Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: gemma
|
4 |
+
base_model: google/paligemma-3b-pt-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: pali_191805
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# pali_191805
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8563
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 2
|
40 |
+
- eval_batch_size: 2
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 8
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 2
|
47 |
+
- num_epochs: 5
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:------:|:----:|:---------------:|
|
53 |
+
| 18.2133 | 0.0444 | 50 | 1.7766 |
|
54 |
+
| 11.9694 | 0.0889 | 100 | 1.3043 |
|
55 |
+
| 9.7625 | 0.1333 | 150 | 1.1940 |
|
56 |
+
| 9.0576 | 0.1778 | 200 | 1.1325 |
|
57 |
+
| 9.3286 | 0.2222 | 250 | 1.0906 |
|
58 |
+
| 8.5435 | 0.2667 | 300 | 1.0586 |
|
59 |
+
| 8.2508 | 0.3111 | 350 | 1.0357 |
|
60 |
+
| 8.3642 | 0.3556 | 400 | 1.0151 |
|
61 |
+
| 8.0343 | 0.4 | 450 | 0.9982 |
|
62 |
+
| 8.1537 | 0.4444 | 500 | 0.9818 |
|
63 |
+
| 7.6705 | 0.4889 | 550 | 0.9672 |
|
64 |
+
| 7.6794 | 0.5333 | 600 | 0.9557 |
|
65 |
+
| 7.3842 | 0.5778 | 650 | 0.9470 |
|
66 |
+
| 7.5392 | 0.6222 | 700 | 0.9343 |
|
67 |
+
| 7.3926 | 0.6667 | 750 | 0.9233 |
|
68 |
+
| 7.5391 | 0.7111 | 800 | 0.9141 |
|
69 |
+
| 7.3299 | 0.7556 | 850 | 0.9053 |
|
70 |
+
| 7.3423 | 0.8 | 900 | 0.8974 |
|
71 |
+
| 7.4747 | 0.8444 | 950 | 0.8911 |
|
72 |
+
| 7.252 | 0.8889 | 1000 | 0.8832 |
|
73 |
+
| 7.1392 | 0.9333 | 1050 | 0.8783 |
|
74 |
+
| 6.9769 | 0.9778 | 1100 | 0.8719 |
|
75 |
+
| 7.0285 | 1.0222 | 1150 | 0.8665 |
|
76 |
+
| 6.8336 | 1.0667 | 1200 | 0.8613 |
|
77 |
+
| 6.748 | 1.1111 | 1250 | 0.8563 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- PEFT 0.14.0
|
83 |
+
- Transformers 4.51.3
|
84 |
+
- Pytorch 2.6.0+cu124
|
85 |
+
- Datasets 3.6.0
|
86 |
+
- Tokenizers 0.21.1
|