Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .mdl +0 -0
- .msc +0 -0
- .mv +1 -0
- README.md +110 -0
- awq_marlin.py +537 -0
- chat_template.jinja +103 -0
- config.json +52 -0
- configuration.json +1 -0
- model-00001-of-00015.safetensors +3 -0
- model-00002-of-00015.safetensors +3 -0
- model-00003-of-00015.safetensors +3 -0
- model-00004-of-00015.safetensors +3 -0
- model-00005-of-00015.safetensors +3 -0
- model-00006-of-00015.safetensors +3 -0
- model-00007-of-00015.safetensors +3 -0
- model-00008-of-00015.safetensors +3 -0
- model-00009-of-00015.safetensors +3 -0
- model-00010-of-00015.safetensors +3 -0
- model-00011-of-00015.safetensors +3 -0
- model-00012-of-00015.safetensors +3 -0
- model-00013-of-00015.safetensors +3 -0
- model-00014-of-00015.safetensors +3 -0
- model-00015-of-00015.safetensors +3 -0
- model.safetensors.index.json +0 -0
- tokenizer.json +3 -0
- tokenizer_config.json +325 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.mdl
ADDED
Binary file (55 Bytes). View file
|
|
.msc
ADDED
Binary file (1.89 kB). View file
|
|
.mv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Revision:master,CreatedAt:1753851721
|
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
tags:
|
5 |
+
- glm4_moe
|
6 |
+
- AWQ
|
7 |
+
- FP16Mix
|
8 |
+
- 量化修复
|
9 |
+
- vLLM
|
10 |
+
base_model:
|
11 |
+
- ZhipuAI/GLM-4.5-Air
|
12 |
+
base_model_relation: quantized
|
13 |
+
---
|
14 |
+
# GLM-4.5-Air-AWQ-FP16Mix
|
15 |
+
基础型 [ZhipuAI/GLM-4.5-Air](https://www.modelscope.cn/models/ZhipuAI/GLM-4.5-Air)
|
16 |
+
|
17 |
+
|
18 |
+
### 【Vllm 单机8卡启动命令】
|
19 |
+
<i>注: 启动该模型一定要跟`--enable-expert-parallel` ,否则其专家张量TP整除除不尽;即使是2卡也需要。 </i>
|
20 |
+
```
|
21 |
+
$CONTEXT_LENGTH=32768
|
22 |
+
|
23 |
+
vllm serve \
|
24 |
+
tclf90/GLM-4.5-Air-AWQ-FP16Mix \
|
25 |
+
--served-model-name GLM-4.5-Air-AWQ-FP16Mix \
|
26 |
+
--enable-expert-parallel \
|
27 |
+
--swap-space 16 \
|
28 |
+
--max-num-seqs 512 \
|
29 |
+
--max-model-len $CONTEXT_LENGTH \
|
30 |
+
--max-seq-len-to-capture $CONTEXT_LENGTH \
|
31 |
+
--gpu-memory-utilization 0.9 \
|
32 |
+
--tensor-parallel-size 8 \
|
33 |
+
--trust-remote-code \
|
34 |
+
--disable-log-requests \
|
35 |
+
--host 0.0.0.0 \
|
36 |
+
--port 8000
|
37 |
+
```
|
38 |
+
|
39 |
+
### 【依赖】
|
40 |
+
|
41 |
+
```
|
42 |
+
vllm==0.10.0
|
43 |
+
```
|
44 |
+
|
45 |
+
### 【❗❗vllm==0.10.0 临时补丁❗❗】
|
46 |
+
`vllm`内`awq_marlin` 在加载 awq moe模型的时候,遗漏检查 `modules_to_not_convert` 参数,导致moe的混合量化不生效/报错 [[Issue #21888]](https://github.com/vllm-project/vllm/pull/21888)。
|
47 |
+
|
48 |
+
PR merge之前,先临时将 `awq_marlin.py` 替换置 `vllm/model_executor/layers/quantization/awq_marlin.py`
|
49 |
+
|
50 |
+
### 【模型更新日期】
|
51 |
+
```
|
52 |
+
2025-07-30
|
53 |
+
1. 首次commit
|
54 |
+
```
|
55 |
+
|
56 |
+
### 【模型列表】
|
57 |
+
|
58 |
+
| 文件大小 | 最近更新时间 |
|
59 |
+
|--------|--------------|
|
60 |
+
| `69GB` | `2025-07-30` |
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
### 【模型下载】
|
65 |
+
|
66 |
+
```python
|
67 |
+
from modelscope import snapshot_download
|
68 |
+
snapshot_download('tclf90/GLM-4.5-Air-AWQ-FP16Mix', cache_dir="本地路径")
|
69 |
+
```
|
70 |
+
|
71 |
+
|
72 |
+
### 【介绍】
|
73 |
+
|
74 |
+
# GLM-4.5
|
75 |
+
|
76 |
+
<div align="center">
|
77 |
+
<img src=https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/logo.svg width="15%"/>
|
78 |
+
</div>
|
79 |
+
<p align="center">
|
80 |
+
👋 加入我们的<a href="https://github.com/zai-org/GLM-4.5/blob/main/resources/WECHAT.md" target="_blank"> 微信群 </a>。
|
81 |
+
<br>
|
82 |
+
📖 查看GLM-4.5<a href="https://z.ai/blog/glm-4.5" target="_blank"> 技术博客 </a>。
|
83 |
+
<br>
|
84 |
+
📍 在<a href="https://docs.bigmodel.cn/cn/guide/models/text/glm-4.5"> 智谱AI开放平台 </a>上使用GLM-4.5 API服务。
|
85 |
+
<br>
|
86 |
+
👉 一键体验 <a href="https://chat.z.ai" >GLM-4.5 </a>。
|
87 |
+
</p>
|
88 |
+
|
89 |
+
## 模型介绍
|
90 |
+
|
91 |
+
**GLM-4.5** 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 **3550** 亿总参数量,其中 **320** 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有
|
92 |
+
**1060** 亿总参数量,其中 **120** 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求。
|
93 |
+
|
94 |
+
GLM-4.5 和 GLM-4.5-Air 都是混合推理模型,提供两种模式:用于复杂推理和工具使用的思考模式,以及用于即时响应的非思考模式。
|
95 |
+
|
96 |
+
我们已开源了 GLM-4.5 和 GLM-4.5-Air 的基础模型、混合推理模型以及混合推理模型的FP8版本。它们采用MIT开源许可证发布,可用于商业用途和二次开发。
|
97 |
+
|
98 |
+
在我们对12项行业标准基准的全面评估中,GLM-4.5表现卓越,得分 **63.2**,在所有专有和开源模型中排名**第3**
|
99 |
+
。值得注意的是,GLM-4.5-Air在保持优异效率的同时,仍取得了 **59.8** 的竞争性成绩。
|
100 |
+
|
101 |
+

|
102 |
+
|
103 |
+
如需了解更多评估结果、展示案例和技术细节,请访问我们的 [技术博客](https://z.ai/blog/glm-4.5)。技术报告将很快发布。
|
104 |
+
|
105 |
+
模型代码、工具解析器和推理解析器可在 [transformers](https://github.com/huggingface/transformers/tree/main/src/transformers/models/glm4_moe)、 [vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/glm4_moe_mtp.py)
|
106 |
+
和 [SGLang](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/glm4_moe.py) 的实现中找到。
|
107 |
+
|
108 |
+
## 快速开始
|
109 |
+
|
110 |
+
请参考我们的[github](https://github.com/zai-org/GLM-4.5)项目。
|
awq_marlin.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: Apache-2.0
|
2 |
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
3 |
+
|
4 |
+
from copy import deepcopy
|
5 |
+
from typing import Any, Callable, Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch.nn import Parameter
|
9 |
+
|
10 |
+
import vllm.model_executor.layers.fused_moe # noqa
|
11 |
+
from vllm import _custom_ops as ops
|
12 |
+
from vllm.logger import init_logger
|
13 |
+
from vllm.model_executor.layers.fused_moe.layer import (
|
14 |
+
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported,
|
15 |
+
UnquantizedFusedMoEMethod)
|
16 |
+
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
17 |
+
UnquantizedLinearMethod,
|
18 |
+
set_weight_attrs)
|
19 |
+
from vllm.model_executor.layers.quantization import QuantizationMethods
|
20 |
+
from vllm.model_executor.layers.quantization.awq import (AWQConfig,
|
21 |
+
is_layer_skipped_awq)
|
22 |
+
from vllm.model_executor.layers.quantization.base_config import (
|
23 |
+
QuantizationConfig, QuantizeMethodBase)
|
24 |
+
from vllm.model_executor.layers.quantization.utils import replace_parameter
|
25 |
+
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
26 |
+
apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported,
|
27 |
+
check_marlin_supports_layer, check_moe_marlin_supports_layer,
|
28 |
+
marlin_make_empty_g_idx, marlin_make_workspace_new,
|
29 |
+
marlin_moe_permute_scales, marlin_permute_scales,
|
30 |
+
moe_awq_to_marlin_zero_points, verify_marlin_supported,
|
31 |
+
verify_marlin_supports_shape)
|
32 |
+
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
33 |
+
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
|
34 |
+
PackedvLLMParameter)
|
35 |
+
from vllm.platforms import current_platform
|
36 |
+
from vllm.scalar_type import scalar_types
|
37 |
+
|
38 |
+
logger = init_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
def get_moe_quant_method(
|
42 |
+
config: QuantizationConfig,
|
43 |
+
layer: torch.nn.Module,
|
44 |
+
prefix: str,
|
45 |
+
moe_method_cls: type,
|
46 |
+
):
|
47 |
+
if isinstance(layer, FusedMoE) and is_layer_skipped_awq(prefix, getattr(config, "modules_to_not_convert", [])):
|
48 |
+
return UnquantizedFusedMoEMethod(layer.moe_config)
|
49 |
+
return moe_method_cls(config)
|
50 |
+
|
51 |
+
|
52 |
+
class AWQMarlinConfig(QuantizationConfig):
|
53 |
+
"""Config class for AWQ Marlin"""
|
54 |
+
|
55 |
+
# num_bits -> type
|
56 |
+
TYPE_MAP = {
|
57 |
+
4: scalar_types.uint4,
|
58 |
+
8: scalar_types.uint8,
|
59 |
+
}
|
60 |
+
|
61 |
+
def __init__(self, weight_bits: int, group_size: int, zero_point: bool,
|
62 |
+
lm_head_quantized: bool,
|
63 |
+
modules_to_not_convert: Optional[list[str]],
|
64 |
+
full_config: dict[str, Any]) -> None:
|
65 |
+
super().__init__()
|
66 |
+
self.pack_factor = 32 // weight_bits # packed into int32
|
67 |
+
self.group_size = group_size
|
68 |
+
self.zero_point = zero_point
|
69 |
+
self.lm_head_quantized = lm_head_quantized
|
70 |
+
self.weight_bits = weight_bits
|
71 |
+
self.modules_to_not_convert = modules_to_not_convert or []
|
72 |
+
self.full_config = full_config
|
73 |
+
|
74 |
+
if self.weight_bits not in self.TYPE_MAP:
|
75 |
+
raise ValueError(f"Unsupported num_bits = {self.weight_bits}. "
|
76 |
+
f"Supported num_bits = {self.TYPE_MAP.keys()}")
|
77 |
+
|
78 |
+
self.quant_type = self.TYPE_MAP[self.weight_bits]
|
79 |
+
|
80 |
+
verify_marlin_supported(self.quant_type,
|
81 |
+
group_size=self.group_size,
|
82 |
+
has_zp=self.zero_point)
|
83 |
+
|
84 |
+
def __repr__(self) -> str:
|
85 |
+
return (f"AWQMarlinConfig(quant_type={self.quant_type}, "
|
86 |
+
f"group_size={self.group_size}, "
|
87 |
+
f"zero_point={self.zero_point}, "
|
88 |
+
f"lm_head_quantized={self.lm_head_quantized}, "
|
89 |
+
f"modules_to_not_convert={self.modules_to_not_convert})")
|
90 |
+
|
91 |
+
@classmethod
|
92 |
+
def get_name(cls) -> QuantizationMethods:
|
93 |
+
return "awq_marlin"
|
94 |
+
|
95 |
+
@classmethod
|
96 |
+
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
|
97 |
+
return [torch.half, torch.bfloat16]
|
98 |
+
|
99 |
+
@classmethod
|
100 |
+
def get_min_capability(cls) -> int:
|
101 |
+
return 80
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def get_config_filenames(cls) -> list[str]:
|
105 |
+
return ["quantize_config.json"]
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_config(cls, config: dict[str, Any]) -> "AWQMarlinConfig":
|
109 |
+
weight_bits = cls.get_from_keys(config, ["bits"])
|
110 |
+
group_size = cls.get_from_keys(config, ["group_size"])
|
111 |
+
zero_point = cls.get_from_keys(config, ["zero_point"])
|
112 |
+
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
|
113 |
+
default=False)
|
114 |
+
modules_to_not_convert = cls.get_from_keys_or(
|
115 |
+
config, ["modules_to_not_convert"], None)
|
116 |
+
return cls(weight_bits, group_size, zero_point, lm_head_quantized,
|
117 |
+
modules_to_not_convert, config)
|
118 |
+
|
119 |
+
@classmethod
|
120 |
+
def override_quantization_method(
|
121 |
+
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
|
122 |
+
can_convert = cls.is_awq_marlin_compatible(hf_quant_cfg)
|
123 |
+
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
|
124 |
+
or user_quant == "awq_marlin")
|
125 |
+
|
126 |
+
if can_convert and is_valid_user_quant:
|
127 |
+
msg = ("The model is convertible to {} during runtime."
|
128 |
+
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
|
129 |
+
logger.info(msg)
|
130 |
+
return cls.get_name()
|
131 |
+
|
132 |
+
if can_convert and user_quant == "awq":
|
133 |
+
logger.info("Detected that the model can run with awq_marlin"
|
134 |
+
", however you specified quantization=awq explicitly,"
|
135 |
+
" so forcing awq. Use quantization=awq_marlin for"
|
136 |
+
" faster inference")
|
137 |
+
return None
|
138 |
+
|
139 |
+
def get_quant_method(self, layer: torch.nn.Module,
|
140 |
+
prefix: str) -> Optional["QuantizeMethodBase"]:
|
141 |
+
if (isinstance(layer, LinearBase) or
|
142 |
+
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
|
143 |
+
if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
|
144 |
+
return UnquantizedLinearMethod()
|
145 |
+
# Check if the layer is supported by AWQMarlin.
|
146 |
+
if not check_marlin_supports_layer(layer, self.group_size):
|
147 |
+
logger.warning_once(
|
148 |
+
"Layer '%s' is not supported by AWQMarlin. Falling back to unoptimized AWQ kernels.", # noqa: E501
|
149 |
+
prefix,
|
150 |
+
)
|
151 |
+
return AWQConfig.from_config(
|
152 |
+
self.full_config).get_quant_method(layer, prefix)
|
153 |
+
return AWQMarlinLinearMethod(self)
|
154 |
+
elif isinstance(layer, FusedMoE):
|
155 |
+
from vllm.model_executor.layers.quantization.moe_wna16 import (
|
156 |
+
MoeWNA16Config)
|
157 |
+
if not check_moe_marlin_supports_layer(layer, self.group_size):
|
158 |
+
logger.warning_once(
|
159 |
+
f"Layer '{prefix}' is not supported by AWQMoeMarlin. "
|
160 |
+
"Falling back to Moe WNA16 kernels.")
|
161 |
+
return MoeWNA16Config.from_config(
|
162 |
+
self.full_config).get_quant_method(layer, prefix)
|
163 |
+
return get_moe_quant_method(self, layer, prefix,
|
164 |
+
AWQMoEMethod)
|
165 |
+
return None
|
166 |
+
|
167 |
+
@classmethod
|
168 |
+
def is_awq_marlin_compatible(cls, quant_config: dict[str, Any]):
|
169 |
+
# Extract data from quant config.
|
170 |
+
quant_method = quant_config.get("quant_method", "").lower()
|
171 |
+
num_bits = quant_config.get("bits")
|
172 |
+
group_size = quant_config.get("group_size")
|
173 |
+
zero_point = quant_config.get("zero_point")
|
174 |
+
|
175 |
+
if not current_platform.is_cuda():
|
176 |
+
return False
|
177 |
+
|
178 |
+
if quant_method != "awq":
|
179 |
+
return False
|
180 |
+
|
181 |
+
# If we cannot find the info needed in the config, cannot convert.
|
182 |
+
if (num_bits is None or group_size is None or zero_point is None):
|
183 |
+
return False
|
184 |
+
|
185 |
+
if num_bits not in cls.TYPE_MAP:
|
186 |
+
return False
|
187 |
+
|
188 |
+
return check_marlin_supported(quant_type=cls.TYPE_MAP[num_bits],
|
189 |
+
group_size=group_size,
|
190 |
+
has_zp=zero_point)
|
191 |
+
|
192 |
+
|
193 |
+
class AWQMarlinLinearMethod(LinearMethodBase):
|
194 |
+
"""Linear method for AWQ Marlin.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
quant_config: The AWQ Marlin quantization config.
|
198 |
+
"""
|
199 |
+
|
200 |
+
def __init__(self, quant_config: AWQMarlinConfig) -> None:
|
201 |
+
self.quant_config = quant_config
|
202 |
+
|
203 |
+
def create_weights(
|
204 |
+
self,
|
205 |
+
layer: torch.nn.Module,
|
206 |
+
input_size_per_partition: int,
|
207 |
+
output_partition_sizes: list[int],
|
208 |
+
input_size: int,
|
209 |
+
output_size: int,
|
210 |
+
params_dtype: torch.dtype,
|
211 |
+
**extra_weight_attrs,
|
212 |
+
) -> None:
|
213 |
+
del output_size
|
214 |
+
output_size_per_partition = sum(output_partition_sizes)
|
215 |
+
weight_loader = extra_weight_attrs.get("weight_loader")
|
216 |
+
|
217 |
+
# Normalize group_size
|
218 |
+
if self.quant_config.group_size != -1:
|
219 |
+
group_size = self.quant_config.group_size
|
220 |
+
else:
|
221 |
+
group_size = input_size
|
222 |
+
|
223 |
+
verify_marlin_supports_shape(
|
224 |
+
output_size_per_partition=output_size_per_partition,
|
225 |
+
input_size_per_partition=input_size_per_partition,
|
226 |
+
input_size=input_size,
|
227 |
+
group_size=group_size)
|
228 |
+
|
229 |
+
qweight = PackedvLLMParameter(
|
230 |
+
data=torch.empty(
|
231 |
+
input_size_per_partition,
|
232 |
+
output_size_per_partition // self.quant_config.pack_factor,
|
233 |
+
dtype=torch.int32,
|
234 |
+
),
|
235 |
+
input_dim=0,
|
236 |
+
output_dim=1,
|
237 |
+
packed_dim=1,
|
238 |
+
packed_factor=self.quant_config.pack_factor,
|
239 |
+
weight_loader=weight_loader)
|
240 |
+
|
241 |
+
num_groups = input_size_per_partition // group_size
|
242 |
+
|
243 |
+
qzeros = PackedvLLMParameter(
|
244 |
+
data=torch.empty(
|
245 |
+
num_groups,
|
246 |
+
output_size_per_partition // self.quant_config.pack_factor,
|
247 |
+
dtype=torch.int32,
|
248 |
+
),
|
249 |
+
input_dim=0,
|
250 |
+
output_dim=1,
|
251 |
+
packed_dim=1,
|
252 |
+
packed_factor=self.quant_config.pack_factor,
|
253 |
+
weight_loader=weight_loader)
|
254 |
+
|
255 |
+
scales = GroupQuantScaleParameter(data=torch.empty(
|
256 |
+
num_groups,
|
257 |
+
output_size_per_partition,
|
258 |
+
dtype=params_dtype,
|
259 |
+
),
|
260 |
+
input_dim=0,
|
261 |
+
output_dim=1,
|
262 |
+
weight_loader=weight_loader)
|
263 |
+
|
264 |
+
layer.register_parameter("qweight", qweight)
|
265 |
+
layer.register_parameter("qzeros", qzeros)
|
266 |
+
layer.register_parameter("scales", scales)
|
267 |
+
|
268 |
+
layer.input_size_per_partition = input_size_per_partition
|
269 |
+
layer.output_size_per_partition = output_size_per_partition
|
270 |
+
layer.num_groups = num_groups
|
271 |
+
|
272 |
+
# TODO: Update this docs
|
273 |
+
# Checkpoints are serialized in AutoAWQ format, which is different from the
|
274 |
+
# marlin format. This function is called after the weights are loaded.
|
275 |
+
# Here, we handle the repacking
|
276 |
+
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
277 |
+
device = layer.qweight.device
|
278 |
+
layer.qweight = torch.nn.Parameter(layer.qweight.data,
|
279 |
+
requires_grad=False)
|
280 |
+
layer.qzeros = torch.nn.Parameter(layer.qzeros.data,
|
281 |
+
requires_grad=False)
|
282 |
+
layer.scales = torch.nn.Parameter(layer.scales.data,
|
283 |
+
requires_grad=False)
|
284 |
+
|
285 |
+
# Allocate marlin workspace
|
286 |
+
layer.workspace = marlin_make_workspace_new(device)
|
287 |
+
|
288 |
+
# Repack weights from AWQ format to marlin format.
|
289 |
+
marlin_qweight = ops.awq_marlin_repack(
|
290 |
+
layer.qweight,
|
291 |
+
size_k=layer.input_size_per_partition,
|
292 |
+
size_n=layer.output_size_per_partition,
|
293 |
+
num_bits=self.quant_config.quant_type.size_bits)
|
294 |
+
replace_parameter(layer, "qweight", marlin_qweight)
|
295 |
+
|
296 |
+
# Permute scales from AWQ format to marlin format.
|
297 |
+
marlin_scales = marlin_permute_scales(
|
298 |
+
layer.scales,
|
299 |
+
size_k=layer.input_size_per_partition,
|
300 |
+
size_n=layer.output_size_per_partition,
|
301 |
+
group_size=self.quant_config.group_size)
|
302 |
+
replace_parameter(layer, "scales", marlin_scales)
|
303 |
+
|
304 |
+
# Permute zero-points from AWQ format to marlin format.
|
305 |
+
marlin_zp = awq_to_marlin_zero_points(
|
306 |
+
layer.qzeros,
|
307 |
+
size_k=layer.num_groups,
|
308 |
+
size_n=layer.output_size_per_partition,
|
309 |
+
num_bits=self.quant_config.quant_type.size_bits)
|
310 |
+
replace_parameter(layer, "qzeros", marlin_zp)
|
311 |
+
|
312 |
+
# Not-used
|
313 |
+
layer.g_idx = marlin_make_empty_g_idx(device)
|
314 |
+
layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
|
315 |
+
|
316 |
+
def apply(
|
317 |
+
self,
|
318 |
+
layer: torch.nn.Module,
|
319 |
+
x: torch.Tensor,
|
320 |
+
bias: Optional[torch.Tensor] = None,
|
321 |
+
) -> torch.Tensor:
|
322 |
+
return apply_awq_marlin_linear(
|
323 |
+
input=x,
|
324 |
+
weight=layer.qweight,
|
325 |
+
weight_scale=layer.scales,
|
326 |
+
weight_zp=layer.qzeros,
|
327 |
+
g_idx=layer.g_idx,
|
328 |
+
g_idx_sort_indices=layer.g_idx_sort_indices,
|
329 |
+
workspace=layer.workspace,
|
330 |
+
quant_type=self.quant_config.quant_type,
|
331 |
+
output_size_per_partition=layer.output_size_per_partition,
|
332 |
+
input_size_per_partition=layer.input_size_per_partition,
|
333 |
+
bias=bias)
|
334 |
+
|
335 |
+
|
336 |
+
class AWQMoEMethod(FusedMoEMethodBase):
|
337 |
+
|
338 |
+
def __init__(self, quant_config: AWQMarlinConfig):
|
339 |
+
self.quant_config = quant_config
|
340 |
+
if self.quant_config.weight_bits != 4:
|
341 |
+
raise ValueError("AWQMoEMethod only supports 4bit now.")
|
342 |
+
self.quant_type = scalar_types.uint4
|
343 |
+
|
344 |
+
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
345 |
+
hidden_size: int, intermediate_size_per_partition: int,
|
346 |
+
params_dtype: torch.dtype, **extra_weight_attrs):
|
347 |
+
extra_weight_attrs.update({
|
348 |
+
"is_transposed":
|
349 |
+
True,
|
350 |
+
"quant_method":
|
351 |
+
FusedMoeWeightScaleSupported.GROUP.value,
|
352 |
+
})
|
353 |
+
|
354 |
+
w13_qweight = Parameter(
|
355 |
+
torch.empty(num_experts,
|
356 |
+
hidden_size,
|
357 |
+
2 * intermediate_size_per_partition //
|
358 |
+
self.quant_config.pack_factor,
|
359 |
+
dtype=torch.int32),
|
360 |
+
requires_grad=False)
|
361 |
+
layer.register_parameter("w13_qweight", w13_qweight)
|
362 |
+
set_weight_attrs(w13_qweight, extra_weight_attrs)
|
363 |
+
|
364 |
+
w2_qweight = Parameter(torch.empty(num_experts,
|
365 |
+
intermediate_size_per_partition,
|
366 |
+
hidden_size //
|
367 |
+
self.quant_config.pack_factor,
|
368 |
+
dtype=torch.int32),
|
369 |
+
requires_grad=False)
|
370 |
+
layer.register_parameter("w2_qweight", w2_qweight)
|
371 |
+
set_weight_attrs(w2_qweight, extra_weight_attrs)
|
372 |
+
|
373 |
+
num_groups_w13 = hidden_size // self.quant_config.group_size
|
374 |
+
num_groups_w2 = (intermediate_size_per_partition //
|
375 |
+
self.quant_config.group_size)
|
376 |
+
|
377 |
+
# WEIGHT_SCALES
|
378 |
+
# Allocate 2 scales for w1 and w3 respectively.
|
379 |
+
w13_scales = Parameter(torch.empty(num_experts,
|
380 |
+
num_groups_w13,
|
381 |
+
intermediate_size_per_partition * 2,
|
382 |
+
dtype=params_dtype),
|
383 |
+
requires_grad=False)
|
384 |
+
layer.register_parameter("w13_scales", w13_scales)
|
385 |
+
set_weight_attrs(w13_scales, extra_weight_attrs)
|
386 |
+
|
387 |
+
w2_scales = Parameter(torch.empty(num_experts,
|
388 |
+
num_groups_w2,
|
389 |
+
hidden_size,
|
390 |
+
dtype=params_dtype),
|
391 |
+
requires_grad=False)
|
392 |
+
layer.register_parameter("w2_scales", w2_scales)
|
393 |
+
set_weight_attrs(w2_scales, extra_weight_attrs)
|
394 |
+
|
395 |
+
# WEIGHT_ZERO_POINT
|
396 |
+
# Allocate 2 zero points for w1 and w3 respectively.
|
397 |
+
w13_qzeros = Parameter(
|
398 |
+
torch.empty(num_experts,
|
399 |
+
num_groups_w13,
|
400 |
+
2 * intermediate_size_per_partition //
|
401 |
+
self.quant_config.pack_factor,
|
402 |
+
dtype=torch.int32),
|
403 |
+
requires_grad=False)
|
404 |
+
layer.register_parameter("w13_qzeros", w13_qzeros)
|
405 |
+
set_weight_attrs(w13_qzeros, extra_weight_attrs)
|
406 |
+
|
407 |
+
w2_qzeros = Parameter(torch.empty(num_experts,
|
408 |
+
num_groups_w2,
|
409 |
+
hidden_size //
|
410 |
+
self.quant_config.pack_factor,
|
411 |
+
dtype=torch.int32),
|
412 |
+
requires_grad=False)
|
413 |
+
layer.register_parameter("w2_qzeros", w2_qzeros)
|
414 |
+
set_weight_attrs(w2_qzeros, extra_weight_attrs)
|
415 |
+
|
416 |
+
device = layer.w13_qweight.device
|
417 |
+
layer.workspace = marlin_make_workspace_new(device, 4)
|
418 |
+
|
419 |
+
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
420 |
+
num_experts = layer.w13_qweight.shape[0]
|
421 |
+
device = layer.w13_qweight.device
|
422 |
+
|
423 |
+
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
|
424 |
+
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
|
425 |
+
requires_grad=False,
|
426 |
+
)
|
427 |
+
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
|
428 |
+
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
|
429 |
+
requires_grad=False,
|
430 |
+
)
|
431 |
+
|
432 |
+
marlin_w13_qweight = ops.awq_marlin_moe_repack(
|
433 |
+
layer.w13_qweight,
|
434 |
+
layer.w13_g_idx_sort_indices,
|
435 |
+
size_k=layer.w13_qweight.shape[1],
|
436 |
+
size_n=layer.w13_qweight.shape[2] * self.quant_config.pack_factor,
|
437 |
+
num_bits=self.quant_config.weight_bits,
|
438 |
+
)
|
439 |
+
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
|
440 |
+
|
441 |
+
marlin_w2_qweight = ops.awq_marlin_moe_repack(
|
442 |
+
layer.w2_qweight,
|
443 |
+
layer.w2_g_idx_sort_indices,
|
444 |
+
size_k=layer.w2_qweight.shape[1],
|
445 |
+
size_n=layer.w2_qweight.shape[2] * self.quant_config.pack_factor,
|
446 |
+
num_bits=self.quant_config.weight_bits,
|
447 |
+
)
|
448 |
+
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
|
449 |
+
|
450 |
+
# Why does this take the intermediate size for size_k?
|
451 |
+
marlin_w13_scales = marlin_moe_permute_scales(
|
452 |
+
s=layer.w13_scales,
|
453 |
+
size_k=layer.intermediate_size_per_partition,
|
454 |
+
size_n=layer.w13_scales.shape[2],
|
455 |
+
group_size=self.quant_config.group_size,
|
456 |
+
)
|
457 |
+
|
458 |
+
replace_parameter(layer, "w13_scales", marlin_w13_scales)
|
459 |
+
|
460 |
+
marlin_w2_scales = marlin_moe_permute_scales(
|
461 |
+
s=layer.w2_scales,
|
462 |
+
size_k=layer.intermediate_size_per_partition,
|
463 |
+
size_n=layer.w2_scales.shape[2],
|
464 |
+
group_size=self.quant_config.group_size,
|
465 |
+
)
|
466 |
+
replace_parameter(layer, "w2_scales", marlin_w2_scales)
|
467 |
+
|
468 |
+
marlin_w13_zp = moe_awq_to_marlin_zero_points(
|
469 |
+
layer.w13_qzeros,
|
470 |
+
size_k=layer.w13_qzeros.shape[1],
|
471 |
+
size_n=layer.w13_qzeros.shape[2] * self.quant_config.pack_factor,
|
472 |
+
num_bits=self.quant_config.weight_bits)
|
473 |
+
replace_parameter(layer, "w13_qzeros", marlin_w13_zp)
|
474 |
+
|
475 |
+
marlin_w2_zp = moe_awq_to_marlin_zero_points(
|
476 |
+
layer.w2_qzeros,
|
477 |
+
size_k=layer.w2_qzeros.shape[1],
|
478 |
+
size_n=layer.w2_qzeros.shape[2] * self.quant_config.pack_factor,
|
479 |
+
num_bits=self.quant_config.weight_bits)
|
480 |
+
replace_parameter(layer, "w2_qzeros", marlin_w2_zp)
|
481 |
+
|
482 |
+
def apply(
|
483 |
+
self,
|
484 |
+
layer: torch.nn.Module,
|
485 |
+
x: torch.Tensor,
|
486 |
+
router_logits: torch.Tensor,
|
487 |
+
top_k: int,
|
488 |
+
renormalize: bool,
|
489 |
+
use_grouped_topk: bool = False,
|
490 |
+
topk_group: Optional[int] = None,
|
491 |
+
num_expert_group: Optional[int] = None,
|
492 |
+
global_num_experts: int = -1,
|
493 |
+
expert_map: Optional[torch.Tensor] = None,
|
494 |
+
custom_routing_function: Optional[Callable] = None,
|
495 |
+
scoring_func: str = "softmax",
|
496 |
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
497 |
+
apply_router_weight_on_input: bool = False,
|
498 |
+
activation: str = "silu",
|
499 |
+
enable_eplb: bool = False,
|
500 |
+
expert_load_view: Optional[torch.Tensor] = None,
|
501 |
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
502 |
+
logical_replica_count: Optional[torch.Tensor] = None,
|
503 |
+
) -> torch.Tensor:
|
504 |
+
if enable_eplb:
|
505 |
+
raise NotImplementedError(
|
506 |
+
"EPLB not supported for `AWQMoEMethod` yet.")
|
507 |
+
|
508 |
+
assert activation == "silu", "Only SiLU activation is supported."
|
509 |
+
|
510 |
+
topk_weights, topk_ids = FusedMoE.select_experts(
|
511 |
+
hidden_states=x,
|
512 |
+
router_logits=router_logits,
|
513 |
+
use_grouped_topk=use_grouped_topk,
|
514 |
+
top_k=top_k,
|
515 |
+
renormalize=renormalize,
|
516 |
+
topk_group=topk_group,
|
517 |
+
num_expert_group=num_expert_group,
|
518 |
+
custom_routing_function=custom_routing_function,
|
519 |
+
scoring_func=scoring_func,
|
520 |
+
e_score_correction_bias=e_score_correction_bias)
|
521 |
+
|
522 |
+
return torch.ops.vllm.fused_marlin_moe(
|
523 |
+
x,
|
524 |
+
layer.w13_qweight,
|
525 |
+
layer.w2_qweight,
|
526 |
+
layer.w13_scales,
|
527 |
+
layer.w2_scales,
|
528 |
+
router_logits,
|
529 |
+
topk_weights,
|
530 |
+
topk_ids,
|
531 |
+
quant_type_id=self.quant_type.id,
|
532 |
+
apply_router_weight_on_input=apply_router_weight_on_input,
|
533 |
+
global_num_experts=global_num_experts,
|
534 |
+
expert_map=expert_map,
|
535 |
+
w1_zeros=layer.w13_qzeros,
|
536 |
+
w2_zeros=layer.w2_qzeros,
|
537 |
+
workspace=layer.workspace)
|
chat_template.jinja
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[gMASK]<sop>
|
2 |
+
{%- if tools -%}
|
3 |
+
<|system|>
|
4 |
+
# Tools
|
5 |
+
|
6 |
+
You may call one or more functions to assist with the user query.
|
7 |
+
|
8 |
+
You are provided with function signatures within <tools></tools> XML tags:
|
9 |
+
<tools>
|
10 |
+
{% for tool in tools %}
|
11 |
+
{{ tool | tojson(ensure_ascii=False) }}
|
12 |
+
{% endfor %}
|
13 |
+
</tools>
|
14 |
+
|
15 |
+
For each function call, output the function name and arguments within the following XML format:
|
16 |
+
<tool_call>{function-name}
|
17 |
+
<arg_key>{arg-key-1}</arg_key>
|
18 |
+
<arg_value>{arg-value-1}</arg_value>
|
19 |
+
<arg_key>{arg-key-2}</arg_key>
|
20 |
+
<arg_value>{arg-value-2}</arg_value>
|
21 |
+
...
|
22 |
+
</tool_call>{%- endif -%}
|
23 |
+
{%- macro visible_text(content) -%}
|
24 |
+
{%- if content is string -%}
|
25 |
+
{{- content }}
|
26 |
+
{%- elif content is iterable and content is not mapping -%}
|
27 |
+
{%- for item in content -%}
|
28 |
+
{%- if item is mapping and item.type == 'text' -%}
|
29 |
+
{{- item.text }}
|
30 |
+
{%- elif item is string -%}
|
31 |
+
{{- item }}
|
32 |
+
{%- endif -%}
|
33 |
+
{%- endfor -%}
|
34 |
+
{%- else -%}
|
35 |
+
{{- content }}
|
36 |
+
{%- endif -%}
|
37 |
+
{%- endmacro -%}
|
38 |
+
{%- set ns = namespace(last_user_index=-1) %}
|
39 |
+
{%- for m in messages %}
|
40 |
+
{%- if m.role == 'user' %}
|
41 |
+
{% set ns.last_user_index = loop.index0 -%}
|
42 |
+
{%- endif %}
|
43 |
+
{%- endfor %}
|
44 |
+
{% for m in messages %}
|
45 |
+
{%- if m.role == 'user' -%}<|user|>
|
46 |
+
{{ visible_text(m.content) }}
|
47 |
+
{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}
|
48 |
+
{%- elif m.role == 'assistant' -%}
|
49 |
+
<|assistant|>
|
50 |
+
{%- set reasoning_content = '' %}
|
51 |
+
{%- set content = visible_text(m.content) %}
|
52 |
+
{%- if m.reasoning_content is string %}
|
53 |
+
{%- set reasoning_content = m.reasoning_content %}
|
54 |
+
{%- else %}
|
55 |
+
{%- if '</think>' in content %}
|
56 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
57 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
58 |
+
{%- endif %}
|
59 |
+
{%- endif %}
|
60 |
+
{%- if loop.index0 > ns.last_user_index and reasoning_content -%}
|
61 |
+
{{ '\n<think>' + reasoning_content.strip() + '</think>'}}
|
62 |
+
{%- else -%}
|
63 |
+
{{ '\n<think></think>' }}
|
64 |
+
{%- endif -%}
|
65 |
+
{%- if content.strip() -%}
|
66 |
+
{{ '\n' + content.strip() }}
|
67 |
+
{%- endif -%}
|
68 |
+
{% if m.tool_calls %}
|
69 |
+
{% for tc in m.tool_calls %}
|
70 |
+
{%- if tc.function %}
|
71 |
+
{%- set tc = tc.function %}
|
72 |
+
{%- endif %}
|
73 |
+
{{ '\n<tool_call>' + tc.name }}
|
74 |
+
{% set _args = tc.arguments %}
|
75 |
+
{% for k, v in _args.items() %}
|
76 |
+
<arg_key>{{ k }}</arg_key>
|
77 |
+
<arg_value>{{ v | tojson(ensure_ascii=False) if v is not string else v }}</arg_value>
|
78 |
+
{% endfor %}
|
79 |
+
</tool_call>{% endfor %}
|
80 |
+
{% endif %}
|
81 |
+
{%- elif m.role == 'tool' -%}
|
82 |
+
{%- if m.content is string -%}
|
83 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
84 |
+
{{- '<|observation|>' }}
|
85 |
+
{%- endif %}
|
86 |
+
{{- '\n<tool_response>\n' }}
|
87 |
+
{{- m.content }}
|
88 |
+
{{- '\n</tool_response>' }}
|
89 |
+
{%- else -%}
|
90 |
+
<|observation|>{% for tr in m.content %}
|
91 |
+
|
92 |
+
<tool_response>
|
93 |
+
{{ tr.output if tr.output is defined else tr }}
|
94 |
+
</tool_response>{% endfor -%}
|
95 |
+
{% endif -%}
|
96 |
+
{%- elif m.role == 'system' -%}
|
97 |
+
<|system|>
|
98 |
+
{{ visible_text(m.content) }}
|
99 |
+
{%- endif -%}
|
100 |
+
{%- endfor -%}
|
101 |
+
{%- if add_generation_prompt -%}
|
102 |
+
<|assistant|>{{- '\n<think></think>' if (enable_thinking is defined and not enable_thinking) else '' -}}
|
103 |
+
{%- endif -%}
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "tclf90/GLM-4.5-Air-AWQ-FP16Mix",
|
3 |
+
"architectures": [
|
4 |
+
"Glm4MoeForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": true,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"pad_token_id": 151329,
|
9 |
+
"eos_token_id": [
|
10 |
+
151329,
|
11 |
+
151336,
|
12 |
+
151338
|
13 |
+
],
|
14 |
+
"head_dim": 128,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"partial_rotary_factor": 0.5,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 11264,
|
20 |
+
"max_position_embeddings": 131072,
|
21 |
+
"model_type": "glm4_moe",
|
22 |
+
"moe_intermediate_size": 1408,
|
23 |
+
"norm_topk_prob": true,
|
24 |
+
"num_attention_heads": 96,
|
25 |
+
"n_group": 1,
|
26 |
+
"topk_group": 1,
|
27 |
+
"n_routed_experts": 128,
|
28 |
+
"n_shared_experts": 1,
|
29 |
+
"routed_scaling_factor": 1.0,
|
30 |
+
"num_experts_per_tok": 8,
|
31 |
+
"first_k_dense_replace": 1,
|
32 |
+
"num_hidden_layers": 46,
|
33 |
+
"num_key_value_heads": 8,
|
34 |
+
"rms_norm_eps": 1e-05,
|
35 |
+
"rope_scaling": null,
|
36 |
+
"rope_theta": 1000000,
|
37 |
+
"num_nextn_predict_layers": 1,
|
38 |
+
"tie_word_embeddings": false,
|
39 |
+
"torch_dtype": "float16",
|
40 |
+
"transformers_version": "4.54.0",
|
41 |
+
"use_cache": true,
|
42 |
+
"use_qk_norm": false,
|
43 |
+
"vocab_size": 151552,
|
44 |
+
"quantization_config": {
|
45 |
+
"quant_method": "awq_marlin",
|
46 |
+
"bits": 4,
|
47 |
+
"group_size": 128,
|
48 |
+
"version": "gemm",
|
49 |
+
"zero_point": true,
|
50 |
+
"modules_to_not_convert": ["model.embed_tokens", "model.layers.0.", "model.layers.1.", "model.layers.45.", "model.layers.46.", "model.layers.1.mlp.shared_experts.", "model.layers.2.mlp.shared_experts.", "model.layers.3.mlp.shared_experts.", "model.layers.4.mlp.shared_experts.", "model.layers.5.mlp.shared_experts.", "model.layers.6.mlp.shared_experts.", "model.layers.7.mlp.shared_experts.", "model.layers.8.mlp.shared_experts.", "model.layers.9.mlp.shared_experts.", "model.layers.10.mlp.shared_experts.", "model.layers.11.mlp.shared_experts.", "model.layers.12.mlp.shared_experts.", "model.layers.13.mlp.shared_experts.", "model.layers.14.mlp.shared_experts.", "model.layers.15.mlp.shared_experts.", "model.layers.16.mlp.shared_experts.", "model.layers.17.mlp.shared_experts.", "model.layers.18.mlp.shared_experts.", "model.layers.19.mlp.shared_experts.", "model.layers.20.mlp.shared_experts.", "model.layers.21.mlp.shared_experts.", "model.layers.22.mlp.shared_experts.", "model.layers.23.mlp.shared_experts.", "model.layers.24.mlp.shared_experts.", "model.layers.25.mlp.shared_experts.", "model.layers.26.mlp.shared_experts.", "model.layers.27.mlp.shared_experts.", "model.layers.28.mlp.shared_experts.", "model.layers.29.mlp.shared_experts.", "model.layers.30.mlp.shared_experts.", "model.layers.31.mlp.shared_experts.", "model.layers.32.mlp.shared_experts.", "model.layers.33.mlp.shared_experts.", "model.layers.34.mlp.shared_experts.", "model.layers.35.mlp.shared_experts.", "model.layers.36.mlp.shared_experts.", "model.layers.37.mlp.shared_experts.", "model.layers.38.mlp.shared_experts.", "model.layers.39.mlp.shared_experts.", "model.layers.40.mlp.shared_experts.", "model.layers.41.mlp.shared_experts.", "model.layers.42.mlp.shared_experts.", "model.layers.43.mlp.shared_experts.", "model.layers.44.mlp.shared_experts.", "model.layers.45.mlp.shared_experts.", "model.layers.46.mlp.shared_experts.", "model.layers.46.shared_head.", "lm_head"]
|
51 |
+
}
|
52 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"text-generation"}
|
model-00001-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fc26a957fd5241a3646ad8d4af0ecfb6c4afb3d5a331e2a5fccba165292049a
|
3 |
+
size 4996541272
|
model-00002-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8636bec0729cc1d553c1033cfe05bdbf9b31321c24e834f9deb7bd44caef4f96
|
3 |
+
size 4998307520
|
model-00003-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a8c5c1b6b142cff5cf2c854ddba8dd5caeaea231a047aaee3bd073629a4713e
|
3 |
+
size 4999151480
|
model-00004-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e2b4c25d8591c75d2d5066bf68b3ef8c032d96f5c228a50c745d3c8dbe2d3ba
|
3 |
+
size 4999153696
|
model-00005-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c224ab8dffd72a759ac18067b76fb26081356b2011c533ebe0125a87be261483
|
3 |
+
size 4990763840
|
model-00006-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14d52bddbf5812b8262e12e40eb921ccc53b36e40a8ad591b6f12046e1a41f63
|
3 |
+
size 4997445712
|
model-00007-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2a1b1955fc16166ad1bbd33e027b91f0cbbf1667bba4180e230283f5143aa32
|
3 |
+
size 4998360800
|
model-00008-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f152246c1b439ecebf28559a2ac5508ebe6834a2e56549692e0ac21bb8939de
|
3 |
+
size 5000525936
|
model-00009-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37674f17722dee14b814ae6d5b3672c6e3f25c6dedede1a5707fe63fd122824
|
3 |
+
size 4999156080
|
model-00010-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8f5364deb67daceb52a427deccfb399d0fe8080c84a115ff1b9f02688010f48
|
3 |
+
size 4999156120
|
model-00011-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b4de7acea1825f8963e287a589b5814e8510283aa38bc49865a76636d64d08
|
3 |
+
size 4999156120
|
model-00012-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8458af9bd76d476cc7c53b456064677ad9697590d447108339ef84cb80eda365
|
3 |
+
size 4999156120
|
model-00013-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ac2c934733de485a23aea34609888eeb13d3ef4fe620254425114c5b40d337c
|
3 |
+
size 4995004840
|
model-00014-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be46467218653568d2ebbb08a5ffb78c4c94b841426f151df6ee8675f0395392
|
3 |
+
size 4999719624
|
model-00015-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77c8f54a9f3b2d23793cb870fb465bcee910af595db1d9d71adcd854ab793154
|
3 |
+
size 3056676280
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9340665016419c825c4bdabbcc9acc43b7ca2c68ce142724afa829abb1be5efd
|
3 |
+
size 19970699
|
tokenizer_config.json
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"151329": {
|
4 |
+
"content": "<|endoftext|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"151330": {
|
12 |
+
"content": "[MASK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"151331": {
|
20 |
+
"content": "[gMASK]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"151332": {
|
28 |
+
"content": "[sMASK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"151333": {
|
36 |
+
"content": "<sop>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"151334": {
|
44 |
+
"content": "<eop>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"151335": {
|
52 |
+
"content": "<|system|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"151336": {
|
60 |
+
"content": "<|user|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"151337": {
|
68 |
+
"content": "<|assistant|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"151338": {
|
76 |
+
"content": "<|observation|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"151339": {
|
84 |
+
"content": "<|begin_of_image|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"151340": {
|
92 |
+
"content": "<|end_of_image|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"151341": {
|
100 |
+
"content": "<|begin_of_video|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"151342": {
|
108 |
+
"content": "<|end_of_video|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"151343": {
|
116 |
+
"content": "<|begin_of_audio|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"151344": {
|
124 |
+
"content": "<|end_of_audio|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"151345": {
|
132 |
+
"content": "<|begin_of_transcription|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"151346": {
|
140 |
+
"content": "<|end_of_transcription|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"151347": {
|
148 |
+
"content": "<|code_prefix|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"151348": {
|
156 |
+
"content": "<|code_middle|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"151349": {
|
164 |
+
"content": "<|code_suffix|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"151350": {
|
172 |
+
"content": "<think>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"151351": {
|
180 |
+
"content": "</think>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"151352": {
|
188 |
+
"content": "<tool_call>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"151353": {
|
196 |
+
"content": "</tool_call>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"151354": {
|
204 |
+
"content": "<tool_response>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"151355": {
|
212 |
+
"content": "</tool_response>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"151356": {
|
220 |
+
"content": "<arg_key>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": false
|
226 |
+
},
|
227 |
+
"151357": {
|
228 |
+
"content": "</arg_key>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": false
|
234 |
+
},
|
235 |
+
"151358": {
|
236 |
+
"content": "<arg_value>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": false
|
242 |
+
},
|
243 |
+
"151359": {
|
244 |
+
"content": "</arg_value>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": false
|
250 |
+
},
|
251 |
+
"151360": {
|
252 |
+
"content": "/nothink",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"151361": {
|
260 |
+
"content": "<|begin_of_box|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": false
|
266 |
+
},
|
267 |
+
"151362": {
|
268 |
+
"content": "<|end_of_box|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"151363": {
|
276 |
+
"content": "<|image|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"151364": {
|
284 |
+
"content": "<|video|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
}
|
291 |
+
},
|
292 |
+
"additional_special_tokens": [
|
293 |
+
"<|endoftext|>",
|
294 |
+
"[MASK]",
|
295 |
+
"[gMASK]",
|
296 |
+
"[sMASK]",
|
297 |
+
"<sop>",
|
298 |
+
"<eop>",
|
299 |
+
"<|system|>",
|
300 |
+
"<|user|>",
|
301 |
+
"<|assistant|>",
|
302 |
+
"<|observation|>",
|
303 |
+
"<|begin_of_image|>",
|
304 |
+
"<|end_of_image|>",
|
305 |
+
"<|begin_of_video|>",
|
306 |
+
"<|end_of_video|>",
|
307 |
+
"<|begin_of_audio|>",
|
308 |
+
"<|end_of_audio|>",
|
309 |
+
"<|begin_of_transcription|>",
|
310 |
+
"<|end_of_transcription|>",
|
311 |
+
"<|code_prefix|>",
|
312 |
+
"<|code_middle|>",
|
313 |
+
"<|code_suffix|>",
|
314 |
+
"/nothink"
|
315 |
+
],
|
316 |
+
"clean_up_tokenization_spaces": false,
|
317 |
+
"do_lower_case": false,
|
318 |
+
"eos_token": "<|endoftext|>",
|
319 |
+
"extra_special_tokens": {},
|
320 |
+
"model_max_length": 128000,
|
321 |
+
"pad_token": "<|endoftext|>",
|
322 |
+
"padding_side": "left",
|
323 |
+
"remove_space": false,
|
324 |
+
"tokenizer_class": "PreTrainedTokenizer"
|
325 |
+
}
|