import os import math import time import json import inspect from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F from safetensors.torch import save_model from transformers import PreTrainedModel, PretrainedConfig, AutoConfig, AutoModelForCausalLM from configuration_gpt import GPTConfig from huggingface_hub import HfApi import os import json import torch from safetensors.torch import save_model # Define the CausalSelfAttention class class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 self.n_head = config.n_head self.n_embd = config.n_embd def forward(self, x): B, T, C = x.size() qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y # Define the MLP class class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x # Define the Block class class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x # Define the GPT class class GPT(PreTrainedModel): config_class = GPTConfig def __init__(self, config): super().__init__(config) self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=nn.LayerNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANOGPT_SCALE_INIT'): std *= (2 * self.config.n_layer) ** -0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.size() assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" pos = torch.arange(0, T, dtype=torch.long, device=idx.device) pos_emb = self.transformer.wpe(pos) tok_emb = self.transformer.wte(idx) x = tok_emb + pos_emb for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss def save_pretrained(self, save_directory): super().save_pretrained(save_directory) torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin")) @classmethod def from_pretrained(cls, *args, **kwargs): return super().from_pretrained(*args, **kwargs) def push_to_hub(self, repo_id, private=False, commit_message="Push model to hub"): # Save the model locally self.save_pretrained(repo_id) # Use HfApi to push the model to the Hugging Face Hub api = HfApi() api.upload_folder( folder_path=repo_id, repo_id=repo_id, repo_type="model", private=private, commit_message=commit_message ) AutoConfig.register("custom_gpt", GPTConfig) AutoModelForCausalLM.register(GPTConfig, GPT) config = GPTConfig() model = GPT(config)