0005397999999999999, 'epoch': 3.73}
+{'loss': 4.5036, 'grad_norm': 2.965146064758301, 'learning_rate': 0.0005396, 'epoch': 3.73}
+{'loss': 4.0939, 'grad_norm': 2.212378978729248, 'learning_rate': 0.0005394, 'epoch': 3.73}
+{'loss': 3.5066, 'grad_norm': 1.8609493970870972, 'learning_rate': 0.0005391999999999999, 'epoch': 3.73}
+{'loss': 3.911, 'grad_norm': 2.2023518085479736, 'learning_rate': 0.000539, 'epoch': 3.73}
+{'loss': 3.2395, 'grad_norm': 2.8470547199249268, 'learning_rate': 0.0005388, 'epoch': 3.74}
+{'loss': 3.7863, 'grad_norm': 2.1184237003326416, 'learning_rate': 0.0005386, 'epoch': 3.74}
+{'loss': 4.5799, 'grad_norm': 2.1715586185455322, 'learning_rate': 0.0005384, 'epoch': 3.74}
+{'loss': 3.8685, 'grad_norm': 2.3556015491485596, 'learning_rate': 0.0005382, 'epoch': 3.74}
+{'loss': 3.316, 'grad_norm': 1.3282142877578735, 'learning_rate': 0.000538, 'epoch': 3.74}
+{'loss': 4.0411, 'grad_norm': 4.5761542320251465, 'learning_rate': 0.0005378, 'epoch': 3.74}
+{'loss': 4.7927, 'grad_norm': 4.5847554206848145, 'learning_rate': 0.0005376, 'epoch': 3.75}
+{'loss': 3.7438, 'grad_norm': 12.918116569519043, 'learning_rate': 0.0005373999999999999, 'epoch': 3.75}
+{'loss': 4.3877, 'grad_norm': 4.8914361000061035, 'learning_rate': 0.0005371999999999999, 'epoch': 3.75}
+{'loss': 3.7056, 'grad_norm': 5.574761867523193, 'learning_rate': 0.0005369999999999999, 'epoch': 3.75}
+{'loss': 3.6515, 'grad_norm': 6.177387237548828, 'learning_rate': 0.0005368, 'epoch': 3.75}
+{'loss': 3.5961, 'grad_norm': 4.47343635559082, 'learning_rate': 0.0005365999999999999, 'epoch': 3.75}
+{'loss': 4.1159, 'grad_norm': 6.870029449462891, 'learning_rate': 0.0005363999999999999, 'epoch': 3.76}
+{'loss': 3.3731, 'grad_norm': 3.4203975200653076, 'learning_rate': 0.0005362, 'epoch': 3.76}
+{'loss': 3.5227, 'grad_norm': 5.828915119171143, 'learning_rate': 0.0005359999999999999, 'epoch': 3.76}
+{'loss': 3.7634, 'grad_norm': 2.20630145072937, 'learning_rate': 0.0005358, 'epoch': 3.76}
+{'loss': 5.0694, 'grad_norm': 4.080089569091797, 'learning_rate': 0.0005356, 'epoch': 3.76}
+{'loss': 3.7534, 'grad_norm': 3.561363697052002, 'learning_rate': 0.0005353999999999999, 'epoch': 3.76}
+{'loss': 4.8316, 'grad_norm': 3.118837833404541, 'learning_rate': 0.0005352, 'epoch': 3.76}
+{'loss': 3.5515, 'grad_norm': 3.6192729473114014, 'learning_rate': 0.000535, 'epoch': 3.77}
+{'loss': 3.4193, 'grad_norm': 3.632134437561035, 'learning_rate': 0.0005348, 'epoch': 3.77}
+{'loss': 4.3545, 'grad_norm': 2.139364719390869, 'learning_rate': 0.0005346, 'epoch': 3.77}
+{'loss': 4.3522, 'grad_norm': 4.8385419845581055, 'learning_rate': 0.0005344, 'epoch': 3.77}
+{'loss': 3.4902, 'grad_norm': 5.820652484893799, 'learning_rate': 0.0005342, 'epoch': 3.77}
+{'loss': 3.2174, 'grad_norm': 7.365394592285156, 'learning_rate': 0.000534, 'epoch': 3.77}
+{'loss': 3.7161, 'grad_norm': 8.943775177001953, 'learning_rate': 0.0005338, 'epoch': 3.78}
+{'loss': 4.0428, 'grad_norm': 12.740777015686035, 'learning_rate': 0.0005336, 'epoch': 3.78}
+{'loss': 3.3414, 'grad_norm': 12.166577339172363, 'learning_rate': 0.0005334, 'epoch': 3.78}
+{'loss': 3.7573, 'grad_norm': 8.097125053405762, 'learning_rate': 0.0005332, 'epoch': 3.78}
+{'loss': 4.6625, 'grad_norm': 8.305039405822754, 'learning_rate': 0.0005329999999999999, 'epoch': 3.78}
+{'loss': 3.0211, 'grad_norm': 4.6849260330200195, 'learning_rate': 0.0005327999999999999, 'epoch': 3.78}
+{'loss': 4.5432, 'grad_norm': 2.537353992462158, 'learning_rate': 0.0005325999999999999, 'epoch': 3.79}
+{'loss': 2.6823, 'grad_norm': 2.6421570777893066, 'learning_rate': 0.0005323999999999999, 'epoch': 3.79}
+{'loss': 3.7853, 'grad_norm': 2.8577213287353516, 'learning_rate': 0.0005321999999999999, 'epoch': 3.79}
+{'loss': 3.8282, 'grad_norm': 2.6776928901672363, 'learning_rate': 0.000532, 'epoch': 3.79}
+{'loss': 3.5799, 'grad_norm': 2.697481632232666, 'learning_rate': 0.0005317999999999999, 'epoch': 3.79}
+{'loss': 3.7143, 'grad_norm': 4.719255447387695, 'learning_rate': 0.0005315999999999999, 'epoch': 3.79}
+{'loss': 4.2279, 'grad_norm': 5.107699871063232, 'learning_rate': 0.0005314, 'epoch': 3.8}
+{'loss': 3.9941, 'grad_norm': 9.929701805114746, 'learning_rate': 0.0005311999999999999, 'epoch': 3.8}
+{'loss': 3.7405, 'grad_norm': 11.735438346862793, 'learning_rate': 0.000531, 'epoch': 3.8}
+{'loss': 4.5021, 'grad_norm': 5.764272689819336, 'learning_rate': 0.0005308, 'epoch': 3.8}
+{'loss': 6.781, 'grad_norm': 18.376399993896484, 'learning_rate': 0.0005305999999999999, 'epoch': 3.8}
+{'loss': 7.7015, 'grad_norm': 14.563941955566406, 'learning_rate': 0.0005304, 'epoch': 3.8}
+{'loss': 4.7244, 'grad_norm': 1.9453444480895996, 'learning_rate': 0.0005302, 'epoch': 3.8}
+{'loss': 4.4179, 'grad_norm': 4.174312114715576, 'learning_rate': 0.00053, 'epoch': 3.81}
+{'loss': 3.8616, 'grad_norm': 0.9180065393447876, 'learning_rate': 0.0005298, 'epoch': 3.81}
+{'loss': 4.7, 'grad_norm': 2.4266366958618164, 'learning_rate': 0.0005296, 'epoch': 3.81}
+{'loss': 5.1105, 'grad_norm': 2.9785518646240234, 'learning_rate': 0.0005294, 'epoch': 3.81}
+{'loss': 4.7435, 'grad_norm': 3.8676366806030273, 'learning_rate': 0.0005292, 'epoch': 3.81}
+{'loss': 4.3771, 'grad_norm': 2.722191572189331, 'learning_rate': 0.000529, 'epoch': 3.81}
+{'loss': 3.7945, 'grad_norm': 1.83686101436615, 'learning_rate': 0.0005288, 'epoch': 3.82}
+{'loss': 3.8832, 'grad_norm': 1.6038964986801147, 'learning_rate': 0.0005286, 'epoch': 3.82}
+{'loss': 4.6346, 'grad_norm': 1.0230307579040527, 'learning_rate': 0.0005283999999999999, 'epoch': 3.82}
+{'loss': 3.3476, 'grad_norm': 1.8154736757278442, 'learning_rate': 0.0005281999999999999, 'epoch': 3.82}
+{'loss': 5.038, 'grad_norm': 9.780559539794922, 'learning_rate': 0.0005279999999999999, 'epoch': 3.82}
+{'loss': 5.6834, 'grad_norm': 6.866722106933594, 'learning_rate': 0.0005277999999999999, 'epoch': 3.82}
+{'loss': 3.5608, 'grad_norm': 5.508349418640137, 'learning_rate': 0.0005275999999999999, 'epoch': 3.83}
+{'loss': 5.1608, 'grad_norm': 16.235729217529297, 'learning_rate': 0.0005273999999999999, 'epoch': 3.83}
+{'loss': 5.3787, 'grad_norm': 8.720699310302734, 'learning_rate': 0.0005272, 'epoch': 3.83}
+{'loss': 4.7983, 'grad_norm': 16.350589752197266, 'learning_rate': 0.0005269999999999999, 'epoch': 3.83}
+{'loss': 3.8524, 'grad_norm': 6.838560104370117, 'learning_rate': 0.0005267999999999999, 'epoch': 3.83}
+{'loss': 4.7016, 'grad_norm': 11.337925910949707, 'learning_rate': 0.0005266, 'epoch': 3.83}
+{'loss': 4.3663, 'grad_norm': 7.908731937408447, 'learning_rate': 0.0005263999999999999, 'epoch': 3.84}
+{'loss': 3.8907, 'grad_norm': 4.7114787101745605, 'learning_rate': 0.0005262, 'epoch': 3.84}
+{'loss': 3.3793, 'grad_norm': 4.332289695739746, 'learning_rate': 0.000526, 'epoch': 3.84}
+{'loss': 4.017, 'grad_norm': 2.8754754066467285, 'learning_rate': 0.0005257999999999999, 'epoch': 3.84}
+{'loss': 4.1431, 'grad_norm': 3.1306464672088623, 'learning_rate': 0.0005256, 'epoch': 3.84}
+{'loss': 3.5724, 'grad_norm': 3.269331455230713, 'learning_rate': 0.0005254, 'epoch': 3.84}
+{'loss': 3.1223, 'grad_norm': 2.9769835472106934, 'learning_rate': 0.0005252, 'epoch': 3.84}
+{'loss': 4.9138, 'grad_norm': 2.5394082069396973, 'learning_rate': 0.000525, 'epoch': 3.85}
+{'loss': 3.1959, 'grad_norm': 2.2424628734588623, 'learning_rate': 0.0005248, 'epoch': 3.85}
+{'loss': 3.0957, 'grad_norm': 7.9830803871154785, 'learning_rate': 0.0005246, 'epoch': 3.85}
+{'loss': 4.3865, 'grad_norm': 6.655513763427734, 'learning_rate': 0.0005244, 'epoch': 3.85}
+{'loss': 3.7315, 'grad_norm': 6.7835211753845215, 'learning_rate': 0.0005242, 'epoch': 3.85}
+{'loss': 6.1095, 'grad_norm': 9.676862716674805, 'learning_rate': 0.0005239999999999999, 'epoch': 3.85}
+{'loss': 4.2052, 'grad_norm': 6.528567314147949, 'learning_rate': 0.0005237999999999999, 'epoch': 3.86}
+{'loss': 3.2719, 'grad_norm': 6.409698963165283, 'learning_rate': 0.0005235999999999999, 'epoch': 3.86}
+{'loss': 3.7916, 'grad_norm': 5.9662628173828125, 'learning_rate': 0.0005233999999999999, 'epoch': 3.86}
+{'loss': 7.6018, 'grad_norm': 11.17818832397461, 'learning_rate': 0.0005231999999999999, 'epoch': 3.86}
+{'loss': 3.7233, 'grad_norm': 2.0362625122070312, 'learning_rate': 0.000523, 'epoch': 3.86}
+{'loss': 3.1131, 'grad_norm': 2.409855365753174, 'learning_rate': 0.0005227999999999999, 'epoch': 3.86}
+{'loss': 4.7464, 'grad_norm': 2.5807554721832275, 'learning_rate': 0.0005225999999999999, 'epoch': 3.87}
+{'loss': 3.9214, 'grad_norm': 2.853008985519409, 'learning_rate': 0.0005224, 'epoch': 3.87}
+{'loss': 3.1906, 'grad_norm': 2.9966490268707275, 'learning_rate': 0.0005221999999999999, 'epoch': 3.87}
+{'loss': 3.5001, 'grad_norm': 2.0658886432647705, 'learning_rate': 0.000522, 'epoch': 3.87}
+{'loss': 3.4756, 'grad_norm': 8.184765815734863, 'learning_rate': 0.0005218, 'epoch': 3.87}
+{'loss': 3.7197, 'grad_norm': 4.851075649261475, 'learning_rate': 0.0005215999999999999, 'epoch': 3.87}
+{'loss': 3.2422, 'grad_norm': 11.42324447631836, 'learning_rate': 0.0005214, 'epoch': 3.88}
+{'loss': 3.459, 'grad_norm': 8.599984169006348, 'learning_rate': 0.0005212, 'epoch': 3.88}
+{'loss': 5.2247, 'grad_norm': 6.367029666900635, 'learning_rate': 0.000521, 'epoch': 3.88}
+{'loss': 3.6883, 'grad_norm': 10.062922477722168, 'learning_rate': 0.0005208, 'epoch': 3.88}
+{'loss': 6.8429, 'grad_norm': 7.4639668464660645, 'learning_rate': 0.0005206, 'epoch': 3.88}
+{'loss': 7.3029, 'grad_norm': 7.481766700744629, 'learning_rate': 0.0005204, 'epoch': 3.88}
+{'loss': 5.3437, 'grad_norm': 9.236445426940918, 'learning_rate': 0.0005202, 'epoch': 3.88}
+{'loss': 5.7565, 'grad_norm': 0.8947409391403198, 'learning_rate': 0.00052, 'epoch': 3.89}
+{'loss': 6.744, 'grad_norm': 1.8359402418136597, 'learning_rate': 0.0005198, 'epoch': 3.89}
+{'loss': 4.6432, 'grad_norm': 1.6362475156784058, 'learning_rate': 0.0005195999999999999, 'epoch': 3.89}
+{'loss': 3.4999, 'grad_norm': 3.711618423461914, 'learning_rate': 0.0005193999999999999, 'epoch': 3.89}
+{'loss': 4.144, 'grad_norm': 3.213042974472046, 'learning_rate': 0.0005191999999999999, 'epoch': 3.89}
+{'loss': 3.7807, 'grad_norm': 3.1469593048095703, 'learning_rate': 0.0005189999999999999, 'epoch': 3.89}
+{'loss': 5.4997, 'grad_norm': 1.5552211999893188, 'learning_rate': 0.0005187999999999999, 'epoch': 3.9}
+{'loss': 4.3924, 'grad_norm': 12.214163780212402, 'learning_rate': 0.0005185999999999999, 'epoch': 3.9}
+{'loss': 5.7433, 'grad_norm': 2.1951797008514404, 'learning_rate': 0.0005183999999999999, 'epoch': 3.9}
+{'loss': 4.0962, 'grad_norm': 2.7041990756988525, 'learning_rate': 0.0005182, 'epoch': 3.9}
+{'loss': 4.6299, 'grad_norm': 2.592421293258667, 'learning_rate': 0.0005179999999999999, 'epoch': 3.9}
+{'loss': 3.002, 'grad_norm': 2.230567693710327, 'learning_rate': 0.0005177999999999999, 'epoch': 3.9}
+{'loss': 3.6995, 'grad_norm': 3.1844351291656494, 'learning_rate': 0.0005176, 'epoch': 3.91}
+{'loss': 3.7061, 'grad_norm': 4.0518107414245605, 'learning_rate': 0.0005173999999999999, 'epoch': 3.91}
+{'loss': 3.8965, 'grad_norm': 4.409000873565674, 'learning_rate': 0.0005172, 'epoch': 3.91}
+{'loss': 3.649, 'grad_norm': 2.557565689086914, 'learning_rate': 0.000517, 'epoch': 3.91}
+{'loss': 4.4164, 'grad_norm': 4.122837066650391, 'learning_rate': 0.0005167999999999999, 'epoch': 3.91}
+{'loss': 3.8117, 'grad_norm': 3.307701587677002, 'learning_rate': 0.0005166, 'epoch': 3.91}
+{'loss': 3.5849, 'grad_norm': 2.113417387008667, 'learning_rate': 0.0005164, 'epoch': 3.92}
+{'loss': 4.0564, 'grad_norm': 5.073932647705078, 'learning_rate': 0.0005162, 'epoch': 3.92}
+{'loss': 4.6822, 'grad_norm': 2.0293564796447754, 'learning_rate': 0.000516, 'epoch': 3.92}
+{'loss': 5.6256, 'grad_norm': 2.3307976722717285, 'learning_rate': 0.0005158, 'epoch': 3.92}
+{'loss': 3.3186, 'grad_norm': 2.8671512603759766, 'learning_rate': 0.0005156, 'epoch': 3.92}
+{'loss': 3.3332, 'grad_norm': 2.8677480220794678, 'learning_rate': 0.0005154, 'epoch': 3.92}
+{'loss': 5.1829, 'grad_norm': 5.9910478591918945, 'learning_rate': 0.0005152, 'epoch': 3.92}
+{'loss': 3.3698, 'grad_norm': 3.645705461502075, 'learning_rate': 0.0005149999999999999, 'epoch': 3.93}
+{'loss': 3.4024, 'grad_norm': 5.09229040145874, 'learning_rate': 0.0005147999999999999, 'epoch': 3.93}
+{'loss': 2.8343, 'grad_norm': 3.315643310546875, 'learning_rate': 0.0005145999999999999, 'epoch': 3.93}
+{'loss': 4.926, 'grad_norm': 6.215513229370117, 'learning_rate': 0.0005143999999999999, 'epoch': 3.93}
+{'loss': 5.8658, 'grad_norm': 7.02705717086792, 'learning_rate': 0.0005141999999999999, 'epoch': 3.93}
+{'loss': 3.6607, 'grad_norm': 3.302187442779541, 'learning_rate': 0.0005139999999999999, 'epoch': 3.93}
+{'loss': 3.3349, 'grad_norm': 2.8426706790924072, 'learning_rate': 0.0005137999999999999, 'epoch': 3.94}
+{'loss': 3.7503, 'grad_norm': 2.594999074935913, 'learning_rate': 0.0005135999999999999, 'epoch': 3.94}
+{'loss': 5.2539, 'grad_norm': 2.7870514392852783, 'learning_rate': 0.0005134, 'epoch': 3.94}
+{'loss': 3.7372, 'grad_norm': 2.494035482406616, 'learning_rate': 0.0005131999999999999, 'epoch': 3.94}
+{'loss': 4.3101, 'grad_norm': 5.120970249176025, 'learning_rate': 0.0005129999999999999, 'epoch': 3.94}
+{'loss': 3.7904, 'grad_norm': 5.125430583953857, 'learning_rate': 0.0005128, 'epoch': 3.94}
+{'loss': 4.2762, 'grad_norm': 8.505355834960938, 'learning_rate': 0.0005125999999999999, 'epoch': 3.95}
+{'loss': 3.7425, 'grad_norm': 8.884271621704102, 'learning_rate': 0.0005124, 'epoch': 3.95}
+{'loss': 3.9677, 'grad_norm': 5.896363735198975, 'learning_rate': 0.0005122, 'epoch': 3.95}
+{'loss': 3.5789, 'grad_norm': 5.016576766967773, 'learning_rate': 0.000512, 'epoch': 3.95}
+{'loss': 3.8632, 'grad_norm': 2.708357572555542, 'learning_rate': 0.0005118, 'epoch': 3.95}
+{'loss': 2.7705, 'grad_norm': 2.9615776538848877, 'learning_rate': 0.0005116, 'epoch': 3.95}
+{'loss': 3.9674, 'grad_norm': 3.5062623023986816, 'learning_rate': 0.0005114, 'epoch': 3.96}
+{'loss': 3.4771, 'grad_norm': 2.6961495876312256, 'learning_rate': 0.0005112, 'epoch': 3.96}
+{'loss': 5.0042, 'grad_norm': 6.347679615020752, 'learning_rate': 0.000511, 'epoch': 3.96}
+{'loss': 2.9314, 'grad_norm': nan, 'learning_rate': 0.000511, 'epoch': 3.96}
+{'loss': 5.7649, 'grad_norm': 5.443944454193115, 'learning_rate': 0.0005108, 'epoch': 3.96}
+{'loss': 6.3727, 'grad_norm': 7.1263508796691895, 'learning_rate': 0.0005105999999999999, 'epoch': 3.96}
+{'loss': 4.1111, 'grad_norm': 1.0259019136428833, 'learning_rate': 0.0005103999999999999, 'epoch': 3.96}
+{'loss': 3.6376, 'grad_norm': 0.1592855453491211, 'learning_rate': 0.0005101999999999999, 'epoch': 3.97}
+{'loss': 5.4418, 'grad_norm': 1.0972356796264648, 'learning_rate': 0.0005099999999999999, 'epoch': 3.97}
+{'loss': 4.4428, 'grad_norm': 0.4594857692718506, 'learning_rate': 0.0005097999999999999, 'epoch': 3.97}
+{'loss': 3.5892, 'grad_norm': 0.2423648089170456, 'learning_rate': 0.0005096, 'epoch': 3.97}
+{'loss': 4.7644, 'grad_norm': 1.5900893211364746, 'learning_rate': 0.0005093999999999999, 'epoch': 3.97}
+{'loss': 3.3058, 'grad_norm': 0.36498916149139404, 'learning_rate': 0.0005092, 'epoch': 3.97}
+{'loss': 3.8689, 'grad_norm': 0.3362158536911011, 'learning_rate': 0.000509, 'epoch': 3.98}
+{'loss': 4.7144, 'grad_norm': 0.5637915134429932, 'learning_rate': 0.0005087999999999999, 'epoch': 3.98}
+{'loss': 3.2482, 'grad_norm': 0.690257728099823, 'learning_rate': 0.0005086, 'epoch': 3.98}
+{'loss': 3.5763, 'grad_norm': 1.2970272302627563, 'learning_rate': 0.0005084, 'epoch': 3.98}
+{'loss': 3.6031, 'grad_norm': 1.0402405261993408, 'learning_rate': 0.0005082, 'epoch': 3.98}
+{'loss': 4.6232, 'grad_norm': 1.123017430305481, 'learning_rate': 0.000508, 'epoch': 3.98}
+{'loss': 3.987, 'grad_norm': 1.0631844997406006, 'learning_rate': 0.0005078, 'epoch': 3.99}
+{'loss': 4.0148, 'grad_norm': 1.2788798809051514, 'learning_rate': 0.0005076, 'epoch': 3.99}
+{'loss': 4.0768, 'grad_norm': 3.9951908588409424, 'learning_rate': 0.0005074, 'epoch': 3.99}
+{'loss': 2.5434, 'grad_norm': 1.8701856136322021, 'learning_rate': 0.0005072, 'epoch': 3.99}
+{'loss': 8.6562, 'grad_norm': 11.19664478302002, 'learning_rate': 0.000507, 'epoch': 3.99}
+{'loss': 3.8161, 'grad_norm': 7.005781650543213, 'learning_rate': 0.0005068, 'epoch': 3.99}
+{'loss': 5.4329, 'grad_norm': 6.712696552276611, 'learning_rate': 0.0005066, 'epoch': 4.0}
+{'loss': 5.2872, 'grad_norm': 6.685918807983398, 'learning_rate': 0.0005064, 'epoch': 4.0}
+{'loss': 4.5241, 'grad_norm': 9.401721000671387, 'learning_rate': 0.0005061999999999999, 'epoch': 4.0}
+{'loss': 7.2804, 'grad_norm': 6.013485908508301, 'learning_rate': 0.0005059999999999999, 'epoch': 4.0}
+
+
0%| | 0/196 [00:00, ?it/s][A
+
1%| | 2/196 [00:00<01:22, 2.35it/s][A
+
2%|▏ | 3/196 [00:01<01:43, 1.86it/s][A
+
2%|▏ | 4/196 [00:02<02:03, 1.55it/s][A
+
3%|▎ | 5/196 [00:03<02:12, 1.44it/s][A
+
3%|▎ | 6/196 [00:04<02:28, 1.28it/s][A
+
4%|▎ | 7/196 [00:04<02:29, 1.26it/s][A
+
4%|▍ | 8/196 [00:05<02:38, 1.19it/s][A
+
5%|▍ | 9/196 [00:07<03:27, 1.11s/it][A
+
5%|▌ | 10/196 [00:09<04:00, 1.29s/it][A
+
6%|▌ | 11/196 [00:11<04:39, 1.51s/it][A
+
6%|▌ | 12/196 [00:12<04:44, 1.55s/it][A
+
7%|▋ | 13/196 [00:13<04:06, 1.35s/it][A
+
7%|▋ | 14/196 [00:14<03:29, 1.15s/it][A
+
8%|▊ | 15/196 [00:15<02:57, 1.02it/s][A
+
8%|▊ | 16/196 [00:15<02:45, 1.09it/s][A
+
9%|▊ | 17/196 [00:16<02:43, 1.09it/s][A
+
9%|▉ | 18/196 [00:18<03:07, 1.06s/it][A
+
10%|▉ | 19/196 [00:20<03:56, 1.33s/it][A
+
10%|█ | 20/196 [00:21<04:05, 1.40s/it][A
+
11%|█ | 21/196 [00:23<04:13, 1.45s/it][A
+
11%|█ | 22/196 [00:24<03:56, 1.36s/it][A
+
12%|█▏ | 23/196 [00:25<03:30, 1.22s/it][A
+
12%|█▏ | 24/196 [00:25<02:50, 1.01it/s][A
+
13%|█▎ | 25/196 [00:26<02:29, 1.15it/s][A
+
13%|█▎ | 26/196 [00:26<02:11, 1.29it/s][A
+
14%|█▍ | 27/196 [00:27<02:03, 1.37it/s][A
+
14%|█▍ | 28/196 [00:28<01:58, 1.41it/s][A
+
15%|█▍ | 29/196 [00:28<01:59, 1.40it/s][A
+
15%|█▌ | 30/196 [00:29<01:57, 1.41it/s][A
+
16%|█▌ | 31/196 [00:30<01:46, 1.56it/s][A
+
16%|█▋ | 32/196 [00:30<01:46, 1.54it/s][A
+
17%|█▋ | 33/196 [00:31<02:00, 1.35it/s][A
+
17%|█▋ | 34/196 [00:33<02:28, 1.09it/s][A
+
18%|█▊ | 35/196 [00:34<02:39, 1.01it/s][A
+
18%|█▊ | 36/196 [00:35<02:55, 1.10s/it][A
+
19%|█▉ | 37/196 [00:36<02:48, 1.06s/it][A
+
19%|█▉ | 38/196 [00:37<02:36, 1.01it/s][A
+
20%|█▉ | 39/196 [00:38<02:23, 1.09it/s][A
+
20%|██ | 40/196 [00:38<02:13, 1.16it/s][A
+
21%|██ | 41/196 [00:39<02:03, 1.26it/s][A
+
21%|██▏ | 42/196 [00:40<01:58, 1.30it/s][A
+
22%|██▏ | 43/196 [00:40<01:55, 1.33it/s][A
+
22%|██▏ | 44/196 [00:41<01:50, 1.38it/s][A
+
23%|██▎ | 45/196 [00:42<01:41, 1.48it/s][A
+
23%|██▎ | 46/196 [00:42<01:37, 1.53it/s][A
+
24%|██▍ | 47/196 [00:43<01:37, 1.53it/s][A
+
24%|██▍ | 48/196 [00:43<01:33, 1.58it/s][A
+
25%|██▌ | 49/196 [00:44<01:33, 1.58it/s][A
+
26%|██▌ | 50/196 [00:45<01:31, 1.60it/s][A
+
26%|██▌ | 51/196 [00:45<01:29, 1.63it/s][A
+
27%|██▋ | 52/196 [00:46<01:30, 1.59it/s][A
+
27%|██▋ | 53/196 [00:47<01:30, 1.58it/s][A
+
28%|██▊ | 54/196 [00:47<01:30, 1.57it/s][A
+
28%|██▊ | 55/196 [00:48<01:39, 1.41it/s][A
+
29%|██▊ | 56/196 [00:49<01:47, 1.30it/s][A
+
29%|██▉ | 57/196 [00:50<01:52, 1.23it/s][A
+
30%|██▉ | 58/196 [00:51<01:53, 1.22it/s][A
+
30%|███ | 59/196 [00:52<01:50, 1.24it/s][A
+
31%|███ | 60/196 [00:52<01:38, 1.38it/s][A
+
31%|███ | 61/196 [00:53<01:33, 1.45it/s][A
+
32%|███▏ | 62/196 [00:54<01:40, 1.33it/s][A
+
32%|███▏ | 63/196 [00:54<01:39, 1.33it/s][A
+
33%|███▎ | 64/196 [00:55<01:37, 1.35it/s][A
+
33%|███▎ | 65/196 [00:56<01:36, 1.36it/s][A
+
34%|███▎ | 66/196 [00:57<01:40, 1.30it/s][A
+
34%|███▍ | 67/196 [00:57<01:41, 1.27it/s][A
+
35%|███▍ | 68/196 [00:59<01:52, 1.14it/s][A
+
35%|███▌ | 69/196 [00:59<01:49, 1.16it/s][A
+
36%|███▌ | 70/196 [01:00<01:42, 1.22it/s][A
+
36%|███▌ | 71/196 [01:01<01:36, 1.30it/s][A
+
37%|███▋ | 72/196 [01:01<01:30, 1.38it/s][A
+
37%|███▋ | 73/196 [01:02<01:24, 1.46it/s][A
+
38%|███▊ | 74/196 [01:03<01:19, 1.53it/s][A
+
38%|███▊ | 75/196 [01:03<01:17, 1.57it/s][A
+
39%|███▉ | 76/196 [01:04<01:15, 1.60it/s][A
+
39%|███▉ | 77/196 [01:04<01:18, 1.52it/s][A
+
40%|███▉ | 78/196 [01:05<01:19, 1.49it/s][A
+
40%|████ | 79/196 [01:06<01:17, 1.51it/s][A
+
41%|████ | 80/196 [01:07<01:21, 1.42it/s][A
+
41%|████▏ | 81/196 [01:07<01:22, 1.40it/s][A
+
42%|████▏ | 82/196 [01:08<01:20, 1.41it/s][A
+
42%|████▏ | 83/196 [01:09<01:22, 1.37it/s][A
+
43%|████▎ | 84/196 [01:10<01:22, 1.36it/s][A
+
43%|████▎ | 85/196 [01:10<01:22, 1.35it/s][A
+
44%|████▍ | 86/196 [01:11<01:24, 1.31it/s][A
+
44%|████▍ | 87/196 [01:12<01:22, 1.32it/s][A
+
45%|████▍ | 88/196 [01:13<01:23, 1.29it/s][A
+
45%|████▌ | 89/196 [01:14<01:24, 1.26it/s][A
+
46%|████▌ | 90/196 [01:14<01:22, 1.28it/s][A
+
46%|████▋ | 91/196 [01:15<01:17, 1.35it/s][A
+
47%|████▋ | 92/196 [01:16<01:14, 1.40it/s][A
+
47%|████▋ | 93/196 [01:16<01:18, 1.32it/s][A
+
48%|████▊ | 94/196 [01:17<01:16, 1.33it/s][A
+
48%|████▊ | 95/196 [01:18<01:15, 1.34it/s][A
+
49%|████▉ | 96/196 [01:19<01:17, 1.29it/s][A
+
49%|████▉ | 97/196 [01:19<01:13, 1.34it/s][A
+
50%|█████ | 98/196 [01:20<01:15, 1.30it/s][A
+
51%|█████ | 99/196 [01:21<01:09, 1.40it/s][A
+
51%|█████ | 100/196 [01:21<01:01, 1.57it/s][A
+
52%|█████▏ | 101/196 [01:22<00:59, 1.59it/s][A
+
52%|█████▏ | 102/196 [01:23<01:03, 1.49it/s][A
+
53%|█████▎ | 103/196 [01:24<01:09, 1.34it/s][A
+
53%|█████▎ | 104/196 [01:25<01:16, 1.21it/s][A
+
54%|█████▎ | 105/196 [01:26<01:16, 1.19it/s][A
+
54%|█████▍ | 106/196 [01:26<01:14, 1.21it/s][A
+
55%|█████▍ | 107/196 [01:27<01:09, 1.29it/s][A
+
55%|█████▌ | 108/196 [01:28<01:04, 1.36it/s][A
+
56%|█████▌ | 109/196 [01:28<01:02, 1.38it/s][A
+
56%|█████▌ | 110/196 [01:29<01:00, 1.42it/s][A
+
57%|█████▋ | 111/196 [01:30<00:59, 1.43it/s][A
+
57%|█████▋ | 112/196 [01:30<01:00, 1.39it/s][A
+
58%|█████▊ | 113/196 [01:31<00:58, 1.42it/s][A
+
58%|█████▊ | 114/196 [01:32<00:53, 1.52it/s][A
+
59%|█████▊ | 115/196 [01:32<00:53, 1.52it/s][A
+
59%|█████▉ | 116/196 [01:33<00:51, 1.55it/s][A
+
60%|█████▉ | 117/196 [01:33<00:47, 1.65it/s][A
+
60%|██████ | 118/196 [01:34<00:42, 1.82it/s][A
+
61%|██████ | 119/196 [01:35<00:45, 1.69it/s][A
+
61%|██████ | 120/196 [01:35<00:46, 1.63it/s][A
+
62%|██████▏ | 121/196 [01:36<00:46, 1.60it/s][A
+
62%|██████▏ | 122/196 [01:37<00:47, 1.56it/s][A
+
63%|██████▎ | 123/196 [01:37<00:45, 1.60it/s][A
+
63%|██████▎ | 124/196 [01:38<00:46, 1.56it/s][A
+
64%|██████▍ | 125/196 [01:39<00:48, 1.47it/s][A
+
64%|██████▍ | 126/196 [01:39<00:53, 1.32it/s][A
+
65%|██████▍ | 127/196 [01:40<00:50, 1.37it/s][A
+
65%|██████▌ | 128/196 [01:41<00:47, 1.44it/s][A
+
66%|██████▌ | 129/196 [01:41<00:45, 1.46it/s][A
+
66%|██████▋ | 130/196 [01:42<00:45, 1.44it/s][A
+
67%|██████▋ | 131/196 [01:43<00:44, 1.47it/s][A
+
67%|██████▋ | 132/196 [01:43<00:40, 1.56it/s][A
+
68%|██████▊ | 133/196 [01:44<00:40, 1.56it/s][A
+
68%|██████▊ | 134/196 [01:45<00:40, 1.51it/s][A
+
69%|██████▉ | 135/196 [01:45<00:39, 1.54it/s][A
+
69%|██████▉ | 136/196 [01:46<00:38, 1.54it/s][A
+
70%|██████▉ | 137/196 [01:47<00:38, 1.54it/s][A
+
70%|███████ | 138/196 [01:47<00:37, 1.55it/s][A
+
71%|███████ | 139/196 [01:48<00:38, 1.50it/s][A
+
71%|███████▏ | 140/196 [01:49<00:35, 1.56it/s][A
+
72%|███████▏ | 141/196 [01:49<00:34, 1.58it/s][A
+
72%|███████▏ | 142/196 [01:50<00:35, 1.52it/s][A
+
73%|███████▎ | 143/196 [01:51<00:36, 1.46it/s][A
+
73%|███████▎ | 144/196 [01:51<00:33, 1.53it/s][A
+
74%|███████▍ | 145/196 [01:52<00:30, 1.66it/s][A
+
74%|███████▍ | 146/196 [01:52<00:29, 1.72it/s][A
+
75%|███████▌ | 147/196 [01:53<00:28, 1.73it/s][A
+
76%|███████▌ | 148/196 [01:53<00:28, 1.71it/s][A
+
76%|███████▌ | 149/196 [01:54<00:26, 1.80it/s][A
+
77%|███████▋ | 150/196 [01:55<00:27, 1.66it/s][A
+
77%|███████▋ | 151/196 [01:55<00:28, 1.59it/s][A
+
78%|███████▊ | 152/196 [01:56<00:27, 1.59it/s][A
+
78%|███████▊ | 153/196 [01:57<00:27, 1.59it/s][A
+
79%|███████▊ | 154/196 [01:57<00:26, 1.58it/s][A
+
79%|███████▉ | 155/196 [01:58<00:27, 1.47it/s][A
+
80%|███████▉ | 156/196 [01:59<00:29, 1.34it/s][A
+
80%|████████ | 157/196 [02:00<00:30, 1.28it/s][A
+
81%|████████ | 158/196 [02:00<00:26, 1.42it/s][A
+
81%|████████ | 159/196 [02:01<00:24, 1.52it/s][A
+
82%|████████▏ | 160/196 [02:01<00:23, 1.55it/s][A
+
82%|████████▏ | 161/196 [02:02<00:23, 1.48it/s][A
+
83%|████████▎ | 162/196 [02:03<00:22, 1.52it/s][A
+
83%|████████▎ | 163/196 [02:03<00:21, 1.55it/s][A
+
84%|████████▎ | 164/196 [02:04<00:20, 1.55it/s][A
+
84%|████████▍ | 165/196 [02:05<00:20, 1.50it/s][A
+
85%|████████▍ | 166/196 [02:05<00:19, 1.54it/s][A
+
85%|████████▌ | 167/196 [02:06<00:18, 1.58it/s][A
+
86%|████████▌ | 168/196 [02:06<00:16, 1.67it/s][A
+
86%|████████▌ | 169/196 [02:07<00:16, 1.59it/s][A
+
87%|████████▋ | 170/196 [02:08<00:17, 1.50it/s][A
+
87%|████████▋ | 171/196 [02:09<00:16, 1.52it/s][A
+
88%|████████▊ | 172/196 [02:09<00:16, 1.49it/s][A
+
88%|████████▊ | 173/196 [02:10<00:15, 1.49it/s][A
+
89%|████████▉ | 174/196 [02:11<00:15, 1.42it/s][A
+
89%|████████▉ | 175/196 [02:12<00:18, 1.13it/s][A
+
90%|████████▉ | 176/196 [02:14<00:25, 1.29s/it][A
+
90%|█████████ | 177/196 [02:16<00:27, 1.47s/it][A
+
91%|█████████ | 178/196 [02:18<00:29, 1.64s/it][A
+
91%|█████████▏| 179/196 [02:20<00:27, 1.64s/it][A
+
92%|█████████▏| 180/196 [02:21<00:21, 1.35s/it][A
+
92%|█████████▏| 181/196 [02:21<00:17, 1.14s/it][A
+
93%|█████████▎| 182/196 [02:22<00:13, 1.00it/s][A
+
93%|█████████▎| 183/196 [02:23<00:12, 1.02it/s][A
+
94%|█████████▍| 184/196 [02:23<00:10, 1.14it/s][A
+
94%|█████████▍| 185/196 [02:24<00:09, 1.18it/s][A
+
95%|█████████▍| 186/196 [02:25<00:08, 1.17it/s][A
+
95%|█████████▌| 187/196 [02:26<00:07, 1.21it/s][A
+
96%|█████████▌| 188/196 [02:27<00:06, 1.24it/s][A
+
96%|█████████▋| 189/196 [02:27<00:05, 1.29it/s][A
+
97%|█████████▋| 190/196 [02:28<00:04, 1.38it/s][A
+
97%|█████████▋| 191/196 [02:28<00:03, 1.47it/s][A
+
98%|█████████▊| 192/196 [02:29<00:02, 1.47it/s][A
+
98%|█████████▊| 193/196 [02:30<00:02, 1.46it/s][A
+
99%|█████████▉| 194/196 [02:30<00:01, 1.49it/s][A
+
99%|█████████▉| 195/196 [02:31<00:00, 1.54it/s][A
+
100%|██████████| 196/196 [02:31<00:00, 1.92it/s][A
+
[A
50%|█████ | 2500/5000 [1:26:29<36:06, 1.15it/s]
+
100%|██████████| 196/196 [02:40<00:00, 1.92it/s][A
+
[A/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
+ warnings.warn(
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
+ return fn(*args, **kwargs)
+/scratch/work/palp3/myenv/lib/python3.11/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
+ with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
+
50%|█████ | 2501/5000 [1:26:50<38:24:02, 55.32s/it]
50%|█████ | 2501/5000 [1:26:50<38:24:02, 55.32s/it]
50%|█████ | 2502/5000 [1:26:54<27:44:30, 39.98s/it]
50%|█████ | 2502/5000 [1:26:54<27:44:30, 39.98s/it]
50%|█████ | 2503/5000 [1:26:58<20:11:22, 29.11s/it]
50%|█████ | 2503/5000 [1:26:58<20:11:22, 29.11s/it]
50%|█████ | 2504/5000 [1:27:01<14:49:25, 21.38s/it]
50%|█████ | 2504/5000 [1:27:01<14:49:25, 21.38s/it]
50%|█████ | 2505/5000 [1:27:04<11:02:48, 15.94s/it]
50%|█████ | 2505/5000 [1:27:04<11:02:48, 15.94s/it]
50%|█████ | 2506/5000 [1:27:07<8:20:28, 12.04s/it]
50%|█████ | 2506/5000 [1:27:07<8:20:28, 12.04s/it]
50%|█████ | 2507/5000 [1:27:10<6:24:26, 9.25s/it]
50%|█████ | 2507/5000 [1:27:10<6:24:26, 9.25s/it]
50%|█████ | 2508/5000 [1:27:13<5:04:11, 7.32s/it]
50%|█████ | 2508/5000 [1:27:13<5:04:11, 7.32s/it]
50%|█████ | 2509/5000 [1:27:15<4:04:54, 5.90s/it]
50%|█████ | 2509/5000 [1:27:15<4:04:54, 5.90s/it]
50%|█████ | 2510/5000 [1:27:18<3:21:56, 4.87s/it]
50%|█████ | 2510/5000 [1:27:18<3:21:56, 4.87s/it]
50%|█████ | 2511/5000 [1:27:20<2:54:11, 4.20s/it]
50%|█████ | 2511/5000 [1:27:20<2:54:11, 4.20s/it]
50%|█████ | 2512/5000 [1:27:23<2:32:17, 3.67s/it]
50%|█████ | 2512/5000 [1:27:23<2:32:17, 3.67s/it]
50%|█████ | 2513/5000 [1:27:25<2:13:35, 3.22s/it]
50%|█████ | 2513/5000 [1:27:25<2:13:35, 3.22s/it]
50%|█████ | 2514/5000 [1:27:27<1:59:11, 2.88s/it]
50%|█████ | 2514/5000 [1:27:27<1:59:11, 2.88s/it]
50%|█████ | 2515/5000 [1:27:29<1:49:09, 2.64s/it]
50%|█████ | 2515/5000 [1:27:29<1:49:09, 2.64s/it]
50%|█████ | 2516/5000 [1:27:31<1:44:00, 2.51s/it]
50%|█████ | 2516/5000 [1:27:31<1:44:00, 2.51s/it]
50%|█████ | 2517/5000 [1:27:33<1:38:35, 2.38s/it]
50%|█████ | 2517/5000 [1:27:34<1:38:35, 2.38s/it]
50%|█████ | 2518/5000 [1:27:35<1:31:55, 2.22s/it]
50%|█████ | 2518/5000 [1:27:35<1:31:55, 2.22s/it]
50%|█████ | 2519/5000 [1:27:37<1:26:28, 2.09s/it]
50%|█████ | 2519/5000 [1:27:37<1:26:28, 2.09s/it]
50%|█████ | 2520/5000 [1:27:39<1:23:38, 2.02s/it]
50%|█████ | 2520/5000 [1:27:39<1:23:38, 2.02s/it]
50%|█████ | 2521/5000 [1:27:41<1:20:40, 1.95s/it]
50%|█████ | 2521/5000 [1:27:41<1:20:40, 1.95s/it]
\ No newline at end of file