--- license: mit language: - en pipeline_tag: zero-shot-image-classification tags: - vision - simple - small --- # tinyvvision 🧠✨ **tinyvvision** is a compact, synthetic curriculum-trained vision-language model designed to demonstrate real zero-shot capability in a minimal setup. Despite its small size (~630k parameters), it aligns images and captions effectively by learning shared visual-language embeddings. ## What tinyvvision can do: - Match simple geometric shapes (circles, stars, hearts, triangles, etc.) and descriptive captions (e.g., "a red circle", "a yellow star"). - Perform genuine zero-shot generalization, meaning it can correctly match captions to shapes and colors it has never explicitly encountered during training. ## Model Details: - **Type**: Contrastive embedding (CLIP-style, zero-shot) - **Parameters**: ~630,000 (tiny!) - **Training data**: Fully synthetic—randomly generated shapes, letters, numbers, and symbols paired with descriptive text captions. - **Architecture**: - **Image Encoder**: Simple CNN - **Text Encoder**: Small embedding layer + bidirectional GRU - **Embedding Dim**: 128-dimensional shared embedding space ## Examples of Zero-Shot Matching: - **Seen during training**: "a red circle" → correctly matches the drawn red circle. - **Never seen**: "a teal lightning bolt" → correctly matched a hand-drawn lightning bolt shape, despite never having seen one during training. ## Limitations: - tinyvvision is designed as a demonstration of zero-shot embedding and generalization on synthetic data. It is not trained on real-world data or complex scenarios. While robust within its domain (simple geometric shapes and clear captions), results may vary significantly on more complicated or out-of-domain inputs. ## How to Test tinyvvision: Check out the provided inference script to easily test your own shapes and captions. Feel free to challenge tinyvvision with new, unseen combinations to explore its generalization capability! ```python from huggingface_hub import hf_hub_download import torch, re, numpy as np, math from PIL import Image, ImageDraw, ImageFont repo = "ProCreations/tinyvvision" pth = hf_hub_download(repo, "cortexclip-mini.pth") device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu") state = torch.load(pth, map_location=device) idx2tok = state["vocab"] tok2idx = {t:i for i,t in enumerate(idx2tok)} def encode_txt(s, maxlen=16): toks = re.findall(r"\w+|[^\w\s]", s.lower()) ids = [tok2idx.get(t,0) for t in toks][:maxlen] return ids + [0]*(maxlen-len(ids)) class TE(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(len(idx2tok), 64) self.gru = torch.nn.GRU(64, 128, num_layers=2, bidirectional=True, batch_first=True) self.out_proj = torch.nn.Linear(256, 128) def forward(self, x): e, _ = self.gru(self.emb(x)) return self.out_proj(e[:, -1]) class IE(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(3,32,5,1,2), torch.nn.ReLU(), torch.nn.Conv2d(32,64,3,1,1), torch.nn.ReLU(), torch.nn.Conv2d(64,128,3,1,1), torch.nn.ReLU(), torch.nn.AdaptiveAvgPool2d((4,4)), torch.nn.Flatten(), torch.nn.Linear(128*4*4,128), torch.nn.ReLU() ) def forward(self, x): return self.conv(x) te, ie = TE().to(device), IE().to(device) te.load_state_dict(state["text_encoder"]) ie.load_state_dict(state["image_encoder"]) te.eval(); ie.eval() # ----- CUSTOMIZE YOUR EXAMPLES HERE ----- # To try your own image: # 1. Replace the 'custom_image()' function with your image drawing/loading code. # 2. Replace 'custom_caption' with your own caption for the image. def custom_image(): # Example: Draw your own "blue hexagon" shape below! img = Image.new("RGB",(64,64),"white") dr = ImageDraw.Draw(img) dr.regular_polygon((32,32,22), n_sides=6, fill="blue") arr = np.array(img).astype(np.float32)/255.0 return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device) custom_caption = "a blue hexagon" # ----- FUN DEMO EXAMPLES ----- def draw_red_heart(): img = Image.new("RGB",(64,64),"white") dr = ImageDraw.Draw(img) dr.polygon([(32,18),(50,34),(32,56),(14,34)], fill="red") # simple heart dr.ellipse((18,12,32,32), fill="red") dr.ellipse((32,12,46,32), fill="red") arr = np.array(img).astype(np.float32)/255.0 return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device) def draw_purple_star(): img = Image.new("RGB",(64,64),"white") dr = ImageDraw.Draw(img) points = [ (32+20*math.cos(math.radians(a)),32+20*math.sin(math.radians(a))) for a in range(-90, 270, 72) ] for i in range(5): dr.line([points[i], points[(i+2)%5]], fill="purple", width=7) arr = np.array(img).astype(np.float32)/255.0 return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device) def draw_orange_pentagon(): img = Image.new("RGB",(64,64),"white") dr = ImageDraw.Draw(img) dr.regular_polygon((32,32,22), n_sides=5, fill="orange") arr = np.array(img).astype(np.float32)/255.0 return torch.from_numpy(arr).permute(2,0,1).unsqueeze(0).to(device) demo_imgs = [ (custom_image(), custom_caption), (draw_red_heart(), "a red heart"), (draw_purple_star(), "a purple star"), (draw_orange_pentagon(), "an orange pentagon"), ] captions = [c for (_,c) in demo_imgs] img_tensors = [im for (im,_) in demo_imgs] cap_ids = torch.tensor([encode_txt(c) for c in captions], device=device) with torch.no_grad(): txt_emb = te(cap_ids) for i, (img, caption) in enumerate(zip(img_tensors, captions)): im_emb = ie(img) sim = torch.nn.functional.cosine_similarity(im_emb, txt_emb).cpu().numpy() rank = int(np.argmax(sim)) print(f"Input image {i+1}: '{caption}'") print(" Similarity scores:") for j, c in enumerate(captions): print(f" {c}: {sim[j]:.4f}") print(" Best match:", captions[rank], "\n") ``` ✨ **Enjoy experimenting!** ✨