davidberenstein1957 commited on
Commit
20e2a83
·
verified ·
1 Parent(s): ed094d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -2
README.md CHANGED
@@ -2,6 +2,8 @@
2
  library_name: diffusers
3
  tags:
4
  - pruna-ai
 
 
5
  ---
6
 
7
  # Model Card for PrunaAI/FLUX.1-Canny-dev-smashed
@@ -13,7 +15,7 @@ This model was created using the [pruna](https://github.com/PrunaAI/pruna) libra
13
  First things first, you need to install the pruna library:
14
 
15
  ```bash
16
- pip install pruna
17
  ```
18
 
19
  You can [use the diffusers library to load the model](https://huggingface.co/PrunaAI/FLUX.1-Canny-dev-smashed?library=diffusers) but this might not include all optimizations by default.
@@ -23,9 +25,30 @@ To ensure that all optimizations are applied, use the pruna library to load the
23
  ```python
24
  from pruna import PrunaModel
25
 
26
- loaded_model = PrunaModel.from_hub(
 
 
 
 
 
27
  "PrunaAI/FLUX.1-Canny-dev-smashed"
28
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  ```
30
 
31
  After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information.
 
2
  library_name: diffusers
3
  tags:
4
  - pruna-ai
5
+ base_model:
6
+ - black-forest-labs/FLUX.1-Canny-dev
7
  ---
8
 
9
  # Model Card for PrunaAI/FLUX.1-Canny-dev-smashed
 
15
  First things first, you need to install the pruna library:
16
 
17
  ```bash
18
+ pip install pruna controlnet_aux
19
  ```
20
 
21
  You can [use the diffusers library to load the model](https://huggingface.co/PrunaAI/FLUX.1-Canny-dev-smashed?library=diffusers) but this might not include all optimizations by default.
 
25
  ```python
26
  from pruna import PrunaModel
27
 
28
+ import torch
29
+ from controlnet_aux import CannyDetector
30
+ from diffusers import FluxControlPipeline
31
+ from diffusers.utils import load_image
32
+
33
+ pipe = PrunaModel.from_hub(
34
  "PrunaAI/FLUX.1-Canny-dev-smashed"
35
  )
36
+
37
+ prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
38
+ control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
39
+
40
+ processor = CannyDetector()
41
+ control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
42
+
43
+ image = pipe(
44
+ prompt=prompt,
45
+ control_image=control_image,
46
+ height=1024,
47
+ width=1024,
48
+ num_inference_steps=50,
49
+ guidance_scale=30.0,
50
+ ).images[0]
51
+ image.save("output.png")
52
  ```
53
 
54
  After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information.