# SPDX-License-Identifier: Apache-2.0 from copy import deepcopy from typing import Any, Callable, Optional, Union import torch import vllm.model_executor.layers.fused_moe # noqa from vllm import _custom_ops as ops from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe.layer import ( FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported, UnquantizedFusedMoEMethod) from vllm.model_executor.layers.linear import (LinearMethodBase, set_weight_attrs) from vllm.model_executor.layers.quantization import QuantizationMethods from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig, QuantizeMethodBase) from vllm.model_executor.layers.quantization.kernels.mixed_precision import ( MPLinearLayerConfig, choose_mp_linear_kernel) from vllm.model_executor.layers.quantization.utils import replace_parameter from vllm.model_executor.layers.quantization.utils.gptq_utils import ( get_linear_quant_method, override_config, get_dynamic_override) from vllm.model_executor.layers.quantization.utils.marlin_utils import ( check_marlin_supported, check_moe_marlin_supports_layer, marlin_make_workspace_new, marlin_moe_permute_scales, marlin_repeat_scales_on_all_ranks, verify_marlin_supported) from vllm.model_executor.parameter import (ChannelQuantScaleParameter, GroupQuantScaleParameter, PackedColumnParameter, PackedvLLMParameter, RowvLLMParameter) from vllm.platforms import current_platform from vllm.scalar_type import scalar_types logger = init_logger(__name__) def get_moe_quant_method( config: QuantizationConfig, layer: torch.nn.Module, prefix: str, moe_method_cls: type, ): cloned_config = deepcopy(config) if isinstance(layer, FusedMoE): # False = skip module, None = no override, else = Positive match if get_dynamic_override( # noqa: E712 cloned_config, # noqa: E712 layer_name=prefix) == False: # noqa: E712 return UnquantizedFusedMoEMethod(layer.moe_config) if prefix: # Dynamic per module/layer rules may override base config override_config(cloned_config, prefix=prefix) return moe_method_cls(cloned_config) return None class GPTQMarlinConfig(QuantizationConfig): """Config class for GPTQ Marlin""" # (num_bits, is_sym) -> quant_type TYPE_MAP = { (4, True): scalar_types.uint4b8, (8, True): scalar_types.uint8b128, } def __init__(self, weight_bits: int, group_size: int, desc_act: bool, is_sym: bool, lm_head_quantized: bool, dynamic: dict[str, dict[str, Union[int, bool]]], full_config: dict[str, Any]) -> None: super().__init__() if desc_act and group_size == -1: # In this case, act_order == True is the same as act_order == False # (since we have only one group per output channel) desc_act = False # GPTQModel use `dynamic` config property to allow per module # quantization config so each module can be individually optimized. # Format is dict[str, dict] where key is a regex string that can # perform both positive ("+:" prefixed) or negative ("-:" prefixed) # matching of a module. # Default to positive match, override base quant config mode, if no # prefix is used. Value is in dict format of field key and override # value. # Negative matching will skip quantization init for this module # entirely: # non-quantized inference. More details and quantization examples can be # found at: https://github.com/ModelCloud/GPTQModel # Example: # # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9 # # last 1/4 of the layers 16-21 has 8bit and group_size 64 # dynamic = { # #`.*\.` matches the layers_node prefix # # positive match layer 10-15 # r"+:.*\.(?:1[0-5])\..*": {"bits": 8,}, # # positive match layer 16-21 # r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,}, # r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers # } self.dynamic = dynamic self.weight_bits = weight_bits self.is_sym = is_sym self.pack_factor = 32 // weight_bits # packed into int32 self.group_size = group_size self.desc_act = desc_act self.lm_head_quantized = lm_head_quantized self.full_config = full_config if (weight_bits, is_sym) not in self.TYPE_MAP: raise ValueError("Unsupported quantization config: " f"bits={weight_bits}, sym={is_sym}") self.quant_type = self.TYPE_MAP[(weight_bits, is_sym)] def __repr__(self) -> str: return (f"GPTQMarlinConfig(quant_type={self.quant_type}, " f"group_size={self.group_size}, " f"desc_act={self.desc_act}, " f"lm_head_quantized={self.lm_head_quantized}), " f"dynamic={self.dynamic}") @classmethod def get_name(cls) -> QuantizationMethods: return "gptq_marlin" @classmethod def get_supported_act_dtypes(cls) -> list[torch.dtype]: return [torch.half, torch.bfloat16] @classmethod def get_min_capability(cls) -> int: return 80 @classmethod def get_config_filenames(cls) -> list[str]: return ["quantize_config.json"] @classmethod def from_config(cls, config: dict[str, Any]) -> "GPTQMarlinConfig": dynamic = cls.get_from_keys_or(config, ["dynamic"], default={}) dynamic = {} if dynamic is None else dynamic weight_bits = cls.get_from_keys(config, ["bits"]) group_size = cls.get_from_keys(config, ["group_size"]) desc_act = cls.get_from_keys(config, ["desc_act"]) is_sym = cls.get_from_keys(config, ["sym"]) lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False) return cls(weight_bits, group_size, desc_act, is_sym, lm_head_quantized, dynamic, config) @classmethod def override_quantization_method( cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]: can_convert = cls.is_gptq_marlin_compatible(hf_quant_cfg) is_valid_user_quant = (user_quant is None or user_quant == "marlin" or user_quant == "gptq_marlin") if can_convert and is_valid_user_quant: msg = ("The model is convertible to {} during runtime." " Using {} kernel.".format(cls.get_name(), cls.get_name())) logger.info(msg) return cls.get_name() if can_convert and user_quant == "gptq": logger.info("Detected that the model can run with gptq_marlin" ", however you specified quantization=gptq explicitly," " so forcing gptq. Use quantization=gptq_marlin for" " faster inference") return None def get_quant_method(self, layer: torch.nn.Module, prefix: str) -> Optional["QuantizeMethodBase"]: if isinstance(layer, FusedMoE): from vllm.model_executor.layers.quantization.moe_wna16 import ( MoeWNA16Config) if not check_moe_marlin_supports_layer(layer, self.group_size): logger.warning_once( f"Layer '{prefix}' is not supported by GPTQMoeMarlin. " "Falling back to Moe WNA16 kernels.") return MoeWNA16Config.from_config( self.full_config).get_quant_method(layer, prefix) return get_moe_quant_method(self, layer, prefix, GPTQMarlinMoEMethod) return get_linear_quant_method(self, layer, prefix, GPTQMarlinLinearMethod) @classmethod def is_gptq_marlin_compatible(cls, quant_config: dict[str, Any]): quant_method = quant_config.get("quant_method", "").lower() num_bits = quant_config.get("bits") group_size = quant_config.get("group_size") sym = quant_config.get("sym") desc_act = quant_config.get("desc_act") if not current_platform.is_cuda(): return False if quant_method != "gptq": return False # Marlin conversion is only valid if required properties are found if (num_bits is None or group_size is None or sym is None or desc_act is None): return False if (num_bits, sym) not in cls.TYPE_MAP: return False return check_marlin_supported(quant_type=cls.TYPE_MAP[(num_bits, sym)], group_size=group_size) class GPTQMarlinLinearMethod(LinearMethodBase): """Linear method for GPTQ Marlin. Args: quant_config: The GPTQ Marlin quantization config. """ _kernel_backends_being_used: set[str] = set() def __init__(self, quant_config: GPTQMarlinConfig) -> None: self.quant_config = quant_config # Verify supported on platform. verify_marlin_supported(quant_type=self.quant_config.quant_type, group_size=self.quant_config.group_size) def create_weights( self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: list[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs, ) -> None: output_size_per_partition = sum(output_partition_sizes) is_row_parallel = input_size != input_size_per_partition weight_loader = extra_weight_attrs.get("weight_loader") mp_linear_kernel_config = MPLinearLayerConfig( full_weight_shape=(input_size, output_size), partition_weight_shape=\ (input_size_per_partition, output_size_per_partition), weight_type=self.quant_config.quant_type, act_type=params_dtype, group_size=self.quant_config.group_size, zero_points=False, has_g_idx=self.quant_config.desc_act ) kernel_type = choose_mp_linear_kernel(mp_linear_kernel_config) if kernel_type.__name__ not in self._kernel_backends_being_used: logger.info("Using %s for GPTQMarlinLinearMethod", kernel_type.__name__) self._kernel_backends_being_used.add(kernel_type.__name__) # Normalize group_size if self.quant_config.group_size != -1: group_size = self.quant_config.group_size else: group_size = input_size # Determine sharding if marlin_repeat_scales_on_all_ranks(self.quant_config.desc_act, self.quant_config.group_size, is_row_parallel): # By setting scale_dim == None, weight_loader will # repeat the scales on each GPU in TP>1 case. scales_and_zp_input_dim = None scales_and_zp_size = input_size // group_size else: # By setting scale_dim == 0, weight_loader will # shard the scales in TP>1 case. scales_and_zp_input_dim = 0 scales_and_zp_size = input_size_per_partition // group_size # Quantized weights qweight = PackedvLLMParameter( data=torch.empty( input_size_per_partition // self.quant_config.pack_factor, output_size_per_partition, dtype=torch.int32, ), input_dim=0, output_dim=1, packed_dim=0, packed_factor=self.quant_config.pack_factor, weight_loader=weight_loader) # Activation order g_idx = RowvLLMParameter(data=torch.empty( input_size_per_partition, dtype=torch.int32, ), input_dim=0, weight_loader=weight_loader) qzeros_args = { "data": torch.empty( scales_and_zp_size, output_size_per_partition // self.quant_config.pack_factor, dtype=torch.int32, ), "weight_loader": weight_loader } weight_scale_args = { "data": torch.empty( scales_and_zp_size, output_size_per_partition, dtype=params_dtype, ), "weight_loader": weight_loader } if scales_and_zp_input_dim is None: scales = ChannelQuantScaleParameter(output_dim=1, **weight_scale_args) qzeros = PackedColumnParameter( output_dim=1, packed_dim=1, packed_factor=self.quant_config.pack_factor, **qzeros_args) else: scales = GroupQuantScaleParameter(output_dim=1, input_dim=0, **weight_scale_args) qzeros = PackedvLLMParameter( input_dim=0, output_dim=1, packed_dim=1, packed_factor=self.quant_config.pack_factor, **qzeros_args) layer.register_parameter("qweight", qweight) layer.register_parameter("g_idx", g_idx) layer.register_parameter("scales", scales) layer.register_parameter("qzeros", qzeros) self.kernel = kernel_type(mp_linear_kernel_config, w_q_param_name="qweight", w_s_param_name="scales", w_zp_param_name="qzeros", w_gidx_param_name="g_idx") def process_weights_after_loading(self, layer: torch.nn.Module) -> None: self.kernel.process_weights_after_loading(layer) def apply( self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None, ) -> torch.Tensor: return self.kernel.apply_weights(layer, x, bias) class GPTQMarlinMoEMethod(FusedMoEMethodBase): """MoE Marlin method with quantization.""" def __init__(self, quant_config: GPTQMarlinConfig) -> None: self.quant_config = quant_config if self.quant_config.quant_type.size_bits == 4: self.quant_type = scalar_types.uint4b8 elif self.quant_config.quant_type.size_bits == 8: self.quant_type = scalar_types.uint8b128 else: raise ValueError( "GPTQMarlinMoEMethod only supports int4 and int8 now.") def create_weights( self, layer: torch.nn.Module, num_experts: int, hidden_size: int, intermediate_size_per_partition: int, params_dtype: torch.dtype, **extra_weight_attrs, ): intermediate_size_full = extra_weight_attrs.pop( "intermediate_size_full") self.is_k_full = (not self.quant_config.desc_act) or ( intermediate_size_per_partition == intermediate_size_full) if self.quant_config.group_size != -1: scales_size13 = hidden_size // self.quant_config.group_size w2_scales_size = (intermediate_size_full if self.quant_config.desc_act else intermediate_size_per_partition) scales_size2 = (w2_scales_size // self.quant_config.group_size) strategy = FusedMoeWeightScaleSupported.GROUP.value else: scales_size13 = 1 scales_size2 = 1 strategy = FusedMoeWeightScaleSupported.CHANNEL.value extra_weight_attrs.update({ "quant_method": strategy, "is_transposed": True }) # Fused gate_up_proj (column parallel) w13_qweight = torch.nn.Parameter( torch.empty( num_experts, hidden_size // self.quant_config.pack_factor, 2 * intermediate_size_per_partition, dtype=torch.int32, ), requires_grad=False, ) layer.register_parameter("w13_qweight", w13_qweight) set_weight_attrs(w13_qweight, extra_weight_attrs) # down_proj (row parallel) w2_qweight = torch.nn.Parameter( torch.empty( num_experts, intermediate_size_per_partition // self.quant_config.pack_factor, hidden_size, dtype=torch.int32, ), requires_grad=False, ) layer.register_parameter("w2_qweight", w2_qweight) set_weight_attrs(w2_qweight, extra_weight_attrs) # up_proj scales w13_scales = torch.nn.Parameter( torch.empty(num_experts, scales_size13, 2 * intermediate_size_per_partition, dtype=params_dtype), requires_grad=False, ) layer.register_parameter("w13_scales", w13_scales) set_weight_attrs(w13_scales, extra_weight_attrs) # down_proj scales w2_scales = torch.nn.Parameter( torch.empty(num_experts, scales_size2, hidden_size, dtype=params_dtype), requires_grad=False, ) layer.register_parameter("w2_scales", w2_scales) set_weight_attrs(w2_scales, extra_weight_attrs) # dont shard the w2 scales when running act order set_weight_attrs(w2_scales, {"load_full_w2": self.quant_config.desc_act}) # up_proj scales w13_qzeros = torch.nn.Parameter( torch.empty(num_experts, scales_size13, 2 * intermediate_size_per_partition // self.quant_config.pack_factor, dtype=params_dtype), requires_grad=False, ) layer.register_parameter("w13_qzeros", w13_qzeros) set_weight_attrs(w13_qzeros, extra_weight_attrs) # down_proj scales w2_qzeros = torch.nn.Parameter( torch.empty(num_experts, scales_size2, hidden_size // self.quant_config.pack_factor, dtype=params_dtype), requires_grad=False, ) layer.register_parameter("w2_qzeros", w2_qzeros) set_weight_attrs(w2_qzeros, extra_weight_attrs) # dont shard the w2 scales when running act order set_weight_attrs(w2_qzeros, {"load_full_w2": self.quant_config.desc_act}) w13_g_idx = torch.nn.Parameter( torch.empty( num_experts, hidden_size, dtype=torch.int32, ), requires_grad=False, ) layer.register_parameter("w13_g_idx", w13_g_idx) set_weight_attrs(w13_g_idx, extra_weight_attrs) w2_g_idx = torch.nn.Parameter( torch.empty( num_experts, intermediate_size_per_partition, dtype=torch.int32, ), requires_grad=False, ) layer.register_parameter("w2_g_idx", w2_g_idx) set_weight_attrs(w2_g_idx, extra_weight_attrs) w13_g_idx_sort_indices = torch.nn.Parameter( torch.empty( num_experts, hidden_size, dtype=torch.int32, ), requires_grad=False, ) layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices) set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs) w2_g_idx_sort_indices = torch.nn.Parameter( torch.empty( num_experts, intermediate_size_per_partition, dtype=torch.int32, ), requires_grad=False, ) layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices) set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs) device = layer.w13_qweight.device layer.workspace = marlin_make_workspace_new(device, 4) def process_weights_after_loading(self, layer: torch.nn.Module) -> None: # Process act_order if self.quant_config.desc_act: # Get sorting based on g_idx num_experts = layer.w13_g_idx.shape[0] w13_g_idx_sort_indices = torch.empty_like(layer.w13_g_idx) w2_g_idx_sort_indices = torch.empty_like(layer.w2_g_idx) w13_sorted_g_idx = torch.empty_like(layer.w13_g_idx) w2_sorted_g_idx = torch.empty_like(layer.w2_g_idx) for e in range(num_experts): w13_g_idx_sort_indices[e] = torch.argsort( layer.w13_g_idx[e]).to(torch.int32) w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_g_idx[e]).to( torch.int32) w13_sorted_g_idx[e] = layer.w13_g_idx[e][ w13_g_idx_sort_indices[e]] w2_sorted_g_idx[e] = layer.w2_g_idx[e][ w2_g_idx_sort_indices[e]] replace_parameter(layer, "w13_g_idx", w13_sorted_g_idx) replace_parameter(layer, "w2_g_idx", w2_sorted_g_idx) replace_parameter(layer, "w13_g_idx_sort_indices", w13_g_idx_sort_indices) replace_parameter(layer, "w2_g_idx_sort_indices", w2_g_idx_sort_indices) else: # Reset g_idx related tensors num_experts = layer.w13_g_idx.shape[0] device = layer.w13_g_idx.device layer.w13_g_idx = torch.nn.Parameter( torch.empty((num_experts, 0), dtype=torch.int32, device=device), requires_grad=False, ) layer.w2_g_idx = torch.nn.Parameter( torch.empty((num_experts, 0), dtype=torch.int32, device=device), requires_grad=False, ) layer.w13_g_idx_sort_indices = torch.nn.Parameter( torch.empty((num_experts, 0), dtype=torch.int32, device=device), requires_grad=False, ) layer.w2_g_idx_sort_indices = torch.nn.Parameter( torch.empty((num_experts, 0), dtype=torch.int32, device=device), requires_grad=False, ) # Repack weights marlin_w13_qweight = ops.gptq_marlin_moe_repack( layer.w13_qweight, layer.w13_g_idx_sort_indices, layer.w13_qweight.shape[1] * self.quant_config.pack_factor, layer.w13_qweight.shape[2], self.quant_config.quant_type.size_bits, ) replace_parameter(layer, "w13_qweight", marlin_w13_qweight) marlin_w2_qweight = ops.gptq_marlin_moe_repack( layer.w2_qweight, layer.w2_g_idx_sort_indices, layer.w2_qweight.shape[1] * self.quant_config.pack_factor, layer.w2_qweight.shape[2], self.quant_config.quant_type.size_bits, ) replace_parameter(layer, "w2_qweight", marlin_w2_qweight) # Repack scales marlin_w13_scales = marlin_moe_permute_scales( s=layer.w13_scales, size_k=layer.intermediate_size_per_partition, size_n=layer.w13_scales.shape[2], group_size=self.quant_config.group_size, ) replace_parameter(layer, "w13_scales", marlin_w13_scales) marlin_w2_scales = marlin_moe_permute_scales( s=layer.w2_scales, size_k=layer.w2_scales.shape[1] * (self.quant_config.group_size if self.quant_config.group_size != -1 else self.quant_config.pack_factor), size_n=layer.w2_scales.shape[2], group_size=self.quant_config.group_size, ) replace_parameter(layer, "w2_scales", marlin_w2_scales) def apply( self, layer: torch.nn.Module, x: torch.Tensor, router_logits: torch.Tensor, top_k: int, renormalize: bool, use_grouped_topk: bool = False, topk_group: Optional[int] = None, num_expert_group: Optional[int] = None, global_num_experts: int = -1, expert_map: Optional[torch.Tensor] = None, custom_routing_function: Optional[Callable] = None, scoring_func: str = "softmax", e_score_correction_bias: Optional[torch.Tensor] = None, apply_router_weight_on_input: bool = False, activation: str = "silu", ) -> torch.Tensor: assert activation == "silu", "Only SiLU activation is supported." if apply_router_weight_on_input: raise NotImplementedError( "Apply router weight on input is not supported for " "fused Marlin MoE method.") topk_weights, topk_ids = FusedMoE.select_experts( hidden_states=x, router_logits=router_logits, use_grouped_topk=use_grouped_topk, top_k=top_k, renormalize=renormalize, topk_group=topk_group, num_expert_group=num_expert_group, custom_routing_function=custom_routing_function, scoring_func=scoring_func, e_score_correction_bias=e_score_correction_bias) return torch.ops.vllm.fused_marlin_moe( x, layer.w13_qweight, layer.w2_qweight, layer.w13_scales, layer.w2_scales, router_logits, topk_weights, topk_ids, quant_type_id=self.quant_type.id, global_num_experts=global_num_experts, expert_map=expert_map, g_idx1=layer.w13_g_idx, g_idx2=layer.w2_g_idx, sort_indices1=layer.w13_g_idx_sort_indices, sort_indices2=layer.w2_g_idx_sort_indices, workspace=layer.workspace, is_k_full=self.is_k_full)