--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: answerdotai-ModernBERT-large-english-fp16-allagree results: [] --- # answerdotai-ModernBERT-large-english-fp16-allagree This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1687 - Accuracy: 0.9692 - Precision: 0.9692 - Recall: 0.9692 - F1: 0.9692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1324 | 3.3448 | 50 | 0.2563 | 0.9383 | 0.9408 | 0.9383 | 0.9388 | | 0.0519 | 6.6897 | 100 | 0.1687 | 0.9692 | 0.9692 | 0.9692 | 0.9692 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1