sharpenb's picture
ffc187469f3beb4fe4138599a9c9241d401e693fbec54875f96d056bca4a0d2c
713d972 verified
raw
history blame
4.85 kB
"""GPT Blocks used for the GPT Model."""
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from .attention import ATTN_CLASS_REGISTRY
from .ffn import FFN_CLASS_REGISTRY, build_ffn
from .norm import NORM_CLASS_REGISTRY
try:
from flash_attn.bert_padding import unpad_input, pad_input
except:
(unpad_input, pad_input) = (None, None)
attn_config_defaults: Dict = {
"attn_type": "multihead_attention",
"attn_pdrop": 0.0,
"attn_impl": "flash",
"qk_ln": True,
"qk_gn": False,
"clip_qkv": None,
"softmax_scale": None,
"prefix_lm": False,
"attn_uses_sequence_id": False,
"sliding_window_size": -1,
"alibi": False,
"alibi_bias_max": 8,
"rope": False,
"rope_theta": 10000,
"rope_impl": "dail",
"rope_dail_config": {
"type": "original",
"pos_idx_in_fp32": True,
"xpos_scale_base": 512,
},
"rope_hf_config": {"type": "no_scaling", "factor": 1.0},
}
class MPTBlock(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
expansion_ratio: int,
attn_config: Optional[Dict] = None,
ffn_config: Optional[Dict] = None,
resid_pdrop: float = 0.0,
norm_type: str = "low_precision_layernorm",
fc_type: str = "torch",
device: Optional[str] = None,
no_bias: bool = False,
use_pad_tok_in_ffn: bool = True,
**kwargs: Any
):
if attn_config is None:
attn_config = attn_config_defaults
if ffn_config is None:
ffn_config = {"ffn_type": "mptmlp"}
del kwargs
super().__init__()
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
assert isinstance(attn_config["attn_type"], str)
attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]]
args_to_exclude_in_attn_class = {
"attn_type",
"prefix_lm",
"alibi",
"attn_uses_sequence_id",
"alibi_bias_max",
"rope",
"rope_theta",
"rope_impl",
"rope_dail_config",
"rope_hf_config",
}
attn_config_subset_for_attn_class = {
k: v
for (k, v) in attn_config.items()
if k not in args_to_exclude_in_attn_class
}
self.norm_1 = norm_class(d_model, device=device)
self.attn = attn_class(
d_model=d_model,
n_heads=n_heads,
fc_type=fc_type,
device=device,
**attn_config_subset_for_attn_class,
bias=not no_bias
)
self.norm_2 = None
if not getattr(FFN_CLASS_REGISTRY[ffn_config["ffn_type"]], "_has_norm", False):
self.norm_2 = norm_class(d_model, device=device)
self.ffn = build_ffn(
d_model=d_model,
expansion_ratio=expansion_ratio,
device=device,
bias=not no_bias,
**ffn_config
)
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
def forward(
self,
x: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attn_bias: Optional[torch.Tensor] = None,
rotary_emb_w_meta_info: Optional[Dict] = None,
attention_mask: Optional[torch.ByteTensor] = None,
is_causal: bool = True,
output_attentions: bool = False,
alibi_slopes: Optional[torch.Tensor] = None,
flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
) -> Tuple[
torch.Tensor,
Optional[torch.Tensor],
Optional[Tuple[torch.Tensor, torch.Tensor]],
]:
a = self.norm_1(x)
(b, attn_weights, past_key_value) = self.attn(
a,
past_key_value=past_key_value,
attn_bias=attn_bias,
rotary_emb_w_meta_info=rotary_emb_w_meta_info,
attention_mask=attention_mask,
is_causal=is_causal,
needs_weights=output_attentions,
alibi_slopes=alibi_slopes,
flash_attn_padding_info=flash_attn_padding_info,
)
x = x + self.resid_attn_dropout(b)
m = x
if self.norm_2 is not None:
m = self.norm_2(x)
(batch_size, seq_len) = m.size()[:2]
indices = None
if not self.use_pad_tok_in_ffn:
assert unpad_input is not None
(m, indices, _, _) = unpad_input(m, attention_mask)
n = self.ffn(m)
if not self.use_pad_tok_in_ffn:
assert pad_input is not None
n = pad_input(n, indices, batch_size, seq_len)
x = x + self.resid_ffn_dropout(n)
return (x, attn_weights, past_key_value)