--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: answerdotai-ModernBERT-base-arabic-fp16-allagree results: [] --- # answerdotai-ModernBERT-base-arabic-fp16-allagree This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4267 - Accuracy: 0.8368 - Precision: 0.8342 - Recall: 0.8368 - F1: 0.8285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.9706 | 0.7463 | 50 | 0.7251 | 0.7108 | 0.7096 | 0.7108 | 0.6814 | | 1.3267 | 1.4925 | 100 | 0.5867 | 0.7677 | 0.7808 | 0.7677 | 0.7452 | | 1.1549 | 2.2388 | 150 | 0.6251 | 0.7677 | 0.7919 | 0.7677 | 0.7325 | | 1.0691 | 2.9851 | 200 | 0.4580 | 0.8330 | 0.8307 | 0.8330 | 0.8304 | | 0.9217 | 3.7313 | 250 | 0.4803 | 0.8050 | 0.8245 | 0.8050 | 0.8115 | | 0.7758 | 4.4776 | 300 | 0.4267 | 0.8368 | 0.8342 | 0.8368 | 0.8285 | | 0.7288 | 5.2239 | 350 | 0.4726 | 0.8293 | 0.8280 | 0.8293 | 0.8201 | | 0.5916 | 5.9701 | 400 | 0.4333 | 0.8368 | 0.8385 | 0.8368 | 0.8369 | | 0.4328 | 6.7164 | 450 | 0.4511 | 0.8396 | 0.8374 | 0.8396 | 0.8383 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0